Conference Abstracts

All Abstracts were presented at the Groundwater Conferences

Displaying 101 - 150 of 795 results
Title Presenter Name Presenter Surname Area Conference year Sort descending Keywords

Abstract

This study, near Thyspunt between St. Francis and Oyster Bay in the Eastern Cape Province of South Africa, focused on identification and quantification of surface water–groundwater links between the mobile Oyster Bay dune field and the coast. The specific objective was to establish the extent to which important wetlands such as the Langefonteinvlei and the numerous coastal seeps along the coast are directly or indirectly dependent on groundwater as their main water source. A further objective was to establish the extent to which any of the coastal seeps derive their water from the Langefonteinvlei, and are thus interdependent on the integrity of this system. The study also investigated the contribution of the Algoa and Table Mountain Group aquifers to these wetlands. The   monitoring   network   established   as   part   of   this   study   focused   on   unpacking   the interrelationships between surface and groundwater flows, aquifer hydrochemistry and wetland function, as related to the Langefonteinvlei and the coastal seeps in particular. Results indicate that the Langefonteinvlei is fed by groundwater flowing from the mobile Oyster Bay dune field in the north and the water divide in the northeast, which emerges at the foot of the high dune in the north and northeast of the wetland. However, the majority of the vlei area is ‘perched’ above the local water table on a layer of organic-rich sediment. The coastal springs located southwest and west of the Langefonteinvlei are not fed by water from the Langefonteinvlei. They emerge near the coast, where the bedrock lies close to the surface, and are fed by groundwater draining directly from the Algoa and Table Mountain Group aquifers to the Indian Ocean.

Abstract

The benefits of numerical groundwater modelling in resource management and scenario-testing are well known; it provides quantitative predictions of aquifer responses to stresses not yet experienced, albeit with uncertainties. Modelling is hence a widely used tool in Environmental Impact Assessment (EIA), in which prior to project commencing, the likely impacts must be assessed quantitatively to determine their significance. Based on these results mitigation measures can be proposed such that the residual impact is deemed acceptable.

At the stage of an EIA there is often very little data on which to base a model. Generally one is required to predict timescales in the order of hundreds of years with only very short-term time series data, and required to predict the response to stresses far beyond those used in the calibration. The very nature of the problems posed at EIA stage therefore render the accuracy of most modelling conducted at EIA phase severely limited. Recognising this, an appropriate model for the problems at hand can still be constructed and provide useful results.

The model results need to  be seen  as  the first phase  in  an  adaptive management cycle, rather than  a standalone prediction which a mine can use for future operation. To strengthen the resulting predictions, the cycle in which monitoring results are used to update the model, and thus update predictions and update future requirements for monitoring repeating the cycle, needs to be entrenched into the mine phases by ensuring the recommendation as detailed in the Environmental Management Plan. Thus, what started as a useful demonstrative tool, but with large uncertainties, becomes an accurate quantitative prediction tool for operation, closure and post-closure planning.

This paper outlines a case study of a proposed open-pit zinc mine on an inselberg in South Africa, within which these themes are explored. Limited initial data was sufficient to build a useful yet simplified model. The purpose and known limitations of the model approach dictated the spatial discretisation of the model, its dimensions, and the geometry of the aquifer units, yet the simplification of the aquifer systems into the numerical model was only feasible once the complexity of the aquifer systems had been recognised, else over- or unjustified simplification is a risk.

The paper concludes with a framework for integrating the adaptive groundwater management into the mine life cycle through applying appropriate models at each phase, which would strengthen the use of groundwater models in mining.

Abstract

Historically groundwater exploration consisted of reconnaissance geophysical surveys followed by detail ground surveys. Where no potentially water-bearing geological structures are shown on geological maps and aerial photos, the project area would be divided into a grid on which the ground geophysical survey would be done. This type of exploration is time-consuming and expensive. In some cases the terrain or cultural noise prohibits the use of conventional geophysical methods, with only more expensive and time-consuming methods being left as an option. This is where the high resolution airborne magnetic survey excels. The results obtained from this type of survey are of such a nature that ground geophysical surveys are only performed where potential drilling targets were identified  from  the  aerial  survey.  Not  only  can  there  be  cost-  and  time-savings  on  ground geophysical surveys, but drilling of dry boreholes can be limited, which makes up the largest cost component of a groundwater exploration project. This paper will discuss successes achieved using high resolution aeromagnetic surveys as the basis for groundwater exploration in traditionally low- yielding igneous geology.

Abstract

National legislation is the outcome of processes, locally, provincial and nationally. Certain aspects of water management have first been the product of legal initiatives of the South African government, seeking  to  address  local  problems.  As  a  result,  the  National  Water  Act,  3of  1998,  was promulgated. The Act is in line with the Constitution of the Republic of South Africa, 108 of 1996, which embrace human rights. The Water Services Act, 108 of 1997, regulates the accessibility of water and sanitation by domestic users. Groundwater, in many parts of South Africa, provides the sole  and/or  partial  water  supply  for  meeting  basic  human  needs.  With  an  increase  in  the dependency on groundwater usage, the need to properly and effectively protect, use, develop, conservemanage  and  control  groundwater  resources  has  become  a  national  priority  by  the custodian of all water resources: the National Department of Water Affairs. The question arises whether  onot  the  current  groundwater  allocatiodecision-making tools  are  enough  to  make informed  decisions  regarding  the  final  approval,  or  not,  of  groundwater  use  licenses,  and whether  a  proper  framework  that  includes  guidelines  together  with  licensing  conditions  are available  for  decision- making   in   complex  groundwater   scenario   situations   as   part   of   the groundwater license decision process. The current research contributes to answering this question and finding solutions in order to improve and make the groundwater use authorisation process more  effective.  The  groundwater  situation  will  bdiscussed  on  a  comparative  basis  from international case studies regarding water legislation and groundwater resource management tools. A full evaluation and analysis of groundwater use authorisation process and decision-making tools oregional annational level  in  South  Africa will be done  and a Framework and tool for the evaluation, decision-making and determination of authorisation conditions of groundwater use authorisations, which includes existing lawful water use, general authorisations, and groundwater use licensing, will be developed. Scenarios and case studies are currently implemented.

Abstract

The Department of Water Affairs (DWA), Chief Directorate: Resource Directed Measures has developed guidelines over the past decade  in ordeto  facilitatproper implementation of the Groundwater   Resourc Directed   Measures   (GRDM)   (also   known   as   determination   of   the groundwater component of the Reserve). An intrinsic component of the GRDM is delineation of Integrated Units of Analysis (IUAs) from which the allocatable groundwater and surface water components are calculated, which essentially drives the allocation of water use licenses. Delineation typically follows a three-tiered approach, namely primary, secondary and tertiary level. Primary delineation is based on quaternary boundaries (considered to be the basic building block of the IUA); secondary follows geological, hydrogeological and hydrological boundaries, groundwater abstraction zones and baseflow contribution; and tertiary is dependent on management criteria. How then, do we undertake this challenging task of delineating IUAs to a level where it can be better managed and monitored? Complexities arise when hydrogeological data are scarce, hydrological and hydrogeological systems are not in sync, aquifers extend across a quaternary, water management area, provincial and administrative boundaries, surface water and groundwater interactions are not well understood, and legislation on protection of water resources differs greatly from one country to the next. Having undertaken delineation of IUAs in the Waterval Catchment (Upper Vaal WMA), Olifants WMA and Mvoti to Umzimkhulu WMA with the available datasets, the key criteria for the respective  WMAs  have  ultimately  been  management  class,  significant  aquifers,  groundwater– surface water interaction and groundwater stressed areas, and secondary catchment boundaries, followed by other hydrogeological, geological and management considerations.

Abstract

POSTER All groundwater is vulnerable to contamination, and natural in homogeneity in the physical environment results in certain areas being more vulnerable to contamination than others. Inherent in the agricultural, domestic and industrial sectors of Pietermaritzburg, is the generation of contaminants which, upon reaching the aquifer, result in the deterioration of the quality of groundwater, thus resulting in the water no longer being fit for its intended use. The DRASTIC method is used to calculate the groundwater vulnerability of a 670 km2 region, including the city of Pietermaritzburg. The suggested ratings of each parameter are scrutinised and adapted, according to their relevance to the region and according to known geological occurrences. The use of this method enables the user to generate a regional scale vulnerability map of the groundwater in Pietermaritzburg. The vulnerability map generated has the ability to effectively highlight vulnerable areas to groundwater contamination, which is of critical importance in correct land-use planning, as well as in indicating areas of particular concern, where further detailed investigations are needed. The results of such an assessment are used as an input, together with a contamination inventory to assess the potential risk of groundwater pollution in a groundwater risk map. Furthermore, the result informs local decision-makers and enables proactive prevention of groundwater pollution, in accordance with section 13 of the 1998 National Water Act. The intrinsic vulnerability of the Pietermaritzburg region was found to range from low to very high. The area found to be highly vulnerable is the region northeast of Springbank which requires investigation at a local scale.

