Conference Abstracts

All Abstracts were presented at the Groundwater Conferences

Displaying 1 - 50 of 795 results
Title Presenter Name Presenter Surname Area Sort descending Conference year Keywords

Abstract

One-third of the world faces water insecurity, and freshwater resources in coastal regions are under enormous stress due to population growth, pollution, climate change and political conflicts. Meanwhile, several aquifers in coastal regions extending offshore remain unexplored. Interdisciplinary researchers from 33 countries joined their effort to understand better if and how offshore freshened groundwater (OFG) can be used as a source of potable water. This scientific network intends to 1) estimate where OFG is present and in which volumes, 2) delineate the most appropriate approaches to characterise it, and 3) investigate the legal implications of sustainable exploitation of the offshore extension of transboundary aquifers. Besides identifying the environmental impact of OFG pumping, the network will review existing policies for onshore aquifers to outline recommendations for policies, action plans, protocols and legislation for OFG exploitation at the local to international levels. Experienced and early-career scientists and stakeholders from diverse disciplines carry out these activities. The Action leads activities to foster cross-disciplinary and intersectoral collaboration and provides high-quality training and funded scientific exchange missions to develop a pool of experts to address future scientific, societal, and legal challenges related to OFG. This interaction will foster new ideas and concepts that will lead to OFG characterisation and utilisation breakthroughs, translate into future market applications, and deliver recommendations to support effective water resource management. The first exchange mission explored the Gela platform carbonate reservoir (Sicily), built a preliminary 3D geometrical model, and identified the location of freshened groundwater

Abstract

POSTER Aquifer stress arising from urbanization and agricultural activities, these two factors affect aquifer properties when prolonged. Increase in urbanization especially those situated on top unconfined or semi-confined aquifer results in pressure on natural resources, this includes water resources, and changes of land use for agricultural purposes with high economic benefits has an effect on groundwater quality to due to application of Nitrogen- fertilizers during crop rotation and this is largely experienced in developing countries. The effects ranges from groundwater quality to aquifer storage as prolonged aquifer withdrawals due to irrigation, construction, manufacturing affects groundwater storage. Assessment of urbanization and agricultural effects on groundwater requires a complex analysis as integration approaches needs to be discovered for a better analysis of the two more specially when assessing groundwater pollution. The study was conducted to assess the impacts of urbanization and agricultural activities on aquifer storage and groundwater quality: by (a) determining the relationship between the occurrence of contamination due to urbanization by assessing contaminants present in the study area (b) develop groundwater protection, and if any offer recommendation for groundwater management. Multiple-well tests were conducted observing the behavior of drawdown and recovery for assessing groundwater storage. Two aquifer properties were observed to yield information about any changes in aquifer storage (transmissivity and storage coefficient) and groundwater quality lab test focusing on TDS, nitrate and pH were conducted. Historical results reflect that before industrial and urban revolution the groundwater contained small amounts of TDS compared with the present results. Increase in nitrate and pH concentrations observed in location closer to agricultural areas. Prolonged aquifer withdrawals increases expansion of cone of depression and therefore increases aquifer vulnerability and the risk of aquifer being polluted, and this increases storage coefficient. This study can be used to formulate protection zones for water resources and practice towards groundwater management.

Abstract

Water is integral to our economy, the health of our environment, and our survival as a species. Much of this water is accessed from surface sources, mostly rivers, which are now under increased threat due to over use and the resulting hydro-political forces. Yet, groundwater exists as a viable option in many countries facing these mounting challenges. Knowledge of our deeper groundwater systems, although increasing, is still quite limited due to our propensity to focus efforts in the lower cost, lower risk, near- surface environment. However, accessibility to shallower groundwater is tightening due to increasing use, changing regulatory requirements, and climate change.

The use of classical geophysics to explore for groundwater resources, such as seismic, gravity, magnetics, and resistivity, has been the industry standard for many decades. These technologies have proven quite effective both in the shallow and medium depth environments. However, newer remote sensing and ground-based technologies are now emerging with the ability to significantly reduce costs and time, and increase success for groundwater exploration and development programs. Quantum Direct Matter Indicator (QDMI) technologies, or applied methods of Quantum Geoelectrophysics (QGEP), are poised to enhance the hydrogeophysical industry, much like electro-magnetic (EM) and electrical resistivity tomography (ERT) did years ago. QDMI utilizes resonant frequency remote and direct sensing technologies that detect perturbations in the earth’s natural electric, magnetic and electromagnetic fields. Controlled source electromagnetic pulse methods with electromagnetic spectrum spectroscopy are used to identify aquifers, including thickness, water quality (fresh or saline) and temperature, to depths of 1000 m or more accurately. With multiple successes around the world, the deployment of this inventive and effective approach to groundwater exploration is poised to advance exploration geophysics globally.

Abstract

This study was aimed at developing an integrated groundwater-surface water interaction (GSI) model for a selected stretch of the Modder River by considering the following five different aspects of the GSI: 1) the distribution of different aquifer systems (structural connectivity) along the river 2) the hydraulic connectivity between the aquifer systems, 3) the volumes of water abstracted from the aquifers by streamside vegetation, 4) the volumes of water replenished to the groundwater system through rainfall recharge, and 5) the exchange fluxes between the various components of the groundwater-surface water system. The distribution of the aquifer systems was investigated by means of a) geo-electrical surveys, and b) in situ slug tests while their hydraulic connectivity was investigated by hydrogeochemical routing. The volumes of water abstracted by streamside vegetation were estimated by the quantification of the transpiration from individual plants and the groundwater recharge was estimated by a root zone water balance. The water exchange fluxes between the groundwater and surface water were determined from a simple riparian zone groundwater budget. The results of the geo-electrical surveys and slug tests allowed the delineation of the riparian area aquifers (RAA) and the terrestrial area aquifers (TAA) on both the south-eastern and north-western sides of the river. Based on the results of hydrochemical analyses, saturation indices and inverse mass balance modelling, the GSI involves flow of water from the TAA to the RAA, and finally to the river on the south-eastern side while it involves flow from the river into the RAA with a limited exchange with the TAA on the south-eastern side. The dominant vegetation on the study area was found to be the Acacia karroo and Diospyros lycioides. The close similarities in isotope compositions of the xylem sap and the borehole water samples suggested that the Acacia karroo sourced its water from the groundwater storage while differences in isotope compositions suggested that the Diospyros lycioides did not source water from the groundwater storage at the time of measurement. The results of groundwater recharge estimation in the study area highlighted the fact that both the antecedent moisture and the rainfall amounts determine whether recharge to the groundwater system will take place. Finally, the results of baseflow estimation indicated that the river is a gaining stream along the south-eastern reach while acting as a losing stream along the north-western reach.

Abstract

Underground Coal Gasification (UCG) is an emerging, in-situ mining technology that has the advantage to access a low cost energy source that is currently classified as not technically or economically accessible by means of conventional mining methods. As such it offers significant potential to dramatically increase the world's non-recoverable coal resource.

Groundwater monitoring in the South African mining industry for conventional coal mining as an example, is well established, with specific SANS, ASTM and ISO Standards dedicated for the specific environment, location and purposes. In South Africa a major impact of the coal mining industry can be a reduction in the groundwater quantity and quality. South-Africa's groundwater is a critical resource that provides environmental benefits and contributes to the well-being of the citizens and the economic growth. Groundwater supplies the drinking water needs of a large portion of the population; in some rural areas it represents the only source of water for domestic use. Utilization and implementation of groundwater monitoring programs are thus non-negotiable.

The groundwater quality management mission, according to the Department of Water and Sanitation in South-Africa, is set in the context of the water resources mission and is as follows:

"To manage groundwater quality in an integrated
and sustainable manner within the context of the National
Water Resource Strategy and thereby to provide an
adequate level of protection to groundwater resources
and secure the supply of water of acceptable quality."

The scope of this paper is to propose an implemention strategy and a fit-for-purpose groundwater monitoring program for any Underground Coal Gasification commercial operation. It is thus important to pro-actively prevent or minimise potential impacts on groundwater through long-term protection and monitoring plans. A successful monitoring program is one that consists of
(1) an adequate number of wells, located at planned and strategic points;
(2) sufficient groundwater sampling schedules; and
(3) a dedicated monitoring program and quality control standard.

In order to have an efficient monitoring program and to prevent unnecessary analysis and costs, it is also critical to determine upfront what parameters have to be monitored for the specific process and site conditions.

