Conference Abstracts
Title | Presenter Name | Presenter Surname | Area | Conference year | Keywords | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Coupling environmental tracers and modelling and what can they tell us about groundwater sustainability and example from the southwestern Great Artesian Basin (GAB) of Australia | A | Love | Australia | 2023 | Great Artesian Basin, Environmental tracers, recharge rates | ||||||
AbstractRecent advances in groundwater dating provide valuable information about groundwater recharge rates and groundwater velocities that inform groundwater sustainability and management. This talk presents a range of groundwater residence time indicators (85Kr, CFCS 14C, 81Kr, 36Cl and 4 He) combined with analytical and numerical models to unravel sustainability parameters. Our study site is the southwestern Great Artesian Basin of Australia where we study an unconfined confined aquifer system that dates groundwater from modern times up to 400 kyr BP. The study area is arid with a rainfall of <200 mm/yr and evaporation in the order of 3 m/yr. Despite these arid conditions we observe modern recharge rates in the order of 400 mm/yr. This occurs via rapid ephemeral recharge beneath isolated riverbeds where the sandstone aquifer directly outcrops. Groundwater dating and stable isotopes of the water molecule indicates that this recharge comes from monsoonal activity in the north of the continent that travel some 1500 kms. Furthermore, this is restricted to recharge in the Holocene.as we move down the hydraulic gradient groundwater “ages” increase and recharge rates dramatically decrease by orders of magnitude. We conclude that there has been a significant decline in monsoonal precipitation and hence recharge in the deserts of central Australia over this time. We present a couple environmental numerical model that describes how to estimate temporal recharge rates and estimates of hydraulic conductivity from groundwater age data that can be used for groundwater management. |
|||||||||||
Governing groundwater in city regions: Water metabolism and actor networks in the cases of Cape Town and Nelson Mandela Bay | A | Taylor | Cape Town | 2023 | actor networks, drought risk, multi-level governance, urban metabolism | ||||||
AbstractGroundwater is increasingly being exploited in South African cities as a drought crisis response, yet there is poorly coordinated regulation of increasing urban users and usage and fragmented management of aquifers. Designing interventions and innovations that ensure sustainable management of these resources requires systems thinking, where the city is understood as an integrated, interdependent set of actors and flows of water. This paper presents a study that applied and integrated an urban water metabolism (UWM) analysis with a governance network analysis for two major South African cities facing severe drought risk, Cape Town and Nelson Mandela Bay. ‘Learning Laboratories’ in each city brought together stakeholders from various groundwater-related domains to build a shared understanding of how groundwater fits into the larger system and how various actors shape urban groundwater flows and the health of local aquifers. The UWM quantified all hydrological and anthropogenic flows into and out of each city (or urban system) to conduct an integrated mass balance. How this mass balance changes under varying climate change scenarios and land use was used as a focal point of stakeholder discussions. The governance network analysis highlighted that many state and non-state actors have a stake in shaping the quantity and quality of urban groundwater, such as regulators, service providers, water users, knowledge providers, investors in infrastructure, and emergency responders. |
|||||||||||
A Case Study on Capacity Development in Rural Groundwater Supply in Acholiland, Northern Uganda | K | Robey | Northern Uganda | 2023 | Uganda, capacity development, Geophysics, handpump functionality assessments, rural groundwater supply, Water quality | ||||||
AbstractGroundwater is the most important source of potable water in rural areas of Acholiland, a sub-region of northern Uganda. Installation of handpumps has been the focus of local government and international aid to provide safe drinking water in Uganda. However, non-functional handpumps are one reason for the abandonment of groundwater resources. For handpumps to be sustainable for years, appropriate siting and construction is required, as well as monitoring. This is common knowledge to specialists working in rural supply, but gaps in knowledge transfer and field skills may exist for the persons installing and maintaining handpump wells. This is a case study of a ten-day field campaign designed to train local participants who actively work in the rural groundwater supply sector. Nine non-functional handpump sites were identified for repair and hydrogeology and geophysical studies. A non-governmental organization, IsraAID, along with Gulu University implemented training by hydrogeology specialists to build local capacity. The training included handpump functionality tests, downhole inspections, electrical resistivity tomography surveys, and water quality sampling, including a novel Escherichia coli test that did not require an incubator. Functionality tests and downhole inspections provided simple but effective ways to assess handpump and well issues. Training in water quality empowered the participants to complete rapid assessments of the quality of the water and start monitoring programs. The success of the project was based on collaboration with multiple organizations focusing on the development of local capacity. The lessons learnt from this campaign should be considered for other rural groundwater supply scenarios. |
|||||||||||
Groundwater Dependent Ecosystems or wetland dependent groundwater systems: A case study | N | Vermaak | South Africa | 2023 | Wetlands; groundwater-dependent ecosystems; recharge; groundwater surface water interaction | ||||||
AbstractThe interaction between groundwater and wetlands is poorly understood, even though it has been the topic of many research projects, like the study done at the Langebaan Lagoon. This interaction is complex as it lies at the intersection between groundwater and surface water, but each situation is unique, with different conditions regulating the interaction. Wetlands can be the source of water that recharges groundwater systems on the one hand, while the other is dependent on the groundwater systems. This interaction became part of the project looking at how to implement Managed Aquifer Recharge for Saldanha Bay Local Municipality without having a negative impact on the groundwater-dependent ecosystems, such as the springs and wetlands in the area. Ten wetlands were identified on the Langebaan Road Aquifer Unit, and a monitoring programme was developed. The purpose of the monitoring was to determine the status of the wetlands as a baseline before the implementation of managed aquifer recharge and to determine the level of groundwater dependence. The latter was done by hydrochemical analysis of rainwater, groundwater and water from the wetlands and stable isotope analysis. The ability of the wetlands to act as a recharge point to the groundwater system will be investigated through column experiments and lithostratigraphic analysis of soil columns taken at the wetlands. Groundwater levels will also be plotted as contour lines to determine the intersection of the water table with the wetlands in the area. |
|||||||||||
Groundwater Flow Modeling for Investigation of Exploitation Induced Land Subsidence | A | Elçi | Italy | 2023 | MODFLOW, Mediterranean, earth observation, land subsidence, over-exploitation | ||||||
AbstractThis paper presents the results of groundwater flow modelling studies that were conducted within the scope of the PRIMA RESERVOIR project. The project’s main goal is to develop an innovative methodology to mitigate land subsidence due to excessive groundwater exploitation in water-stressed Mediterranean watersheds. This objective is achieved by integrating earth-observation-derived land subsidence rates with a coupled implementation of numerical groundwater flow and geomechanical modelling. MODFLOWbased 3-D transient flow models were constructed for the four pilot sites (the coastland of Comacchio in Italy, the Alto Guadalentín aquifer in Spain, the Gediz River basin alluvial aquifer in Turkiye and the Azraq basin in Jordan) that have different hydrogeological properties and pose different challenges concerning water management. Models were calibrated and run for similar simulation periods (2013-2021) to obtain hydraulic head drawdowns and changes in groundwater storage. Land subsidence at these sites was evaluated using Advanced Differential Radar Interferometry (A-DInSAR) on image stacks from the Sentinel-1 satellite. Subsidence rates were then compared to hydraulic head drawdown rates to identify groundwater pumping-induced subsidence areas. The comparison for all study areas suggested that locations of maximum displacements do not necessarily coincide with areas that display the largest head drawdown calculated by the flow models. Other triggering factors, such as the thickness of compressible materials, are also related to high subsidence areas. |
|||||||||||
Platinum-Group-Elements and Total Organic Carbon in hyperalkaline springs at the Ronda peridotites (Malaga, Spain) as proxies of the origin of dissolved methane gas | Ojeda | L | Malaga, Spain | 2023 | Hyperalkaline springs, Methane, Platinum-Group-Elements, Ronda peridotites, Total Organic Carbon | ||||||
AbstractThe serpentinization of ultramafic rocks is a process in which minerals of ferromagnesian nature (e.g., olivine) are transformed into serpentine and produce groundwater with a very high pH. In these settings, CH4 can be produced by combining H2 from serpentinization and CO2 from the atmosphere, soil, carbon-bearing rocks, or mantle, although the microbial generation of CH4, mediated by methanogens utilizing CO2, formate and/or acetate can be another source in these aquifers. In this sense, the hydrochemistry of hyperalkaline springs can provide valuable information about gas origin. The Ronda peridotites (Malaga province, Spain) are one of the world’s largest outcrops of the subcontinental mantle (~450 km2). Hyperalkaline springs (pH>10) emerging along faults present a permanent low outflow (<1 L/s), Ca2+- OH- facies and residence times exceeding 2,000 years. The fluids, poor in Mg2+ and rich in K+, Na+, Ca2+ and Cl-, also contain significant concentrations of dissolved CH4 and other hydrocarbons. Water samples have been collected from eight hyperalkaline springs and analyzed for major, minor and trace elements, including Platinum Group Elements (PGE) and Total Organic Carbon (TOC). The most mobile PGEs (Pd and Rh) are present in all the springs, indicating the existence of potential catalysts for the abiotic synthesis of CH4. High TOC concentrations are observed in some studied springs where previous analyses (i.e., bulk CH4 isotopes) have indicated a microbial CH4 origin. |
|||||||||||
Regional-scale identification of recharge or discharge using remote sensing and GIS: Implications towards groundwater-surface water interactions | K | Banda | Zambia | 2023 | Barotse Floodplain, Groundwater-Surface water, Zambezi River, Zambia, Ecosystems | ||||||
