Conference Abstracts

All Abstracts were presented at the Groundwater Conferences

Displaying 101 - 150 of 795 results
Title Presenter Name Presenter Surname Area Sort descending Conference year Keywords

Abstract

Decades of monitoring, characterising, and assessing nitrate concentration distribution and behaviour in the soil profile and it's pathway into groundwater have resulted in a good understanding of its distribution in the country. While the national distribution is of great importance, site specific conditions determine fate, transport, and ultimately concentration in a specific area. Field experimental work included installation of a barrier containing a cheaply available carbon source to treat groundwater. The "reactor"/ tank with dimensions- 1,37m height, 2.15m diameter used for the experiment was slotted for its entire circumference by marking and grinding through the 5mm thick plastic material. The top section was left open to allow for filling and occasional checking of filled material during the experiment. The tank was packed with Eucalyptus globulus woodchips which was freely available at the site. Concentrations of groundwater nitrate at the site were well over what could be expected in any naturally occurring groundwater systems, and would result only by major anthropogenic activities in unconfined aquifer areas of South Africa. The changes in parameter concentrations with time were measured in order to determine the efficiency and life span of the carbon source used for the experiment. This paper considers 35 months of monitoring at a site where a low technology method was implemented. Field implementation was tested at a site which previously experienced some NH4NO3 spills. Main results from the field work showed that nitrate was totally removed at the treatment zone and surrounding boreholes, and even sulphate and NH4+ were removed during the experiment. This shows that the woodchips were successful in affecting denitrification for 35 months. Data also shows that boreholes further downstream from the tank had reduced NO3-, SO42- and NH4+ levels. Using the available biodegradable carbon for the woodchips based on its composition, a barrier lifespan could be determined. The results of calculations showed that the barrier would be effective for at least another 6.9 years from the period of the last sampling date. A total lifespan of about 10 years can thus be estimated.

Abstract

Annually, UNICEF spends approximately US$1B in water, sanitation and hygiene programming (WASH), approximately half of which is spent in humanitarian contexts. In emergencies, UNICEF supports the delivery of water, sanitation and hygiene programming under very difficult programming contexts – interruptions to access, power supply and a lack of reliable data. Many of these humanitarian situations are in contexts where water scarcity is prevalent and where the demand and competition for water are increasing, contributing to tension between and within communities. While water scarcity is not new to many of these water-scarce areas, climate change is compounding the already grave challenges related to ensuring access to safe and sustainable water services, changing recharge patterns, destroying water systems and increasing water demand. Incorrectly designed and implemented water systems can contribute to conflict, tension, and migration. Ensuring a comprehensive approach to water security and resilient WASH services can reduce the potential for conflict and use water as a channel for peace and community resilience. This presents an enormous opportunity for both humanitarian and development stakeholders to design water service programmes to ensure community resilience through a four-part approach: 1. Groundwater resource assessments 2. Sustainable yield assessments (taking into consideration future conditions) 3. Climate risk assessments 4. Groundwater monitoring/early warning systems UNICEF promotes this approach across its WASH programming and the sector through technical briefs, support and capacity building.

Abstract

Approximately 982 km3 /annum of the world’s groundwater reserve is abstracted, providing almost half of all drinking water worldwide. Globally, 70% is used for agricultural purposes while 38% for irrigation.

Most water resources of South Africa are threatened by contamination caused by industrial, agricultural, and commercial activities, and many parts of the country face ongoing drought with an urgent need to find alternative freshwater sources, such as groundwater. Groundwater constitutes approximately 15% of the total volume consumed, hence it is an important resource that supplements insufficient surface water supplies across South Africa.

Very little attention has been afforded to understanding the anthropogenically altered vadose zone as a potential source or buffer to groundwater contamination. This is evident from few research studies that has applied multiple isotopic tracers to characterise this zone. Most subsurface systems in South Africa are characterised by fractures, whereby flow and transport are concentrated along preferential flow paths.

This study aims to evaluate the performance of different tracer classes (environmental and artificial) with one another, and create a better understanding of the hydraulic properties, mean residence time and transport mechanisms of these tracers. The influence of unsaturated zone thickness on recharge mechanisms will also be evaluated.

Site visits will be conducted for the proposed study areas, and the neighbouring sources of contamination will be assessed. The matric potential and unsaturated hydraulic conductivities will be measured using various techniques. Water samples will be collected and analysed for the various tracers from the vadose zone using gravity lysimeters including suction cups. Several tracers will also be injected into boreholes where samples will be collected to calculate tracer residence times (BTC’s) and further constrain the hydraulic properties of the vadose zone. All samples will be analysed, interpreted, and simulated using the numerical finite-element modelling code SPRING, developed by delta h. The software derives quantitative results for groundwater flow and transport problems in the saturated and unsaturated zones of an aquifer.

The research is expected to provide more insight into the selection and use of environmental and artificial tracers as markers for detecting, understanding the transport processes and pathways of contaminants in typical altered South African subsurface environments. The impact derived improved characterisation of the pathways, transport, and migration processes of contaminants, leading to groundwater protection strategies and appropriate conceptual and numerical models. The output from this study will determine the vertical and horizontal flux for both saturated and unsaturated conditions.

Abstract

Groundwater in South Africa is the most important source of potable water for rural communities, farms and towns. Supplying sufficient water to communities in South Africa becomes a difficult task. This is especially true in the semi-arid and arid central regions of South Africa where surface water resources are limited or absent and the communities are only depended on groundwater resources. Due to a growing population, surface water resources are almost entirely being exploited to their limits. These factors, therefore, increases the demand for groundwater resources and a more efficient management plan for water usage. For these reasons, the relation between the geology and geohydrology of South Africa becomes an important tool in locating groundwater resources that can provide sustainable quantities of water for South Africans. It was therefore decided to compile a document that provides valuable geohydrological information on the geological formations of the whole of South Africa. The information was gathered by means of interviews with experienced South African geohydrologists and reviewing of reports and articles of geohydrological studies. After gathering the relevant information, each major geological unit of South Africa together with its geohydrological characteristics was discussed separately. These characteristics include rock/aquifer parameters and behaviour, aquifer types (primary of secondary), groundwater quality, borehole yields and expected striking depths, and geological target features and the geophysical method used to locate these targets. Due to the fact that 90 % of South Africa's aquifers are classified as secondary aquifer systems, groundwater occurrence within the rocks of South Africa is mainly controlled by secondary fractures systems; therefore, understanding the geology and geological processes (faulting, folding, intrusive dyke/sills & weathering) responsible for their development and how they relate is important. However, the primary aquifers of South Africa (Coastal Cenozoic Deposits) should not be neglected as these aquifers can produce significant amounts of groundwater, such as the aquifer units of the Sandveld Group, Western Cape Province. Drilling success rates and possibility of striking higher yielding boreholes can be improved dramatically when an evaluation of the structural geology and geohydrological conditions of an area together with a suitable geophysical method is applied. The ability to locate groundwater has been originally considered (even today) a heavenly gift and can be dated back to the Biblical story of Moses striking the rock to get water: "behold, I will stand there before thee there upon the rocks thou shalt smite the rock and there shall come water out of it" (Exodus 17:6).

Abstract

Vapour intrusion (VI) is the term used to define the encroachment of vapour phase contaminants from subsurface sources into structures such as buildings and basements. It is widely recognized that VI often forms the principal risk of exposure to receptors at petroleum release sites. Petroleum VI (PVI) generally occurs where a release of petroleum hydrocarbon product migrates from its source (e.g. from a leaking underground storage tank) to the groundwater table at which point, given favourable conditions, the hydrocarbon plume may migrate laterally beneath an adjacent building or structure. Subsequent volatilisation of the petroleum product results in the upward diffusion of vapours towards the surface where the vapours may enter into the building or structure at concentrations which may be harmful to human health. The subject of PVI with regards to its fate and transport mechanisms, as well as associated mitigation measures is rapidly gaining attention on a global scale, although to date this exposure pathway remains largely un-assessed in South Africa, with no regulatory guidance currently available. In the late 1990's and early 2000's focus was placed on the development of VI screening criteria by which sites could be screened with respect to their hydrogeological conditions and contamination status so as to determine whether VI could be a potential exposure pathway of concern, with much of the early work being completed by the United States Environmental Protection Agency. For the past decade the majority of the available screening criteria and guidance has had a partially incomplete understanding of hydrocarbon vapour fate and transport processes associated with VI, which has led to doubt over the application of such screening criteria in many cases. Furthermore, recent research conducted abroad has highlighted the importance of the role of oxygen in the vadose zone in the natural attenuation of petroleum hydrocarbon vapours as they diffuse through the soil profile. This research is pointing towards the notion that currently applied screening criteria may be overly conservative, leading to many unnecessary PVI investigations being conducted to the disruption of occupants of the buildings, and at great cost. Over the last two years ERM has compiled a dataset of PVI results from numerous investigations it has conducted throughout Southern Africa and in this paper the authors present data that supports the growing global trend towards recognizing the role that oxygen plays in attenuating petroleum hydrocarbon vapours in the vadose zone. The data also supports the notion that confirmed cases of PVI into buildings have generally been found to be the exception to the rule and not the norm.