Abstract

Identifying and characterising the vertical and horizontal extent of chlorinated volatile organic compound (CVOC) plumes can be a complex undertaking and subject to a high degree of uncertainty as dense non-aqueous phase liquid (DNAPL) movement in the subsurface is governed most notably by geologic heterogeneities. These heterogeneities influence hydraulic conductivity allowing for preferential flow in areas of higher conductivity and potential pooling or accumulation in areas of lower conductivity. This coupled with the density-induced sinking behaviour of DNAPL itself and the effects of groundwater recharge in the aquifer result in significant challenges in assessing the distribution and extent of CVOC plumes in the subsurface. It has been recognized that high resolution site characterization (HRSC) can provide the necessary level of information to allow for appropriate solutions to be implemented to mitigate the effects of subsurface contamination. Although the initial cost of HRSC is higher, the long-term costs can be substantially reduced and the remedial benefits far greater by obtaining a better understanding of the plume characteristics upfront. The authors will discuss a case study site in South Africa, where ERM has conducted HRSC of a CVOC plume to characterise the distribution of the source area and plume architecture in order to assess the potential risk to receptors on and off-site. The source of impact resulted from the use of a tetrachloroethene (PCE)-based solvent in an on-site workshop. The following methods of characterization were employed:
- Conducting a passive soil gas survey to identify and characterise potential source zones and groundwater impacts;
- Vertical characterisation of the hydrostratigraphy, contaminant distribution and speciation in real time using a Waterloo Advanced Profiling System (APS) with a mobile on-site laboratory;
- Using the Waterloo APS data to design and install groundwater monitoring wells to delineate the vertical and lateral extent of contamination; and
- Conducting a vapour intrusion investigation including sub-slab soil gas, indoor and outdoor air sampling to estimate current risk to on-site employees.
In less than a year, the risk at the site is now largely understood and the strategies for mitigating the effects of the contamination can be targeted and optimised based on the information gained during the HRSC assessment.

Abstract

Hydraulic behaviour of an aquifer is defined in terms of the volumes of water present, both producible and not (specific yield and specific retention), and the productivity of the water (hydraulic conductivity). These parameters are typically evaluated using pumping tests, which provide zonal average properties, or more rarely on core samples, which provide discrete point measurements. Both methods can be costly and time-consuming, potentially limiting the amount of characterisation that can be conducted on a given project, and a significant measurement scale difference exists between the two. Borehole magnetic resonance has been applied in the oil and gas industry for the evaluation of bound and free fluid volumes, analogous to specific retention and specific yield, and permeability, analogous to hydraulic conductivity, for over twenty years. These quantities are evaluated continuously, allowing for cost-effective characterisation, and at a measurement scale that is intermediate between that of core and pumping tests, providing a convenient framework for the integration of all measurements. The role of borehole magnetic resonance measurements in hydrogeological characterisation is illustrated as part of a larger hydrogeological study of aquifer modeling. Borehole magnetic resonance has been used for aquifer and aquitard identification, and to provide continuous estimates of hydraulic properties. These results have been compared and reconciled with pumping test and core data, considering the scale differences between measurements. Finally, an integrated hydrogeological description of the target rock units has been developed.

Abstract

Industrial Management Facilities represent a hazard to the down gradient surface water and groundwater environment. The assessment of the risks such facilities pose to the water environment is an important issue and certain compliance standards are set by regulators, particularly when the potential for an impact on the water environment has been identified. This paper will aim to describe how the contamination was conceptualized, estimated, limitations and how it is technically not feasible to establish one limit or compliance value of known contamination in different aquifers.

Abstract

The costs of acid mine drainage (AMD) monitoring result in the quest for alternative non-invasive method that can provide qualitative data on the progression of the pollution plume and ground geophysics was the ideal solution. However, the monitoring of AMD plume progression by ground geophysics (time-lapse electrical resistance) proves to be non-invasive but also time consuming. This gave way to a study that focuses on the modeling of different scenarios of the karstic aquifer. The models use the field parameters such as the electrical resistivity of the host rock and the target rock, depth to the target, noise level and electrode configuration in order to ensure that the model outcomes represent the field data as much as possible. This geoelectric modeling process uses Complex Resistivity Model (CRMod) and Complex Resistivity Tomography (CRTomo) to generate geoelectric subsurface images. Different resistivity values are applied to targets in order to assess the difference against the baseline model for each target scenario. The model resistivity difference is reduced to the smallest difference possible between the reference and new models in order to gauge the lowest percentage change in the model at which the background noises start to have impact on the results. The study shows that the behavior of targets (aquifer) could be clearly detected through resistivity difference tomography rather than inversion tomography. The electrode array plays a significant part in the detection of target areas and their differences in resistance because of its sensitivity. This therefore indicates that the electrode array should be chosen according to study requirements. Furthermore, the model geometry also plays a role and this can be seen with the modelling of different target sizes, alignments and shapes. Future studies that can provide a correlation between the field quantitative data from sampling and the model outcomes have the ability to add to the knowledge field of geophysical modelling therefore reducing costs associated with field based plume AMD monitoring300-500 words without references; reach your conclusions rather than only delivering promises.

Abstract

For the Department of Water and Sanitation (DWS) to better leverage the wealth of information being collected by various “silo” operational source water information systems, a high-priority initiative was launched to establish a National Integrated Water Information System (NIWIS), which currently consists of over 40 web-accessible dashboards including groundwater related dashboards mostly accessible to the public. Dispersed and disintegrated data and information stored in different sources and formats would hinder decision support in the water sector and deter improvement in service delivery by the DWS. The DWS undertook an extensive and rigorous business requirements analysis exercise within the DWS to ensure that the proposed system does not become a white elephant and facilitate the prioritization of system deliverables. A prototype (waterfall) approach was adopted to develop the NIWIS to ensure the development was still within the suggested business requirements. NIWIS has enabled mostly DWS managers to establish one trusted source of decision-making information for timeous, effective and efficient responses to service delivery. The number of NIWIS dashboards continues to grow as improved data-related business processes are adopted. The unavailability of reliable data from DWS data sources and the exclusion of business requirements from organizations external to DWS were identified as the main challenges to NIWIS disseminating comprehensive, credible information. Therefore, this paper aims to provide some details of the geohydrological information that NIWIS provides and seek feedback from this International Hydrogeologists community for further development of NIWIS.

Abstract

Coastal wetlands are complex hydrogeological systems in which groundwater have a significant influence on both its water balance and hydrochemistry. Differences in groundwater flow and groundwater chemistry associated with complex hydrogeologic settings have been shown to affect the diversity and composition of plant communities in wetland systems. A number of wetlands can be found across the flat terrain of the Agulhas Plain, of which the most notable is the Soetendalsvlei and the Vo?lvlei. Despite the ecological and social importance of the Vo?lvlei, the extent to which local, intermediate and regional groundwater flow systems influences the Vo?lvlei is poorly understood. The aim of this work is to characterize the spatial and temporal variations in surface water and groundwater interactions in order to demonstrate the influence of groundwater flow systems on the hydrology of the Vo?lvlei. The specific objectives of the study are; 1) to establish a geological framework of the lake sub-surface, 2) to determine the physical hydrological characteristics of the Vo?lvlei and 3) to determine the physical-chemical and isotopic characteristics of groundwater and surface water. Data collection will be done over the period of a year. Methods to be used will include the use of geophysical (electrical resistivity) to determine high water bearing areas surrounding the wetland, a drilling investigation (the installation of piezometers at 5-10m depths and boreholes at 30m depth, sediment analysis (grain size analysis, colour and texture), hydraulic (slug testing to determine hydraulic properties; hydraulic conductivity and transmissivity), hydrological (to estimate groundwater discharge; Darcy flux and hydraulic head difference between groundwater level and lake level), physical-chemical (electrical conductivity, temperature and pH) and stable environmental isotopic (oxygen and hydrogen) analysis of surface water and groundwater, to determine flow paths and identify processes. Thus far, results obtained for the geophysical survey has revealed that the sub-surface of this wetland system is highly variable. Three traverses were done on the South-Western, South-Eastern and Northern side of the wetland (See Figure 1). In VOEL1 (South west), the upper couple of meters show areas of very low resistivity, which is associated with clays, poor water quality and water which has high dissolved salts. The changing of medium to high resistivity values on the North-eastern side is usually indicative of weathered sandstone (Table Mountain Group). VOEL2 (South eastern), indicates that the subsurface is of low resistivity. These low values are the result of noticeable salt grains in the sand. VOEL3 (Northern), indicated upper layers of low resistivity, while the lower depth indicate areas of high resistivity. It is expected that the results of this study will provide a conceptual understanding of surface water-groundwater interactions and the processes which control these interactions, in order to facilitate the effective management and conservation of this unique lacustrine wetland.