Abstract

The occurrence of groundwater around a mined-out open pit, connected to an active underground working is not completely understood, but it is fascinating. It has been established that gold mineralisation in study area was structurally controlled. The geomorphology of the local drainage system is highly controlled by the fold or fault architecture. Surface water flowed through, and eroded open fractures in exposed damaged zones (zone of subsidiary structures surrounding a fault). Previous  conceptual  hydrogeological models  of  groundwater  system  suggested  is  a  two-aquifer system, consisting of a fractured aquifer overlain by a weathered aquifer, where groundwater flow mimics surface topography. Based on recent drilling and reassessment of historic geological and hydrogeological data, the groundwater system around the mine could not only be described in terms of an elevation or stratigraphic units, as traditional aquifers are. The weight of the study was placed on accurately understanding the groundwater system in the deposit area by using structural hydrogeology as a best tool in the hydrogeological tool box. From a hydraulic head point of view, in addition to the weathered groundwater system, there are as many bedrock aquifers and aquitards as there are major structures in the pit area.

Abstract

The study on estimation of groundwater recharge was done in Grasslands Catchment, about 70 km south-east of Harare, Zimbabwe. The catchment is underlain by Archean Granitic rocks intruded by dolerite  dykes/sheets  and  form  part  of  the  Basement  Complex.  The  catchment  is  a  stream headwater wetland, at the source of Manyame River. The catchment comprises an upland region or interfluves of area 2.12 km2 and a dambo area of 1.21 km2. The study focused on the assessment of temporal and spatial variability of moisture fluxes based on solute profiling, and groundwater recharge and investigations of moisture transport mechanisms. The methodology involved the use of  both  hydrometric  and  hydrochemical  techniques.  Groundwater  recharge  rates  and  moisture fluxes were calculated using a chloride mass balance technique in comparison to the hydrograph separation technique. Groundwater recharge was estimated to be 185 mm/year using the chloride mass  balance  and  215 mm/year  using  the  hydrograph  separation  technique.  Mechanisms  of recharge were investigated using the bimodal flow model that comprised of diffuse flow and preferential flow. The results revealed that preferential flow contributes up to 95% of the recharge in the interfluves, whilst diffuse flow contributes up to 5% of the total recharge. The results reveal that the groundwater hydrograph technique results are in agreement with the chloride mass balance method. The study illustrated how routine observations can improve process understanding on groundwater recharge mechanisms. The techniques are not expensive, are easy to use and can be replicated elsewhere depending on availability of data.

Abstract

The groundwater quality component of the Reserve serves as guidance for groundwater quality requirements when assessing water use license applications. The Reserve is the quantity and quality of water required to satisfy the basic human needs and protect the aquatic ecosystem in order to ensure ecologically sustainable development and use of water resources. This component provides guidance when assessing the suitability of groundwater for drinking purposes. The current groundwater quality was based on the Quality of domestic water supplies, assessment guide (vol. 1,2nd   ed.,  1998).  The  parameters  that  were  assessed  in  the  current  template  include  chemicalssodium, magnesium, calcium, chloride, sulphate, nitrate and fluoride; and physical parameters: pH and  electrical  conductivity.  The  above-mentioned  ions  cater  fomost  water  uses  applied  for, whereas the revised template will also include microbiological (escherichia coli), toxics (zinc, manganese, iron, cadmium, cobalt and copper) for local government and mining commodity/by- product specific water use applications. The current water quality basic human needs values will also be replaced with SANS 241 (2011) guidelines. Inputs and suggestions are therefore requested from various end users/stakeholders.

Abstract

After drilling technology improvements in South Africa in the early 1900s, several deep (>300 m) exploratory drilling programmes were conducted to explore for pressurised groundwater resources. The results were not significant, except for the Cretaceous Uitenhage Artesian Basin and recent investigations in folded Table Mountain Group Aquifer systems. Large sedimentary units in Southern Africa do have the structural geometry to drive regional artesian systems; however, diverse climate and aquifer hydraulic limitations counteract these conditions to such a level that sustainable basin- like  deep  flow mechanisms  are  probably  non-existing,  except where enhanced  by  deep mining activities.

On the contrary, several deep drilling projects in South Africa, Botswana and Namibia have undoubtedly  proven  the  existence  of  pressurised  groundwater  strikes  below  300 m  (northern Kalahari)  to  as  deep  as  3 000 m  (western  Karoo  Basin).  Given  the  regional  hydrogeological characteristics of these systems, the availability of sufficient recharge zones required to drive sustainable artesian flow or semiartesian conditions becomes a challenge. The existence of isolated pressurised compartments as a result of the lithostatic pressurisation in the deeper sections of many of the sedimentary successions may prove to be a more realistic explanation for these pressurised water strikes observed during deep drilling operations in Southern Africa.

Abstract

Understanding the hydrogeology of fractured or crystalline rocks could be complicated because of its complex structure and a porosity that is almost exclusively secondary. These types of geologies are known to exhibit strong heterogeneities and irregularities contrasted in hydraulic properties, spacing and flow distribution within fractured rock aquifers. Therefore it is important to develop a conceptual model based on site specific data such as the hydraulic roles between groundwater and nearby hillslope/surface water bodies in order to understand its movement within the environment. Therefore this study intends to develop a hydrogeological conceptual model to qualitatively interpret the dominant groundwater flow processes at a 3rd order scale within southern granite supersite of the Kruger National Park (KNP). Key findings based on actual subsurface results in the form of Electrical Resistivity Tomography (ERT) surveys, borehole drilling logs, water levels and hydraulic data suggest that two aquifer types exist on the southern granite supersite namely, a weathered low resistivity of 3-75 ?m (average depth ranging 383-328 mamsl) and hard rock high resistivity of 1875-5484 ?m (average depth ranging 364-299 mamsl) granite/gneiss aquifer. The weathered aquifer flow system responds to localized processes such as piston recharge, indirect surface water recharge and groundwater water discharge via interflow. This was due to the relatively rapid response time of 2-3 weeks in groundwater levels to the major sequence of rainfall events over the hydrological year. The hard rock aquifer is part of a regional groundwater flow system. This is owed to the lengthy response time lags of 2-3 months in groundwater levels to the major sequences of rainfall events over the hydrological year. Due to the generally low transmissivity (ranging 9.50E-08 to 11.2 m2/day) values obtained during the borehole pump and slug tests and inclining trend of groundwater levels after the wet season, suggest these ephemeral hillslope landscapes are likely to act as hydraulic boundary areas. In that they contribute during the dry season to the regional hydraulic head generating baseflow to perennial streams. Therefore from a management perspective certain reaches within these ephemeral streams contribute to recharge which in turn should receive attention as many of the ephemeral stream sand are used for grading tourist gravel roads. Furthermore these granite ephemeral landscapes are characteristic of generally low transmissive aquifer properties and therefore should be given careful consideration before including it in a water supply scheme scenario.

Abstract

Since the first decant of acid mine drainage in the West Rand in 2002, a great deal of effort has gone into researching the challenges which it poses there and in the adjacent Central Rand and East Rand Gold Fields. Short-term interventions have been implemented to maintain water at conservatively-determined safe levels and remove the worst contaminants from the water pumped from the mined. A feasibility study, looking at the long-term options has proposed treatment of water to a much higher standard, identifying a number of potential end-users of the treated water and highlighted the extremely high costs involved in responsible management. During the second half of 2010, a team of experts was convened to assess problems related to acid mine drainage in the Witwatersrand and propose solutions. A number of recommendations were made and the most urgent - the need for a short-term intervention to bring things under control and the the feasibility study for long-term management of the problems were undertaken. Nevertheless, despite the intense focus on the problem, a number of questions have remained unanswered. Throughout the period of min flooding, no detailed systematic monitoring of surface water flow has been undertaken, preventing the detailed apportionment of pollution between underground and surface sources. Ingress control measures have been proposed, but funding mechanisms, regulatory hurdles and challenges relating to long-term management have not all been comprehensively addressed. On a more positive note, the installation and operation of pumps to control the water level in the Western and Central Basins will start to provide valuable data regarding the response of the flooded mine workings to pumping, assisting in the characterisation of the hydraulic properties and behaviour of the large voids. This will facilitate the optimisation of pumping strategies and the refinement of environmental critical levels and assist in the development of more sustainable management options.

Abstract

Natural attenuation describes a set of natural processes which decrease the concentrations and/or mobility of contaminants without human intervention. In order to evaluate and demonstrate the effectiveness of natural attenuation, regular long term monitoring must be implemented. This entire process is called Monitored natural attenuation (MNA). The focus of MNA is generally placed on hydrocarbons and chlorinated solvents but according to the United States Environmental Protection Agency (USEPA) MNA can be used for various metals, radio nuclides and other inorganic contaminants. MNA was deemed the best method to reduce the concentration and mobility of contaminants impacting the groundwater environment, at a fertiliser plant in the Free State. A number of improvements in infrastructure were made in 2013which were assumed to have prevented further release of contaminants into the groundwater system, from the source areas on site. MNA was also considered to be the most effective affordable solution for the site as groundwater in the vicinity is not used for domestic purposes (low risk). Cl, NO3 and NH4 were used to monitor the movement of the contamination off site and the effectiveness of MNA. With regards to the inorganic contaminants emanating from the site, sorption, dispersion, dilution, and volatilization are the main attenuation mechanisms. These mechanisms are considered to be non-destructive attenuation mechanisms. Denitrification, nitrate reduction through microbial processes, may also facilitate in the attenuation of the in organic constituent nitrate. Denitrification is considered a destructive mechanism. Classed posts and temporal graphs of the Cl, NO3 and NH4 concentrations between 2008 and 2014 were utilised to show the movement and change in size and shape of the contamination plumes and subsequently, monitor MNA. The data indicates that the NO3, Cl and NH4 contamination plumes from the various source areas on the site have detached from the site and are currently moving down gradient along the natural drainage. Contaminant concentrations at the site have generally decreased in recent monitoring events while concentrations downstream of the site have remained stable. This indicates that MNA is currently an effective method of remediation for the site and monitoring should be continued to ensure that it remains effective.