Abstract

This article present field evidence on the effect of artefacts other than the horizontal groundwater flux on the single-borehole tracer dilution test. The artefacts on the tracer dilution were observed during two single-borehole tracer dilution tests conducted in an alluvial channel aquifer in the main Karoo Basin of Southern Africa. Field evidence shows that early time of the tracer dilution plot can be affected by artefacts other than the horizontal groundwater flux. These artefacts have great potential to increase the early time gradient of tracer dilution curve leading to overestimation of the horizontal groundwater flux. A qualitative approach that can be used to isolate and remove portion of the dilution plot that has resulted from artefacts other than the groundwater flow prior to calculating the horizontal groundwater flux is proposed.

Abstract

Inadequate characterization of petroleum release sites often leads to the design and implementation of inappropriate remedial systems, which do not achieve the required remedial objectives or are inefficient in addressing the identified risk drivers, running for lengthy periods of time with little benefit. It has been recognized that high resolution site characterization can provide the necessary level of information to allow for appropriate solutions to be implemented. Although the initial cost of characterization is higher, the long-term costs can be substantially reduced and the remedial benefits far greater. The authors will discuss a case study site in the Karoo, South Africa, where ERM has utilized our fractured rock toolbox approach to conduct high resolution characterization of a petroleum release incident to inform the most practical and appropriate remedial approach. The incident occurred when a leak from a subsurface petrol line caused the release of approximately 9 000 litres of fuel into the fractured sedimentary bedrock formation beneath the site. Methods of characterization included:
- Surface geological mapping of regionally observed geological outcrops to determine the structural orientation of the underlying bedding planes and jointing systems;
- A surface electrical resistivity geophysics assessment for interpretation of underlying geological and hydrogeological structures;
- Installation of groundwater monitoring wells to delineate the extent of contamination;
- Diamond core drilling to obtain rock cores from the formation for assessment of structural characteristics and the presence of hydrocarbons by means of black light fluorescence screening and hydrocarbon detection dyes;
- Down-borehole geophysical profiling to determine fracture location, fracture density, fracture dip and joint orientation; and
- Down-borehole deployment of Flexible Underground Technologies (FLUTe?) liners to determine the precise vertical location of light non-aqueous phase liquid (LNAPL) bearing joint systems and fracture zones, and to assist in determining the vertical extent of transmissive fractures zones.
ERM used the information obtained from the characterization to compile a remedial action plan to identify suitable remedial strategies for mitigating the effects of the contamination and to target optimal areas of the site for pilot testing of the selected remedial methods. Following successful trials of a variety of methods for LNAPL removal, ERM selected the most appropriate and efficient technique for full-scale implementation.
{List only- not presented}

Abstract

The Bedford Dam is the upper storage dam for the Ingula Pumped Storage Scheme and is situated in the Ingula/Bedford Wetland. This wetland has a high structural diversity which supports a unique assemblage of plants and invertebrates. The flow regulation and water purification value is of particular importance as the wetland falls within the Greater Vaal River catchment. Concern was raised with respect to the potential negative impact of the newly constructed dam on the dynamic water balance within the wetland. An assessment of the extent to which groundwater drives / sustains the wetland systems and the water requirements needed to sustain the wetland processes was determined. This includes establishing the impact of the Bedford Dam on the groundwater and wetland systems as well as providing recommendations on management and monitoring requirements. The hydropedological interpretations of the soils within the study area indicate that baseflow to the wetland is maintained through perennial groundwater, mainly recharged from infiltration on the plateau, and was confirmed through isotope sampling and hydrometric measurements. It is apparent that the surface flows in the main wetland are fed by recent sources, while the subsurface layers in the wetland are sustained by the slower moving near-surface and bedrock groundwater. The movement of groundwater towards the wetland is hindered by the numerous dykes creating a barrier to flow. Nevertheless, there seems to be a good connection between the groundwater sources in the upland and the surface drainage features that conduct this water to the contributing hillslopes adjacent to the main wetland. The surface flows of the main wetland are sustained by contributions from tributary fingers. The discharge out of the wetland is highly seasonal

Abstract

Water resource management and risk management rely heavily on the availability of data and information. This includes the volumes of water needed, the volumes of water available, where the available water is and where it would be needed, etc. Historical records help to determine past use and gives a way to predict future use in the case of water resource planning while it helps to predict the possibility of floods and droughts when it comes to risk management. Rainfall data can provide valuable data for both water resource planning and risk management, since it is the input to the hydrologicalcycle. It is possible to determine dry and wet cycles using the cumulative deviation from mean that is calculated from the measured rainfall data. This was done for the Gnangara Mound in Australia, with the results giving a fair representation of the dry and wet cycles in the area. Data measured over a period of about 30 years for the Zachariashoek sub-catchment analyzed in the same fashion provided wet-dry cycles of about 8 years. The rainfall measurements had been taken at various settings around the catchment, and varied from place to place and differed from that measured at the WeatherSA stations in the vicinity. This article will draw a comparison between the Zachariashoek data and the WeatherSA data to determine whether the WeatherSA data followed the same patterns for the wet-dry cycles observed in Zachriashoek. It will then analyse the longer data record available for the WeatherSA data from 1920 to 2012. It is expected that the shorter wet-dry cycles seen in Zachariashoek will become part of longer wet-dry cycles that can be used in water resource planning and risk management. Rainfall is also dependent on a number of factors

Abstract

Water resources worldwide are stressed, and the number of groundwater professionals required to manage those resources is not being generated in sufficient numbers. Groundwater educational resources must be placed in schools to generate excitement and raise awareness. Additionally, people entering the workforce need training throughout their professional careers. Oklahoma State University partnered with the U.S. National Ground Water Association to develop a framework for providing education and training programs in groundwater that allow for interactive online education at all levels. The Awesome Aquifer 360 program targets grades 5-8, allowing students to conceptually explore aquifers and the people who manage them. The Drilling Basics Online program provides a 40-hour basic safety and drilling training to recruit professionals into the groundwater industry and reinforce safe operations. These programs and future plans for the technique will be discussed.

Abstract

Tailings storage facilities are significant contributors of dissolved solids to underlying aquifers and adjacent watercourses. Salt balances indicate estimated seepage loads of the order of 1 500 tonnes of chloride per year. Actual seepage loads will be determined by the hydraulic conductivity of the tailings and mechanisms of flow within the tailings. Field observations and sample analytical results from several platinum tailings facilities are presented. These indicate the development of lenses of clay sized material within coarser silty material and suggest a tortuous seepage flow path, perhaps characterised by zones of preferential flow. The implications of seepage modelling and geochemical data on the salt loads mobilised from tailings are discussed. Results suggest that tailings facilities are effective at retaining salts and that release of accumulated salts after closure may take place at long time scales. {List only- not presented}

Abstract

The provision, usage and discharge of water resources are major concerns for coal mines, both underground and opencast. Water resources in a coal mining environment will often account for a significant portion of the daily operational cost. In order to cut costs, the mine will often collect as much runoff as possible to recycle for future use. This on-going recycling of site water and management of the resource demands a complete site water balance model in order to understand the dynamics of the resource within the boundaries of the mine. To improve the understanding of the dynamics of the resource on a much larger scale, and the effect it will have on recharge in an open cast coal mine environment, one must consider alternative modelling approaches which can compensate for such conditions. This amounts to describing recharge as a modelling component in a physically based distributed model. The main goal of this project is to calculate recharge into the main pit at this specific colliery by applying parameters on a quaternary catchment scale. The colliery is located just west of the town of Ogies, Mpumalanga on the peripheral region of the quaternary catchment B20G. The physiography of the quaternary catchment B20F is described as a central Highveld region gently sloping to the north. The geohydrological modeling application MIKE SHE (developed by DHI) was used to develop a fully integrated catchment model. The model was created mainly to simulate the impact of human activities on the hydrological cycle and hence on water resource development and management. Different modules of MIKE SHE that was used during the modelling stage include saturated- and unsaturated flow and a small degree of overland flow.