AbstractIdentifying groundwater recharge and discharge areas across catchments is critical for implementing effective strategies for salinity mitigation, surface water and groundwater resource management, and ecosystem protection. This study seeks to identify potential GW-SW discharge and recharge areas around the Barotse Floodplain. The results of remote sensing analysis using the Normalised Difference Vegetation Index (NDVI) show that the vegetation is sensitive to the dynamics of groundwater level, with shallower levels (< 10 m) in the lower reaches compared to deeper levels (>10 m) in the upper catchment). These zones are further investigated and likely represent geological variability, aquifer confinement and the degree of GW-SW interactions. GW-SW interactions likely are influenced by an interplay of factors such as water levels in the groundwater and surface level and hydrogeological conditions. Based on the findings, the wetland hosts riparian vegetation species responsive to the groundwater dynamic. NDVI can thus be used as a proxy to infer groundwater in the catchment. Therefore, effective water resources management of the floodplain should be implemented through conjunctive management of groundwater and surface water. |
|||||||||||
Investigation of Seawater Intrusion due to Group-Well- Pumping of a local coastal aquifer in Durban, South Africa. | Molla | Demlie | Durban, South Africa | 2023 | Eastern South Africa, Environmental Isotopes, group-well-pumping, Harbour Beds Formation, Hydrochemistry | ||||||
AbstractThe response of an alluvial and estuarine deposit aquifer, locally known as the Harbour Beds Formation, located in the coastal area of the Durban Metropolitan District to 48 hours of group well pumping is studied to understand its potential for groundwater supply and consequent seawater intrusion. Groundwater levels were monitored from the three pumped boreholes and piezometers. Similarly, EC, TDS and pH were monitored every hour from the boreholes and piezometers. Hydrochemical and water isotopes (2H and 18O) samples of groundwater were taken at 12, 18, 24, 36, 42 and 48 hours during pumping. The results indicate that the aquifer has a transmissivity, hydraulic conductivity and storativity of 48.97 m2/d, 1.7 m/day and 0.0032, respectively. The generally monitored EC, TDS, and pH have been fairly constant during the pumping period and didn’t show any seawater intrusion. Similarly, the hydrochemical data monitored for the three boreholes show general Na-CaHCO3-Cl-dominated groundwater throughout the pumping duration. However, uneven drawdown distribution and complex groundwater flow conditions indicate that the aquifer structure and hydraulic properties are heterogeneous. The water isotopes (2H and 18O) monitoring during the test pumping suggests spatial variability regarding water recharging the Harbour Beds aquifer. Though limited in area extent, the Harbour Beds Formation aquifer is a productive aquifer with acceptable water quality and can be a viable water source for domestic and industrial uses. However, continuous long-term monitoring of water quality and groundwater levels using data loggers is recommended to prevent induced seawater intrusion and contamination. |
|||||||||||
Modelling the Impact of Groundwater Pumping on Karst Geotechnical Risks in Sete Lagoas (MG), Brazil | P | Galvão | Brazil | 2023 | Karst hydrogeology; numerical model; water management; subsidence; overexploitation | ||||||
AbstractUrban karst terrains can experience geotechnical issues such as subsidence or collapse induced/accelerated by groundwater withdrawal and civil works. Sete Lagoas, Brazil, is notable for overexploiting a karst aquifer, resulting in drying lakes and geotechnical issues. This study aims to evaluate the progression of geotechnical risk areas from 1940 to 2020 and to simulate future scenarios until 2100. Historical hydraulic head data from the 1940s (when the first pumping well was installed) to the 2000s, a 3D geological model, and a karst-geotechnical risk matrix for defining risk levels were employed to develop a calibrated Feflow numerical model. The results indicate that, before the first well in 1942, the groundwater flow direction was primarily towards the northeast. In the 1980s, due to the concentration of pumping wells in the central area, a cone of depression emerged, causing the flow directions to converge towards the centre of the cone, forming a zone of influence (ZOI) of approximately 30 km². All 20 geotechnical events recorded between 1940 and 2020 have occurred in high or considerable-risk zones where limestone outcrops or is mantled in association with the ZOI. For future scenarios, if the current global well pumping rate (Q = 144,675 m³/d) from 2020 remains constant until 2100, the high and considerable geotechnical risk zones will continue to expand. A 40% decrease in the global rate (Q = 85,200 m³/d) is necessary to achieve a sustainable state, defined by reduced and stabilized risk zones. |
|||||||||||
Integrating reductive dehalogenase enzyme production into reactive transport modelling to simulate chloroethene biodegradation in groundwater pollution plumes | D | Di Curzio | 2023 | Biodegradation; Chloroethenes plume; Reactive Transport Modeling; Enzyme-Based Kinetics; Reductive dehalogenase enzymes; Groundwater | |||||||
AbstractDegradation of chloroethene in groundwater primarily occurs via microbially-mediated reductive dechlorination (RD). Anaerobic organohalide-respiring bacteria (OHRB) use chloroethenes as electron acceptors to gain energy. They produce reductive dehalogenase enzymes (RDases) to perform this function by transcription of functional genes into mRNA and translation to proteins (metabolic regulation). However, how hydrodynamics and hydrogeochemistry control the metabolic efficiency of OHRB in biodegrading chloroethene is essential for effective bioremediation design yet an under-investigated topic. For this reason, we implemented a virtual experiment (1D reactive transport model) to investigate the effects of site conditions on transcription-translation and, hence, biodegradation processes within chloroethene plumes. In the model, RD was simulated using Enzyme-Based Kinetics, explicitly mimicking the production of RDases via metabolic regulation, calibrated on microcosm experimental data gained from literature. Features of an actual contaminated site (Grindsted, Denmark) were then used to set up the virtual experiment. Here, chloroethene leaked from a former pharmaceutical factory migrates through a sandy aquifer and gets discharged into the Grindsted stream. Preliminary results show that substrate (electron donors) limiting conditions caused by competing electron acceptors and dispersion and high flow rates represent the key factors controlling biodegradation via RDase production. |
|||||||||||
Groundwater potential and lateral connectivity of the Limpopo sand river system mitigating water scarcity and salinity in semi-arid Mozambique | P | Saveca | Mozambique | 2023 | Limpopo, aquifer connectivity, groundwater potential, salinity mitigation, sand river, semi-arid regions | ||||||
AbstractIn this study, we assess the potential of large riverbed aquifers in semi-arid Africa, known as sand rivers, to mitigate water scarcity and salinity for multiple-use water supply through a case study of the Limpopo River in Mozambique. Such sand river systems are widespread and still heavily underused at a regional scale, particularly in Mozambique, with the riparian vegetation currently being the primary user, though only consuming a minor fraction of available water. At a local scale, we performed geoelectrical surveys, water level measurements (in river and groundwater), as well as field physicochemical measurements and hydrochemical and isotopic sampling at 38 locations in the river channel, margins and up to 6 km away from the river, over five years. Results show that these shallow systems can be up to a kilometer wide and 15 m thick and, at some locations, can extend laterally beyond the river channel, below thin layers of clay and silt. Large areas of the sand river channel carry runoff yearly, providing optimal conditions for rapid recharge into the coarse sands with a high storage capacity. Connectivity between the river margin and channel is clearly shown at the local scale, even though sand pockets located further away appear isolated (revealed by geophysics), isotopically different and more brackish. Recharge, evapotranspiration and mixing processes are confirmed through hydrogeochemical modelling. The proven connectivity is highly relevant as groundwater is abstracted locally, promoting socio-economic development in water-scarce regions. |
|||||||||||
Distribution, Formation Conditions and Genesis of High-Quality Groundwater Containing Metasilicate in Zhaojue County, Southwest China | C | Zou | Southwest China | 2023 | Groundwater; H2 SiO3 ; distribution; formation condition; Zhaojue County; Southwest China | ||||||
AbstractThe drinking water health issues have been considered due to improved living standards in recent years. Finding and developing high-quality groundwater with high-level minerals has become key to improving human health. The hydrochemical test data of 66 springs in Zhaojue County were analyzed using various methods, and the spatial distributions of H2 SiO3 -rich groundwater, hydrogeochemical characteristics, formation conditions and genesis were revealed. The main results including: 1) the groundwater with H2 SiO3 (≥25mg / L) was identified as the low salinity and alkaline water, which distributed in the six areas with the basement rocks of basalt,with a distribution area of about 79 square kilometers. The H2 SiO3 concentration was generally 25.74~46.04 mg/L; the low mineralization characterized the H2 SiO3 -rich groundwater of study area while the main hydrochemical types of groundwater are HCO3 - Ca·Mg, HCO3 -Ca, and HCO3 -Na; the Pearson correlation coefficient between the content of H2 SiO3 in groundwater and the content of pH is relatively high, indicating that the level of H2 SiO3 in groundwater in the study area is significantly affected by the pH value of the solution; the H2 SiO3 -rich groundwater was influenced by the water-rock interactions, the distribution range and solubility of silicate minerals ,the development of surrounding rock fissures, and water conservation and recharge conditions in the county, among which the water-rock interactions play a critical role. The results can provide a basis for the development of mineral water industry and the construction of urban and rural high-quality water sources in Zhaojue County. |
|||||||||||
Tracing an arenitic aquifer by DNA-labelled nano particles | A | Gargini | Italy | 2023 | nanotechnology; DNA-labelled nano particles; arenite; groundwater; tracer test; Northern Apennines | ||||||