Abstract

Hydrogeological environments are commonly determined by the type of underlying geology; these environments may have a tremendous effect on the mobility and recovery of LNAPLs.  Hydrogeological environment include intergranular sediments and bedrocks of contrasting permeability and porosity. This paper synthesizes several case studies and conceptual models of different hydrological environments and illustrates how they affect the flow characteristics and rebound of LNAPLs.

Abstract

Different biological and chemical transport results are evaluated in this study. Ecoli and PDR1 were selected as the biological tracers with salt and rhodamine as chemical tracers. The transport experiments were evaluated through the primary aquifer material found at the University of the Western Cape research site. A series of controlled experiments under laboratory and field conditions was conducted. Each provides a different kind of data and information. The results from laboratory studies could be used to better design the field studies. In both cases, the data collected was to provide information on fate and transport of microbes in groundwater. The field design phase of the experiment was an up-scaling of the laboratory phase of this project. The amount injected into the aquifer was increased in proportion to the size of the research site. Tracer tests using chemical and microbial tracers were carried out simultaneously. Results of laboratory tests show a 5 times slower transport of microbes, compared to salts.. The salts at field scale show a breakthrough occurring after 2 days whereas the microbes never managed to breakthrough with the experiment stopped after 45 days. A new borehole was drilled closer to reduce distance/ travel time, but this had no effect on field results for the microbes. {List only- not presented}

Abstract

Quantification of groundwater is important as it should determine the maximum sustainable use of the resource. The SAMREC Code that is required for mineral resource quantification sets out minimum standards, guidelines and recommendations for public reporting of exploration results for mineral resources and reserves. The code serves as the basis for mineral asset valuation and provides quality assurance to the process and an understanding of the results. In groundwater far too often, various methods are used for resource quantification that leads to various results even should the same resource be investigated by two different hydrogeologists. In far too many cases, the resource is not quantified properly which leads to vast over or under estimations. The result is a lack of trust in groundwater resources. As has been done in the international arena, it is similarly proposed that a code be developed for South Africa to ensure that the sustainability of groundwater resources is determined and the impacts of utilization on the water Reserve and the environment be quantified at a minimum level and that basic hydrogeological principles are followed. A South African Groundwater Regulation Code for sustainable resource quantification and impact assessment (SAGREC) is developed that is proposed to guide groundwater investigations and development processes from planning to baseline assessments, drilling and aquifer testing to resource quantification and sustainability modeling. The aim is to ensure trust being built on groundwater as a resource due to projects that follow a formal process that quantifies the assurance of supply and determines the environmental impacts.

Abstract

Numerous environmental concerns have been raised with the possible exploration and development of shale gas in the Karoo. One such concern is that deep borehole drilling and the hydraulic fracturing process may create conduits through which deep-seated groundwater could migrate to shallow aquifers.This study set out to characterise deep Karoo groundwaters and identify indicators of deep flow. It was not possible to obtain groundwater samples from the deep-seated shales that are being considered for shale gas exploration and development because no suitable deep boreholes exist. Instead, samples from thermal springs and two deep boreholes that pass through the shales were obtained as the best approximation of deep-seated groundwaters in the Karoo. Deep and shallow groundwaters were characterised and determinands were identified to differentiate these waters. A provisional guide on the limits for these determinands was developed, and at this stage, this list can be used for guidance on differentiating deep form shallow waters. The determinands that appear to be most reliable in identifying deep groundwater were grouped and prioritised for future monitoring programmes.

Abstract

In order to obtain a better understanding of a groundwater system, it is very important to understand the recharge mechanisms of such a system. Several intensive investigations have been done, documenting the different methodologies to derive recharge. Most of these studies have been centred on the detailed analysis and description of isotopes, which are either a characteristic of the water, the rock, or both. The isotopes of strontium, in particular the isotopic 87Sr/86Sr ratio, is one of such methodologies applied to drive the sources of recharge. The Oshivelo management area is part of the greater Owambo Basin, with no major rivers flowing through the project area, while the Omuramba Owambo, which crosses the area from east to west, bears water only rarely. This rural area therefore heavily relies on groundwater resources. Towards the end of the 20th century, through exploratory drillings an artesian aquifer in the southern part of the Owambo basin was discovered. Several investigation and water supply boreholes have been drilled, with the major findings summarised: - In the late 1990s DWA (DWA, 1999) drilled 12 exploration boreholes and six observation boreholes, showing high yields ranging between 40 and 200 m?/h. One of the boreholes yielded saline water, classified under the Oshivelo Artesian Aquifer and it was recognized that there may be a risk of saltwater intrusion when beginning to exploit the aquifer. It was assumed that the aquifer receives local recharge from the Etosha Limestone Member aquifer in the order of 3.75 MCM/a and additional unquantified recharge from the Otavi Dolomite Aquifer. - In the early 2000s KfW funded a study of the Tsumeb area, including the development of a groundwater flow model according to which an amount of 31 MCM/a would be leaving the Tsumeb area at the northern model boundary, i.e. flow into the Oshivelo Region. - The DWA plans to supply the north-western Oshikoto Region with water from the KOV2 aquifer via a pipeline in order to overcome water shortages there and to become more independent from surface water supplies from Angola. Though, through the groundwater model, a first estimate of groundwater resources availability has been established, the source of recharge is yet to be determined, including the flow mechanisms. Without, this vital piece of information, a valuable groundwater resource may be eventually utilized unsustainably. This presentation will focus primarily on the determination of groundwater recharge mechanisms, which would produce additional input to refine the existing groundwater flow model, concentrating on the Oshivelo Aquifer system. Upon the successful completion of this investigation, the next step would then be to evaluate the groundwater flow model and use it for a proper groundwater management plan. {List only- not presented}

Abstract

Noble gases are used in this study to investigate the recharge thermometry and apparent groundwater residence time of the aquifers on the eastern slope of the Wasatch Mountains in the Snyderville Basin of Summit County, Utah. Recharge to and residence time for the basin aquifer in the Salt Lake Valley, Utah, from the western slope of the Wasatch Mountain range by 'mountain-block recharge' (MBR), is a significant source of subsurface flow based on noble gas and tritium (3H) data. The Snyderville Basin recharge thermometry from 15 wells and 2 springs indicates recharge temperatures fall within the temperature "lapse space" defined by the recharge thermometry determined in the study of MBR for the Salt Lake Valley and the mean annual lapse rate for the area. Groundwater residence times for the Snyderville Basin were obtained using tritium and helium-3 (3He). The initial 3H concentrations calculated for the samples were evaluated relative to the 3H levels in the early 1950s (pre-bomb) to categorize the waters as: (1) dominantly pre-bomb; (2) dominantly modern; or (3) a mixture of pre-bomb and modern. Apparent ages range from almost 6 years to more than 50 years. Terrigenic helium-4 (4He) is also used as a groundwater dating tool with the relationship between terrigenic 4He in Snyderville Basin aquifers and age based on the apparent 3H/3He ages of samples containing water from only one distinct time period. The 4He is then used to calculate groundwater residence times for samples that are too old to be dated using the 3H/3He method. The mean groundwater residence times calculated with both methods indicate the water yielded by wells and springs in the Snyderville Basin generally ranges from 6 to more than 50 years. In addition, the calculated terrigenic 4He age for the pre-bomb component of many samples was found to exceed 100 years. While terrigenic 4He residence times are not as definitive as those calculated with the 3H/3He method, or chlorofluorocarbons (CFCs), age dating with terrigenic 4He allows initial estimates to be made for groundwater residence times in the Snyderville Basin, and is an important tool for establishing groundwater residence times greater than 50 years. Historic water levels from production wells indicate a declining water table. This trend in conjunction with precipitation data for the area illustrates the decline in the water levels to be a function of pumping from the aquifers. Groundwater residence times in the Snyderville Basin and declining water levels support the need for a groundwater management program in the Snyderville Basin to effectively sustain the use of groundwater resources based on groundwater age. {List only- not presented}

Abstract

The intangible nature of groundwater provides challenges when trying to understand and quantify the role of groundwater in the hydrology of lakes and wetlands. This task is made even more difficult by the frequent absence of data. However, by adopting a scientific approach, it is possible to assess the hydrogeological contribution

