Conference Abstracts

All Abstracts were presented at the Groundwater Conferences

Displaying 751 - 795 of 795 results
Title Presenter Name Presenter Surname Area Conference year Keywords

Abstract

POSTER Electrical Resistivity Tomography (ERT) surveys were conducted in the Kruger National park (KNP) as part of a recent Water Research Commission project (titled: Surface water, groundwater and vadose zone interactions in selected pristine catchments in the Kruger National Park). The surveys were carried out in a pristine ephemeral third-order supersite catchment, namely the southern granite (Stevenson Hamilton). This supersite is representative of the southern granite region of KNP as it covers part of the dominant geology, rainfall gradient and dominant land system.

Electrical   resistivity   profiling   provided   valuable   data   on   the   subsurface  geological   material distribution and results depended on soil/rock properties, water content and salinity. The purpose of electrical surveys was to characterise the hydrogeological components of weathering and depth to water level using the subsurface resistivity distribution. The ground resistivity is related to various geological parameters such as the mineral and fluid content, porosity and degree of water saturation in the rock.

Based on the initial ERT survey interpretations, boreholes were drilled providing actual subsurface results in the form of borehole drilling logs, water levels, hydraulic data and in situ groundwater quality  parameters.  Integrating  the  ERT  survey  data  with  the  results  from  the  intrusive  survey enabled an updated conceptualisation of groundwater flow characteristics and distribution across the southern granite supersite.

Abstract

The Department of Water Affairs (DWA), Chief Directorate: Resource Directed Measures has developed guidelines over the past decade  in ordeto  facilitatproper implementation of the Groundwater   Resourc Directed   Measures   (GRDM)   (also   known   as   determination   of   the groundwater component of the Reserve). An intrinsic component of the GRDM is delineation of Integrated Units of Analysis (IUAs) from which the allocatable groundwater and surface water components are calculated, which essentially drives the allocation of water use licenses. Delineation typically follows a three-tiered approach, namely primary, secondary and tertiary level. Primary delineation is based on quaternary boundaries (considered to be the basic building block of the IUA); secondary follows geological, hydrogeological and hydrological boundaries, groundwater abstraction zones and baseflow contribution; and tertiary is dependent on management criteria. How then, do we undertake this challenging task of delineating IUAs to a level where it can be better managed and monitored? Complexities arise when hydrogeological data are scarce, hydrological and hydrogeological systems are not in sync, aquifers extend across a quaternary, water management area, provincial and administrative boundaries, surface water and groundwater interactions are not well understood, and legislation on protection of water resources differs greatly from one country to the next. Having undertaken delineation of IUAs in the Waterval Catchment (Upper Vaal WMA), Olifants WMA and Mvoti to Umzimkhulu WMA with the available datasets, the key criteria for the respective  WMAs  have  ultimately  been  management  class,  significant  aquifers,  groundwater– surface water interaction and groundwater stressed areas, and secondary catchment boundaries, followed by other hydrogeological, geological and management considerations.

Abstract

Industrial  facilities  and  mining  activities  represent  a  potential  contamination  hazard  to  down gradient surface water and groundwater environments. The assessment of the risks posed by such contaminant sources should facilitate regulators to determine set compliance limits. These limits should, however, take in consideration the heterogeneous nature of fractured rock aquifers. This paper will focus on the limitations or technical feasibility of applying single groundwater quality compliance limits for fractured rock aquifers. It will also aim to describe how groundwater contamination limits could be determined in a more feasible manner.

Abstract

POSTER Hydraulic fracturing, also known as hydrofracking or fracking, is being engaged in the Karoo region of South Africa in order to enhance energy supplies and improve the economic sector. It will also lead to independence in terms of reduced amount of imports for fuel due to an estimated 13.7 trillion cubic metres of technically recoverable shale-gas reserves in South Africa. 

Fracking is an extraction technique used with the purpose of having access to alternative natural methane gas, which is interbedded in shale deposits deep under the surface of the earth. In this process boreholes are drilled horizontally into shale formations to cover a larger area in the shale and  subsequently  attain  more  natural  gas.  After  these  horizontal  boreholes  are  drilled,  large volumes of water, mixed with chemicals and sand, are pumped into these boreholes under a very high pressure, forcing the natural gas out. This water mixture is referred to as the fracking fluid. Water is the main component in the fracking fluid and the water used for the fluid reaches volumes up to 30 million litres per borehole.