AbstractThe results of a full field application of a DNA-based nano tracer in an arenitic aquifer are presented along with the comparison with the breakthrough of a classical tracer injected in parallel. DNA is encapsulated into amorphous silica spheres (nanoparticles), protecting the molecule from chemical and physical stresses. The main advantages of using DNA with classical tracers, like ionic or fluorescent, are the lower detection concentration and the chance to perform multi-tracer tests with many distinct signatures of injection. To the authors’ best knowledge, this is the first tracing adopting nano-particles on full field conditions in a sedimentary fractured aquifer. Preliminary tests in the lab were performed adopting either deionized water or groundwater collected at the experimental site: a set of nanoparticles at a known concentration was dissolved by adding a buffered fluoride solution, and DNA was then quantified by qPCR reaction (SYBR green). The hydrogeological setting is represented by a Miocenic marine arenitic aquifer (Pantano formation) outcropping extensively in Northern Apennines (Italy) and the main groundwater reservoir for public water supply through the uptake of many perennial springs. The main purpose of the tracing was to verify the transmissive capacity of fractures with high aperture (15-20 cm) identified by optical and acoustic televiewers inside an 80 m deep borehole. The injection was performed inside the borehole, and the tracer’s recovery was between 5-15 m, both in the uptake points of two perennial springs and in another borehole drilled nearby. |
|||||||||||
Evaluation of the impact of artificial recharge of groundwater by river replenishment in the North China Plain using a numerical model | Q | Hao | China | 2023 | artificial recharge, groundwater management, river water replenishment, the North China Plain | ||||||
AbstractSince 2018, the North China Plain has started a large-scale ecological water replenishment project for rivers and lakes, with 17.5 billion cubic meters total from the South–North Water Transfer Project and other water sources. It is a key question of how much water infiltration into aquifers will affect groundwater and how to characterize and evaluate this effect quantitatively. The groundwater numerical model of the Beijing-Tianjin- Hebei region as the main part of the North China Plain was established using a numerical simulation method, and the groundwater level variation under the replenishment condition was simulated and predicted. By comparing the two scenarios, the relative rise method of groundwater level was proposed to characterize the influence of river water infiltration on groundwater level, and the unstructured grid method was used to refine cells near the river to improve simulation accuracy. Simulation results show that the groundwater level around some rivers has risen significantly in the past four years, especially in the alluvial fan regions with better infiltration properties. Accordingly, at the Piedmont alluvial fan region, there is also a large influence range on groundwater level. The maximum influence distance is more than 10km (0.1m relative rise of groundwater level was taken as the influential boundary). According to the prediction, if the water replenishment project continues, the range of influence can continue to expand, but the expansion rate will slow down due to the reduction of the hydraulic gradient. |
|||||||||||
Electromagnetic measurements in the Netherlands using an All Terrain Vehicle to rapidly characterize groundwater salinity and clay distribution in 3D | J | Gunnink | Netherlands | 2023 | 3d-mapping, clay distribution, groundwater salinity | ||||||
AbstractElectromagnetic (EM) techniques were used to map groundwater salinity and clay layers in the Netherlands. The EM method used the so-called time domain system, is towed behind an ATV and is therefore called towed TEM. The results revealed a detailed 3-dimensional insight into the subsurface’s sequence of clay and sandy layers. Also, shallow saline groundwater, far from the coast, has been detected related to a subsurface salt dome. The rapid, non-destructive data acquisition makes the tTEM a unique tool. Electromagnetic (EM) techniques detect electrical conductivity contrasts in the subsurface with depth. EM data can often be interpolated into a 3D model of electrical conductivity. Expert knowledge of the regional geohydrologist, together with existing (borehole) data, is paramount for the interpretation. The towed Transient Electro-Magnetic system (tTEM) is developed to acquire data up to 60-80m depth by driving a transmitter and a receiver behind an ATV. With a speed of 10-15 km/h, measurements are collected every 5m. On fields, the distance between lines is typically 20m, resulting in a dense network of data that is inverted into 1D resistivity models, showing the variation of conductivity with depth. Interpolating 1D resistivity models into a 3D model allows for further interpretation in terms of geology, lithology, and groundwater quality. The tTEM technique bridges the gap between point measurements and more expensive and lower-resolution airborne EM data collection. The technique is sensitive to disturbance by man-made conducting infrastructure. |
|||||||||||
Nitrate vulnerability assessment in the fast-growing African district of Abuja Federal Capital Territory (Nigeria) | M | Etuk | Abuja FCT, Nigeria | 2023 | DRASTIC-LU model, Groundwater Contamination, population growth | ||||||
AbstractIn the Federal Capital Territory of Abuja (Abuja FCT, Nigeria), a population growth of about 400% between 2000 and 2020 has been reported. This trend, coupled with the persisting urban sprawling, is likely to result in severe groundwater quality depletion and contamination, thus undermining one of the area’s main freshwater supplies for drinking purposes. In fact, groundwater in Nigeria and Abuja FCT provides over 70% of the drinking purposes. Results of a groundwater vulnerability assessment that compared land use data from 2000 and 2020 showed that the region had been affected by a dramatic change with an increase in urbanized (+5%) and agricultural (+27%) areas that caused nitrate concentrations to exceed the statutory limit for drinking purposes in more than 30% of the monitored wells in 2021 and 40% in 2022. Although fertilizers are generally considered the main source of nitrate contamination, results suggest a possible mixed (urban and agricultural) pollution origin and a legacy of previous nitrogen pollution sources. The comparison between the DRASTIC-LU map and nitrate concentrations shows that the highest values are found in urban/peri-urban areas, in both shallow and deep wells. This investigation is the first step of a comprehensive nitrate pollution assessment in the region, which will provide decision-makers with adequate information for urban planning given the expected population growth in the area |
|||||||||||
Combined effects of seawater intrusion and nitrate contamination on groundwater quality in the coastal agricultural area of El-Nil River, Algeria | L | Boumaiza | Algeria | 2023 | Coastal aquifer, Groundwater Quality, nitrate contamination, Seawater Intrusion, stable isotopes | ||||||
AbstractThis study focuses on the coastal agricultural area of El-Nil River (Algeria), where anthropogenic activities heavily impact groundwater resources. A multi-tracer approach, integrating hydrogeochemical and isotopic tracers (δ2HH2O, δ18OH2O, δ15NNO3 and δ18ONO3), is combined with a hydrochemical facies evolution diagram and a Bayesian isotope mixing model (MixSIAR) to assess seawater contamination and distinguish the nitrate sources and their apportionment. A total of 27 groundwater samples and 7 surface water samples distributed over the entire study area were collected. Results show classic inland intrusion combined with an upstream seawater impact through the river mouth connected to the Mediterranean Sea. Results from nitrate isotopic composition, NO3 and Cl concentrations, and the MixSIAR model show that nitrate concentrations chiefly originate from sewage and manure sources. Nitrate derived from sewage is related to wastewater discharge, whereas nitrate derived from manure is attributed to an excessive use of animal manure to fertilise agricultural areas. The outcomes of this study are expected to help decision-makers prepare suitable environmental strategies for effective and sustainable water resources management in the study area. |
|||||||||||
A combined stochastic-analytical method for the assessment of climate change impact on spring discharge | A | Kovacs | Hungary | 2023 | Spring hydrograph, analytical model, Climate change, stochastic mode | ||||||
AbstractThis study describes a novel methodology for predicting spring hydrographs based on Regional Climate Model (RCM) projections to evaluate climate change impact on karstic spring discharge. A combined stochastic-analytical modelling methodology was developed and demonstrated on the Bukovica karst spring catchment at the Durmitor National Park, Montenegro. As a first step, climate model projections of the EURO-CORDEX ensemble were selected, and bias correction was applied based on historical climate data. The regression function between rainfall and peak discharge was established using historical data. The baseflow recession was described using a double-component exponential model, where hydrograph decomposition and parameter fitting were performed on the Master Recession Curve. Rainfall time series from two selected RCM scenarios were applied to predict future spring discharge time series. Bias correction of simulated hydrographs was performed, and bias-corrected combined stochastic-analytical models were applied to predict spring hydrographs based on RCM simulated rainfall data. Simulated climate scenarios predict increasing peak discharges and decreasing baseflow discharges throughout the 21st century. Model results suggest that climate change will likely exaggerate the extremities regarding climate parameters and spring discharge by the end of the century. The annual number of drought days shows a large variation over time. Extremely dry years are periodic, with a frequency between 5-7 years. The number of drought days seems to increase over time during these extreme years. The study confirmed that the applied methodology can successfully be applied for spring discharge prediction |
|||||||||||
First Nations Communities as Partners in Hydrogeology | S | Bourke | Australia | 2023 | Cultural Water Values, First Nations Groundwater Connections, Social Hydrogeology | ||||||
AbstractAboriginal and Torres Strait Islander people have inhabited the lands now known as Australia for over 65,000 years. Their communities are intricately connected to the land and waters through culture and tradition. However, there are few examples of integrated water resource management that serve Aboriginal and Torres Strait Islander communities or cultural interests. This is particularly the case for groundwater. In Australia, Indigenous connections to groundwater have historically been overlooked or, in some cases, assumed not to exist. On the contrary, many Aboriginal and Torres Strait Islander cultures have longstanding physical and spiritual connections to a range of artesian and subartesian groundwater resources. These cultures also house accurate records of groundwater systems. Despite this, groundwater management in Australia remains dominated by Western scientific perspectives, and the groundwater sector poorly integrates Indigenous stakeholder concerns or knowledge into groundwater management and planning. IAH Australia has prepared and signed an Indigenous Groundwater Declaration intending to raise awareness among the groundwater community of the value of Indigenous perspectives and knowledge of groundwater systems. This Declaration can be viewed and signed at http://declaration.iah.org.au. This presentation provides examples of effective partnerships between Indigenous Communities and Government or Academic groundwater professionals. While progress has been made, challenges must be overcome to integrate Indigenous knowledge and connections into groundwater resource management. |