Abstract

POSTER The Department of Water and Sanitation (DWS) is the custodian of South Africa's water and thus is imperative that it reports on its state as the National Water Act of 1998 requires regular reporting to Parliament by the Minister. Hence, the annual compilation of report entitled "The National State of Water in South Africa." This report aims to give an overview of the status and trends of water quality and quantity, further assisting with international water reporting obligations to SADC Region, African Continent, and Globally e.g. the United Nations Commission on Sustainable Development. This information empowers the public and provides knowledge to water managers for informed decision-making. The main purpose is to enhance quality, accessibility and relevance of data and information relating to the goal of Integrated Water Resource Management towards attaining holistic Integrated Water Management, and Integrated Water Cycle Management in future. Three distinct requirements for collecting data by DWS are: (i) assessing and comparing the status and trends for both quantity and quality; (ii) monitoring for water use and (iii) monitoring for compliance to licence conditions. Such information is further used to assess the effectiveness of policies implemented and identify the existing gaps. Various challenges to the country's water demand proper integrated water resources planning and management. The report is divided into Themes such as, Resource Management, Water Services/Delivery, Water Development and Finance, based on selected indicators. The indicators are strategically selected to provide a representative picture of the state, as well as the changes over time to the drivers, pressures, impacts and responses related to the chosen themes. These Indicators include: Climatic Conditions, Water Availability, Water Use, Water Protection, Water Quality, Water Service Delivery, Water Infrastructure, Water Finance, and Sanitation. The report for Hydrological Year 2013/2014 has been completed and it shows that the amount of water available varies greatly between different places and seasons, and from one year to another. The average total storage was around 85% of full supply capacity in September 2014. Surface water quality is generally facing a threat from eutrophication and microbial pollution emanating mainly from mismanaged water (and waste) treatment plants and related landuse activities. Groundwater quality is generally good except in some localised areas where mining and industrial activities are prevalent. With regards to infrastructure; vandalism, lack of maintenance & management skills reflect on/as non-revenue water, highlighting the need for more funding towards maintenance, especially in groundwater which is normally wrongly deemed as an unreliable resource. In the past 20 years, water services delivery to communities has improved as the Millennium Development Goals have been met and surpassed, while the sanitation access goals were likely to be met.

Abstract

The way in which groundwater is utilized and managed in South Africa is currently being reconsidered, and injection wells offer numerous possibilities for the storage, disposal and abstraction of the groundwater resource for municipalities, rural communities, mining, oil and gas, and a multitude of other industries. This presentation is about the North Lee County Reverse Osmosis Water Treatment Plant Injection Deep Injection Well project in southwest Florida in the United States. Water is plentiful in Florida, but it is not drinking water quality when it comes out of the ground. As such, treating water from wells is an important part of water supply in the coastal regions of the state. One form of treatment is reverse osmosis (RO), which generates a brine concentrate waste. The concentrate must then be disposed of, and a preferred method of disposal is an injection well because the disposal is not visible to the general public. The injection well project was associated with the construction of a large water treatment plant. The emphasis of this presentation is on the drilling and technical work in the field for this injection well, and to illustrate the rigorous requirements of drilling, constructing and testing a Class I injection well. Class I injection wells are permitted by the United States Environmental Protection Agency (US EPA) for injecting hazardous waste, industrial non-hazardous liquid, and/or municipal wastewater beneath the lowermost Underground Source of Drinking Water (USDW). Aquifer storage and recovery (ASR) wells are permitted as Class V injection wells by the US EPA. The permitting of an injection well is rigorous and requires state and federal approval before, during and after the field portion of the project. {List only- not presented}

Abstract

This study intent to share the legal and institutional analysis of the UNESCO IHP project "Groundwater Resources Governance in Transboundary Aquifers" (GGRETA) project for the Stampriet Transboundary aquifer. The Intergovernmental Council (IGC) of the UNESCO International Hydrological Programme (IHP) at its 20th Session requested the UNESCO-IHP to continue the Study and Assessment of Transboundary Aquifers and Groundwater Resources and encouraged UNESCO Member States to cooperate on the study of their transboundary aquifers, with the support of the IHP. The GGRETA project includes three case studies: the Trifinio aquifer in Central America, the Pretashkent aquifer in central Asia and the Stampriet aquifer in southern Africa. This study focuses on the Stampriet Transboundary Aquifer System that straddles the border between Botswana, Namibia and South Africa. The Stampriet system is an important strategic resource for the three countries. In Namibia the aquifer is the main source of water supply for agricultural development and urban centers in the region, in Botswana the aquifer supplies settlements and livestock while in South Africa the aquifer supplies livestock ranches and a game reserve. The project methodology is based on UNESCO's Shared Aquifer Resources Management (ISARM) guidelines and their multidisciplinary approach to transboundary aquifers governance and management, addressing hydrogeological, socio-economic, legal, institutional and environmental aspects. The GGRETA builds recognition of the shared nature of the resource, and mutual trust through joint fact finding and science based analysis and diagnostics. This began with collection and processing of legal and institutional data at the national level using a standardized set of variables developed by the International Groundwater Resources Assessment Center (IGRAC). This was followed by harmonization of the national data using common classifications, reference systems, language, formats and derive indicators from the variables. The harmonized data provided the basis for an integrated assessment of the Stampriet transboundary aquifer. The data assisted the case study countries to set priorities for further collaborative work on the aquifer and to reach consensus on the scope and content of multicountry consultation mechanism aimed at improving the sustainable management of the aquifer. The project also includes training for national representatives in international law applied to transboundary aquifers and methodology for improving inter-country cooperation. This methodology has been developed in the framework of UNESCO's Potential Conflict Cooperation Potential (PCCP) program. The on-going study also includes consultation with stakeholders to provide feedback on proposals for multicountry cooperation mechanisms. It is anticipated that upon completion of the study, a joint governance model shall have been drawn amongst the three countries sharing the aquifer to ensure a mutual resource management.

Abstract

South Africa is facing a water supply crisis caused by a combination of low rainfall, high evaporation rates, and a growing population whose geographical demands for water do not conform to the distribution of exploitable water supplies. This situation is particularly critical in the river systems comprising the Limpopo River basin where every tributary river has been exploited to the limits possible by conventional engineering approaches. These attempts to meet society's demands for water for domestic, irrigation, mining and industrial uses have caused a progressive deterioration of the water resources as well as the aquatic ecosystems in these rivers. In addition to the pressure exerted by scarce water resources and deteriorating water quality, South Africa is facing a critical shortage of electrical power. There is an urgent need to address the country's electricity shortage through the building of new coal mines and coal fired power and the Waterberg area has been identified for these purposes. All of these new operations will be accompanied by a rapid growth in population which will put further stress on the water resources as well as the existing sewage plants. The Waterberg region is part of the Bushveld which can be classified as a hot and an arid region. Due to irrigation that currently exist in the region, which stems from the climate conductive to agriculture production and its current mining development, based on the vast mineral deposits present, the current water availability and water use in the Waterberg region is relatively in balance. Meaning that the available water resources in the Limpopo basin will not be able to meet the domestic and industrial demands for water that the new developments will pose and the flows in several rivers have already changed from perennial to seasonal and episodic. In order to satisfy the demand of water that will be required by the above mentioned projects, the Mokolo Crocodile Water Augmentation Project will supply additional water to the region. However, this area still contains a relatively high number of natural or near-natural ecosystems, and it is important that this natural capital is not significantly eroded in the development process. This is possible with effective environmental planning to limit and mitigate negative social, ecological and economic impacts.

This project promotes science-based environmental assessment and planning by developing an understanding of key aquatic ecological indicators and their associated thresholds. The project vision is to promote improved outcomes for stream and river ecosystem health, and ultimately human health and well-being in the Waterberg area. The outcomes of the study will be used to detect existing processes of change in aquatic ecosystems and estimate the likely future changes that increased coal mining, human population and water transfers will cause.

Abstract

Vapour intrusion (VI) is recognized to drive human health risk at numerous sites that have been contaminated by petroleum products and other volatile contaminants. The risks related to VI are typically evaluated using direct measurement (vapour sampling) or modelling methods. ERM has developed a toolbox approach using a combination of exclusion distance criteria, direct measurement and modelling methods to assess risks and achieve closure. For direct measurement, samples of vapour are taken beneath the floor slab of buildings (sub-slab sampling) or from the air inside the buildings (indoor air sampling). Modelling methods are often used to estimate the partitioning of volatile contaminants from soil or groundwater sources into the vapour phase and the subsequent transport of vapours from the subsurface environment into habitable buildings. A limitation of modelling approaches is that they are designed to be conservative to be adequately protective of sensitive receptors. VI models also do not typically take into account the degradation of hydrocarbon vapours in the presence of oxygen, which has been found to be a significant process for petroleum hydrocarbons. The authors have compiled a dataset of petroleum vapour and groundwater results from over 50 petroleum release sites in southern Africa. These data were used to develop exclusion distance criteria for vapours emitted from contaminated groundwater sources (i.e. distance from the source at which sufficient aerobic attenuation has occurred for the VI risk to be negligible). A standard "lines of evidence" approach has been applied to the assessment of VI risk by firstly applying the exclusion distance criteria to sites with groundwater contaminant plumes beneath buildings, and if these are met, the sites are considered to have no unacceptable VI risk. Where exclusion screening criteria are not met, risk is estimated using modelling, and if a potential risk is predicted, then direct sub-slab measurements are taken to more accurately assess the risk. Lastly, where sub-slab assessment predicts a potential VI risk, indoor vapour measurement are taken to evaluate actual risk, taking into account interferences from other sources and background levels of contaminants. Mitigating measures can then be applied as appropriate. Various case studies will be presented including direct measurements at industrial and residential sites overlying contaminant plumes and modelling methods at residential properties adjacent to service station sites. A risk-based approach to the assessment of contaminated land provides a sustainable and cost effective methodology, and also avoids unnecessary remediation. The results show that VI risks can be adequately addressed with a toolbox approach using multiple lines of evidence.