Key words: Mpumalanga, MIKE SHE, recharge

Abstract

Modelling of groundwater systems and groundwater-surface water interaction using advanced simulation software has become common practice. There are a number of approaches to simulate Lake-aquifer interactions, such as the LAK Package integrated into MODFLOW, the high conductivity and fixed stage approaches. LAK and the high conductivity approaches were applied and compared in simulating Lake- aquifer interaction in the Lake Sibayi Catchment, north-eastern, South Africa using the finite difference three-dimensional groundwater flow model, Visual MODFLOW Flex under steady state conditions. The steady state model consisted of two layers: an upper layer consisting of the Sibayi, KwaMbonambi, Kosi Bay and Port Durnford Formations which have similar characteristics, and a lower model layer representing the karst, weathered and calcareous Uloa Formation. The bottom model boundary is constrained by the impermeable Cretaceous bedrock. The model area covers the surface and groundwater catchments of Lake Sibayi which is constrained in the east by the Indian Ocean. A no-flow boundary condition is assigned to the northern, western and southern sides and a constant head boundary is assigned to the eastern side. The Mseleni River and neighbouring plantations were modelled using the River and Evapotranspiration boundary conditions respectively. Input parameters for the various boundary conditions were obtained from the previously developed high resolution conceptual model, including recharge

Abstract

Underground coal gasification (UCG) is considered a cleaner energy source as its known effect on the environment is minimal; it is cheaper and a lesser contributor to greenhouse gas emissions when compared to conventional coal mining. It has various potential impacts but the subsidence of the surface as well as the potential groundwater contamination is the biggest concerns. Subsidence caused by UCG processes will impact on the groundwater flow and levels due to potential artificial groundwater recharge. The geochemistry of the gasifier is strongly depended upon site specific conditions such as coal composition/type and groundwater chemistry. Independent of the coal rank, the most characteristic organic components of the condensates is phenols, naphthalene and benzene. In the selection of inorganic constituents, ammonia, sulphates and selected metals and metalloids such as mercury, arsenic, and selenium, are identified as the dominant environmental phases. The constituents of concern are generated during the pyrolysis and after gasification as dispersion and penetration of the pyrolysis take place, emission and dispersion of gas products, migration by leaching and penetration of groundwater. A laboratory-based predictive study was conducted using a high pressure thermimetric gasification analyser (HPTGA) to simulate UCG processes where syngas is produced. The HPTGA allows for simulation of the actual operational gasifier pressure on the coal seam and the use of the groundwater sample consumed during gasification. A gasification residue was produced by gasifying the coal sample at 800 °C temperature and by using air as the input gas. The gasification residue was leached using the high temperature experimental leaching procedure to identify the soluble phases of the gasified sample. The leachate analysis is used to determine the proportion of constituents present after gasification which will be removed by leaching as it is exposed to external forces and how it will affect the environment. The loading to groundwater for the whole gasifier is then determined by applying the leachate chemistry and rock-water ratio to the gasifier mine plan and volumes of coal consumed. 

Abstract

The most used methods for the capturing of shallow groundwater contamination are the use of abstraction wells and infiltration trenches. The use of trenches for the interception of shallow groundwater contamination has become a popular choice of remediation method due to the lower cost than a comparable pump-and-treat system. Trenches have large surface areas which limits the tendency of filter media clogging with suspended media as well as only a single pump and lower maintenance requirements. An important consideration of the use of trenches is determining the effectivity before design and construction. To date, limited information on the effectivity of trench designs are available, therefore a method to determine the effectivity of a trench was devised. This paper will discuss this evaluation method and look at some cases where planned trenches were successful and some cases where they were not.

Abstract

Coastal groundwater is a vulnerable resource, estimated to sustain the water needs of about 40% of the world’s population. The Roussillon aquifer is a regional aquifer near Perpignan (southern France). It covers over 800 km2 of land and is used for irrigation, drinking water, and industrial purposes. The aquifer has experienced significant piezometric lowering in the last decades, weakening the regional resource. An important aspect of modelling the hydrodynamic of this aquifer is the need to integrate data from agriculture and drinking water abstraction, natural and anthropogenic recharge, and account for the aquifer’s complex sedimentary arrangement. An ensemble of groundwater models has been constructed to understand the spatial evolution of the saline/freshwater interface and evaluate the impact of groundwater abstraction.

Three sets of physical parameter modelling approaches were used. The first is based on the direct interpolation of pumping tests. The second uses sequential indicator simulations to represent the geological uncertainty. The third is based on a detailed conceptual geological model and multiple-point statistics to represent the detailed geological structure. These models provide parameter fields that can be input for the transient state hydrodynamic simulations. Overall, the ensemble approach allowed us to understand the Roussillon plain’s hydrological system better and quantify the uncertainty on the possible evolution of the main groundwater fluxes and water resources over the last 20 years. These models can help to inform management decisions and support sustainable water resource development in the region.

Abstract

Groundwater is an important resource for multiple uses in South Africa. Hence, setting limits to its sustainable abstraction while assuring basic human needs is required. Due to prevalent data scarcity related to groundwater replenishment, which is the traditional basis for estimating groundwater availability, the present article presents a novel method for determining allocatable groundwater in quaternary catchments through information on streamflow. Using established methodologies for assessing baseflow, recession flow, and instream ecological flow requirement, the methodology develops a combined stepwise methodology to determine annual groundwater storage volume using linear reservoir theory, essentially linking low flows proportionally to upstream groundwater storages. The approach was trialled for twenty-one perennial and relatively undisturbed quaternary catchments with longterm and reliable streamflow records. Using the Desktop Reserve Model, maintenance low instream flow requirements necessary to meet present ecological state of the streams were determined, and baseflows in excess of these flows were converted into allocatable groundwater storages on an annual basis. Results show that groundwater development potential exists in nineteen of the catchments, with upper limits to allocatable groundwater volumes (including present uses) ranging from 0.02 to 2.60 Mm3/a over the catchments. With a secured availability of these volumes 75% of the years, variability between years is assumed to be manageable. A significant (R2 = 0.86) correlation between baseflow index and the drainage time scale for the catchments underscores the physical basis of the methodology and also enables the reduction of the procedure by one step, omitting recession flow analysis. The method serves as an important complementary tool for the assessment of the groundwater part of the Reserve and the Groundwater Resource Directed Measures in South Africa.

Abstract

The generation of acid mine drainage (AMD), as a result of mining activities, has led to the degradation of groundwater quality in many parts of the world. Coal mining, in particular, contributes to the production of AMD to a large extent in South Africa. Although a vast number of remediation methods exist to reduce the impacts of AMD on groundwater quality, the use of a coal fly ash monolith to act as a reactive and hydraulic barrier has not been extensively explored. This study, therefore, aims to investigate how different ways of packing ash affect the hydraulic conductivity of ash and influence leachate quality when acid-mine drainage filters through the ash. Coal ash is highly alkaline due to the existence of free lime on the surface of the ash particles. Previous studies that investigated alternative uses of coal ash, particularly in AMD treatment, suggest that coal ash has the potential to neutralise pH in acid water and remediate acidic soils. To test the effects of different packing methods of coal ash on the hydraulic conductivity and quality of acid mine leachate flowing through it, several Darcy column tests will be conducted. During the course of these experiments, the following parameters will be measured, electrical conductivity, pH discharge, lime (CaCO3) and selected elements of environmental concern.

Abstract

With the revision of the European Drinking Water Directive (Directive on the quality of water intended for human consumption 2020/2184) in December 2020, the preparation of Water Safety Plans (WSP) is foreseen according to the guidelines of WHO. Within the EU Interreg Adrion MUHA project, a decision support tool (DST) has been developed to provide a holistic approach to drinking water infrastructure risk analysis. The project mainly addresses four water-related risks: accidental pollution, floods, droughts and earthquakes. The core of the DST is the inventory of hazardous events (causes, their consequences and impacts) for each component of the drinking water supply chain: (1) drinking water source - catchment area, (2) water supply system, and (3) domestic distribution system. For each identified potential hazard, the type of hazard was determined (e.g., biological, chemical, radiological, or physical hazard (including turbidity), inadequate availability of water supplied to customers, safety to personnel, external harm to third parties, including liability). The DST was tested in the partner countries (Italy, Slovenia, Croatia, Serbia, Montenegro and Greece) to verify the resilience of the measures and elaborate the WSP.

In the end, the REWAS-ADRION strategy was elaborated, aiming to increase the resilience of drinking water supplies to floods, droughts, accidental pollution, and earthquake-related failures by improving the water safety planning mechanism based on the concept of inter-agency cooperation to support water utilities, civil protection organizations, and water authorities.