Abstract

This article present field evidence on the effect of artefacts other than the horizontal groundwater flux on the single-borehole tracer dilution test. The artefacts on the tracer dilution were observed during two single-borehole tracer dilution tests conducted in an alluvial channel aquifer in the main Karoo Basin of Southern Africa. Field evidence shows that early time of the tracer dilution plot can be affected by artefacts other than the horizontal groundwater flux. These artefacts have great potential to increase the early time gradient of tracer dilution curve leading to overestimation of the horizontal groundwater flux. A qualitative approach that can be used to isolate and remove portion of the dilution plot that has resulted from artefacts other than the groundwater flow prior to calculating the horizontal groundwater flux is proposed.

Abstract

Artesian boreholes are a common feature worldwide in confined aquifers, but the hydraulic testing of these boreholes, and estimation of aquifer properties from such tests, still poses a challenge for hydrogeologists. Common hydraulic tests, such as step-drawdown or constant-discharge rate tests require a static water level at the start of the test, and the measurement of drawdown (increasing over time) and abstraction rate (fixed for a period of time). Usually, when undertaking a pumping test in an artesian borehole, the drawdown is measured from ground level, and the drop in hydraulic head between static pressure and ground level is often ignored. This procedure also implies that the starting time of the test is not at the static water level. A constant-head test, set at ground level, is the other option. However, the decrease in flow rate is not only dependent on the hydraulic properties of the aquifer, but also masked by pipe hydraulic effects within the well. This kind of test would also limit the available drawdown to be utilized for the test. Hence, it was required to develop a method for undertaking hydraulic tests in strong artesian boreholes, allowing for the drawdown to fluctuate between levels both above and below ground and avoiding the pitfalls described above. The solution is a specially designed and constructed wellhead for the installation of the pump and monitoring equipment prior to the hydraulic test. The standard tests are slightly modified and are only undertaken after sealing the wellhead and reaching static hydraulic pressure. The recommended wellhead construction and subsequent hydraulic tests were implemented at a strong artesian borehole in the Blossoms Wellfield, south of Oudtshoorn in the Western Cape province of South Africa.

 

Abstract

Underground coal gasification (UCG) is a chemical process that converts coal in-situ into a gaseous product at elevated pressures and temperatures. Underground coal gasification produces an underground cavity which may be partially filled with gas, ash, unburned coal and other hydrocarbons. In this study we assessed the stratification down the length of the boreholes. This was done by comparing the Electrical Conductivity (EC) profile of background boreholes to the verification borehole that were drilled after gasification was complete. Stratification was seen in all boreholes including the cavity borehole. The EC levels were lower in the cavity which may be due to the dilution factor induced by injecting surface water during quenching of the gasifier. The thermal gradient shows a steady increase in temperature with depth with higher temperatures measured in the verification boreholes. This increase in temperature may suggest that heat is still being retained in the cavity which is expected. This study serves as the preliminary investigation on the stratification of temperature and EC and will be proceeded with in depth surveys that covers all the groundwater monitoring wells that monitor different aquifers identified on site proceed.

Abstract

PMWIN5.3 has been one of the most commonly used software for groundwater modeling because of its free source and the adoption of popular core program MODFLOW. However, the fixed formats required for data input and lack of GIS data support have posted big challenges for groundwater modelers who are dealing with large areas with complicated hydrogeological conditions. In South Africa, most geological and hydrogeological data have been captured and stored in GIS format during various national research projects such as WR2005, NGA and etc. Therefore, a proper linkage between PMWIN and ArcGIS is expected to do the preprocessing for modeling in PMWIN. Visual Basic for Application (VBA) embedded in ArcGIS 9.3 was used to develop the linkage. Based on the conceptualization of the study area, the model dimension, discretization and many value setting processes can be easily carried out in ArcGIS other than directly in PMWIN. Then the grid specification file and other input files can be exported as the PMWIN-compatible files. The functions of move, rotation, refinement, sub-model, deleting and inserting row(s) or column(s) of the model have also been developed to avoid the inconvenience aroused from model modification. The linkage can be used with a higher version of PMWIN or ArcGIS. It has been applied to several gold fields in the Witwatersrand gold basin to simulate the groundwater flow and mass transportation for various conditions and scenarios. One of the applications will be presented in this paper. It has been proved that the linkage is efficient and easy to use. {List only- not presented}

Abstract

The electrical resistivity tomography (ERT) method has become one of the most commonly used geophysical techniques to investigate the shallow subsurface, and has found wide application in geohydrological studies. The standard protocols used for 2D ERT surveying assume that the survey lines are straight; however, due to the presence of infrastructure and other surface constraints it is not always possible to conduct surveys along straight lines. Previous studies have shown that curved and angled survey lines could impact on the recorded ERT data in the following ways: 1) the true geometric factors may differ from the assumed geometric factors and thus affect the calculated apparent resistivities, 2) the depths of investigation may be overestimated, and 3) the recorded apparent resistivities may be representative of the subsurface conditions at positions laterally displaced from the survey line. In addition, previous studies have shown that although the errors in the apparent resistivities may be small even for large angles and curvatures, these errors may rapidly increase in magnitude during inversion. In this paper we expand on the previous work by further examining the influence of angled survey lines on ERT data recorded with the Wenner (?) array. We do this by: 1) calculating the changes in the geometric factors and pseudo-depths for angled survey lines, 2) forward and inverse modelling of ERT datasets affected by angled survey lines, and 3) examining the impact of angled survey lines on real ERT datasets recorded across different geological structures.

Abstract

The expectation that during yield tests, a borehole will react within the expected framework of the existing numerical models, is often not met within real-world scenarios. This is mainly due to the observation that the Theis solution for confined aquifers, Neuman solution for unconfined aquifer and Barker Generalised Radial Flow Model for hydraulic tests in fractured rocks all include idealised assumptions regarding the physical aspects of a hypothetical. In order to interpret the data from a yield test these methods, along with the Flow Characteristic method for sustainable yield estimates, are commonly used. However, as these assumptions are not always met, the analysis is usually focused on time periods within the test that approximate these solutions. In some cases, the extent to which these assumptions are not met can produce drawdown data that is not well described by the usual analytical models used to analyse this data. This study addresses some of the shortcomings experienced during testing in non-ideal aquifers, as well as briefly describing some tests where small budgets, short deadlines, a lack of information and/or unforeseen circumstances resulted in similar challenges to analyses. This study does not present new solutions to drawdown data analyses, but rather discusses how the mentioned solutions were used during testing to accommodate for the shortcomings experienced.

Abstract

There is an urgent need to support the sustainable development of groundwater resources, which are under increasing pressure from competing uses of subsurface geo-resources, compounded by land use and climate change impacts. Management of groundwater resources is crucial for enabling the green transition and attaining the Sustainable Development Goals. The United Nations Framework Classification for Resources (UNFC) is a project-based classification system for defining the environmental-socio-economic viability and technical feasibility of projects to develop resources and recently extended for groundwater. UNFC provides a consistent framework to describe the level of confidence in groundwater resources by the project and is designed to meet the needs of applications pertaining to (i) Policy formulation based on geo-resource studies, (ii) Geo-resource management functions, (iii) Business processes; and (iv) Financial capital allocation. To extend use in groundwater resources management, supplemental specifications have been developed for the UNFC that provide technical guidance to the community of groundwater professionals to enhance sustainable resource management based on improved decision-making. This includes addressing barriers to sustainably exploiting groundwater resources, avoiding lack of access to water and also related to ‘common pool resources’ in which multiple allocations are competing with domestic water supply (e.g. geo-energy, minerals, agriculture and ecosystems, and transboundary allocation of natural resources). UNFC for groundwater resources is designed to enhance governance to protect the environment and traditional users while ensuring socio-economic benefits to society. Consequently, it is a valid and promising tool for assessing both the sustainability and feasibility of groundwater management at local, national and international levels.