Abstract

Collecting groundwater information close to the ocean often raises the question whether a tidal effect could be influencing the data. Sometimes this issue leads to speculation that is counterproductive and sometimes it is overlooked thereby causing judgement errors when interpreting data. This paper looks at the theoretical background of tidal influences in coastal aquifers to identify the screening factors to consider when deciding whether a contaminated site assessment needs to take tidal influences into account. The rising and falling of the tides cause a standing wave with varying frequency that is dampened by the neighbouring aquifer as the wave travels into it. Unconfined aquifers generally tend to be affected over a short distance, while the pressure wave can travel significant distances in a confined aquifer. There are indications that the rise and fall of the tides prevent discharge of the LNAPL, but it could cause lateral spreading due to the head changes in the aquifer. The tidal fluctuation also causes uncertainties in the LNAPL measurements. The case study presents data from a site where tidal variation directly influences the distribution of LNAPL in monitoring holes, while the variation in total fluid level is slight. In this specific case the tidal variation has to be accounted for, otherwise skewed measurement data will be collected.

Abstract

A groundwater assessment was conducted to identify and predict the contamination and transport properties of a groundwater system. The motivation for the study was the rising concern of a farm owner about the deteriorating water quality of the aquifer system. An investigation of the surface and groundwater quality indicated that two fertilizer dumpsites were the sources of pollution. Water analyses revealed elevated concentrations of Ca, Mg, K, F, NO3, SO4, Mn and NH4 within boreholes near the pollution sources. The NH4 and NO3 concentrations were exceptionally high: 11 941 mg/L and 12 689 mg/L, respectively. These high concentrations were the direct result of the dumping of fertilizer. The rise in these concentrations may also have been catalysed by the nitrogen cycle and the presence of the Nitrosomonas bacterium species. Due to the high solubility of NO3, and because soils are largely unable to retain anions, NO3 may enter groundwater with ease, and could migrate over large distances from the source. Elevated NO3 in groundwater is a concern for drinking water because it can interfere with blood-oxygen levels in infants and cause methemoglobinemia (blue-baby syndrome). A geophysical study was undertaken within the area of investigation to gain insight on the underlying geological structures. The survey indicated preferential flow paths within the aquifer system along which rapid transport of contaminant is likely to occur.
Key words: aquifer system, groundwater quality analyses, fertilizer, nitrogen cycle, Nitrosomonas species, geophysics.

Abstract

POSTER Vanwyksvlei had always experienced problems with water supply and quality of drinking water. The town relies on 6 boreholes to supply the town with drinking water. Since 2011 the town was told not to use the water that was supplied from the borehole called Soutgat. This meant that the town could now rely only on the water being supplied from the other 5 boreholes.From 2011 till present the town has experienced a lot of problems regarding water supply, due to the fact that the Soutgat could not be used anymore. Extra stress was put on the other boreholes and these were pumped almost dry. The two aquifers are currently failing and monitoring data since 2009 shows that the water levels of the town are decreasing. Due to low rainfall, recharge to the boreholes are much lower, which exacerbates the problem. This poster will examine the effectiveness of using the Blue Drop system in small towns with limited water supply, at the hand of a case study of Vanwyksvlei. This review will take into account factors such as the point at which water quality is tested in the water supply system, the type of water treatment available for the town and a review the usefulness of certain standards in the Blue Drop system which may indicate failure of supply sources.

Abstract

The colliery is situated in the Vereeniging-Sasolburg Coalfield, immediately southwest of Sasolburg in the Republic of South Africa. The stratigraphy of this coal field is typical of the coal-bearing strata of the Karoo Sequence. The succession consists of pre-Karoo rocks (dolomites of the Chuniespoort Group of the Transvaal Sequence) overlain by the Dwyka Formation, followed by the Ecca Group sediments, of which the Vryheid Formation is the coal-bearing horizon. Mainly the lava of the Ventersdorp and Hekpoort Groups underlie the coal. The Karoo Formation is present over the whole area and consists mainly of sandstone, shale and coal of varying thickness. The underground mine was flooded after mining was ceased at the colliery in 2004. The colliery is in the fortunate position that it has a very complete and concise monitoring programme in place and over 200 boreholes were drilled in and around the mine throughout the life of the mine. To stabilise mine workings located beneath main roads in the area, an ashfilling project was undertaken by the colliery since 1999. A key issue is if the mine will eventually decant, and what the quality of the water will be. This is important for the future planning of the company, as this will determine if a water treatment plant is necessary, and what the specifications for such a plant will be, if needed. Therefore it was decided to do a down-the-hole chemical profile of each available and accessible borehole with a multi-parameter probe with the aim of observing any visible stratification. Over 90 boreholes were accessible and chemical profiles were created of them. From the data collected a three - dimensional image was created from the electrical conductivity values at different depths to see if any stratification was visible in the shallow aquifer. The ash-filling operations disturbed the normal aquifer conditions, and this created different pressures than normally expected at a deeper underground colliery. From the three-dimensional image created it was observed that no stratification was visible in the shallow aquifer, which lead to the conclusion that in the event that if decant should occur, the water quality of the decanting water will still be of very good quality unless external factors such as ash-filling activities is introduced. It is not often that it is possible to create chemical profiles of such a large number of boreholes for a single colliery and as a result a very complete and informative three-dimensional electrical conductivity image was created. This image is very helpful in aiding the decision making process in the future management of the colliery and eventually obtaining a closure certificate, and also to determine whether ash-filling is a viable option in discarding the ash.

Abstract

Estimating groundwater recharge response from rainfall remains a major challenge especially in arid and semi-arid areas where recharge is difficult to quantify because of uncertainties of hydraulic parameters and lack of historical data. In this study, Chloride Mass Balance (CMB) method and Extended model for Aquifer Recharge and soil moisture Transport through unsaturated Hardrock (EARTH) model were used to estimate groundwater recharge rates. Groundwater chemistry data was acquired from the Department of Water and Sanitation (DWS) and Global Project Management consultants, while groundwater samples were collected to fill-in the identified gaps. These were sent to Council for Geoscience laboratory for geochemical analysis. Rainfall samples were also collected and sent for geochemical analysis. An average value of rainfall chloride concentration, average groundwater chloride concentration and mean annual precipitation (MAP) were used to estimate recharge rate at a regional scale. Local scale recharge was also calculated using chloride concentration at each borehole. The results were integrated in ArcGIS software to develop a recharge distribution map of the entire area. For EARTH model, long term rainfall and groundwater levels data were acquired from the South Africa Weather Services and DWS, respectively. Soil samples were collected at selected sites and analysed. These were used to determine representative values of specific yield to use on EARTH model. 60% of the groundwater levels data for 5 boreholes was used for model calibration while the remaining 40% was used for model validation. The model performance was evaluated using coefficient of determination (R2), correlation coefficient (R), Root Mean Square Error (RMSE) and Mean square error (MSE). Regional recharge rates of 12.1 mm/a (equivalent to 1.84% of 656 mm/a MAP) and 30.1 mm/a (equivalent to 4.6% MAP) were calculated using rainfall chloride concentrations of 0.36 and 0.9 mg/L, respectively. The estimated local recharge rates ranged from 0.9-30.2 mm/a (0.14 - 4.6%) and 2 - 75 mm/a (0.3 - 11.4%) using chloride concentration of 0.9 and 0.36 mg/L, respectively. The average recharge rate estimated using EARTH model is 6.12% of the MAP (40.1 mm/a). CMB results were found to fall within the same range with those obtained in other studies within the vicinity of the study area. The results of EARTH model and CMB method were comparable. The computed R2, R, RMSE and MSE ranged from 0.47-0.87, 0.68-0.94, 0.04-0.34, 0.16-3.16, and 0.50-0.79, 0.68-0.89, 0.07-0.68, 0.15-8.78 for calibration and validation, respectively. This showed reasonable and acceptable model performance. The study found that there is poor response of groundwater levels during rainy season which is likely to be due to lack of preferential flows between surface water and groundwater systems. This has resulted in poor relationship between estimated and observed groundwater levels during rainfall season.

Key words: ArcGIS, CMB, EARTH, Groundwater recharge, rainfall

Abstract

Lake Sibayi (a topographically closed fresh water lake) and coastal aquifers around the lake are important water resources, which the ecology and local community depend on. Both the lake and groundwater support an important and ecologically sensitive wetland system in the area.
Surface and subsurface geological information, groundwater head, hydrochemical and environmental isotope data were analysed to develop a conceptual model of aquifer-lake interaction which would later be integrated into the three dimensional numerical model for the area. Local geologic, groundwater head distribution, lake level, hydrochemistry and environmental isotope data confirm a direct hydraulic link between groundwater and the lake. In the western section of the catchment, groundwater feeds the lake as the groundwater head is above lake stage, whereas along the eastern section, the presence of mixing between lake and groundwater isotopic compositions indicates that the lake recharges the aquifer. Stable isotope signals further revealed the movement of lake water through and below the coastal dune cordon before discharging into the Indian Ocean. Quantification of the 9 year monthly water balance for the lake shows strong season variations of the water balance components. Based on lake volume and flow through rate, it was further noted that the average residence time for water in the lake was about 6 years.
A recent increase in the rate of water abstraction from the lake combined with decreasing rainfall and rapidly increasing plantations in the catchment may result in a decrease in lake levels. This would have dramatic negative effects on the neighbouring ecosystem and allow for potential seawater invasion of the coastal aquifer.