|||||||||||
Groundwater for people and the environment: A globally threatened resource | H | Loaiciga | 2023 | Groundwater, groundwater sustainability, overdraft, population growth, recharge, safe yield | |||||||
AbstractGroundwater is an essential source of water worldwide. The increased reliance on groundwater has caused the mining of many aquifers, a situation compounded by climate change, rising surface-air temperature, declining precipitation, and reduced groundwater recharge in many regions. The global annual intensity of groundwater use rose from 128 to 155 m3 per capita between 1950 (when the world population was 2.5 billion people) and 2021 (when the population was 7.9 billion people) and is herein projected to rise to 178 m3 per capita by 2050 as the world’s population is projected to increase (to 9.7 billion people by 2050) throughout the rest of the 21st century and beyond. This study projects a global annual groundwater depletion of 1,008 km3 by 2050, representing a 256% rise from the estimated 2010 depletion. This projection is most likely a lower bound of the actual groundwater depletion that would be realized considering environmental flows, historical trends of global economic growth, and climate-change impacts, thus being a harbinger of rising environmental degradation (e.g., land subsidence, seawater intrusion, streamflow reduction, aridification). Measures to achieve groundwater sustainability are herein identified. |
|||||||||||
Basin-scale transfer of nitrate pollution from groundwater to surface water in an intensively irrigated system | M | Rotirot | Italy | 2023 | Cl/Br ratio, Irrigation return flow, Po Plain, boron, dilution, stable isotopes | ||||||
AbstractBasin-scale studies addressing the transfer of pollutants among groundwater and surface water bodies are essential to support local authorities in the sustainable management of freshwater resources. This work revealed that, in the hydro-system of the Oglio River basin (Northern Italy), nitrate pollution in groundwater, originated by overfertilization, is transferred downstream to surface water bodies via outflow through lowland springs and baseflow to gaining rivers. Downstream groundwater is unaffected due to reducing conditions that facilitate denitrification. It follows that efficient measures to reduce nitrate pollution in surface water bodies should not be applied solely to rivers/streams but, instead, they should include the upstream groundwater body. The work aimed at understanding nitrate pollution dynamics in an intensively irrigated hydro-system, focusing on the role played by the complex interaction among irrigation water, surface water and groundwater. The study relied on nitrate concentration, Cl/Br ratio, stable isotopic composition of water, nitrate and boron in groundwater, river, lake, spring, and rainwater samples. Results highlighted a well-defined spatial distribution of nitrate concentrations in groundwater, mainly driven by irrigation practices: (1) where groundwater-fed irrigation is done, return flow promotes high nitrate concentrations (>50 mg/L) due to groundwater recirculation; (2) where intensive surface-water-irrigation is practised, fed by low-nitrate river water, return flow generates lower nitrate concentrations (<50 mg/L) due to dilution. This work highlighted the importance of a holistic approach jointly investigating surface water, groundwater, and irrigation water when nitrate pollution is examined at a basin scale. |
|||||||||||
Groundwater porosities and effective porosities: definitions, physical relevance, and scale issues | A | Dassargues | Belgium | 2023 | REV, drainage effective porosity, effective porosity, porosity, scale issue, transport effective Porosity | ||||||
AbstractPorosity describes the ratio between the volume of pores, cracks, and fissures and the total volume of a studied geological medium. This notion implies a volume averaging of the medium characteristics using the concept of Representative Elementary Volume (REV). Small volumes can contain only pores, while larger volumes typically contain both pores and fissures. Porosity can be highly scale-dependent, and different porosity values can be measured for the same geological formation. Furthermore, groundwater in the pores and cracks can be partly immobile or mobile. So, the porosity actively involved in groundwater flow can be discussed. A ‘mobile water porosity’ can be defined, but this remains highly dependent on the existing pressure conditions in the geological medium. In unconfined conditions, the term ‘effective porosity’ usually corresponds to the drainage porosity corresponding to the specific yield or storage coefficient. When dealing with solute transport and remediation of contaminated sites, another ‘effective porosity’ is needed to describe the advection velocity of the contaminant. This ‘mobile water porosity’ acting in solute transport processes typically takes lower values than drainage’s ‘effective porosity’. Scale issues must also be expected, as shown by field and lab tracer tests. The term ‘Darcy velocity’ will be banished herein because it induces much confusion. For clarity, we propose to distinguish ‘drainage effective porosity’ and ‘transport effective porosity’. The physical meaning of both terms is discussed, and examples of supporting observations are presented for illustration and discussion. |
|||||||||||
Winter irrigation as climate change adaptation strategy in northern Italy | L | Albert | Italy | 2023 | Adaptation strategies, Climate change, Integrated Water Resources Management, Irrigation, Managed aquifer recharge, flow modelling | ||||||
AbstractIn 2021-23, northern Italy suffered a severe drought due to the absence of rainfall, which strongly affected the pre-alpine lake levels, affecting energy production, agriculture and sustainable river flows. This led to harsh consequences on agriculture, which in the Lombardy region almost completely relied on flooding irrigation methods using water from lakes through Ticino and Adda rivers. As part of the INTERREG Central- Europe project “MAURICE”, which focuses on Integrated Water Resources Management, the winter irrigation practice is proposed as a climate change adaptation strategy. The main project idea is to store surface water in aquifers in periods of exceedance (autumn/winter) using the very dense channels irrigation network as a “natural” infiltration system. The underground storage would increase the groundwater levels, bringing two main advantages during the spring/summer seasons: a good flow rate at plain springs and, in periods of water scarcity, the possibility to extract groundwater for agricultural purposes. Relying on the slow groundwater velocity (about 350 m/y), this practice keeps water stored in the subsoil just below the irrigated areas where the water is needed. In the early project stage, a basin-scale numerical model is presented to test the potentiality of such practice. A specified water volume was distributed on the crop fields during the winter period, and the effects of such managed recharge were evaluated, also considering the possible problems deriving from the groundwater levels increase. The model demonstrates the adaptation measure feasibility, which will be tested at a field scale in a Pilot Area. |
|||||||||||
Electrical Hydrogeology of Managed Aquifer Recharge from Meter to Kilometer Scales | T | Halihan | USA | 2023 | Byrds Mill Spring, carbonate, electrical resistivity imaging, enhanced aquifer recharge, Karst spring | ||||||
AbstractWhile traditional well and spring sampling are limited to the integration of point data and the interpolation of the data across large scales. Electrical measurements of aquifers can be extended across a range of scales and integrated to provide an improved quantitative understanding of groundwater systems. At a site in Oklahoma, USA, a karst-managed aquifer recharge research site is being used to test electrical techniques for aquifer characterization on the kilometer scale and monitoring the aquifer on the meter scale. At the kilometer scale, the data illustrate fault locations, siphons in flow paths, and previously uncharacterized conduits. At the metre scale, the monitoring data illustrate porosity structure, flow paths, and potential biological changes in the subsurface. The results indicate that electrical approaches can significantly change aquifer conceptual models and provide targeted sampling locations in karstic bedrock aquifers. |
|||||||||||
Formation of the groundwater chemical composition in the Quaternary aquifer of the coastal valley (North Sinai, Egypt) | N | Vinograd | Egypt | 2023 | Quaternary sediments, Sinai Peninsula, fresh water, Groundwater, groundwater–rock system, mineral water, physicochemical equilibrium | ||||||
AbstractThe research aims to reveal possible ways of formation of the chemical composition of mineral and fresh groundwater in Quaternary sediments of the coastal plain of Northern Sinai. Statistical assessment of the distribution of various hydrochemical indicators of mineral and fresh groundwater has been carried out according to the following data samples: 1) the general population for all Quaternary deposits (164 wells); 2) the central zone (74 wells); the eastern zone (25 wells); the western zone (65 wells). The following variables were assessed: total dissolved solids (TDS) (in ppm), concentrations of major components (in epm and % epm), pH value and the depth of the sampled well (ds) (in meters). The physicochemical equilibria between the groundwater and rock–forming carbonate and sulfate minerals were calculated using the PHREEQC software. Saturation indices (SI) for groundwater of three zones in relation to various rock-forming minerals were analyzed. Correlation relationships were obtained for TDS, major components and some genetic coefficients ((Requ=(Na++K+)/ (Ca2++Mg2+); Na+/Cl-; SO4 2-/Cl-; Ca2+/SO4 2-). It was concluded that the groundwater chemical composition is defined by infiltration recharge and/or intrusion of Mediterranean seawater. Most likely, during short-term flood periods, the infiltration into aquifers significantly exceeds the evaporation. Despite the relatively high evaporation rate, the degree of groundwater metamorphization is below the saturation level in relation to sulfates and carbonates. The research is of great practical importance for assessing freshwater resources to provide potable water supply |
|||||||||||
Building a Groundwater Educational Pipeline from Elementary to Continuing Education | T | Halihan | 2023 | K-12, PSM, Drilling, online education, professional master’s programs | |||||||
AbstractWater resources worldwide are stressed, and the number of groundwater professionals required to manage those resources is not being generated in sufficient numbers. Groundwater educational resources must be placed in schools to generate excitement and raise awareness. Additionally, people entering the workforce need training throughout their professional careers. Oklahoma State University partnered with the U.S. National Ground Water Association to develop a framework for providing education and training programs in groundwater that allow for interactive online education at all levels. The Awesome Aquifer 360 program targets grades 5-8, allowing students to conceptually explore aquifers and the people who manage them. The Drilling Basics Online program provides a 40-hour basic safety and drilling training to recruit professionals into the groundwater industry and reinforce safe operations. These programs and future plans for the technique will be discussed. |