Abstract

Implementation of a mining project in South Africa involved dewatering of a fractured rock aquifer at considerable depth below ground level. Groundwater quality within this aquifer is not suitable for domestic use due to high levels of salinity. Numerous geological investigations in the area indicate that the target aquifer is confined, with a different piezometric head to the shallower aquifers. However, regulators and other interested and affected parties expressed concern regarding the potential mixing of more saline groundwater from the deeper aquifer to be dewatered with groundwater from shallower aquifers, which are extensively used for farming and domestic purposes.
A large database of groundwater quality monitoring data collected over 16 years was available to investigate the degree of mixing between the deeper more saline and shallower freshwater aquifers. The groundwater chemistry of selected boreholes with known geological profile, depth and construction was used to develop groundwater fingerprinting criteria for each of the aquifers in the area. These fingerprinting criteria were then applied to private and exploration boreholes in the area in order to identify the main aquifer from which groundwater was being sourced. Once the boreholes were classified in terms of groundwater origin, an attempt was made to identify indicators of mixing with deeper, more saline groundwater from the aquifer being dewatered.
Groundwater fingerprinting allowed identification of impacts related to the mining operations. The data showed that there was no upward mixing of water related to dewatering operations, but rather that surface spillages and disposal schemes may have resulted in minor changes in shallow groundwater quality. {List only- not presented}

Abstract

Gold Mining activities the past 60 years at AngloGold Ashanti polluted the groundwater underlain by 4000 ha of land at the Vaal River and West Wits operations in South Africa. Sulphide material in Tailings Storage Facilities, Waste Rock Dumps and extraction plants produce Saline Mine Drainage with Sulphate, minor salts and metals that seep to the groundwater and ultimately into surface water resources. Water regulation requires mines to prevent, minimise/ reduce or eliminate pollution of water resources. The waste philosophy has matured from tolerate and transfer to treat and termination of pollution sources. The impact of the pollution was determined and possible technologies to treat the impact were evaluated. Source controls of proper water management by storm water management, clean dirty water separation, lined water conveyance structures and reduced deposition of water on waste facilities is crucial. The aquifer character determines the possible remediation technology. From the possible technologies phytoremediation, physical interception and re-use of this water was selected. In future possible treatment of the water would be considered. This paper explain the strategy and report on the phased implementation of these plans and the expected results. The establishment of 750 ha of woodlands as phytoremediation, interception trenches of 1250 m, 38 interception boreholes and infrastructure to re-use this water in 10 water management areas is planned. The total volume of 15 Ml/day would be abstracted for re-use from the boreholes and trenches. The woodlands can potentially attenuate and treat 5 ml/day. The established woodlands of 150 ha proof successful to intercept diffused seep over the area of establishment and reduce the water level and base flow. The 2 implemented trenches of 1000 m indicate a local decline in the water level with interception of shallow groundwater within 1-2 m from surface. The 2 production interception well fields abstracting 50 and 30 l/s respectively indicate a water level decline of between 2 to 14 m with regional cones of depression of a few hundred meters to intercept groundwater flow up to 20 meter. Predictions from groundwater modelling indicate that these schemes can minimise pollution during the operational phase and protect downstream water resources. Predictions from modelling indicate that the pollution sources need to be removed to ensure long term clean-up to return the land to save use. The gold and uranium prize is securing the removal of the sources through re-processing of the tailings and waste rock dumps. After removal of the sources of pollution the remediation schemes would have to be operated for 20 years to return the groundwater to an acceptable standard of stock watering and industrial water use. The water quality is observed by a monitoring network of approximately 100 observation boreholes.

Abstract

Pollution of underground water is fast becoming a global problem and South Africa is not immune to this problem. The principal objective of this paper is to investigate the effectiveness of laws and policies put in place to mitigate underground water pollution. The paper also seeks to examine the causes and types of underground water pollution followed by a closer look into the laws and policies in place to mitigate the pollution levels. Finally, the paper seeks to ascertain whether the current policies are properly implemented. The paper follows content analysis (desk research) to achieve the objectives. Policy recommendations are given based on the findings. {List only- not presented}

Abstract

Water monitoring is a key aspect in the mining industry, in terms of gathering baseline data during the pre-construction stage, identifying potential areas of concern and mitigating source pollutants during the operational stage. A proper water monitoring program assists in the monitoring of plume development and water level rebound during the closure phase. The data made available through consistent long term monitoring should not be underestimated. Monitoring the effect that coal mine operations have on the water quality and quantity of surface and groundwater resources is a complex and multidisciplinary task. Numerous methodologies exist for monitoring of this kind. This paper will supply an overview of the water- rock chemistry associated with coal mine environments and the key indicator elements that should be focused on for water monitoring as well a review of the Best Practice Guidelines requirements in terms of water monitoring. Two case studies of coal mines in KwaZulu Natal will be reviewed, the key challenges outlined and mitigation measures implemented. The impact of requirements such as those set out by the Department of Water and Sanitation in terms of strict water quality limits for water containment and waste facilities as specified by Water Use Licences has also created unrealistic non-compliance conditions. The initial approach to creating a water monitoring programme should involve first identifying gaps in previous datasets and delineating potential sources of contamination. The sampling frequency will depend primarily on the water resource being monitored and the water quality analysis will depend on the type of facility. The facilities required for a specific situation will depend on the type and amount of waste generated, potential for leachate formation, vulnerability of groundwater resources and potential for water usage or resource sensitivity.

Abstract

Edible vegetable oil (EVO) substrates have been successfully used to stimulate the in situ anaerobic biodegradation of groundwater contaminated chlorinated solvents as well as numerous other anaerobically biodegradable contaminants like nitrates and perchlorates at a many commercial, industrial and military sites throughout the United States of America and Europe. EVO substrates are classified as a slow release fluid substrate, and comprise of food grade vegetable oil such as canola or soya bean oil. The EVO substrate serves as an easily biodegradable source of carbon (energy) used to create a geochemically favorable environment for the anaerobic microbial communities to degrade specific contaminants of concern. EVO substrate's can either be introduced into the subsurface environment as pure oil, in the form of light non aqueous phase or as an oil/water emulsion. The emulsified vegetable oil substrates holds several benefits over non-emulsified vegetable oil as the fine oil droplet size of the commercially manufactured emulsified oils can more easily penetrate the heterogeneous pore and fracture spaces of the aquifer matrix. The use of this technology to stimulate in situ biodegradation of groundwater contaminants is still relatively unknown in South Africa. This paper will give an overview of the EVO technology and its application, specifically looking at the advantages of using this relatively inexpensive, innocuous substrate based technology to remediate contaminated groundwater within fractured rock environments commonly encountered in South Africa. {List only- not presented}

Abstract

The Department of Water Affairs and Sanitation is the custodian of the Water Resource in South Africa. The Western Cape Regional Office, Geotechnical Service Sub Directorate, is responsible for management of groundwater resources in two Water Management Areas (WMA), Olifants Doorn-Berg and Breede-Gouritz. Twenty-nine monitoring routes comprising 800 sites in total are monitored across the Western Cape Region. The purpose of this paper is to create awareness of groundwater related databases and the type of information products used in assessing the status of data bases and groundwater resources. This is to assist and support the scientists, technicians, managers, external stakeholders and/or general public. The main question that needs to be answer is: "What is the current groundwater data management situation in the Regional office?" With the GIS as platform, geographical information was generated from existing data bases to answer questions such as, what is being monitored, where is it being monitored, who is monitoring it, why is it being monitored and when is it being monitored? These questions are applicable to the Region, Water Management Areas, the monitoring route and geosites. Graphical time-series information generated from available data, in combination with the generated geographical information, showed the gaps, hot spots and what is still needed for all the facets of groundwater management (from data acquisition to information dissemination) processes. The result showed the status of data bases, need for data in areas of possible neglect, training gaps, inadequate structure and capacity, instrumentation challenges, need for improvement of commitment and discipline, as well as many other issues. The information generated proves to be an easy tool for Scientists, Technicians and Data Administrators to assist them to be on top of the groundwater resource management in their area of responsibility. The expansion of the use of GIS as a groundwater management tool is highly recommended. This will ensure better understanding of the resource: "The Hidden Treasure".