Abstract

Understanding the hydrogeochemical processes that govern groundwater quality is important for sustainable management of the water resource. A study with the objective of identifying the hydrogeochemical processes and their relation with existing quality of groundwater was carried processes in the shallow aquifer of the Lubumbashi river basin. The study approach includes conventional graphical plots and multivariate analysis of the hydrochemical data to define the geochemical evaluation of aquifer system based on the ionic constituents, water types, hydrochemical facies and groundwater factors quality control. Water presents a spatial variability of chemical facies (HCO3- - Ca2+ - Mg2+, Cl- - Na+ + K+, Cl- - Ca2+ - Mg2+ , HCO3- - Na+ + K+ ) which is in relation to their interaction with the geological formation of the basin. The results suggest that different natural hydrogeochemical processes like simple dissolution, mixing, and ion exchange are the key factors. Limited reverse ion exchange has been noticed at few locations of the study. At most, factor analyses substantiate the findings of conventional graphical plots and provide greater confidence in data-interpretation. {List only- not presented}

Abstract

Quantification of groundwater is important as it should determine the maximum sustainable use of the resource. The SAMREC Code that is required for mineral resource quantification sets out minimum standards, guidelines and recommendations for public reporting of exploration results for mineral resources and reserves. The code serves as the basis for mineral asset valuation and provides quality assurance to the process and an understanding of the results. In groundwater far too often, various methods are used for resource quantification that leads to various results even should the same resource be investigated by two different hydrogeologists. In far too many cases, the resource is not quantified properly which leads to vast over or under estimations. The result is a lack of trust in groundwater resources. As has been done in the international arena, it is similarly proposed that a code be developed for South Africa to ensure that the sustainability of groundwater resources is determined and the impacts of utilization on the water Reserve and the environment be quantified at a minimum level and that basic hydrogeological principles are followed. A South African Groundwater Regulation Code for sustainable resource quantification and impact assessment (SAGREC) is developed that is proposed to guide groundwater investigations and development processes from planning to baseline assessments, drilling and aquifer testing to resource quantification and sustainability modeling. The aim is to ensure trust being built on groundwater as a resource due to projects that follow a formal process that quantifies the assurance of supply and determines the environmental impacts.

Abstract

Groundwater is an essential source of water worldwide. The increased reliance on groundwater has caused the mining of many aquifers, a situation compounded by climate change, rising surface-air temperature, declining precipitation, and reduced groundwater recharge in many regions. The global annual intensity of groundwater use rose from 128 to 155 m3 per capita between 1950 (when the world population was 2.5 billion people) and 2021 (when the population was 7.9 billion people) and is herein projected to rise to 178 m3 per capita by 2050 as the world’s population is projected to increase (to 9.7 billion people by 2050) throughout the rest of the 21st century and beyond. This study projects a global annual groundwater depletion of 1,008 km3 by 2050, representing a 256% rise from the estimated 2010 depletion. This projection is most likely a lower bound of the actual groundwater depletion that would be realized considering environmental flows, historical trends of global economic growth, and climate-change impacts, thus being a harbinger of rising environmental degradation (e.g., land subsidence, seawater intrusion, streamflow reduction, aridification). Measures to achieve groundwater sustainability are herein identified.

Abstract

As we look at the legislation set out in the driving policies and its guiding frameworks, the need for able institutions to implement strategies that promise and deliver social growth and development, are highlighted. It is only possible to define an 'able institution' through its ability to fulfil its function and enable stakeholders to be part of the decision-making process. (Goldin, 2013) It is this relationship with the collection of stakeholders, in particular strategic water resource stakeholders, their linkages as well as the identification of specific stakeholder issues, that are critically reviewed. The recent Groundwater Strategy (2010) identified key strategic issues/themes. Each chapter listed a number of well thought out recommended actions that address specific challenges in each theme. It is the need for strategic direction (to put these strategies in place "plans into action") and to articulate the specific vision in the right context to the different stakeholders, (internal as well as external) that requires thinking. It is also the uptake of this information by publics (social action and intervention) and the impact of new learning that will need to be measured. This paper will present on a study where the groundwater sector and all its stakeholders are strategically examined to understand the process of communal thinking in the current environmental conditions. It would draw from current communication practices, style, strengths, sector experiences and trends and also reference specific and unique experiences as with the recent WRC Hydrogeological Heritage Overview: Pretoria project. {List only- not presented}

Abstract

Vapour intrusion (VI) is recognized to drive human health risk at numerous sites that have been contaminated by petroleum products and other volatile contaminants. The risks related to VI are typically evaluated using direct measurement (vapour sampling) or modelling methods. ERM has developed a toolbox approach using a combination of exclusion distance criteria, direct measurement and modelling methods to assess risks and achieve closure. For direct measurement, samples of vapour are taken beneath the floor slab of buildings (sub-slab sampling) or from the air inside the buildings (indoor air sampling). Modelling methods are often used to estimate the partitioning of volatile contaminants from soil or groundwater sources into the vapour phase and the subsequent transport of vapours from the subsurface environment into habitable buildings. A limitation of modelling approaches is that they are designed to be conservative to be adequately protective of sensitive receptors. VI models also do not typically take into account the degradation of hydrocarbon vapours in the presence of oxygen, which has been found to be a significant process for petroleum hydrocarbons. The authors have compiled a dataset of petroleum vapour and groundwater results from over 50 petroleum release sites in southern Africa. These data were used to develop exclusion distance criteria for vapours emitted from contaminated groundwater sources (i.e. distance from the source at which sufficient aerobic attenuation has occurred for the VI risk to be negligible). A standard "lines of evidence" approach has been applied to the assessment of VI risk by firstly applying the exclusion distance criteria to sites with groundwater contaminant plumes beneath buildings, and if these are met, the sites are considered to have no unacceptable VI risk. Where exclusion screening criteria are not met, risk is estimated using modelling, and if a potential risk is predicted, then direct sub-slab measurements are taken to more accurately assess the risk. Lastly, where sub-slab assessment predicts a potential VI risk, indoor vapour measurement are taken to evaluate actual risk, taking into account interferences from other sources and background levels of contaminants. Mitigating measures can then be applied as appropriate. Various case studies will be presented including direct measurements at industrial and residential sites overlying contaminant plumes and modelling methods at residential properties adjacent to service station sites. A risk-based approach to the assessment of contaminated land provides a sustainable and cost effective methodology, and also avoids unnecessary remediation. The results show that VI risks can be adequately addressed with a toolbox approach using multiple lines of evidence.

Abstract

Mt. Fuji is the iconic centrepiece of a large, tectonically active volcanic watershed (100 km2 ), which plays a vital role in supplying safe drinking water to millions of people through groundwater and numerous freshwater springs. Situated at the top of the sole known continental triple-trench junction, the Fuji watershed experiences significant tectonic instability and pictures complex geology. Recently, the conventional understanding of Mt. Fuji catchment being conceptually simple, laminar groundwater flow system with three isolated aquifers was challenged: the combined use of noble gases, vanadium, and microbial eDNA as measured in different waters around Fuji revealed the presence of substantial deep groundwater water upwelling along Japan’s tectonically most active fault system, the Fujikawa Kako Fault Zone [1]. These findings call for even deeper investigations of the hydrogeology and the mixing dynamics within large-scale volcanic watersheds, typically characterized by complex geologies and extensive networks of fractures and faults. In our current study, we approach these questions by integrating existing and emerging methodologies, such as continuous, high-resolution monitoring of dissolved gases (GE-MIMS [2]) and microbes [3], eDNA, trace elements, and integrated 3-D hydrogeological modelling [4]. The collected tracer time series and hydraulic and seismic observations are used to develop an integrated SW-GW flow model of the Mt. Fuji watershed. Climate change projections will further inform predictive modelling and facilitate the design of resilient and sustainable water resource management strategies in tectonically active volcanic regions

Abstract

Hydrogeological environments are commonly determined by the type of underlying geology; these environments may have a tremendous effect on the mobility and recovery of LNAPLs.  Hydrogeological environment include intergranular sediments and bedrocks of contrasting permeability and porosity. This paper synthesizes several case studies and conceptual models of different hydrological environments and illustrates how they affect the flow characteristics and rebound of LNAPLs.

Abstract

Globally, cumulative plastic production since 1950 is estimated to have reached 2500 Mt of plastic. It is estimated up 60% of this plastic is either resting in landfills or the natural environment, including groundwater settings. Microplastics are small pieces of plastic ranging between 1μm – 5mm in size and have been found in every ecosystem and environment on the planet. Much of the available literature on microplastics is focused on marine environments with few in comparison focused on freshwater environments, and even fewer on groundwater settings.