Abstract

The provision, usage and discharge of water resources are major concerns for coal mines, both underground and opencast. Water resources in a coal mining environment will often account for a significant portion of the daily operational cost. In order to cut costs, the mine will often collect as much runoff as possible to recycle for future use. This on-going recycling of site water and management of the resource demands a complete site water balance model in order to understand the dynamics of the resource within the boundaries of the mine. To improve the understanding of the dynamics of the resource on a much larger scale, and the effect it will have on recharge in an open cast coal mine environment, one must consider alternative modelling approaches which can compensate for such conditions. This amounts to describing recharge as a modelling component in a physically based distributed model. The main goal of this project is to calculate recharge into the main pit at this specific colliery by applying parameters on a quaternary catchment scale. The colliery is located just west of the town of Ogies, Mpumalanga on the peripheral region of the quaternary catchment B20G. The physiography of the quaternary catchment B20F is described as a central Highveld region gently sloping to the north. The geohydrological modeling application MIKE SHE (developed by DHI) was used to develop a fully integrated catchment model. The model was created mainly to simulate the impact of human activities on the hydrological cycle and hence on water resource development and management. Different modules of MIKE SHE that was used during the modelling stage include saturated- and unsaturated flow and a small degree of overland flow.

Key words: Mpumalanga, MIKE SHE, recharge

Abstract

The groundwater governance arrangements for the development of groundwater resources were analysed. The analysis highlighted gaps and barriers to overcome before unconventional gas (shale gas and coal bed methane) development can take place at an industrial scale. The following governance challenges were identified (i) setting baseline measurements to detect groundwater pollution and to determine resource status; (ii) review of licenses and setting conditions for the development of unconventional resources; (iii) compliance monitoring and enforcement systems in place (iv) dealing punitively with non-compliant operators (v) mitigation options in place to prevent groundwater pollution; (vi) goal-based regulatory framework in place rather than a prescriptive regulatory framework; (vii) disclosure of hydraulic injection fluid; (viii) coordination with other government departments and regulatory bodies; (ix) a framework for subsidiarity and support to local water management; and (x) an incentive framework that support good groundwater management. To overcome the challenges requires a decentralized, polycentric, bottom-up approach, involving multiple institutions to deal with unconventional gas development. This provides better conditions both for cooperation to thrive and for ensuring the maintenance of such institutions.

Abstract

POSTER The Fountains East and Fountains West groundwater compartments (by means of the Upper and Lower Fountain springs) have been supplying the City of Pretoria with water since its founding in 1855. These adjacent compartments which are underlain by the Malmani dolomites of the Chuniespoort Group are separated by the Pretoria syenite dyke and are bounded to the north by the rocks of the Pretoria Group (Timeball Hill Formation). Swallow holes and paleosinkholes play important roles in recharge in karst environments. Available sinkhole data and geotechnical percussion borehole logs are being collated to compile a detailed conceptual geological model. Inorganic chemistry data (2007 - 2012) as well as spring discharge volumes (2011 - 2012) for the Upper and Lower Fountain springs, supplied by the City of Tshwane Municipality, is being used to characterise the two compartments. This is done by means of piper diagrams, stiff diagrams and temporal plots. Isotope data for the Upper and Lower Fountain springs are available for 1970 to 2007. ?D and ?18O data from the Upper and Lower Fountain springs are plotted against each other and the Global Meteoric Water Line. Other stable isotopes (including 14C and 3H) are also plotted as time trends and interpreted. Interpretation of the combined geotechnical, chemical and isotope data will aid in understanding the karst aquifer and the controls on groundwater system within and possibly between these compartments.

Abstract

In this paper we present results of a field study that focused on the characterisation of submarine groundwater discharge (SGD) into False Bay (Western Cape) with emphasis on its localisation. SGD is defined here as any flow of water from the seabed to the ocean. Thus, it includes (1) advective flow of fresh terrestrial groundwater as well as (2) seawater that is re-circulated across the ocean / sediment interface. Groundwater discharge into the coastal sea is of general interest for two reasons: (i) it is a potential pathway of contaminant and nutrient flux into the ocean, and (ii) it may result in the "loss" of significant volumes of freshwater. In our investigation we applied environmental aquatic tracers, namely radionuclides of radon (222-Rn) and radium (223-Ra, 224-Ra), as well as physical water parameters (salinity and temperature). The concentrations of radon and radium can be used as tracers for groundwater discharge since radon and radium are highly enriched in groundwater relative to seawater. We conducted discrete point measurements of seawater and of terrestrial groundwater as well as continuous radon time-series measurements of near-coastal seawater. A large-scale survey was performed along the entire shoreline of False Bay and revealed distinct positive anomalies of radon in the area of Strand/Gordons Bay and a rather diffuse anomaly along the Cape Flats, which is indicating possible groundwater discharge in these areas. The location of these anomalies remained constant to a large extent throughout several surveys that were performed during different seasons, although these anomalies varied with regard to their magnitude and clearness. Further detailed studies were undertaken in the area of Strand/Gordons Bay including radon time-series measurements in the coastal sea at a fixed location in order to estimate the quantity of SGD and its variability on a tidal time scale. The results indicate that groundwater discharge rates are significantly elevated during low tide. Furthermore, the distribution of radium isotopes (224-Ra/223-Ra ratios) in the Strand/Gordons Bay area indicate a "groundwater" residence time of less than 10 days within a distance of 5 km from the shore. In summary, we found spatially considerable constant SGD locations during different field campaigns. Additionally, we gained a rough understanding of the SGD dynamics on a tidal time scale, its magnitude and groundwater residence time within the inner bay after discharge. These results can be beneficial to trace back contamination in near-coastal waters or to find potential locations for groundwater abstraction.

Abstract

The Saldanha / Langebaan area is expanding at a significant rate, increasing the water demand for the area. The expansion comes from the industrial, residential and tourism sector. In addition there are economically viable deposits of silica and phosphate in the area. Ecosystem functioning in the area is also to a degree dependent on groundwater. All of these factors require an improved understanding of the geohydrology of the area. The geology of the area consists of basement Cape Granite and Malmesbury Group rocks that underlie the sediments of the Sandveld Group. The unconsolidated formations present, are (in order of oldest to youngest) as follows: - Elandsfontyn Formation (oldest): This formation overlies the bedrock in depressions and palaeo-channels in the bedrock. This formation is about 40 m thick and is composed of upward fining quartz sediments. - Varswater Formation: This formation is composed of marine deposits and is restricted to the western (seaward) parts of a bedrock depression to the east of the Langebaan Lagoon and Saldanha. The formation is characterized by rounded quartz grains. - Langebaan Formation: This formation consists of calc-arenites. The sediments are generally grey to cream coloured and consist of quartz and shell fragments, the grain size ranges from coarse to fine and the consolidation is variable. - Witzand Formation (youngest). This formation consists of light-coloured, calcareous, coastal dune sand that can be distinguished from the underlying consolidated Langebaan Formation. The Elandsfontyn Aquifer System (EAS) and the Langebaan Road Aquifer System (LRAS) are the main aquifer systems in the area. These aquifer systems are defined by palaeo-channels that have been filled with gravels of the Elandsfontyn Formation and represent preferred groundwater flow paths. Within each of these aquifer systems (EAS and LRAS) two aquifer units are present. Namely, the confined Lower Aquifer Unit (LAU) geologically consisting of the basal gravels of the Elandsfontyn Formation and the Upper Aquifer Unit (UAU) composed of consolidated sands and calcrete. The two units are separated by a clay aquitard. A numerical model has been established for the area, and extends from the Berg River to the Langebaan Lagoon. Granite outcrop and river system define the other boundaries of the model. Extensive logging of groundwater levels by the Department of Water and Sanitation (DWS) has enabled the accurate establishment of a model. In addition extensive field work and a detailed hydrocensus, as well as the capture of a lot of historical information has resulted in a comprehensive GIS which assists with the refinement of the numerical model. The model provides a valuable tool in modelling potential impacts whether they been from planned groundwater abstraction or artificial recharge. {List only- not presented}

Abstract

The 'maintainable aquifer yield' can be defined as a yield that can be maintained indefinitely without mining an aquifer. It is a yield that can be met by a combination of reduced discharge, induced recharge and reduced storage, and results in a new dynamic equilibrium of an aquifer system. It does not directly or solely depend on natural recharge rates. Whether long-term abstraction of the 'maintainable aquifer yield' can be considered sustainable groundwater use should be based on a socio-economic-environmental decision, by relevant stakeholders and authorities, over the conditions at this new dynamic equilibrium.
This description of aquifer yields is well established scientifically and referred to as the Capture Principle, and the link to groundwater use sustainability is also well established. However, implementation of the Capture Principle remains incomplete. Water balance type calculations persist, in which sustainability is linked directly to some portion of recharge, and aquifers with high use compared to recharge are considered stressed or over-allocated. Application of the water balance type approach to sustainability may lead to groundwater being underutilised.
Implementation of the capture principle is hindered because the approach is intertwined with adaptive management: not all information can be known upfront, the future dynamic equilibrium must be estimated, and management decisions updated as more information is available. This is awkward to regulate.
This paper presents a Decision Framework designed to support implementation of the capture principle in groundwater management. The Decision framework combines a collection of various measures. At its centre, it provides an accessible description of the theory underlying the capture principle, and describes the ideal approach for the development operating rules based on a capture principle groundwater assessment. Sustainability indicators are incorporated to guide a groundwater user through the necessary cycles of adaptive management in updating initial estimations of the future dynamic equilibrium. Furthermore, the capture principle approach to sustainable groundwater use requires a socio-economic-environmental decision to be taken by wide relevant stakeholders, and recommendations for a hydrogeologists' contribution to this decision are also provided. Applying the decision framework in several settings highlights that aquifer assessment often lags far behind infrastructure development, and that abstraction often proceeds without an estimation of future impacts, and without qualification of the source of abstracted water, confirming the need for enhanced implementation of the capture principle.