Abstract

Geochemical investigations for a planned coal mine indicated that the coal discard material that would be generated through coal processing would have a significant potential to generate acid rock drainage. A power station is planned to be developed in close proximity to the coal mine, and the potential for co-disposal of coal discard with fly-ash material required examination. Fly-ash is typically highly alkaline and has the potential to neutralise the acidic coal discard material. In order to investigate whether this was a viable option, the geochemical interaction between the coal discard and fly-ash was investigated. Geochemical data, including acid-base accounting, total chemical compositions, leach test data and kinetic test data, were available for the coal discard material and the fly-ash. Using these data as inputs, a geochemical model was developed using Phreeqci to predict the pH of leachate generated by mixing different ratios of coal discard and fly-ash. The ratio of coal discard to fly-ash was established that would result in a leachate of neutral pH. Using this prediction, a kinetic humidity cell test was run by a commercial laboratory for a total of 52 weeks using the optimal modelled ratio of discard and fly-ash. Although leachate pH from the kinetic test initially reflected a greater contribution from fly-ash, the pH gradually decreased to the near-neutral range within the first 20 weeks, and then remained near-neutral for the remainder of the 52-week test. During this period, sulphate and metal concentrations also decreased to concentrations below those generated by either the fly-ash or coal discard individually. The addition of fly-ash to the coal discard material provided sufficient neutralising capacity to maintain the near-neutral pH of the co-disposal mixture until the readily available sulphide minerals were oxidized, and the oxidation rates decreased. At the end of the test, sufficient neutralising potential remained in the humidity cell to neutralise any remaining sulphide material. The results of this investigation suggested that, under optimal conditions, co-disposal of fly-ash with coal discard is a viable option that can result in reduced environmental impacts compared to what would be experienced if the two waste materials were disposed of separately.

Abstract

This study was aimed at developing an integrated groundwater-surface water interaction (GSI) model for a selected stretch of the Modder River by considering the following five different aspects of the GSI: 1) the distribution of different aquifer systems (structural connectivity) along the river 2) the hydraulic connectivity between the aquifer systems, 3) the volumes of water abstracted from the aquifers by streamside vegetation, 4) the volumes of water replenished to the groundwater system through rainfall recharge, and 5) the exchange fluxes between the various components of the groundwater-surface water system. The distribution of the aquifer systems was investigated by means of a) geo-electrical surveys, and b) in situ slug tests while their hydraulic connectivity was investigated by hydrogeochemical routing. The volumes of water abstracted by streamside vegetation were estimated by the quantification of the transpiration from individual plants and the groundwater recharge was estimated by a root zone water balance. The water exchange fluxes between the groundwater and surface water were determined from a simple riparian zone groundwater budget. The results of the geo-electrical surveys and slug tests allowed the delineation of the riparian area aquifers (RAA) and the terrestrial area aquifers (TAA) on both the south-eastern and north-western sides of the river. Based on the results of hydrochemical analyses, saturation indices and inverse mass balance modelling, the GSI involves flow of water from the TAA to the RAA, and finally to the river on the south-eastern side while it involves flow from the river into the RAA with a limited exchange with the TAA on the south-eastern side. The dominant vegetation on the study area was found to be the Acacia karroo and Diospyros lycioides. The close similarities in isotope compositions of the xylem sap and the borehole water samples suggested that the Acacia karroo sourced its water from the groundwater storage while differences in isotope compositions suggested that the Diospyros lycioides did not source water from the groundwater storage at the time of measurement. The results of groundwater recharge estimation in the study area highlighted the fact that both the antecedent moisture and the rainfall amounts determine whether recharge to the groundwater system will take place. Finally, the results of baseflow estimation indicated that the river is a gaining stream along the south-eastern reach while acting as a losing stream along the north-western reach.

Abstract

Slightly more out of the box idea is the use of anthropogenic aquifers as storage and chemical conditioners.  This concept was first introduce by Eland Platinum Mine(EPM) and reported on in previous papers.  At EPM water is used through a serious of natural aeration and aerobic storage facilities to reduce nitrate levels.  In 2013 another group introduced pilot studies by virtue of abstraction in support of the water conservation and demand management strategy; which has proven that it could enable the operations to overcome water shortage periods and reduce pressure on Rand Water (RW). The pilot sites would deliver water into the dirty water circuit, but within five to ten years it may further be used to overcome months with zero potable water supply. .  In platinum mines the more the aquifers are used the cleaner the water becomes, simply because introduced pollutants are not constant sources and country rock is mostly inert.  In the future these aquifers have the potential to become larger storage facilities protected from floods and limited evaporation losses. It is foreseen that some of the mines in the western belt may have more water stored in primary aquifers than water stored within major water dams. Yields from these aquifers for individual aquifers may be up to 450 m3/hour and storage of 18 Mm3.  . Why then this paper if we are already using it?  The issue is that the true value of these aquifers an only be unlocked when they are  used as recharging aquifers and thereby actively storing dirty water within a dirty water aquifer.  Once we are able to undertake this the positive environmental gains such of environmental overflows, condition dirty water, reduction of pollution and significant reduction of the use of potable water from RW. {List only- not presented}

Abstract

Millions of tons of coal ash are produced across the globe, during coal combustion for power generation. South Africa relies largely on coal for electricity generation. The current disposal methods of coal ash are not sustainable, due to landfill space limitations and operational costs. One way/means of disposing of coal ash that could provide environmental and financial benefits; is to backfill opencast mines with the ash. However, a limited number of studies have been conducted to assess the feasibility of this method in South Africa. Thus the aim of the experiment is to monitor bulk ash disposal under field conditions to improve the understanding of the geochemical and hydrogeological processes occurring during the actual deposition of coal ash in opencast coal mines. To achieve the aim (1) a gravity lysimeter will be built containing both mine spoils and coal ash representing field conditions; (2) the factors (CO2, water level and moisture content) affecting acid mine drainage will be monitored in the lysimeter and (3) the change in the quantity and quality of the discharge released from the lysimeter.

Abstract

The groundwater quality in semi-arid aquifers can be deteriorated very rabidly due to many factors. The most important factor affecting the quality of groundwater quality in Gaza Strip aquifer is the excess pumping that resulting from the high population density in the area. The goal of this study to investigate the future potential deterioration in groundwater salinity using scenario analysis modeling by artificial neural networks (ANN). The ANN model is utilized to predict the groundwater salinity based on three future scenarios of pumping quantities and rates from the Gaza strip aquifer. The results shows that in case the pumping rate remains as the present conditions, chloride concentration will increase rapidly in most areas of the Gaza Strip and the availability of fresh water will decrease in disquieting rates by year 2030. Results proved that groundwater salinity will be improved solely if the pumping rate is reduced by half and it also will be improved considerably if the pumping rate is completely stopped. Based on the results of this study, an urgent calling for developing other drinking water resources to secure the water demand is the most effective solution to decrease the groundwater salinity.

Abstract

When considering how to reduce contamination of petroleum hydrocarbons in shallow aquifers, it is important to recognize the considerable capacity of natural processes continuously at work within the secondary sources of contamination. This natural processes are technically referred to as Monitored Natural Attenuation (MNA), a process whereby petroleum hydrocarbons are deteriorated naturally by microbes. This approach of petroleum hydrocarbon degradation relies on microbes which utilise oxygen under aerobic processes and progressively utilises other constituents (sulphates, nitrates, iron and manganese) under anaerobic processes. MNA process is mostly evident when light non-aqueous phase liquids (LNAPLs) has been removed while the dissolved phase hydrocarbon compounds are prominent in the saturated zone. The case studies aim at determining feasibility and sustainability of Monitored Natural Attenuation process at different sites with varying geological setting.

Abstract

Big data analytics (BDA) is a modern and innovative platform of applications that include advanced analytical techniques such as data mining, statistical analysis, artificial intelligence, machine learning, and natural language processing. Regional data are generated through groundwater monitoring, remote sensing applications or global circulation models (GCM), however this is often too course for a local understanding. Groundwater managers rely on locally relevant information for effective operational decision making, however this is often missing. A Transboundary Aquifer (TBA) Analytic Framework was developed to match, integrate and model local hydrogeological data with regional earth-observation data using BDA. Drawing on the literature on BDA, a reference architecture for the TBA analytical framework was identified for application to various groundwater management scenarios in the Ramotswa Dolomitic Aquifer (Botswana - South Africa) and Shire Valley Alluvial Aquifer (Malawi - Mozambique). The TBA analytical framework allows for local clouds to store the local and regional structured and unstructured datasets and interconnecting these local clouds through a federated cloud infrastructure. In this regard, tools that are incorporated in the TBA analytical framework include data ingestion operators, data transformation operators, and feature extractors. Various machine learning algorithms and statistical techniques are incorporated in the TBA analytical framework to downscale the regional datasets. The downscaling involves selection of potential predictors and predictants variables based on data needs to address local groundwater management scenarios such as regulating groundwater abstraction to prevent groundwater depletion. Using the downscaled data the TBA analytical framework can be utilised to uncover patterns and statistical relationships in the datasets in order to model local groundwater processes such as cone of depression, groundwater levels forecasting, well protection zoning, amongst others.