|||||||||||
Risks related to groundwater resources in the Murray-Darling Basin, Australia | A | Ross | Australia | 2023 | Groundwater, Murray-Darling Basin Plan, Ecosystems, implementation, policies, research priorities, risks, surface water | ||||||
AbstractGroundwater governance and risk management in the Murray-Darling Basin in Australia (MDB) are being challenged by the increasing demand for water and the growing scarcity and variability of water supply owing to climate change. Over the past 20 years, consideration of risk related to groundwater in the MDB has evolved from concerns about the impact of groundwater extraction on surface water resources to an integrated assessment of risks to connected water resources and ecosystems. The Basin Plan includes a comprehensive framework for assessing risks to Basin water resources and ecosystems, but further scientific and policy developments are required to implement the plan. Consistent definition and improved assessment of groundwater-surface water connectivity are required, together with longer planning timeframes. Multi-year planning rules and policies must be developed to exploit opportunities for integrated management of groundwater and surface water resources and storage to manage droughts and floods. Risks to groundwater quality and groundwater-dependent ecosystems must be adequately assessed and monitored to avoid adverse impacts on communities and long-term loss of ecosystem services. Further improvements can be made in assessing cumulative risks from coal seam gas and coal mining. Additional research can be targeted towards knowledge gaps and uncertainties that pose the greatest risk to connected groundwater and surface water resources and ecosystem viability. Most importantly, further training and capacity building in water management agencies is critical to enable effective and transparent monitoring and management of Basin water resources. |
|||||||||||
Geophysics-estimated groundwater levels to assess the accuracy of a numerical flow model | Y | Lévesque | Canada | 2023 | Eastern Canada, aquifer properties, geophysical methods, groundwater monitoring, numerical modelling, regional piezometry | ||||||
AbstractTwo numerical simulations using Feflow® software were conducted to demonstrate the utility of geophysical data to accurately determine groundwater levels and provide additional data to the groundwater modelling community to improve the model’s accuracy. One simulation is based on regional piezometric data, and the other uses geophysical data acquired through transient electromagnetic (TEM), electrical resistivity (ERT), and ground-penetrating radar (GPR) surveys. After both numerical analyses, the root mean square errors (RMS) obtained from the piezometric data and the multiple geophysical techniques to confirm the correlation between observed and simulated water levels were similar at 3.81 m and 2.76 m, respectively. Through a discrete modelling approach, this study shows that groundwater levels estimated using geophysical tools and methods and those determined by direct observation are comparable. In addition, before the 3D numerical flow model, a 3D geological model was built to fully represent this highly complex, heterogeneous, and anisotropic hydrological environment of the Saint-Narcisse moraine glacial deposits in eastern Mauricie, Québec. This stratigraphic reconstruction with Leapfrog software was necessary to provide a more detailed and realistic representation of this complex aquifer system. This study illustrates how geophysical data can complement direct observations to provide additional hydraulic information to hydrologic modellers. Geophysical surveys provide an extensive set of soft data that can be leveraged to improve groundwater flow models and determine water-table heights, particularly in areas characterized by limited direct piezometric information. |
|||||||||||
A Review of potential and actual groundwater recharge: Insights and implications to groundwater use | N | Tuswa | Bellville, South Africa | 2023 | Groundwater allocation, capture principle, semi-arid region, water resource management | ||||||
AbstractRecharge is one of the most significant parameters in determining the sustainability volume of groundwater that can be abstracted from an aquifer system. This paper provides an updated overview and understanding of potential and actual groundwater recharge and its implications for informing decision-makers on efficiently managing groundwater resources. The paper argues that the issue of potential and actual recharge has not been adequately addressed in many groundwater recharge studies, and if not properly addressed, this may lead to erroneous interpretation and poor implementation of groundwater resource allocations. Groundwater recharge has been estimated using various methods, revised and improved over the last decade. However, despite numerous recharge methods, many studies still fail to distinguish that some assess potential recharge while others estimate actual recharge. The application of multiple recharge methods usually provides a wide range of recharge rates, which should be interpreted in relation to the type of recharge they represent; as a result, the wide range of recharge findings from different methods does not necessarily imply that any of them are erroneous. A precise distinction should, therefore, be made between the potential amount of water available for recharge from the vadose zone and the actual recharge reaching the water table. This study cautions groundwater practitioners against using “potential recharge values” to allocate groundwater resources to users. The results of this paper may be useful in developing sustainable groundwater resource management plans for water managers. |
|||||||||||
Assessment of groundwater potential of the Kalahari aquifers in Kavango East and West regions, Namibia | A | David | Namibia | 2023 | groundwater potential, Kalahari aquifers, recharge, water-balance | ||||||
AbstractThe Kavango West and East regions are situated in a semi-arid area northeast of Namibia and bounded by the perennial Okavango River on the northern border. Groundwater in the area is the main source of water supply for the inhabitants living further from the river. In addition, most bulk water users along the river have boreholes for their water supply. With a semi-arid climate, drought in the regions is common and inflicts devastating effects on local communities. More drought relief boreholes are being drilled to sustain communities, increasing the dependency of the inhabitants on groundwater. The complexity of the behaviour and nature of the groundwater in the regions is poorly understood, and there are no strategies to manage these aquifers properly. As a result, an attempt was made to better understand the groundwater potential by examining several hydrogeological factors involved. A basic water-balance approach was used in determining the groundwater potential of the middle and lower Kalahari aquifers. The total resource potential for the entire region is estimated at 144 447.16 x 106 m3 /a, demonstrating great resource potential with significant storage space. The greatest potential is shown in the middle Kalahari aquifers, comprising about 94% of the total resource. Groundwater recharge, as one of the hydrogeological factors, was determined using the chloride mass balance method, giving an average of 6.03 mm/a for the entire study area. If utilized sustainably, the Kalahari aquifers can sustain most communities within the two regions, especially those further from the Okavango River. |
|||||||||||
Sampling procedures for PFAS and pharmaceuticals –Recommendations vs. reality | A | Kuczyńska | Poland | 2023 | emerging contaminants, groundwater monitoring, sampling protocols | ||||||
AbstractPFAS and pharmaceuticals in groundwater are two of many synthetic compounds currently under the attention of many researchers and environmental administration in Europe, especially in light of the revision of the EU Groundwater Directive 2006/118/EU. The two types of substances were first included in the voluntary groundwater watch list and were first formally regulated at the EU scale. This regulation implies that they will be obligatory to be monitored within national monitoring programmes for groundwater body status assessment procedures across the EU. While there is no doubt about the need to regulate the presence of these substances in groundwater, sampling procedures and QC/QA protocols may be challenging to implement as no official guidelines exist. Although scientific literature allows us to define protocols usually based on precautionary principle, these may be too difficult and expensive to implement at the national scale monitoring. This article describes a work that the Polish Geological Institute – National Research Institute undertook to define an optimal sampling process for PFAS and pharmaceuticals in groundwater. Experimentally tested factors included cleaning pumps between sampling sites, the need for using protective suits during sampling and the influence of ambient air on sample quality. Results showed that sampling protocols for PFAS and pharmaceuticals do not need to be modified concerning current protocols as these seem to be sufficient to protect groundwater samples from unintentional cross-contamination. |
|||||||||||
ome Trans-disciplinary Legal Options to Ensure the Protection of South Africa’s Utilisable Groundwater Resources | Carin | Bosman | South Africa | 2023 | Groundwater governance; water law; protection; land use activities; hydrogeology; aquifer protection zones | ||||||
AbstractSouth Africa faces serious water scarcity challenges not only because it is a semi-arid country but also due to climate change. One of the most significant effects of climate change is an increase in temperature, which inevitably increases evaporation. Increased evaporation directly reduces the availability of surface water resources. Groundwater is less susceptible than surface water resources to evaporation and thus offers resilience against the impacts of climate change. Many South African cities, communities, and farmers depend on groundwater for domestic or other socio-economic purposes. This implies that groundwater resources which are currently or potentially utilisable should be identified, and suitable legal measures should be implemented to protect these resources from potential risks of harm or damage posed by anthropogenic activity. First, This article evaluates the effectiveness of the country’s existing regulatory framework to effectively protect South Africa’s groundwater resources and finds that the framework can be improved significantly. Secondly, it explores regulatory opportunities within the existing legal framework to strengthen South Africa’s groundwater governance regime, including using land use planning instruments to facilitate the implementation of groundwater protection zones |
|||||||||||