Abstract

POSTER Water resources are not just lakes, glaciers and polar ice caps and rivers; however one of the largest water resources is underground water well-known as Groundwater. Groundwater is one of the most important source of water as it the huge reservoir for freshwater. Groundwater can be defined as water existing underneath the earth surface in rock bodies known as aquifers. Approximately 140 communities in South Africa depend on groundwater as the source of water (Department of water affairs and forestry, 1998). Nevertheless groundwater is vulnerably to pollutants resulting from surrounding environmental effects which lead to poor groundwater quality. Numerous environmental effects have a huge impact in polluting groundwater such as pesticides, seawater encroachment, sewage effluent discharges to the ground and storage tanks underground; hence one need to identify, evaluate and come up with solutions on eradication of all these environmental effects that lead to groundwater pollution ( Hearth 1983).

The objectives of the report will be based on minimizing the groundwater pollution at the source and to restore groundwater quality to extent that the beneficial users recognise its suitability. Inspection in University of the Western Cape (UWC) campus site and Rawsonville site will be conducted by BSc Environment and Water Science students of UWC in June using various tools in order to identify and monitor surrounding environmental effects towards groundwater pollution. UWC campus research site is located on top of the Cape Flats primary aquifer (unconfined sand aquifer); Cape Flat aquifer is overlain by an impermeable bedrock Malmesbury (shale) secondary fractured aquifer. Generally this borehole test will be based on testing on how the surrounding environmental impacts with various aquifer properties affect the groundwater quality or whether the surrounding environment interrupts the groundwater quality in Cape flats aquifer and Rawsonville site. The UWC campus site has low infiltration compared with Rawsonville site as it is surrounded by vegetation that plays role in trapping water from infiltrating therefore this aquifer is less likely to be contaminated by pollutants from the land surface, however with it being surrounded by residential areas and industries it is likely to be polluted. Rawsonville on the other hand is located in the grape farm which makes it easier for the site to be contaminated by fertilisers used for agricultural practice. The pumping test will further enable one in knowing the quantity of groundwater in UWC campus site and Rawsonville site thus extraction levels for municipal works, irrigation and so forth will be monitored in a correct manner (Department of water affairs and forestry, 1998). Finally groundwater models will be used to further investigation on the behaviour of groundwater systems.

Abstract

The study characterized the hydrodynamic and hydrochemical properties of the quaternary porous aquifer which supplies the municipality of Pont-en-Ogoz (Department of Fribourg in Switzerland) with drinking water. The hydrostratigraphic series is composed of a thin overburden material, a porous aquifer composed of gravel and sand, a thin silt-clay layer and sandstone that forms the deeper aquifer. Pumping tests of a borehole nearby the well PSG1 and well PSG1 itself was used to calculate a mean hydraulic conductivity of the aquifer. The hydraulic conductivity from the test varies between 7.4?10-7 m/s and 2.4?10-5 m/s. The values of hydraulic conductivities are typical for sedimentary rocks as silt, fine sandstone and fine sand. The main physical and chemical parameters like concentration in cations and anions, as well the pH, the dissolved oxygen, the electrical conductivity and the alkalinity were measured and saturation indices were calculated. The analysis of the physical and chemical parameters shows that the type of water is Ca-HCO3 and that it contain mixture of old water coming from a regional groundwater flow system, probably from the deeper aquifer, and from recently infiltrated water as local groundwater flow system. The quality of water is generally good, but the effect of the purification of it through the thin overburden layer is limited. An initial one dimension steady state models based on the hypothesis of Dupuits for an unconfined and confined aquifer was used to calculate the mean recharge. This model gives us a recharge values from 24.8 cm/year and 12.1 cm/year, respectively. A second, two dimensional, confined, homogeneous and isotropic model has been calibrated in order to represent the spatial distribution of the piezometric surface. All the models have been calibrated as a steady state. Two groups of predictive scenarios were done to evaluate the drawdown in the well PSG1 using the 2D model. The maximum drawdown calculated was 40 m for the first group of scenarios and 3-4 m for the second group. The second group of scenarios considered from the deeper sandstone aquifer contributing to the well PSG1. The results of the second group of scenarios fit the field results better and the capture zone is much smaller than the one from the first model. The reality is probably between those two models. In order to lower the uncertainty, spatial variation should be added

Abstract

The mineral rich basin of the West African region has vast reserves of gold, diamond as well as iron ore deposits. Throughout the regional geological setting characterised by structural variations and intrusive belts with metamorphic mineral rich sequences covered by saprolite soils, one common chemical constituent remains a constant in the water reserves. Arsenic is in high concentrations throughout the region with chemical ranges commonly above the various country guidelines as well as international IFC and WHO standards. The aqueous chemical species is associated with arsenopyrite rich mineralogy of the regional greenstone belts and highly weathered soils. This conference article and presentation investigates the natural source of the arsenic through baseline data as well as the effect of mining on the already high concentrations of arsenic in both the groundwater and surface water. Natural levels of various chemical species in the regional area are already high at baseline level. One of the main research questions is thus whether mining and other anthropogenic activities will have an impact on the environment or will the changes to concentrations be so insignificant to allow the ecosystems and water users to continue in their current ways without any effect. Various case studies in Burkina Faso, Liberia, Sierra Leone and other countries have been combined to investigate the arsenic-rich resources of the West African region through groundwater specialist investigative methods with emphasis on geochemical modelling of the fluid-rock and fluid-fluid interactions leading to the water quality in the region.

Abstract

The karst aquifer downstream of the actively decanting West Rand Gold Field (a.k.a. the Western Basin) has for decades been receiving mine water discharge. Evidence of a mine water impact in the Bloubank Spruit catchment can be traced back to the early-1980s, and is attributed to the pumping out of so-called "fissure water" encountered during active underground mining operations for discharge on surface. Rewatering of the mine void following the cessation of subsurface mining activities in the late-1990s resulted in mine water decant in 2002. The last five hydrological years (2009?'10 to 2013?'14) have experienced the greatest volume and worst quality of mine water discharge in the 45-year flow and quality monitoring record (since 1979?'80) of the Bloubank Spruit system, causing widespread alarm and concern for the receiving karst environment. The focus of this attention is the Cradle of Humankind World Heritage Site, with earlier speculation fuelled by an initial dearth of information and poor understanding of the dynamics that inform the interaction of surface and subsurface waters in this hydrosystem.

Oblivious to these circumstances, the natural hydrosystem provides an invaluable beneficial function in mitigating adverse impacts on the water resources environment at no cost to society. The hydrologic and hydrogeologic framework that informs this natural benefaction is described in quantitative physical and chemical terms that define the interaction of allogenic and autogenic water sources in a subregional context before highlighting the regional benefit. The subregional context is represented by the Bloubank Spruit catchment, a western tributary of the Crocodile River, which receives both mine water and municipal wastewater effluent and therefore bears the brunt of poor quality allogenic water inputs. The regional context is represented by the Hartbeespoort Dam catchment, which includes major drainages such as the Crocodile River to the south and its eastern tributaries the Jukskei and Hennops rivers, and the Magalies River and its southern tributary the Skeerpoort River to the west. Each of these drainages contribute to the quantity and quality of water impounded in the dam, and an analysis of their respective contributions therefore provides an informative measure of the temporal mine water impact in a regional context.

The result indicates that amongst other metrics, the total dissolved solids (TDS) load delivered by the Bloubank Spruit system in the last five hydrological years amounted to 11% of the total TDS load delivered to Hartbeespoort Dam in this period, ranking third behind the Jukskei River (49%) and the Hennops River (30%), and followed by the Magalies River (5%), Crocodile River (4%) and Skeerpoort River (1%). By comparison, the long-term record reflects changes only in the contributions of the impacted Bloubank Spruit (10%) and pristine Skeerpoort River (2%). The difference is attributed mainly to the intervention of Mother Nature.