Abstract

Huixian Karst National Wetland Park is the most typical karst wetland in the middle and low latitudes of the world and has become an internationally important wetland. The relationship between water quality and aquatic organisms in Huixian Wetland is a hot research topic in wetland ecology. This article focuses on the relationship between the current water quality situation in Guilin Huixian Karst Wetland and the growth of wetland plants. Sixteen sampling points are set up in the wetland to monitor and analyze water quality in wet, normal, and dry seasons. The Kriging index interpolation method is used to obtain a comprehensive water quality interpolation map in the survey area during normal water periods and in combination with the wetland plant survey sample data and the landscape status. A comprehensive analysis of the relationship between wetland plant growth and water quality. The results show that the centre of Huixian Wetland receives recharge from surrounding groundwater, which is greatly affected by the surrounding water quality. The comprehensive water quality is relatively good in the dry season, relatively poor in the normal season, and the worst in the wet season. Agricultural production, non-point source pollution, rural domestic sewage, and human interference affect wetland water quality, which directly affects the structure and function of plant communities and the ecological service function of wetlands.

Abstract

This paper describes the results of study aimed at consolidating the available data sources on deep aquifers and deep groundwater conditions in South Africa. The study formed part of the larger WRC Project K5/2434 (Characterisation and Protection of Potential Deep Aquifers in South Africa). Since very little is known about the aquifer conditions below depths of 300 m, all groundwater information from depths greater than 300 m was considered to represent the deep aquifer systems. Various confirmed and potential sources of data on deep aquifers and groundwater conditions were identified and interrogated during this study, namely:

1. Boreholes of the International Heat Flow Commission (IHFC). The IHFC database indicates the location of 39 deep boreholes ranging in depth from 300 to 800 m, with an average depth of 535 m.
2. The Pangea database of the International Council for Science (ICSU). The Pangea database has information on 119 boreholes in South Africa, of which 116 are deeper than 300 m.
3. A database on deep boreholes at the Council for Geoscience (CGS). This database contains information on 5 221 boreholes with depths exceeding 300 m.
4. Information on the deep SOEKOR boreholes drilled during the 1960s and 1970s (at least 38 boreholes).
5. Information on deep boreholes from the database of the Petroleum Agency SA.
6. The National Groundwater Archive (NGA) of the Department of Water and Sanitation (DWS).
7. Information derived from the thermal springs in South Africa.
8. Boreholes drilled as part of the Karoo Research Initiative (KARIN).
9. Information on the locations and depths of underground mines in South Africa. Information on the occurrence of deep groundwater could potentially be obtained from these mines.

The study shows that, although information on a vast number of deep groundwater sites is listed in the various databases, the data relevant to the geohydrological conditions are scant at most sites. This paucity of geohydrological data implies that the deep aquifers of South Africa are currently poorly understood.

Abstract

Two ventilation shafts were proposed to be excavated to depths of 100 and 350 m to intersect an underground mine, in the Bushveld Complex. The area is made up of fractured aquifers and the assignment was to identify the exact positions of the permeable zones within the shafts profiles as well as estimate the groundwater inflow rates at every 5 m interval along the shafts profiles. The project was budget and time constrained and therefore the preferred hydrogeological characterisation techniques, particularly the percussion drilling, aquifer testing and numerical modelling could not be conducted. The study was completed by conducting packer tests in HQ sized holes drilled at the exact positions of the proposed shafts. The packer test data was then interpreted using Thiem equation, a modification of Darcy Equation for radial flow, to estimate the steady state inflow rates into the shafts. Transient state flow is more challenging to calculate analytically, as it is time and aquifer storage dependent. However, transient state flow in shafts exists for the first 10 - 15 days only and is short lived. Thereafter, a steady state flow occurs where the rate is nearly fixed for the rest of the life of mine, unless new external stresses, such as mine dewatering, takes place within the radius of influence. Six months later the shafts were excavated and the permeable zones were encountered at the exact positions as predicted using the packer testing. In addition, the inflow rates calculated using analytical modelling was successful in estimating the inflow rates recorded after the shafts were excavated. The packer testing and analytical modelling was therefore effective in assisting the mine to plan the necessary pumps and management plans within the allocated budget and timeframe.

Abstract

The SADC Grey Data archive http://www.bgs.ac.uk/sadc/ provides a chronology of groundwater development within the constituent countries of the SADC region. Early reports show how groundwater development progressed from obtaining water by well digging to the mechanical drilling of boreholes for provision of water for irrigation, township development, transport networks and rural settlement. During the 1930s steam driven drilling rigs were supplanted by petrol engine driven cable tool percussion drilling. Dixey (1931), in his manual on how to develop groundwater resources based on experiences in colonial geological surveys in eastern and southern Africa, describes aquifer properties, groundwater occurrence and resources as well as water quality and groundwater abstraction methods. Frommurze (1937) provides an initial assessment of aquifer properties in South Africa with Bond (1945) describing their groundwater chemistry. South African engineers transferred geophysical surveying skills to the desert campaign during World War II. Paver (1945) described the application of these methods to various geological environments in South Africa, Rhodesia and British colonial territories in eastern and central Africa. Test pumping methods using electric dippers were also developed for the assessment of groundwater resources. Enslin and others developed DC resistivity meters, replacing early Meggar systems, produced data that when analysed, using slide rules with graphs plotted by hand, identified water bearing fractures and deeply weathered zones. Tentative maps were drawn using interpretation of aerial photographs and heights generated using aneroid altimeters. The problems faced by hydrogeologists remain the same today as they were then, even though the technology has greatly improved in the computer era. Modern techniques range from a variety of geophysical surveying methods, automated rest level recorders with data loggers to GPS location systems and a whole host of remotely sensed data gathering methods. Worryingly, using such automated procedures reduces the ability of hydrogeologists to understand data limitations. The available collection of water level time series data are surprisingly small. Surrogate data need to be recognised and used to indicate effects of over abstraction as demand grows. As the numbers of boreholes drilled per year increases the number of detailed hydrogeological surveys undertaken still remains seriously small. Has our knowledge of hydrogeological systems advanced all that much from what was known in the 1980s? Case histories from Malawi, Zimbabwe and Tanzania illustrate a need for groundwater research with well-judged sustainability assessments to underpin safe long-term groundwater supply for the groundwater dependent communities in the region.

Abstract

The Transboundary Groundwater Resilience (TGR) Network-of-Networks project brings together researchers from multiple countries to address the challenges of groundwater scarcity and continuing depletion. Improving groundwater resilience through international research collaborations and engaging professionals from hydrology, social science, data science, and related fields is a crucial strategy enabling better decision-making at the transboundary level. As a component of the underlying data infrastructure, the TGR project applies visual analytics and graph-theoretical approaches to explore the international academic network of transboundary groundwater research. This enables the identification of research clusters around specific topic areas within transboundary groundwater research, understanding how the network evolved over the years, and finding partners with matching or complementary research interests. Novel online software for analysing co-authorship networks, built on the online SuAVE (Survey Analysis via Visual Exploration, suave.sdsc.edu) visual analytics platform, will be demonstrated. The application uses OpenAlex, a new open-access bibliographic data source, to extract publications that mention transboundary aquifers or transboundary groundwater and automatically tag them with groundwater-specific keywords and names of studied aquifers. The analytics platform includes a series of data views and maps to help the user view the entire academic landscape of transboundary groundwater research, compute network fragmentation characteristics, focus on individual clusters or authors, view individual researchers’ profiles and publications, and determine their centrality and network role using betweenness, eigenvector centrality, key player fragmentation, and other network measures. This information helps guide the project’s data-driven international networking, making it more comprehensive and efficient.

Abstract

The current study investigated the subsurface of aquifers in Heuningnes Catchment focusing on aquifer characteristics for groundwater resource assessments. Surface geophysical resistivity method was adapted for mapping the shallow subsurface layers and hydrogeologic units at selected sites within the catchment. The aim was to provide a preliminary overview of the subsurface nature of aquifers within the study area, by establishing features such as geological layers, position of weathered zones, faults and water bearing layers. The multi-electrode ABEM SAS 1000 resistivity meter system, using the Wenner array, was used to obtain 2D resistivity data of the subsurface. The acquired data was processed and interpreted using Res2DINV software to produce the 2D resistivity models. The analysis of the resistivity models of the subsurface reveals maximum of four layers; sandstone, shale, poor clayed and brackish water saturated layer. On comparing the model results with the surficial geological formation of the catchment geological map, the identified layers were found to correspond with the geology of the area. The findings i) provide insights on sites that can be drilled for groundwater exploration, ii) show possible water-type variations in the subsurface. Although the results are not conclusive but they provide basis for further research work on quality and flow dynamics of groundwater.