The aim of this study is therefore to investigate the attenuation process responsible for influencing microplastic transport in saturated sands. This research will adapt colloid transport theory and experiments to better understand the movement of microplastics through sandy media. Saturated aquifer conditions will be set up and simulated using modified Darcy column experiments adapted from Freeze & Cherry (1979). Modified microplastics will be injected into the columns as tracers and the effluent concentrations measured by Fourier-transform infrared spectroscopy (FTIR). Breakthrough curves will then be plotted using the effluent concentrations to determine the attachment efficiency (α). It is expected the attachment efficiency will vary by microplastic type and size range. The Ionic strength of the solution flowing through the column and the surface charges of both microplastics and sandy surfaces are likely to influence the degree of attenuation observed. The relationship between different types of microplastics and collector surfaces from a charge perspective and their influence on the degree of attenuation will be evaluated.

Given the lack of literature, its ubiquitous presence and postulated effects on human health, this research is significant. Through this research, the transport and attenuation of microplastics through sandy aquifers can be better understood, and in the process inform future research and water resource management.

Abstract

Degradation of chloroethene in groundwater primarily occurs via microbially-mediated reductive dechlorination (RD). Anaerobic organohalide-respiring bacteria (OHRB) use chloroethenes as electron acceptors to gain energy. They produce reductive dehalogenase enzymes (RDases) to perform this function by transcription of functional genes into mRNA and translation to proteins (metabolic regulation). However, how hydrodynamics and hydrogeochemistry control the metabolic efficiency of OHRB in biodegrading chloroethene is essential for effective bioremediation design yet an under-investigated topic. For this reason, we implemented a virtual experiment (1D reactive transport model) to investigate the effects of site conditions on transcription-translation and, hence, biodegradation processes within chloroethene plumes. In the model, RD was simulated using Enzyme-Based Kinetics, explicitly mimicking the production of RDases via metabolic regulation, calibrated on microcosm experimental data gained from literature. Features of an actual contaminated site (Grindsted, Denmark) were then used to set up the virtual experiment. Here, chloroethene leaked from a former pharmaceutical factory migrates through a sandy aquifer and gets discharged into the Grindsted stream. Preliminary results show that substrate (electron donors) limiting conditions caused by competing electron acceptors and dispersion and high flow rates represent the key factors controlling biodegradation via RDase production.

Abstract

The groundwater quality of the Orange Water Management Area (OWMA) was assessed to determine the current groundwater status. Groundwater is of major importance in the Orange Basin and constitutes the only source of water over large areas. Groundwater in the OWMA is mainly used for domestic supply, stock watering, irrigation, and mining activities. Increase in mining and agricultural activities place a demand for the assessment of groundwater quality. The groundwater quality was assessed by collecting groundwater samples from farm boreholes, household boreholes, and mine boreholes. Physical parameters such as pH, temperature and Electrical Conductivity (EC) were measured in-situ using an Aquameter instrument. The groundwater chemistry of samples were analysed using Inductively Coupled Plasma Mass Spectrometry, Ion Chromatography, and Spectrophotometer for cations, anions and alkalinity respectively. The analyses were done at Council for Geoscience laboratory. The results obtained indicated high concentration of Nitrate (NO3), EC, sulphate (SO4), Iron (Fe), and dissolved metals (Chromium, Nickel, Copper, Zinc, and Lead). The concentrations were higher than the South African National Standards (SANS) 241 (2006) drinking water required guideline. The OWMA is characterised by the rocks of the Karoo Supergroup, Ventersdorp Supergroup, Transvaal Supergroup, Namaqua and Natal Metamorphic Province, Gariep Supergroup, and Kalahari Group. Groundwater is found in the sandstones of the Beaufort Group. Salt Mining occurs in the Namaqua Group, hence the high concentration of EC observed. High EC was also found in the Dwyka Group. The salt obtained from the pans underlain by the Dwyka Group rocks has relatively high sodium sulphate content, this probably results from oxidation of iron sulphate to sulphate. Therefore, high concentration of SO4 is due to the geology of the area. High concentration of NO3 is due to agricultural activities, whereas high concentration of EC, Fe, SO4 and dissolved metals is due to mining activities.

Abstract

The intangible nature of groundwater provides challenges when trying to understand and quantify the role of groundwater in the hydrology of lakes and wetlands. This task is made even more difficult by the frequent absence of data. However, by adopting a scientific approach, it is possible to assess the hydrogeological contribution

Abstract

With the revision of the European Drinking Water Directive (Directive on the quality of water intended for human consumption 2020/2184) in December 2020, the preparation of Water Safety Plans (WSP) is foreseen according to the guidelines of WHO. Within the EU Interreg Adrion MUHA project, a decision support tool (DST) has been developed to provide a holistic approach to drinking water infrastructure risk analysis. The project mainly addresses four water-related risks: accidental pollution, floods, droughts and earthquakes. The core of the DST is the inventory of hazardous events (causes, their consequences and impacts) for each component of the drinking water supply chain: (1) drinking water source - catchment area, (2) water supply system, and (3) domestic distribution system. For each identified potential hazard, the type of hazard was determined (e.g., biological, chemical, radiological, or physical hazard (including turbidity), inadequate availability of water supplied to customers, safety to personnel, external harm to third parties, including liability). The DST was tested in the partner countries (Italy, Slovenia, Croatia, Serbia, Montenegro and Greece) to verify the resilience of the measures and elaborate the WSP.

In the end, the REWAS-ADRION strategy was elaborated, aiming to increase the resilience of drinking water supplies to floods, droughts, accidental pollution, and earthquake-related failures by improving the water safety planning mechanism based on the concept of inter-agency cooperation to support water utilities, civil protection organizations, and water authorities.

Abstract

This paper presents data obtained from sampling and geochemical analysis of gold tailings and associated pool and drain water. Inverse geochemical modelling using PHREEQC indicated geochemical processes operating in the tailings between the pool and drains. These included pyrite oxidation and dissolution of various minerals identified in the tailings. The processes were incorporated into an ensemble geochemical model to calculate post-closure sulphate concentration in tailings seepage.

The ensemble model included a spreadsheet model to calculate oxygen flux at various depths in the tailings column, and a one-dimensional transport model in PHREEQC. The calculated oxygen flux was applied to each cell in the tailings column to determine the amount of sulphide oxidation and the release of acidity into the tailings pore water. The rate of vertical transport of pore water in the column was determined from physical characterisation of the tailings particle size and saturated hydraulic conductivity.

The model results indicate elevated sulphate concentrations and acidity moving as a front from the top of the column downwards. The modelled sulphate concentration of 1 500 to 1 900 mg/L 8-16 years after closure compared well with measurements of drain water quality at a tailings dam decommissioned approximately 16 years ago. This provided some credibility to the modelled result of 2 300 mg/L sulphate up to 50 years post-closure. However, the tailings moisture content, infiltration rate, and pyrite oxidation rate in the model were based on literature values, rather than site-specific measurements.

Abstract

The 'maintainable aquifer yield' can be defined as a yield that can be maintained indefinitely without mining an aquifer. It is a yield that can be met by a combination of reduced discharge, induced recharge and reduced storage, and results in a new dynamic equilibrium of an aquifer system. It does not directly or solely depend on natural recharge rates. Whether long-term abstraction of the 'maintainable aquifer yield' can be considered sustainable groundwater use should be based on a socio-economic-environmental decision, by relevant stakeholders and authorities, over the conditions at this new dynamic equilibrium.
This description of aquifer yields is well established scientifically and referred to as the Capture Principle, and the link to groundwater use sustainability is also well established. However, implementation of the Capture Principle remains incomplete. Water balance type calculations persist, in which sustainability is linked directly to some portion of recharge, and aquifers with high use compared to recharge are considered stressed or over-allocated. Application of the water balance type approach to sustainability may lead to groundwater being underutilised.
Implementation of the capture principle is hindered because the approach is intertwined with adaptive management: not all information can be known upfront, the future dynamic equilibrium must be estimated, and management decisions updated as more information is available. This is awkward to regulate.
This paper presents a Decision Framework designed to support implementation of the capture principle in groundwater management. The Decision framework combines a collection of various measures. At its centre, it provides an accessible description of the theory underlying the capture principle, and describes the ideal approach for the development operating rules based on a capture principle groundwater assessment. Sustainability indicators are incorporated to guide a groundwater user through the necessary cycles of adaptive management in updating initial estimations of the future dynamic equilibrium. Furthermore, the capture principle approach to sustainable groundwater use requires a socio-economic-environmental decision to be taken by wide relevant stakeholders, and recommendations for a hydrogeologists' contribution to this decision are also provided. Applying the decision framework in several settings highlights that aquifer assessment often lags far behind infrastructure development, and that abstraction often proceeds without an estimation of future impacts, and without qualification of the source of abstracted water, confirming the need for enhanced implementation of the capture principle.