Benefits and costs of managed aquifer recharge: An integrated water governance solution | A | Ross | Australia | 2023 | Managed aquifer recharge; aquifer storage; water infrastructure; cost-benefit analysis; levelized cost; benefit-cost ratio | ||||||
AbstractManaged Aquifer Recharge (MAR) provides an integrated water governance solution that improves water security for communities and farmers by storing water in aquifers and managing groundwater extractions to ensure water supplies are available during droughts. Quantitative analysis of levelised costs and benefit-cost ratios (BCRs) of 21 MAR schemes from 15 countries and qualitative assessment of additional social and environmental benefits demonstrates the benefits of MAR compared to water supply alternatives. Cost-benefit analysis provides a systematic method for comparing alternative water infrastructure options. Levelised cost is a widely accepted method of comparing MAR with alternative water infrastructure solutions when market valuations of water are unavailable. The benefits of MAR can be estimated by the cost of the cheapest alternative source of supply or the production value using water recovered from aquifer storage. MAR schemes recharging aquifers with natural water using infiltration basins or riverbank filtration are relatively cheap with high BCRs. Schemes using recycled water and/or requiring wells with substantial drilling infrastructure and or water treatment are more expensive while offering positive BCRs. Most MAR schemes have positive or neutral effects on aquifer conditions, water levels, water quality, and environmental flows. Energy requirements are competitive with alternative sources of supply. This analysis demonstrates strong returns to investment in the reported MAR schemes. MAR provides valuable social and environmental benefits and contributes to sustaining groundwater resources where extraction is managed. |
|||||||||||
Planning for increased water security and preventing salinisation in coastal areas of the Netherlands: A study on the suitability for managed aquifer recharge and extraction of brackish water, including quantification of potential extractable volumes | I | de Groot-Wallast | The Netherlands | 2023 | Aquifer Storage and Recovery, Managed aquifer recharge, aquifer salinisation, brackish water extraction, suitability maps, Water supply | ||||||
AbstractYear-round water security is at risk as socio-economic developments lead to increasing water demands, while climate change affects water availability through higher-intensity rainfall and prolonged periods of drought. Coastal zones and deltas with often high population densities experience additional risks of salinisation and land subsidence. These developments ask for creative solutions to secure sustainable and year-round access to fresh water. The subsurface provides storage capacity to actively infiltrate freshwater, bridging the time-gap between demand and supply. Combining infiltration with extraction and desalination of brackish water prevents the salinisation of aquifers whilst providing an additional water source. We call this COASTAR. A Dutch research consortium with partners like water companies and water boards develops COASTAR. Among COASTAR results are suitability maps for Aquifer Storage and Recovery (ASR) and Brackish Water Extraction (BWE) in the coastal zone of the Netherlands. The maps are based on geohydrological factors. A quick-scan analysis was also performed to quantify the nation-wide potential extractable ASR and BWE volumes. COASTAR develops case study models and local scale pilots on ASR and BWE. For two water supply regions, an analysis has been made to geographically match development in water demand with suitability for ASR and BWE as a step in the search for strategic locations to develop ASR and BWE. The suitability maps provide guidance for initiatives’ development and practical experiences from pilot projects; this provides important information for further upscaling of COASTAR approaches. |
|||||||||||
Management of water-related risks in drinking water supplies | B | Cencur Curk | 2023 | risk analysis, water-related hazards, water safety plan, water supply system | |||||||
AbstractWith the revision of the European Drinking Water Directive (Directive on the quality of water intended for human consumption 2020/2184) in December 2020, the preparation of Water Safety Plans (WSP) is foreseen according to the guidelines of WHO. Within the EU Interreg Adrion MUHA project, a decision support tool (DST) has been developed to provide a holistic approach to drinking water infrastructure risk analysis. The project mainly addresses four water-related risks: accidental pollution, floods, droughts and earthquakes. The core of the DST is the inventory of hazardous events (causes, their consequences and impacts) for each component of the drinking water supply chain: (1) drinking water source - catchment area, (2) water supply system, and (3) domestic distribution system. For each identified potential hazard, the type of hazard was determined (e.g., biological, chemical, radiological, or physical hazard (including turbidity), inadequate availability of water supplied to customers, safety to personnel, external harm to third parties, including liability). The DST was tested in the partner countries (Italy, Slovenia, Croatia, Serbia, Montenegro and Greece) to verify the resilience of the measures and elaborate the WSP. In the end, the REWAS-ADRION strategy was elaborated, aiming to increase the resilience of drinking water supplies to floods, droughts, accidental pollution, and earthquake-related failures by improving the water safety planning mechanism based on the concept of inter-agency cooperation to support water utilities, civil protection organizations, and water authorities. |
|||||||||||
Celebrating hydro-geoheritage – the Table Mountain Dams Trail and Hermanus Water Walk (Western Cape, South Africa) | D | Blake | South Africa | 2023 | Hydro-geoheritage, Water supply, Table Mountain Group aquifers, Cape Town, Hermanus, Social Hydrogeology | ||||||
AbstractHydrogeology and hydrology are commonly overlooked aspects of geoheritage, despite strong geological links. Water in all its forms has played a critical role in the development of Earth, and the shaping of its landforms (in addition to sustaining all life on the planet), and access to water has been the core reason for the establishment of numerous human settlements. The evolution of a settlement’s water supply tracks its development history across the Holocene, providing an excellent tool for teaching the public about human interactions with the Earth and our shared future going forward in a changing climate. To this extent, two self-guided trails (with associated guidebooks and mobile apps) have been developed in areas of the Western Cape province of South Africa with rich water supply histories and hydro-geoheritage – the Table Mountain Dams Trail in Cape Town and the Hermanus Water Walk in the Overberg region. The surface and groundwater supply systems that both trails cover have an inherently unique link with the Ordovician-Devonian Table Mountain Group fractured aquifer systems (including the complex tectonic and geomorphic evolutionary history that has led to the present landscapes), which most residents and international visitors are generally unaware of (despite being major tourist regions in South Africa). It is envisioned that through these guides/trails, the reader/walker will gain a better understanding of/appreciation for the value of water, a greater feeling of ownership for the natural history of the city/region they reside in, and will strive to preserve associated hydro-geoheritage for future generations. |
|||||||||||
Improved hydrogeological conceptual model through additional ERT profiles in medial-distal facies of andesitic volcanic area: Case study of Pandaan, East Java, Indonesia | A | Fadillah | Indonesia | 2023 | Andesitic stratovolcanoes, Electrical Resistivity Tomography, Groundwater, Hydrogeological, conceptual model, sustainability | ||||||
AbstractIn Java Island, Indonesia, andesitic volcanic aquifers are the main water resource for domestic, agricultural, and industrial use. To guarantee sustainable management, a hydrogeological conceptual model is key. Electrical resistivity tomography (ERT) survey is one tool to characterize aquifer structures and extension, specifically in the medial facies of the Arjuno Welirang volcano. Fadillah et al. (2023) proposed a hydrogeological interpretation of the aquifers in the central to proximal-medial transition zone of the Arjuno Welirang volcano. This interpretation was based on geology, hydrogeology, and ERT and focused on major springs and boreholes. Nine additional ERT profiles and borehole data were collected downstream to enhance the medial facies’ understanding further. Seven ERT lines were conducted throughout the midstream part of the watershed. The results confirm the presence of two superimposed aquifers, a first unconfined aquifer made of volcanic sandstone and breccia with a vertical extension of 25 meters and a confined aquifer from 35 to 120 meters (maximum depth of investigation). This last one consists of tuffaceous breccia and volcanic sandstone and includes lava layers as well. A clayey layer with an average thickness of 10 meters constitutes the aquiclude/aquitard between those two aquifers. Furthermore, two ERT lines were conducted in the vicinity of the major spring located in the distal part of volcanic deposits, highlighting the development of a multi-layer alluvial aquifer system. |
|||||||||||
Groundwater flow paths dictate terrestrial carbon inputs into a groundwater-dominated stream | Y | Xie | China | 2023 | Groundwater discharge; groundwater flowpaths; dissolved carbon; environmental tracers | ||||||
AbstractGroundwater discharge is crucial for transporting terrestrial carbon into streams and rivers, but the effects of groundwater flow paths on terrestrial carbon inputs are poorly understood. Here, we investigated environmental tracers (EC, Cl-, 2H, 18O, 220Rn, and 222Rn) and carbon concentrations in riparian groundwater, streambed groundwater, and stream water over six groundwater-stream monitoring sites. Significantly high 220Rn and 222Rn activities in the stream and endmember analysis results of the environmental tracers reveal that vertical groundwater discharge from the streambed (VGD) and lateral groundwater discharge from the riparian zone (LGD) is of equal importance for the stream. We quantified VGD by modelling the detailed 222Rn and Cl- profiles at the streambed and then combined differential flow gauging to estimate LGD. VGD (2.9 ± 1.4 m2 d-1) prevailed in relatively wide and shallow channels, while LGD (2.6 ± 2.6 m2 d-1) dominated narrow and deep channels. Carbon measurements indicate that LGD had the highest CO2, CH4, DIC, and DOC, while VGD had relatively higher CO2 but lower CH4, DIC, and DOC than stream water. Our findings suggest that LGD is the primary carbon source for the stream, while VGD mainly dilutes the stream (except CO2). Finally, we observed that groundwater discharge and temperature overrode metabolism in controlling stream carbon dynamics, implying the importance of groundwater discharge for understanding stream carbon cycling. Overall, this study identified the impacts of groundwater flow paths on carbon exchanges between terrestrial and stream ecosystems. |
|||||||||||