{List only- not presented}
Key words: aquifer properties, hydrogeologic units, geo-electric model, electrical-resistivity method

Abstract

Fine ash is a by-product generated during coal combustion and gasification. It is often disposed of as slurry and stored on tailings dams over long periods of time, where it is exposed to weathering. Weathering causes soluble ions to go into solution and to be transported along preferred pathways through the tailings dam. This study was conducted to assess the leaching behaviour of fresh and weathered fine ash and to evaluate the impact on the underlying aquifers. A kinetic test was conducted over 21 weeks to analyse the leachate composition of progressively-aged fine ash and to calculate the release rates for major ions and trace metals of environmental concern. The leachate composition was compared to the groundwater composition of the underlying aquifers to assess the environmental impact of long term ash leaching. The study showed that the release rate of Ca decreased with increasing depth and age of the fine ash. The release rate of Mg, Na, K, Mo, V, Ba, Cr and Mo increased slightly between 22 m and 28 m in the tailings dam. Aluminium had a decreasing release rate from 28 m depth onwards. It was concluded that fine ash leaching influenced the water composition of the underlying aquifers because similarities were observed in the water type trend. The shallow aquifer south of the tailings dam contained Ca/Mg/SO4/Cl/NO3 water with a significant increase in Ca, Mg, Na, Cl and SO4 over time. These ions were expected to be found in the pollution plume due to their high release rate observed in the fine ash. The deeper aquifer northeast and south of the tailings dam showed a reverse trend of decreasing Ca, Mg and NO3 with time. This is possibly due to decreasing release rates in the aging fine ash and due to the cation exchange capacity (CEC) of the aquifer retarding the movement of Ca and Mg in the pollution plume. The shallower aquifer northwest of the tailings dam showed a decrease in Ca and Mg but an increase in K, while the water composition of the deeper aquifer increased in Ca, Mg, Na, K and Cl. This indicates that the pollution plume moved from the shallower to the deeper aquifer and that most of the Ca and Mg content in the fine ash has been leached from the tailings dam after more than 30 years of storage. The study confirmed that leaching of elements from the fine ash tailings dam had a negative influence on the underlying aquifers and that the clay lining was not sufficient in retaining the leachate.

Abstract

In South Africa, the use of stochastic inputs in surface water resources assessments has become the norm while this is rarely done for groundwater resources. Studies that have applied multi-site and multi-variate methods that incorporate stochastic generation of groundwater levels are limited. Stochastic based inputs account for uncertainties attributed to inherent temporal and spatial variability of hydrologic variables and climatic conditions. This study applied variable length block (VLB) stochastic generator for simultaneous generation of multi-site stochastic time series of rainfall, evaporation and groundwater levels. In the study, 100 stochastic sequences with record length of 34 years (1980-2013), similar to the historic one were generated. Performance of VLB was assessed by comparing single statistics of historic time series located within box plots of the 100 annual and monthly stochastically generated time series. The statistics used include mean, median, 25th and 75th percentiles, lowest and highest values, standard deviation, skewness, and serial and cross correlation coefficients. Majority (9 out of 10) of the historical statistics were mostly well preserved by VLB, except for skewness. Historic highest groundwater levels were mostly underestimated. Historic statistics below interquartile range (overestimation) is a common problem of weather generators which can be reduced by including additional covariates that influence atmospheric circulation. The generation of multi-site stochastic sequences support realistic assessment of groundwater resources and generation of groundwater operating rules.

Abstract

Climate change contributes to the way in which people live. Natural resources such as groundwater, wood and surface water form a great part of livelihood in rural communities and are used extensively in rural areas where basic services have not yet been provided. The effect of climate change to all these natural resource may impact the lives of those in rural communities. Climate change is already starting to affect some of the poor and most vulnerable communities around the world. The aim of the dissertation is to develop a framework to assess the vulnerability of rural communities to climate change, with a specific focus groundwater and issues relating to gender. A questionnaire and interviews were used to collect data about rural communities' level of awareness climate change, their attitudes toward coping with climate change impact, level of education, income scale and how does this affect their security. Hyrodocensus was taken around the village to determine the rivers, dams, boreholes, abandoned boreholes and wells. Water samples were collected and analysed. The response rate was higher in females than in male's stakeholders (54% vs 46%).the results show that woman were mostly doing the hard work to complete daily basic activities. Education was found to be of high school level and incomes were low. The framework was developed with basic need showed that the area was at risk of poverty .Boreholes was found and water quality was analysed to be adequate for drinking water purpose. More information will be discussed on presentation.

Abstract

For the Department of Water and Sanitation (DWS) to better leverage the wealth of information being collected by various “silo” operational source water information systems, a high-priority initiative was launched to establish a National Integrated Water Information System (NIWIS), which currently consists of over 40 web-accessible dashboards including groundwater related dashboards mostly accessible to the public. Dispersed and disintegrated data and information stored in different sources and formats would hinder decision support in the water sector and deter improvement in service delivery by the DWS. The DWS undertook an extensive and rigorous business requirements analysis exercise within the DWS to ensure that the proposed system does not become a white elephant and facilitate the prioritization of system deliverables. A prototype (waterfall) approach was adopted to develop the NIWIS to ensure the development was still within the suggested business requirements. NIWIS has enabled mostly DWS managers to establish one trusted source of decision-making information for timeous, effective and efficient responses to service delivery. The number of NIWIS dashboards continues to grow as improved data-related business processes are adopted. The unavailability of reliable data from DWS data sources and the exclusion of business requirements from organizations external to DWS were identified as the main challenges to NIWIS disseminating comprehensive, credible information. Therefore, this paper aims to provide some details of the geohydrological information that NIWIS provides and seek feedback from this International Hydrogeologists community for further development of NIWIS.

Abstract

The University of the Free State investigated the possible dewatering of boreholes situated on the farm properties in the vicinity of an underground coal mine. The investigation consisted of three phases.
Phase one was a hydrocensus on the farm properties.
Phase two consisted of borehole yield determination by conducting pumping tests on the boreholes (where possible) identified in the hydrocensus phase.
Phase three included a visit to the underground mine workings, where water samples were collected at different groundwater inflow locations (especially water flowing in at the ventilation shaft). The monthly groundwater monitoring data of the underground coal mine was also incorporated for interpretation purposes. It appears that the water levels of the boreholes outside the mining boundaries are not affected. The water levels of the monthly monitored boreholes stabilized or even started recovering over the last few years. It also seems as though the larger streams in the area drains the groundwater as most of the deeper water level areas coincides with the presence of the streams. Most of the boreholes have typical borehole yields that is to be expected from Karoo formations i.e. between 0.5 and 1.5 L/s. An interesting observation is that a number of the boreholes with deep water levels are situated along dolerite contact zones at the western side of the mine. This may also be a geological structure resulting from the impact of a meteorite? From the available data it appears that the boreholes along this structure have the same chemical character as the water flowing down the ventilation shaft, strengthening the belief that the water from the shaft originates from this structure (or structures).

To determine the origin of the water flowing down the ventilation shaft, a detailed study of the structure to the west of the shaft is recommended. The farmers in the area should carefully monitor their water use in the boreholes, as over-abstraction can result in total failure of some of the boreholes.

Abstract

Groundwater is a vital source of water for many communities in South Africa and elsewhere. Besides the changing climate, rapidly spreading invasive alien plants with deep roots e.g. Prosopis spp, pose a serious threat to this water source. Dense impenetrable thickets of Prosopis occur in the drier parts of the country mainly along river channels in the Northern, Eastern and Western Cape Provinces. Few studies have quantified the actual water use by this species outside of the USA where it is native. Consequently the impacts of Prosopis invasions on groundwater resources are not well documented in South Africa. The aim of this study was to quantify the actual volumes of water used by Prosopis invasions and to establish the effects on groundwater. Because deep rooted indigenous trees that normally replace Prosopis once it has been cleared also use groundwater, we sought to quantify the incremental water use by Prosopis over and above that used by indigenous trees in order to determine the true impacts on groundwater. The study was conducted at a site densely invaded by Prosopis at Brandkop farm near the groundwater dependent town of Nieuwoudtville in the Northern Cape. One in seven trees at the site is the Vachellia karroo (formerly A. karroo) which is the dominant deep rooted indigenous tree species. Actual transpiration rates by five Prosopis and five V. karroo are being measured using the heat pulse velocity (HPV) sap flow technique. Additional HPV sensors were installed on the tap and lateral roots to study the water uptake dynamics of the trees. Groundwater levels are being monitored in four boreholes drilled across the site while sources of water used by the trees (i.e. whether soil or groundwater) is being determined using O/H stable isotopes. For similar size trees, V. karroo had higher transpiration rates than Prosopis because of the larger sapwood to heartwood ratio in V. karroo than in Prosopis. However, at the stand level Prosopis consumed significantly larger amounts of water than V. karroo. This is because Prosopis invasions had a much higher tree density than V. karroo. From August 2013 to July 2014, annual stand transpiration for Prosopis (~ 372 mm) was more than 4 times higher than that of V. karroo (~ 84 mm). Tree water uptake was correlated to changes in groundwater levels (R2 ~ 0.42) with groundwater abstractions of ~ 2600 m3/ha/y by Prosopis compared to ~ 610 m3/ha/y for V. karroo. In addition, Prosopis showed evidence of hydraulic redistribution of groundwater wherein groundwater was deposited in the shallow soil layers while V. karroo did not. Results of this study suggest that clearing of Prosopis to salvage groundwater should target dense stands while less dense stands should be prevented from getting dense. {List only- not presented}