Abstract

Water resources worldwide are stressed, and the number of groundwater professionals required to manage those resources is not being generated in sufficient numbers. Groundwater educational resources must be placed in schools to generate excitement and raise awareness. Additionally, people entering the workforce need training throughout their professional careers. Oklahoma State University partnered with the U.S. National Ground Water Association to develop a framework for providing education and training programs in groundwater that allow for interactive online education at all levels. The Awesome Aquifer 360 program targets grades 5-8, allowing students to conceptually explore aquifers and the people who manage them. The Drilling Basics Online program provides a 40-hour basic safety and drilling training to recruit professionals into the groundwater industry and reinforce safe operations. These programs and future plans for the technique will be discussed.

Abstract

Groundwater monitoring, especially from the end users' point of view, is often considered an add-on, or even unnecessary overhead cost to developing a borehole. Simply measuring groundwater level over time can however tell a story on seasonal rainfall fluctuations as well as the response of an aquifer to the removal of an abstracted volume of water. In this case an artesian borehole of high yield and exceptional quality was drilled in an area of minimal groundwater use because of known poor quality and low yields. The borehole was drilled in two stages with the deeper drilling resulting in significantly higher yields and the artesian flow. Sediment free water, deep artesian water strikes and a lack of flow around the casing led to the conclusion that capping at surface would control the visible artesian flow of 4 L/s. A slight drop in pressure indicated that subsurface leakage may however be occurring. Neighbouring boreholes with automated water level monitoring provided data showing a correlation of drop in water level to the second deeper drilling event. The artesian borehole was yield tested and this too was visible in the water level monitoring data. Hereafter it became apparent that each activity performed at the artesian borehole had an impact on the monitoring boreholes, and that a subsurface leak was causing local depressurization of a semi-confined to confined aquifer. An initial attempt to save the artesian borehole was unsuccessful, resulting in the necessary blocking and abandonment of a high yielding, superior quality borehole. If monitoring data was not available the local drop in water level would never have been noticed with disastrous effect and no evidence for the cause. Simple water level monitoring has averted this and kept neighbourly relations and ground water levels intact

Abstract

For a long time, professionals regarded social media as a superficial, unprofessional platform where internet users would submerge themselves in a virtual world, detached from real-life issues. Slowly, the myths and stigmas surrounding the use of social media has faded as more and more professionals and scientists have realized that these social platforms could be positively exploited in a professional manner which could be beneficial. In a digital age where information at our fingertips is the norm, professionals should co-evolve and ensure that their work is just as accessible and appealing, without the unnecessary jargon. Currently, science is mostly restricted to a very particular audience and conveyed in one direction only. Using a social media platform such as Twitter-which limits messages to only 140 characters-challenges scientists to convey their work in a very concise manner using simpler terminology. Furthermore, it dismisses the usual one-way form of communication by opening dialogue with fellow Twitter users. At conferences, Twitter can serve as a useful tool for active engagement which will not only "break the ice" between delegates but also ensure that important information is communicated to a much wider audience than only those in attendance. This idea was tested at the 2014 Savanna Science Network Meeting held in Skukuza, Kruger National Park, where the hashtag #SSNM was used. More than 63% of the Twitter users who participated in the #SSNM hashtag were actually not present at the conference. These external "delegates" were interested individuals from five different continents and in different professions besides Science. This highlights how social media can be exploited at conferences to ensure that key messages are conveyed beyond the immediate audience at the event.

Abstract

The complexity of real world systems inspire scientists to continually advance methods used to represent these systems as knowledge and technology advances. This fundamental principle has been applied to groundwater transport, a real world problem where the current understanding often cannot describe what is observed in nature. There are two main approaches to improve the simulation of groundwater transport in heterogeneous systems, namely 1) improve the physical characterisation of the heterogeneous system, or 2) improve the formulation of the governing equations used to simulate the system. The latter approach has been pursued by incorporating fractal and fractional derivatives into the governing equation formulation, as well as combining fractional and fractal derivatives. A fractal advection-dispersion equation, with numerical integration and approximation methods for solution, is explored to simulate anomalous transport in fractured aquifer systems. The fractal advection-dispersion equation has been proven to simulate superdiffusion and subdiffusion by varying the fractal dimension, without explicit characterisation of fractures or preferential pathways. A fractional-fractal advection-dispersion equation has also been developed to provide an efficient non-local modelling tool. The fractional-fractal model provides a flexible tool to model anomalous diffusion, where the fractional order controls the breakthrough curve peak, and the fractal dimension controls the position of the peak and tailing effect. These two controls potentially provide the tools to improve the representation of anomalous breakthrough curves that cannot be described by the classical-equation model. In conclusion, the use of fractional calculus and fractal geometry to achieve the collective mission of resolving the difference between modelled and observed is explored for the better understanding and management of fractured systems.

Abstract

The mitigation of groundwater impacts related to gold mining tailings disposal within the Orkney-Klerksdorp region was assessed and presented as a case study. The most pressing concern for the facility owners is the potential for pollution of water resources in the vicinity of the mines, especially after mine closure. The key focus of this paper is to describe how methods were applied to characterise the aquifer and keeping the source-pathway-receptor principles in mind. Characterisation also involves lessons learn by comparing pre-tailings deposition and post-tailings deposition aquifer bahviour. Ultimately the process followed in this paper has led to the development of a logical approach to estimate groundwater liability costs in a typical tailings environment. The link between hydrogeology, geotechnical engineering and civil engineering was identified as a critical foundation for the development of a successful groundwater management strategy

Abstract

A coal mine in South Africa had reached decant levels after mine flooding, where suspected mine water was discharging on the ground surface. Initial investigations had indicted a low-risk of decant, but when ash-backfilling was performed in the defunct underground mine, decant occurred. Ash-backfilling was immediately suspended as it was thought to have over-pressurised the system and caused decant. Contrariwise, a number of years later decant was still occurring even though ash-backfilling had been terminated. An investigation was launched to determine whether it was the ash-backfilling which had solely caused decant, or if additional contributing factors existed. Understanding the mine water decant is further complicated by the presence of underlying dolomites which when intersected during mining produced significant inflows into the underground mine workings. Furthermore, substantial subsidence has taken place over the underground mine area. These factors combined with the inherent difficulty of understanding unseen groundwater, produced a proverbial 1000-piece puzzle. Numerical groundwater modelling was a natural choice for evaluating the complex system of inter-related processes. A pre-mining model simulated the water table at the ground surface near the currently decanting area, suggesting this area was naturally susceptible for seepage conditions. The formation of a pathway from the mine to the ground surface combined with the natural susceptibility of the system may have resulted in the mine water decant. This hypothesis advocates that mine water was going to decant in this area, regardless of ash backfilling. The numerical groundwater flow model builds a case for this hypothesis from 1) the simulated upward flow in the pre-mining model and 2) the groundwater level is simulated above the surface near the currently decanting area. A mining model was then utilised to run four scenarios, investigating the flux from the dolomites, subsidence, ash-backfilling and a fault within the opencast mine. The ash-backfilling scenario model results led to the formation of the hypothesis that completing the ash-backfilling could potentially reduce the current decant volumes, which is seemingly counterintuitive. The numerical model suggested that the current ash-backfill areas reduce the groundwater velocity and could potentially reduce the decant volumes; in spite of its initial contribution to the mine water decant which is attributed to incorrect water abstraction methods. In conclusion, the application of numerical models to improve the understanding of complex systems is essential, because the result of interactions within a complex system are not intuitive and in many cases require mathematical simulation to be fully understood.