Using derivative plot analysis for diagnosing boundary conditions and flow regimes, Heuningnes, Cape Agulhas, South Africa | A | Xaza | South Africa | 2023 | Flow regimes, boundary conditions, flow dynamics | ||||||
AbstractThis study focused on improving the understanding of flow regimes and boundary conditions in complex aquifer systems with unusual behavioural responses to pumping tests. In addition, the purpose was to provide a novel analysis of the hydrogeological properties of aquifers to deduce inferences about the general expected aquifer types to inform new practices for managing groundwater. In this paper, we report that using derivative analysis to improve understanding of complexities in aquifer flow systems is difficult and rarely used in groundwater hydraulics research work. Thus, we argue that if derivatives are not considered in the characterizing flow regime. The heterogeneity of aquifers, boundary conditions and flow regimes of such aquifers cannot be assessed for groundwater availability, and the decision to allocate such water for use can be impaired. A comprehensive database was accessed to obtain pumping tests and geological data sets. The sequential analysis approach alongside derivative analysis was used to systematically perform a flow dimension analysis in which straight segments on drawdown-log derivative time series were interpreted as successive, specific, and independent flow regimes. The complexity of using derivatives analyses was confirmed. The complexity of hydraulic signatures was observed by pointing out n sequential signals and noninteger n values frequently observed in the database. We suggest detailed research on groundwater flow systems using tracer methods like isotopes and numeric models must be considered, especially in multilayered aquifer systems such as the Heuningnes catchment. |
|||||||||||
How groundwater temperature is affected by climate change: a systematic review and meta-analysis | E | Egidio | Italy | 2023 | Climate change, Groundwater, groundwater temperature, review, temperature | ||||||
AbstractGroundwater (GW) is a target of climate change (CC), and the effects become progressively more evident in recent years. Many studies reported the effects on GW quantity, but of extreme interest is also the assessment of qualitative impacts, especially on GW temperature (GWT), because of the consequences they could have. This study aims to systematically review the published papers dealing with CC and GWT, to determine the impacts of CC on GWT, and to highlight possible consequences. Scopus and Web of Science databases were consulted, obtaining 144 papers. However, only 45 studies were considered for this review after a screening concerning eliminating duplicate papers, a first selection based on title and abstract, and an analysis of topic compatibility through examination of the full texts. The analysed scientific production from all five continents covers 1995-2023 and was published in 29 journals. As a result of the review, GWT variations due to CC emerged as of global interest and have attracted attention, especially over the past two decades, with a multidisciplinary approach. A general increase in GWTs is noted as a primary effect of CC (especially in urban areas); furthermore, the implications of the temperature increase for contaminants and groundwater-dependent ecosystems were analysed, and various industrial applications for this increase (e.g. geothermy) are evaluated. It’s evident from the review that GWT is vulnerable to CC, and the consequences can be serious and worthy of further investigation. |
|||||||||||
The Roussillon coastal aquifer: using multiple-point statistics and multi-model ensemble to characterize geological uncertainty impact on water resources estimation | V | Dall’ Alba | 2023 | Coastal aquifer, Groundwater Modelling, Multi-model ensemble, Uncertainty analysis | |||||||
AbstractCoastal groundwater is a vulnerable resource, estimated to sustain the water needs of about 40% of the world’s population. The Roussillon aquifer is a regional aquifer near Perpignan (southern France). It covers over 800 km2 of land and is used for irrigation, drinking water, and industrial purposes. The aquifer has experienced significant piezometric lowering in the last decades, weakening the regional resource. An important aspect of modelling the hydrodynamic of this aquifer is the need to integrate data from agriculture and drinking water abstraction, natural and anthropogenic recharge, and account for the aquifer’s complex sedimentary arrangement. An ensemble of groundwater models has been constructed to understand the spatial evolution of the saline/freshwater interface and evaluate the impact of groundwater abstraction. Three sets of physical parameter modelling approaches were used. The first is based on the direct interpolation of pumping tests. The second uses sequential indicator simulations to represent the geological uncertainty. The third is based on a detailed conceptual geological model and multiple-point statistics to represent the detailed geological structure. These models provide parameter fields that can be input for the transient state hydrodynamic simulations. Overall, the ensemble approach allowed us to understand the Roussillon plain’s hydrological system better and quantify the uncertainty on the possible evolution of the main groundwater fluxes and water resources over the last 20 years. These models can help to inform management decisions and support sustainable water resource development in the region. |
|||||||||||
Impact of urbanization on groundwater quantity and quality in Kabul city, Afghanistan | A | Farahmand | Afghanistan | 2023 | Kabul basin, Urbanization, ground subsidence, Groundwater Quality, land use, land cover | ||||||
AbstractGroundwater quantity and quality of shallow aquifers have deteriorated in recent years due to rapid development that has created an increased demand for drinking water, which is increasingly being fulfilled by groundwater abstraction. The study evaluates the hydrogeological framework of the Quaternary aquifer of the Kabul basin, Afghanistan, and the impact of urbanization on the groundwater resources around the Kabul city plain. Time series of Landsat satellite LCLU images indicate that the urban area increased by 40% between 2000 and 2020, while the agricultural area decreased by 32% and bare land decreased from about 67% to 52% during this period. The assumed groundwater overdraft 2019 was 301.4×103 m3 /day, while the recharge was 153.4×103 m3 /day, meaning a negative balance of about 54 million cubic meters (MCM) this year. Due to the long-term decline of water levels at 80 90 cm/year, and locally (Khairkhana, Dasht-e-Barchi) 30-50m during 2005-2019, a considerable groundwater drawdown is shown. Groundwater quality, on the other hand, reveals that chloride concentrations and salinity increased throughout the aquifer between 2005 and 2020. The nitrate concentration decreased in most Kabul Plain places over the period. In conclusion, the quantity and quality situation of urban groundwater in Kabul is worrying; urgent scientific and sustainable solutions and measures should be considered to manage this situation. |
|||||||||||
Securing Water Supplies – Participatory Groundwater Monitoring and Management in Botswana and Uganda | P | Kenabatho | Botswana, Uganda | 2023 | Livelihoods and Pollution, Participatory groundwater monitoring | ||||||
AbstractGroundwater resources in Africa face increasing threats of over-exploitation and pollution due to urbanization, agricultural and mining activities, yet monitoring remains challenging. Conventional approaches to monitoring groundwater at the exclusion of communities have not been successful. To overcome this, it is important to fully engage and train local communities in monitoring Groundwater Levels (GWLs), Rainfall and Water Quality (RWQ), which are important for understanding groundwater dynamics in wellfields. In this way, villagers can better understand groundwater issues and convey this information to others to cooperatively manage groundwater. A pilot program to monitor GWLs and RWQ by locals was initiated in two villages each in Botswana and Uganda to learn about its effectiveness. Through continuous stakeholder engagement, the local communities in the two case studies have been facilitated, trained and supported in monitoring groundwater and using the information collected to understand groundwater trends and their sustainability. Preliminary results indicate improvement in understanding the importance of groundwater monitoring by the communities and the implications on groundwater sustainability for improved livelihoods. This has become useful to one of the communities engaged in a village-level irrigation project which depends on groundwater resources. This project builds on a successful village-level participatory approach developed in the MARVI project (www.marvi.org.in ). It seeks to contribute to the United Nation’s 2022 call on “Groundwater: making the invisible visible” to highlight the importance of better monitoring and managing this vital resource. |
|||||||||||
Combined Use of Environmental and Artificial Tracers to Characterise the Vadose Zone | Yazeed | van Wyk | South Africa | 2023 | vadose zone, contaminant transport processes, environmental and artificial tracers | ||||||
AbstractWater and contaminant transport processes in the vadose zone through preferential flow paths can be understood using environmental and artificial tracer methods. Further improvement in tracer techniques can be achieved by applying numerical modelling techniques of both water and solute transport, accounting for additional information on water movement and the matric potential of the vadose zone. The vadose zone is often ignored as a key component linking the land surface to the groundwater table, even though it acts as a filter that removes or stores potential contaminants. The water transit time between the surface and the groundwater table is frequently investigated using artificial tracers that normally show conservative behaviour. The main advantage is that the input function can be clearly defined, even though artificial tracers can generally only be applied over a relatively small area. The research is expected to provide insight into the selection and use of environmental and artificial tracers as markers for detecting and understanding the contaminant transport processes and pathways of contaminants in altered vadose zone environments (open-pit quarry). The impact is improved characterisation of the pathways, transport and migration processes of contaminants, and residence times, leading to the development of appropriate conceptual and numerical models of vadose zone flow processes that consider various contaminant sources. The principal aim is, therefore, to systematically examine the transport mechanisms and associated pathways of different environmental and artificial tracers in an open-pit quarry. |
|||||||||||
Assessment of Water Supply Security and Sustainability of Managed Aquifer Recharge in Botswana | A | Lindhe | Botswana | 2023 | Managed aquifer recharge, multi-criteria decision analysis, sustainability assessment, water supply security model | ||||||