Abstract

Cadmium is a highly mobile and bioavailable non-essential element that is toxic to plants, and is an animal and human carcinogen (affecting the kidneys and bones in vertebrates). Since the late-1970s the effects of cadmium on the environment have become a global issue of concern, and many countries have conducted evaluations on the exposure of their populations to cadmium in phosphate fertilizer (a major non-point source of anthropogenic cadmium). A scoping project, funded by the Water Research Commission, aimed to review cadmium contamination of South African aquifer groundwater systems (predominantly) via phosphate fertilizer use. Topics reviewed included fertilizer composition and types, metal speciation, metal mobility in soil and groundwater systems, metal bioavailability, health and environmental effects, and local South African contamination case studies. A preliminary study site, namely the greater Hermanus region, was identified for trace metal and groundwater quality studies (which incorporated urban and agricultural areas in various hydrogeological settings). Hermanus was selected due to: 1) the discovery of cadmium concentrations of 20 ?g/l (in comparison to the SANS 241-1:2011 cadmium limit of 3 ?g/l) in a golf estate irrigation borehole, during drilling and test-pumping of the borehole at the end of 2012

Abstract

Geochemical investigations for a planned coal mine indicated that the coal discard material that would be generated through coal processing would have a significant potential to generate acid rock drainage. A power station is planned to be developed in close proximity to the coal mine, and the potential for co-disposal of coal discard with fly-ash material required examination. Fly-ash is typically highly alkaline and has the potential to neutralise the acidic coal discard material. In order to investigate whether this was a viable option, the geochemical interaction between the coal discard and fly-ash was investigated. Geochemical data, including acid-base accounting, total chemical compositions, leach test data and kinetic test data, were available for the coal discard material and the fly-ash. Using these data as inputs, a geochemical model was developed using Phreeqci to predict the pH of leachate generated by mixing different ratios of coal discard and fly-ash. The ratio of coal discard to fly-ash was established that would result in a leachate of neutral pH. Using this prediction, a kinetic humidity cell test was run by a commercial laboratory for a total of 52 weeks using the optimal modelled ratio of discard and fly-ash. Although leachate pH from the kinetic test initially reflected a greater contribution from fly-ash, the pH gradually decreased to the near-neutral range within the first 20 weeks, and then remained near-neutral for the remainder of the 52-week test. During this period, sulphate and metal concentrations also decreased to concentrations below those generated by either the fly-ash or coal discard individually. The addition of fly-ash to the coal discard material provided sufficient neutralising capacity to maintain the near-neutral pH of the co-disposal mixture until the readily available sulphide minerals were oxidized, and the oxidation rates decreased. At the end of the test, sufficient neutralising potential remained in the humidity cell to neutralise any remaining sulphide material. The results of this investigation suggested that, under optimal conditions, co-disposal of fly-ash with coal discard is a viable option that can result in reduced environmental impacts compared to what would be experienced if the two waste materials were disposed of separately.

Abstract

{List only- not presented}

Abstract

At a regional scale, groundwater recharge is often calculated using surface water models. Precipitation and surface water runoff are easier to measure than groundwater recharge, and evapotranspiration can be estimated with relative accuracy using indirect methods. In modelling, surface water measurements can be used for calibration, and groundwater is the residual term in the water balance of the catchment. This can give a good indication of regional trends, but provides limited scope for the accommodation of groundwater system characteristics and recharge processes. Recently, much research has been focused on the interaction of surface and groundwater models. The coupling of physically based surface and ground water models allows for calibration of the model using both surface and groundwater data while providing scope for improved insight into the processes which define the interaction of groundwater with the rest of the water cycle. For example: stream discharge, interflow, preferential flow through the unsaturated zone and interaction with surface water retained in dams and wetlands. One such model is GSflow (United States Geological Survey), which we are applying to the Upper Vaal Catchment. This model integrates the surface water model PRMS (Precipitation-Runoff Modelling System) with MODFLOW (Modular Groundwater Flow model). The model is initially being calibrated at quaternary catchment scale, starting with the surface water components and later adding the groundwater system. The quaternary catchment is subdivided into smaller, topologically defined hydrological response units. This scaling allows for a better understanding of how well the characteristics of the units are represented in the physical processes incorporated into the model, so that ultimately the sensitivity analysis can incorporate these processes. The results will be compared to current work on recharge being carried out using GRACE data and previous work done in the same area. Once the entire model has been calibrated, there will be scope to calculate future scenarios, allowing for climate and land-use changes. A brief overview of existing work as well as methods and initial results and sensitivity analysis will be presented.

Abstract

Work is being conducted in Limpopo province following a large volume spill of petroleum hydrocarbons that took place from a leaking underground pipeline, resulting in significant volume of groundwater contamination. This is by far the largest spillage to date in South Africa.10 million litres of jet fuel leaked for a 15 year period from an underground pipeline until its detection 13 years ago. The leak has since been repaired and bailing was the first method proposed and applied to the recovery of the free product, but due to its ineffectiveness the "quicker"pump-and-treat method replaced it. Due to complications caused by pum-and-treat, the process was stopped in 2007 and is about to be reinstated again in 2013. A village to the north of the spillage depends mostly on groundwater. Immediate remediation actions have to be established before the contaminant reaches their abstraction boreholes. This project aims to model the areal extent of this contaminant and eventually design a life cycle of remediation. This will be based on comparison between existing models dated 2002 and 2012 respectively for background information and to address the influence of ten years' bailing, pumping and natural attenuation. The new model will focus around implementing remedial measures to prevent further migration of the free phase or dissolved plumes in order to protect the water supply to the surrounding villages. The progress will be presented in this paper.

Abstract

Groundwater is used extensively in the Sandveld for the irrigation of potatoes. The groundwater resources are plentiful and of good enough quality for the production of potatoes, however there has been a significant increase in potato production especially from the period 1975 to 2008. The area planted has increased from 2 369 Ha to 6 715 Ha in this period. The rate of increase has reduced significantly since 2008 and is now quite consistent at approximately 6 800 ha/a. In the region groundwater is vital for the proper functioning of ecosystems and it is also the sole source of water for five towns in the area and supplies most of the domestic water for the farms in the area. Thus the abstraction of groundwater for agriculture needs to be carefully assessed to ensure impacts on other systems and users do not occur.

For this reason Potatoes South Africa has taken the responsible approach of investing in the on-going monitoring of groundwater levels (quantity) and groundwater quality in the Sandveld. PSA appointed the groundwater consultancy, GEOSS to do this monitoring and they have continually committed to this monitoring for the past 10 years. The long term monitoring data has been very valuable in that it shows groundwater trends and the spatial distribution of the measured parameters. Regarding the trends it is clear that certain areas are being over-abstracted and groundwater levels are dropping. In the more critical areas, intervention has occurred - boreholes were closed down and the points of abstraction distributed over a much wider area. This region (Lower Langvlei River) is showing clear signs of recovery both in terms of groundwater levels and quality. The other localized areas where negative trends are evident the land owners have been informed and are aware of the problems. In some critical areas continuous groundwater level loggers have been installed to monitor trends.

The long-term groundwater monitoring, has helped significantly in addressing the negative perception about the widespread impact on groundwater resources due to potato cultivation in the Sandveld. It is important the monitoring continues and regular feedback provided to land owners. The monitoring that the local municipality and the Department of Water Affairs do also needs to be integrated into a single database. It is evident that the initial abstraction of groundwater in the pioneer days of potato cultivation did impact groundwater resources and associated ecosystems in the Sandveld, however currently as the rate of expansion has reduced and stabilized, the groundwater resources closely mimic rainfall patterns and the areas that are being impact are localized, well known and being addressed.

Abstract

South Africa is a semi-arid country. Its average rainfall of roughly 464 mm/a is much lower than the world average of 860 mm/a. Due to a shortage of surface water, groundwater plays an important role in the water supply to domestic, industrial, agricultural and mining users. Groundwater exploration has become increasingly dependent on the use of geophysical techniques to gain insight into the subsurface conditions to minimise the risk of drilling unsuccessful production boreholes. Dolerite dykes and sills are often targeted during groundwater exploration programmes in Karoo rocks. Due to the high pressures and temperatures that reigned during the emplacement of these structures, the sedimentary host rocks along the margins of the intrusive structures are typically strongly altered. These altered zones are often heavily fractured and, as a result, have increased hydraulic conductivities as compared to the unaltered host rock. The altered zones often act as preferential pathways for groundwater migration, making them preferred targets during groundwater exploration.
In conjunction with magnetic methods, electromagnetic (EM) methods are the techniques most often used for groundwater exploration in Karoo rocks. In South Africa, the ground EM system most commonly used is the Geonics EM34-3 frequency-domain system. This system has already been in use for a few decades, yet a great deal of uncertainty still remains regarding the interpretation of anomalies recorded over geological structures associated with lateral changes in electrical conductivity. This uncertainty results from the fact that the Geonics EM34-3 system employs measurements of the out-of-phase components of the secondary magnetic field relative to the primary magnetic field to calculate an apparent conductivity for the subsurface. The apparent conductivity profiles across lateral changes in conductivity often do not make intuitive sense.
This project focuses on the development of guidelines for the interpretation of anomalies recorded with the EM34-3 system across intrusive structures of geohydrological significance in Karoo rocks. Geophysical surveys were conducted across known dykes and sills in an attempt to systematically investigate the responses recorded across these structures. Data from magnetic and two-dimensional electrical resistivity tomography surveys, as well as from geological borehole logs in some cases, were used as controls to assist in the interpretation.