Abstract

Mining site remnants are everlasting and impact the groundwater regime on a long term scale. An integrated approach to geoscience is necessary due to the complexity of nature and the unknown relationships that must be discovered to further the understanding of impacts on the natural environment. Furthermore, groundwater resources are negatively impacted by mining activities affecting the groundwater quality and quantity. Underground coal mining can be accompanied by roof failure events. This may change the matrix which subsequently alters the flow regime; leads to variations within the water chemistry, provided there is inter- aquifer connectivity; and alters the recharge rate. Dewatered mine voids are in direct contact with oxygen initiating oxidation reactions, depending on the geology of the specific site. A change in water chemistry was analyzed, and this coincides with a roof failure event as interpreted from water level measurements. Concentrations of Mg, Ca, and alkalinity indicate anomalous changes that are still in effect, five to six years after the majority of water levels had stabilized. The changes in the system coincides with and correlates to events of roof failure and different parameters. The latter changes are applied as extra tools when interpreting different site specific anthropogenic induced impacts on the system. Also within this study, constant rate pumping tests were conducted for the interest of the hydraulic properties, using three farming boreholes. The results put forward a range of 0.21 – 0.44L/s and 6.5 – 11.5m2 /d, for sustainable yield and transmissivity, respectively. Furthermore, it is recommended that a better understanding can be gained on system behaviors if chemistry correlations can be gathered through certain events causing specific systems to be in disequilibrium. It is also recommended that additional pumping tests will allow more insightful interpretation and delineation between the abovementioned chemical and water level changes. Finally, the combination of parameters during events can aid in deciding the most appropriate analytical models used for further analysis.

Abstract

Environmental isotope techniques have been successfully applied in the field of hydrogeology over the last couple of decades and have proved useful for understanding groundwater systems. This paper describes a study of the environmental isotopes for Oxygen (18O) and Hydrogen (1H, 2H-Deutrium, 3H-Tritium) obtained from various points in and around the underground coal gasification (UCG) site in Majuba, South Africa. UCG is an alternative mining method, targeting deep coal seams that are regarded as uneconomical to mine. The process extracts the energy by gasifying the coal in-situ to produce a synthetic gas that can be used for various applications. The site consists of shallow, intermediate and deep aquifer systems at a depth of 70m, 180 and 300m respectively. The intermediate aquifer is further divided into the upper and lower aquifer systems.
Samples were taken from each aquifer system together with supplementary samples from the Witbankspruit and an on-site water storage dam. A total of 15 samples were submitted for isotope analyses. By investigating the various isotopic signatures from all the samples taken, it will be possible to determine if there are similar or contrasting isotopic compositions by deducing possible water source for each sample due to isotopic fractionation caused by physical, chemical and biological processes. This will also be supported by deducing the mean residence time (MRT) for each water source sampled based on the Tritium data as well as the chemistry data already available for different sources. The chemistry data established linkages between the upper and lower intermediate aquifers.{List only- not presented}
Key words: Environmental isotopes, UCG, Water source, Isotope fractionation

Abstract

The national water balance is primarily based on the availability of surface water and the historic allocation thereof. The changes that are required the next 20 years to ensure sustainable development of the nation will be painful, but is unfortunately at present not part of the public discussion, it is essentially ignored in favour of more "popular water topics".This paper intends to look at a few core aspects, they include the current water allocation in the national water balance, the relative value of the utilisation, the position of groundwater resources in changing the current relative allocation and the current groundwater utilisation. The paper further intends to be a less formal presentation of these aspects with the required data, references and conclusions available for distribution afterwards.

Abstract

Two ventilation shafts were proposed to be excavated to depths of 100 and 350 m to intersect an underground mine, in the Bushveld Complex. The area is made up of fractured aquifers and the assignment was to identify the exact positions of the permeable zones within the shafts profiles as well as estimate the groundwater inflow rates at every 5 m interval along the shafts profiles. The project was budget and time constrained and therefore the preferred hydrogeological characterisation techniques, particularly the percussion drilling, aquifer testing and numerical modelling could not be conducted. The study was completed by conducting packer tests in HQ sized holes drilled at the exact positions of the proposed shafts. The packer test data was then interpreted using Thiem equation, a modification of Darcy Equation for radial flow, to estimate the steady state inflow rates into the shafts. Transient state flow is more challenging to calculate analytically, as it is time and aquifer storage dependent. However, transient state flow in shafts exists for the first 10 - 15 days only and is short lived. Thereafter, a steady state flow occurs where the rate is nearly fixed for the rest of the life of mine, unless new external stresses, such as mine dewatering, takes place within the radius of influence. Six months later the shafts were excavated and the permeable zones were encountered at the exact positions as predicted using the packer testing. In addition, the inflow rates calculated using analytical modelling was successful in estimating the inflow rates recorded after the shafts were excavated. The packer testing and analytical modelling was therefore effective in assisting the mine to plan the necessary pumps and management plans within the allocated budget and timeframe.

Abstract

The Transboundary Groundwater Resilience (TGR) Network-of-Networks project brings together researchers from multiple countries to address the challenges of groundwater scarcity and continuing depletion. Improving groundwater resilience through international research collaborations and engaging professionals from hydrology, social science, data science, and related fields is a crucial strategy enabling better decision-making at the transboundary level. As a component of the underlying data infrastructure, the TGR project applies visual analytics and graph-theoretical approaches to explore the international academic network of transboundary groundwater research. This enables the identification of research clusters around specific topic areas within transboundary groundwater research, understanding how the network evolved over the years, and finding partners with matching or complementary research interests. Novel online software for analysing co-authorship networks, built on the online SuAVE (Survey Analysis via Visual Exploration, suave.sdsc.edu) visual analytics platform, will be demonstrated. The application uses OpenAlex, a new open-access bibliographic data source, to extract publications that mention transboundary aquifers or transboundary groundwater and automatically tag them with groundwater-specific keywords and names of studied aquifers. The analytics platform includes a series of data views and maps to help the user view the entire academic landscape of transboundary groundwater research, compute network fragmentation characteristics, focus on individual clusters or authors, view individual researchers’ profiles and publications, and determine their centrality and network role using betweenness, eigenvector centrality, key player fragmentation, and other network measures. This information helps guide the project’s data-driven international networking, making it more comprehensive and efficient.

Abstract

Burning of coal for electricity production has resulted in vast amounts of ash being deposited in ash dumps. Rain water and ash water conditioning results in the wetting of ash dumps and if the water retention capacity is exceeded there is a possibility of leaching to soil and underlying aquifers. In this study two different coal ash are used to determine the water retention as excess amount of process water at power stations ash dumps can lead to impeding the desired water balance, which can be critical for maintain various plant processes. The nonlinear relationship between soil water content and matrix suction of a porous material under unsaturated conditions is described by the soil water characteristic curve (SWCC). The SWCC for a given material represents the water storage capability enabling the determination of varying matric suction such as prediction of important unsaturated hydraulic processes including soil permeability, shear strength, volume change with respect to the water content changes. This paper presents an alternative, cost effective and rapid method for measuring and subsequent estimating of the soil-water characteristics of any soil type. Several methods are available to obtain the measurements required for defining soil-water characteristics. However, obtaining the required measurements for a SWCC is generally difficult since there is no laboratory or field instrument, capable of measuring a typical complete plant available water suction range accurately. Due to high methodological effort and associated costs of other methods, a simplified evaporation method which was implemented in the HYPROP (Hydraulic Property analyzer, UMS, 2012) becomes a possible alternative. It relies on the evaporation method initially proposed Schindler (1980). A typical work range for a HYPROP system is 0 to 100 KPa as read out from the two high capacity tensiometers installed at different heights within a saturated sample column. For a dry coal ash dump to be optimally used as sinks, input water applications should be matched with evaporation rates and capillary storage. This will ensure the moisture storage of the ash dump is not exceeded and consequently avert leachate generation at the base of the ash dump. The field capacity of waste materials is of critical importance in determining the formation of leachate in landfills which in this case is the coal ash dump facility. It is the field capacity limit when exceeded which give rise to leachate generation consequently promoting a downward movement of generated leachate.he study found that it is possible to use the Hyprop together with an empirical based fitting model to define a complete SWCC along a dewatering path. The study found the Brooks-Corey model as the suitable representative of the Hyprop measured data, confirmed by AICc and RMSE analysis. The Brooks-Corey estimated retention function parameters within +/- 1% error. A mean value of 35.3% was determined as the water retention or field capacity value for Matimba Coal ash. If the ash dump is operated in excess of this value, chances of groundwater pollution are high.

Abstract

This keynote paper addresses several issues central to the conference theme of “Change, Challenge and Opportunity”. For hydrogeologists to exert greater influence on groundwater management globally, proper education and training is essential. Universities play a key role in educating hydrogeologists in the fundamental principles of groundwater science through taught Masters and other degree programmes. Scientific associations such as the International Association of Hydrogeologists (IAH) also have an important part to play in education and training through short courses, conferences and mentoring schemes, and in enhancing groundwater science through journal and book publications and scientific commissions. IAH’s mission is to promote the wise use and protection of groundwater and, in this respect, a series of Strategic Overview papers have been prepared to inform professionals in other sectors of the interactions between groundwater and these sectors. Two of the Strategic Overview papers focus on the SDGs and global change, and some of the groundwater challenges in these areas are described. Whilst these challenges will provide hydrogeologists with opportunities to influence global water issues in the 21st century, hydrogeologists will need to be able to communicate effectively with all of the stakeholders, using traditional and more modern forms of communication, including social media.