Abstract

Three dimensional numerical flow modelling has become one of the best tools to optimise and management wellfields across the world. This paper presents a case study of simulating an existing wellfield in an alluvial aquifer directly recharged by a major perennial river with fluctuating head stages. The wellfield was originally commissioned in 2010 to provide a supply of water to a nearby Mine. Ten large diameter boreholes capable of abstracting ±2 000 m3 /hour were initially installed in the wellfield. The numerical groundwater flow model was used to evaluate if an additional 500 m3 /hour could be sustainably abstract from the alluvial aquifer system. A probabilistic river flow assessment and surface water balance model was used to quantify low and average flow volumes for the river and used to determine water availability in the alluvial aquifer over time. Output generated indicated that the wellfield demand only exceeded the lowest 2% (98th percentile) of measured monthly river flow over a 59 year period, thereby proving sufficient water availability. Conceptual characterisation of the alluvial aquifer was based on previous feasibility studies and monitoring data from the existing hydrogeological system. Aquifer parameters was translated into the model discretisation grid based on the conceptual site model while the MODFLOW River package was used to represent the river. Actual river stage data was used in the calibration process in addition to water levels of monitoring boreholes and pump tests results. The input of fluctuating river water levels proved essential in obtaining a low model error (RMSE of 0.3). Scenario modelling was used to assess the assurance of supply of the alluvial aquifer for average and drought conditions with a high confidence and provided input into further engineering designs. Wellfield performance and cumulative drawdown were also assessed for the scenario with the projected additional yield demand. Scenario modelling was furthermore used to optimise the placement of new boreholes in the available wellfield concession area.

Abstract

The uncertainties associated with both the sampling process and laboratory analysis can contribute to the variability of the results. In most cases, it does appear that if the water samples have been analysed by an accredited laboratory, the results are acceptable. While the accreditation of analytical laboratory and therefore its credibility is very important to uphold quality and integrity, the same should be said about the sampling process. The quality and credibility of a sampling process is typically left to the responsibility of the appointed groundwater practitioner without any criteria to evaluate the quality and integrity of the sampling process. Perhaps the quality and integrity of the sampling process is evaluated based on trust or experience of the practitioner. However without any form of scientific criteria to evaluate the quality and integrity of the sampling process, it is difficult for the sampling process to be scrutinized. The quality and integrity of both the sampling process and laboratory analysis must be scientifically evaluated based on the uncertainty of measurements in line with the monitoring goals/requirements. This presentation discusses the aspects of evaluation of measurement uncertainties associated with groundwater sampling as an important component of quality assessment of groundwater sampling processes. The potential implications of the uncertainties on the final results and their use in decision making is also discussed. The credibility of the decisions made also depends on the knowledge about the uncertainties of the final results

Abstract

Groundwater quantity and quality of shallow aquifers have deteriorated in recent years due to rapid development that has created an increased demand for drinking water, which is increasingly being fulfilled by groundwater abstraction. The study evaluates the hydrogeological framework of the Quaternary aquifer of the Kabul basin, Afghanistan, and the impact of urbanization on the groundwater resources around the Kabul city plain. Time series of Landsat satellite LCLU images indicate that the urban area increased by 40% between 2000 and 2020, while the agricultural area decreased by 32% and bare land decreased from about 67% to 52% during this period. The assumed groundwater overdraft 2019 was 301.4×103 m3 /day, while the recharge was 153.4×103 m3 /day, meaning a negative balance of about 54 million cubic meters (MCM) this year. Due to the long-term decline of water levels at 80 90 cm/year, and locally (Khairkhana, Dasht-e-Barchi) 30-50m during 2005-2019, a considerable groundwater drawdown is shown. Groundwater quality, on the other hand, reveals that chloride concentrations and salinity increased throughout the aquifer between 2005 and 2020. The nitrate concentration decreased in most Kabul Plain places over the period. In conclusion, the quantity and quality situation of urban groundwater in Kabul is worrying; urgent scientific and sustainable solutions and measures should be considered to manage this situation.

Abstract

This study focuses on the coastal agricultural area of El-Nil River (Algeria), where anthropogenic activities heavily impact groundwater resources. A multi-tracer approach, integrating hydrogeochemical and isotopic tracers (δ2HH2O, δ18OH2O, δ15NNO3 and δ18ONO3), is combined with a hydrochemical facies evolution diagram and a Bayesian isotope mixing model (MixSIAR) to assess seawater contamination and distinguish the nitrate sources and their apportionment. A total of 27 groundwater samples and 7 surface water samples distributed over the entire study area were collected. Results show classic inland intrusion combined with an upstream seawater impact through the river mouth connected to the Mediterranean Sea. Results from nitrate isotopic composition, NO3 and Cl concentrations, and the MixSIAR model show that nitrate concentrations chiefly originate from sewage and manure sources. Nitrate derived from sewage is related to wastewater discharge, whereas nitrate derived from manure is attributed to an excessive use of animal manure to fertilise agricultural areas. The outcomes of this study are expected to help decision-makers prepare suitable environmental strategies for effective and sustainable water resources management in the study area.

Abstract

Micro-electro-mechanical system (MEMs) technologies coupled with Python data analysis can provide in-situ, multiple-point monitoring of pore pressure at discrete and local scales for engineering projects. MEMs sensors are tiny, robust, inexpensive, and can provide wireless sensing measurements in many electrical and geomechanical engineering applications. We demonstrate the development of MEMs pressure sensors for pore pressure monitoring in open boreholes and grouted in piezometers. MEMs sensors with a 60 m hydraulic head range and centimetre vertical resolution were subject to stability and drawdown tests in open boreholes and in various sand and grouts (permeability 10-8 to 10-2 m/s). The resulting accuracy and precision of the MEMs sensors, with optimal calibration models, were similar to conventional pore pressure sensors. We also demonstrate a framework for estimating in-situ hydrogeological properties for analysis from vented pore pressure sensors. This framework method included Python code analysis of hourly pore pressure data at the millimetre vertical resolution, which was combined with barometric data and modelled earth tides for each borehole. Results for pore pressure analysis in confined boreholes (>50 m depth) included specific storage, horizontal hydraulic conductivity and geomechanical properties. Future improvements in the vertical resolution of MEMs pore pressure sensors and combined these two technologies will enable groundwater monitoring at multiple scales. This could include the deployment of numerous MEMs, at sub-meter discrete scale in boreholes and evaluating local site scale variations in pore pressure responses to recharge, groundwater pumping and excavations in complex sub-surface geological conditions.

Abstract

Having knowledge of spatiotemporal groundwater recharge is crucial for optimizing regional water management practices. However, the lack of consistent ground hydrometeorological data at regional and global scales has led to the use of alternative proxies and indicators to estimate impacts on groundwater recharge, enabling effective management of future water resources. This study explores the impact of land use changes and wildfires on groundwater recharge at a regional scale in Bolivia, using an alternative indicator to estimate variations in groundwater recharge rates. Based on a study by de Freitas L. in 2021, the methodology developed the annual groundwater recharge reduction rate (RAPReHS) utilizing remotely sensed data from the FLDAS and TERRACLIMATE datasets. The RAPReHS employs a simplified version of the water balance equation, estimating direct vertical groundwater recharge by considering the difference between precipitation, evapotranspiration, and runoff. The methodology was upscaled to improve data processing and analysis efficiency using an open-source cloud-computing platform (Google Earth Engine) over a 20-year period. The first results reveal a strong correlation between decreasing groundwater recharge rates and natural vegetation in the eastern region. By utilizing the RAPReHS index, forest preservation strategies can be prioritized. This study is in the framework of SDG 13 (Climate Action), which aims to mitigate the impacts of climate change on the environment and society. By exploring the impact of land use changes and wildfires on groundwater recharge at a regional scale in Bolivia, this research contributes to the inclusion of groundwater in policy guidelines for sustainable water management