AbstractAn approach for evaluating the sustainability of managed aquifer recharge (MAR) has been developed and applied in Botswana. Numerical groundwater modelling, water supply security modelling (SWWM) and multi-criteria decision analysis (MCDA) are combined to thoroughly assess hydrogeological conditions, supply and demand over time and identify the most sustainable options. Botswana is experiencing water stress due to natural conditions, climate change and increasing water demand. MAR has been identified as a potential solution to increase water supply security, and the Palla Road aquifer, located 150 km northeast of the capital, Gaborone, has been identified as a potential site. To evaluate the potential of MAR and if it is suitable for improving water supply security, three full-scale MAR scenarios were evaluated based on their technical, economic, social and environmental performance relative to a scenario without MAR. The numerical groundwater model and the WSSM were used iteratively to provide necessary input data. The WSSM is a probabilistic and dynamic water balance model used to simulate the magnitude and probability of water shortages based on source water availability, dynamic storage in dams and aquifers, reliability of infrastructure components, and water demand. The modelling results were used as input to the MCDA to determine the sustainability of alternative MAR scenarios. The results provide useful decision support and show that MAR can increase water supply security. For the Palla Road aquifer, storage and recovery with a capacity of 40 000 m3 /d is the most sustainable option. |
|||||||||||
Application of Nanofiltration Membrane for Removal of VOCs and Heavy Metals in Groundwater, Ratchaburi, Thailand | C | Chamathong | Ratchaburi, Thailand | 2023 | Heavy metals, Nanofiltration membrane, VOCs | ||||||
Abstracthe Namphu and Rangbua subdistricts in Ratchaburi province, in western Thailand, are affected by groundwater contamination. According to site characterization results, the aquifer has been contaminated with volatile organic compounds and heavy metals since 2014. Membrane filtration technology is an alternative method for treating groundwater to produce safe drinking water for household use. Nanofiltration membrane is a relatively recent development in membrane technology with characteristics that fall between ultrafiltration and reverse osmosis (RO). This study aimed to determine the hydrochemistry of contaminated groundwater and examine the efficiency of nanofiltration membranes for removing pollutants in groundwater and the potential implementation of the membrane. The membrane module used in this study is cylindrical in shape of 101.6 cm long and 6.4 cm in diameter, and the membrane surface charge is negative with monovalent rejection (NaCl) of 85-95%. The filtration experiments were conducted at a pressure of 0.4-0.6 MPa, which yielded flow rates of approximately 2 L/min. To examine the nanofiltration membrane efficiency, groundwater samples were extracted from four monitoring wells and were used as feed water. According to laboratory results, the nanofiltration maximum removal efficiencies for 1,2-dichloroethylene, vinyl chloride, benzene, nickel, and manganese were 97, 99, 98, 99, and 99%, respectively. However, the treatment efficiency depends on several factors, including pretreatment requirements, influent water quality and the lifespan of the membrane. Further research should be conducted to determine the maximum concentration of VOCs and heavy metals in the feed water before applying this treatment method to a large scale. |
|||||||||||
Developing and testing a Groundwater Mapping methodology to increase drilling success rates for sustainable drinking water boreholes in African Arid and Semi-Arid Lands – the case study of Cunene Province, Angola | D | Benedicto van Dalen | Angola | 2023 | Analytic Hierarchy Process, WASH program, groundwater mapping, remote sensing | ||||||
AbstractIn recent years, practical applications of vector and raster multi-layers overlay analysis to enhance outcomes of conventional hydrogeological methods for allocation of productive boreholes have been applied in arid and semi-arid lands and is currently being tested in Ethiopia, Kenya, Somalia and Angola in cooperation with UNICEF. Advanced Remote Sensing (RS) and Geographic Information Systems (GIS) techniques combined with traditional geological, hydrogeological and geophysical methods are being used for improved access to sustainable drinking water supply boreholes in the scope of a WASH program. Identifying suitable areas with a good potential for sustainable groundwater resources exploitation mainly depends on a) consistent/reliable aquifer recharge and b) favourable hydrogeological conditions for groundwater abstraction. Multi-layer analyses and attribution of layer scores to the hydrogeological information layers – aquifer recharge, aquifer class, lineaments, slope, land cover, and presence of streams – combine into a qualitative Groundwater Suitability Map, using pairwise comparison (weights) to determine their relative importance with the Analytic Hierarchy Process (AHP). Additionally, traditional field methods enhance the quality of outputs and delineate Target Areas for detailed investigations: validation of hydrogeological conceptual models, hydrogeological assessment, groundwater sampling and finally, geophysical methods. Downscaling the remote sensed information of the groundwater suitability map with field verifications is required to recommend borehole drilling sites. The engagement of stakeholders is vital for the data collection and validation of the weighting criteria analyses (AHP method), as well as for the cooperation on the ground, validation of the Target Areas selection and implementation. |
|||||||||||
Making the Invisible Visible: Do Aquifers Have Agency? | A | Healy | Wales | 2023 | agency, Groundwater, more-than-human, social, socio-hydrogeology | ||||||
AbstractIn the social sciences, there has been a ‘posthuman’ turn, which seeks to emphasise the role of non-human agents as co-determining social behaviours. In adopting a ‘more-than-human’ approach, the academy seeks to avoid claims of human exceptionalism and extend the social to other entities. In this paper, we explore the extent to which the more-than-human approach might be applied to groundwater and aquifers and the implications that this may have for groundwater science. The role of groundwater in complex adaptive socio-ecological systems at different scales is increasingly well-documented. Access to groundwater resources positively influences societal welfare and economic development opportunities, particularly in areas where surface waters are scarce. The potential adverse effects of human activities on the quantity or quality of groundwaters are also widely reported. Adopting a ‘properties’ approach, traditional social science perspectives typically describe aquifers as structuring the agency of human actors. To what extent might aquifers also have agency, exhibited in their capacity to act and exert power? Drawing on insights from 5 cities across sub-Saharan Africa, we argue for the agency of aquifers in light of their capacity to evoke change and response in human societies. In doing so, we draw on the concept of the more-than-human to argue for a more conscious consideration of the interaction between the human and non-human water worlds whilst acknowledging the critical role played by researchers in shaping these interactions. |
|||||||||||
Integrated assessment of groundwater potential zones for deep groundwater exploration in hard rock aquifers using GIS and geophysical techniques: A case study of Huai Krachao, Kanchanaburi, western Thailand | V | Hunyek | Thailand | 2023 | Deep groundwater exploration; Hard rock aquifer; groundwater potential zones; Analytical Hierarchy Process; weighted overlay analysis; spring | ||||||
AbstractGroundwater is an important freshwater supply that has a significant role in the economy. However, water is increasingly becoming scarce in several regions. Huai Krachao Subdistrict in Kanchanaburi Province is an example of an area that has been experiencing a severe drought for decades due to the impacts of climate change. This study was conducted to delineate the groundwater potential zones in hard-rock terrains using geographic information system (GIS) techniques. The study aims to explore deep groundwater resources in challenging areas and propose alternative methods supporting traditional groundwater exploration. This finding revealed that the groundwater potential zones were classified into high, moderate, and low potential zones based on the groundwater potential index (GWPI), integrated using the Weighted Index Overlay Analysis. The computed weights from the Analytical Hierarchy Process were acceptable and consistent. The high potential zones mainly occur in the Silurian-Devonian metamorphic rocks. The GIS-based analytical results were later prepared for detailed field investigation, including collecting well information and conducting the 2-dimensional geophysical survey. To prove the GWPI map, 9 groundwater wells were drilled in the high potential zones. Consequently, well yields obtained from the pumping-test analysis ranged from 24-40 m3 / hr, some of which are springs rich in dissolved minerals. Accordingly, a significant amount of water could meet the water demand, supplying about 1 million m3 /year. Under these circumstances, discovering new groundwater resources can support roughly 5,000 people and agricultural lands no less than 480 hectares (4.8 km2 ). |
|||||||||||
Protecting groundwater resources in an era of geological carbon sequestration: A fractional stochastic model to predict pressure buildup due to CO2 injection into a saline aquife | H | Mbah | National | 2023 | Carbon Capture and Storage, CCS, CCS fractional operator, geological heterogeneity., injectivity, pressure buildup, saline aquifer | ||||||
AbstractCarbon Capture and Storage (CCS) in deep saline aquifers is a viable option for Green House Gas (GHG) mitigation. However, industrial-scale scenarios may induce large-scale reservoir pressurization and displacement of native fluids. Especially in closed systems, the pressure buildup can quickly elevate beyond the reservoir fracture threshold and potentially fracture/ reactivate existing faults on the cap rock. This can create pathways, which could act as conduits for focused leakage of brine and/or CO2 up-dip and mobilization of trace elements into capture zones of freshwater wells. Careful pressure management can ensure the reservoir’s hydraulic integrity. This can theoretically be achieved through simulation with appropriate mathematical tools. This research aims to quantify pressure buildup at a CO2 injection well by applying fractional derivatives to the pressure diffusivity Differential Equation (PDE). A numerical solution has been developed to (1) predict and assess the consequence of pressure buildup within the storage formation on groundwater flow in shallow aquifers and (2) assess the impact of pressure-mobilized contaminants (CO2 , brine and/or trace elements) on the quality of usable groundwater, if there is a leakage. The efficiency of each derivative is shown to depend on the type of reservoir heterogeneity. The Caputo derivative captured the long tail dependence characteristic of fracture flow, while the ABC derivative was able to model the cross-over from matric into the fracture flow. The numerical tools presented here are useful for successful risk assessments during geo-sequestration in basins with freshwater aquifers. |