Abstract

Artificial Intelligence (AI) has been used in a variety of problems in the fields of science and engineering in particular automation of many processes due to their self-learning capabilities as well as their noise-immunity. In this paper, we describe a study of the applicability of one of the popular branch of AI (Artificial Neural Network (ANN)) as an alternative approach to automate modelling of one-dimensional geoelectrical resistivity sounding data. The methodology involves two ANNs; first one for curve type identification and the other one for model parameter estimation. A three-layer feedforward neural network that was trained from geoelectrical resistivity data taken at boreholes with geology logs was used to predict earth models from measured data without the need to guess the initial model parameters or use synthetic data as is done with most conventional inversion approaches. The motivation for using the ANN for geophysical inversion is that they are adaptive systems that perform a non-linear mapping between two sets of data from a given domain. For network training, we use the back-propagation algorithm. An example using data from southern Malawi shows that the ANN results outperforms the conventional approaches as the results after adequate training, produce reasonably accurate earth models which are in agreement with borehole log data.

Abstract

In the wake of the ongoing water restrictions in South Africa, the issue of groundwater potential for drought relief has been debated on many environmental and socio-economic platforms, nationally. Consequently, the development of groundwater and its related vulnerabilities has become a key topic to the decision makers and stakeholders. Currently, the recruitment of water professionals into government and private water sectors adds substantial value to understanding the importance of protecting this precious resource. This has allowed the monitoring of groundwater to gain ever increasing momentum. Groundwater monitoring has become an essential scientific tool for role-players to achieve robust and verifiable data used for modelling aquifer potential and vulnerability to pollution and over-abstraction. The data is generally sourced from various hydrogeological and environmental investigations which include groundwater development, vulnerability assessment and remediation projects. Groundwater and environmental consulting firms are tasked with imperative roles for implementing groundwater monitoring programmes to the ever growing industrial, commercial, agricultural and public sectors in South Africa. However, groundwater monitoring data, especially in the private sector, are reliable but remains mostly inaccessible due to confidentiality clauses. This does limit our accuracy and comprehensive understanding for determining aquifer potential and vulnerability risks at large. The conceptualisation and modelling of vast monitoring datasets has been recognised as an important contributing factor to enhance groundwater sustainability. This research emphasises the significance of groundwater monitoring for development, protection and remediation of aquifers. Comparing monitoring results from typical sites and methods, provides scientific validation to support good governance of water. Deterioration of groundwater potability in the sight of an existing drought can have irreversible environmental and economic implications for South Africa.

Abstract

Water scarcity is a growing issue in South Africa. The consumption of water is rising and as such, water is becoming a scarce and valuable resource. Given the circumstances that South Africa is facing, improving the use of ground water could help tackle water scarcity in South Africa. Groundwater has been an important source of water and it can bring socio-economic benefits if properly used. Studies have proved that groundwater resources play a fundamental role in the security and sustainability of livelihoods and regional economies throughout the world. However, in South Africa, groundwater still remains a poorly managed resource and this hinders socio-economic development. This paper examines the current state of ground water management in South Africa. The paper also examines how ground water in South Africa is currently allocated and used, and explores some of the consequences of current water management arrangements. {List only- not presented}

Abstract

POSTER About 97% of the earth's freshwater fraction is groundwater, excluding the amount locked in ice caps (Turton et al 2007) and is often the only source of water in arid and semi-arid regions and plays a critical role in agriculture, this dependency results in over-exploitation, depletion and pollution (Turton et al 2007). Groundwater governance helps prevent these issues. CSIR defines governance as the process of informed decision making that enables trade between competing users of a given resource, as to balance protection and use in such a way as to mitigate conflicts, enhance security, ensure sustainability and hold government officials accountable for their actions (Turton et al 2007). Realising the issues of groundwater governance is a requirement for developing policy recommendations for both national and trans-boundary groundwater governance. Groundwater level decline has led to depletion in storage in both confined and unconfined aquifer systems (Theesfeld 2010). There are about six institutional aspects, namely voluntary compliance, traditional and mental models, administrative responsibility and bureaucratic inertia, conflict resolution mechanisms, political economy and information deficits (Theesfeld 2010). Each of these aspects represents institutional challenges for national and international policy implementation. Traditional local practices should not be disregarded when new management schemes or technological innovations are implemented. The types of policies that impact governance include regulatory instruments, economic instruments and voluntary/advisory instruments. Regulatory or command and control policy instruments such as ownership and property right assignments and regulations for water use are compulsory. Economic policy instruments make use of financial reasons such as groundwater pricing, trading water right or pollution permits, subsidies and taxes. Voluntary /advisory policy instruments are those that influence voluntary actions or behavioural change without agreement or direct financial incentives. These are ideal types though no policy option ever relies purely on one type of instrument. The aim of these policies is to have an impact on governance structures (Theesfeld 2010). The national water act (1998) of the Republic of South Africa is not widely recognized as the most comprehensive water law in the world even though it is the highlight of socio-political events; socially it is still recent in most sites although the law was implemented 15 years ago (Schreiner and Koppen 2002). Regulations for use include quantity limitations, drilling permits and licensing, use licenses, special zone of conservation and reporting and registering requirement. In general when drilling and well construction are done commercially they increasingly fall under the scope of regulatory legislation. This paper will focus mostly on traditional and mental models; procedures that a certain community is dependent on should be taken into account before replacing with technological advanced tools. Consultation of the public can cause conflicts which lead to poor groundwater management.

Keywords: Groundwater governance, policy, policy instruments.

Abstract

Estimating groundwater recharge response from rainfall remains a major challenge especially in arid and semi-arid areas where recharge is difficult to quantify because of uncertainties of hydraulic parameters and lack of historical data. In this study, Chloride Mass Balance (CMB) method and Extended model for Aquifer Recharge and soil moisture Transport through unsaturated Hardrock (EARTH) model were used to estimate groundwater recharge rates. Groundwater chemistry data was acquired from the Department of Water and Sanitation (DWS) and Global Project Management consultants, while groundwater samples were collected to fill-in the identified gaps. These were sent to Council for Geoscience laboratory for geochemical analysis. Rainfall samples were also collected and sent for geochemical analysis. An average value of rainfall chloride concentration, average groundwater chloride concentration and mean annual precipitation (MAP) were used to estimate recharge rate at a regional scale. Local scale recharge was also calculated using chloride concentration at each borehole. The results were integrated in ArcGIS software to develop a recharge distribution map of the entire area. For EARTH model, long term rainfall and groundwater levels data were acquired from the South Africa Weather Services and DWS, respectively. Soil samples were collected at selected sites and analysed. These were used to determine representative values of specific yield to use on EARTH model. 60% of the groundwater levels data for 5 boreholes was used for model calibration while the remaining 40% was used for model validation. The model performance was evaluated using coefficient of determination (R2), correlation coefficient (R), Root Mean Square Error (RMSE) and Mean square error (MSE). Regional recharge rates of 12.1 mm/a (equivalent to 1.84% of 656 mm/a MAP) and 30.1 mm/a (equivalent to 4.6% MAP) were calculated using rainfall chloride concentrations of 0.36 and 0.9 mg/L, respectively. The estimated local recharge rates ranged from 0.9-30.2 mm/a (0.14 - 4.6%) and 2 - 75 mm/a (0.3 - 11.4%) using chloride concentration of 0.9 and 0.36 mg/L, respectively. The average recharge rate estimated using EARTH model is 6.12% of the MAP (40.1 mm/a). CMB results were found to fall within the same range with those obtained in other studies within the vicinity of the study area. The results of EARTH model and CMB method were comparable. The computed R2, R, RMSE and MSE ranged from 0.47-0.87, 0.68-0.94, 0.04-0.34, 0.16-3.16, and 0.50-0.79, 0.68-0.89, 0.07-0.68, 0.15-8.78 for calibration and validation, respectively. This showed reasonable and acceptable model performance. The study found that there is poor response of groundwater levels during rainy season which is likely to be due to lack of preferential flows between surface water and groundwater systems. This has resulted in poor relationship between estimated and observed groundwater levels during rainfall season.

Key words: ArcGIS, CMB, EARTH, Groundwater recharge, rainfall