The aim of this study is to present a baseline study of the area and its water resources to ultimately facilitate in resolving the actual impact hydraulic fracturing will have in the area, using a simulation model which will predict the migration of the fracking fluid in the subsurface. In this model, the chemistry of  the fracking fluid  will  be  included  to determine  the impact  it might  have  on the groundwater quality in the area

Abstract

Groundwater boreholes are a key element of many mining projects, as part of dewatering and water supply  systems,  and  must  achieve  high  levels  of  operational  efficiency  and  service  availability. Outside of the mining industry, planned borefield maintenance programmes have become a key part of professional well-field management, with proven benefits in terms of operational cost savings and continuity of pumping. However, the benefits of proactive planned maintenance of groundwater boreholes on mine sites have only recently been widely recognised. Potential operational problems are described, including water quality issues which can result in mineral contamination leading to deposits and scale build-up which can clog screens and pumps, reduce water flow and yield, and eventually cause pump breakdowns and mine stoppages. Best practice methodologies to remove or minimise the contamination are described and the benefits of implementing a planned maintenance programme are discussed. Case studies are described from two significant mines in Australia, where boreholes suffered from mineral contamination, including calcium carbonate and iron bacteria contamination. Both mines suffered  from  increased  pump  breakdowns,  groundwater  yields  consistently  below  target  and serious cost overruns. Borehole rehabilitation treatment plans were implemented to resolve the immediate contamination problems followed by an ongoing maintenance programme to prevent or minimise their reoccurrence. Treatment programmes included a downhole camera survey, use of a bespoke software program to review the results of the survey and the available water quality data, and a purpose built rehabilitation rig that included the use of specialist chemical treatments to remove and control the existing encrustation and clogging deposits.

Abstract

The deterioration of wetlands due to human activity has been a problem for many years. Under the old Water Act 36 of 1956 no provision of water was made for managing the environment. This idea was only introduced in the 1970s and focussed mainly on maintaining the floodplains and estuaries in the Kruger National Park, with small amounts being allocated to drinking water for wildlife. This was followed by the Conservation of Agricultural Resources Act, 43 of 1983, the first legislation under which wetlands could be protected, and which today still provides an important legal platform for the protection of wetlands, through integrated conservation of the soil, water resource and vegetation. South Africa became a signatory to the Ramsar Convention in 1975, but until the late 1990s not much was done to enforce wetland conservation. With the introduction of the National Water Act, 36 of 1998, and the National Environmental Management Act, 107 of 1998, South African legislatiobecame  the  first  to  balance  human,  environmental  aneconomic  interests,  for  the purpose of sustainable development. As part of this review I refer to case studies in Gauteng and discuss some of the challenges we still face.

Abstract

Groundwater is not often regarded as ecosystems and especially fractured aquifer systems are seen as organism free. Conventional tests show very little to no presence of micro-organisms in groundwater. However, these micro-organisms are ubiquitous and can be detected by using sophisticated methods. In this specific case study where petroleum hydrocarbon  contamination exists in a fractured rock aquifer, the presence of micro-organisms has been for years inferred by means of monitoring for secondary lines of evidence that prove attenuation of the contaminants, not only by means of dilution, adsorption or diffusion into the matrix, but through metabolism. The sampling evidence is clear that the preferential sequence of metabolism is taking place whereby electron acceptors are reduced as predicted for such biodegradation. Specifically sulphate is consumed and mostly manganese is reduced, with some iron reduction also being observed. Monitoring has shown that  groundwater recharge bringing in  new  nutrients effected increased biodegradation. In order to definitively identify the contribution made by micro-organisms, DNA testing was performed. The results support the secondary lines of evidence. Outside of the contaminated zone very low population numbers of organisms were detected in the groundwater. Inside the contaminated zone elevated population numbers were observed indicating that active biodegradation is taking place. Furthermore, the edges of the plume, where contaminant levels are mostly below detection, contained a more diverse population of micro-organisms than the central area. Conditions on the edge of the plume probably represent an ideal nutrient environment for the organisms as opposed to the high concentration source, which might be toxic to some organisms. Better understanding of the bio-dynamics of this fractured aquifer presents a unique opportunity to better manage and enhance the remediation of the contaminants. Possible strategies include the addition of nutrients when necessary and the cultivation of the naturally occurring organisms to augment the population. The data shows that aquifers are ecosystems even in fractured environments.

Abstract

The Karoo Supergroup has a hydrogeological regime which is largely controlled by Jurassic dolerite dyke and sill complexes. The study area is located in the north-eastern interior of the Eastern Cape Province,  close  to  the  Lesotho  border.  The  sedimentary  rocks  of  the  upper  Karoo  constitute fractured and intergranular aquifers, due to relatively hydro-conductive lithologies. The main groundwater production targets  within  the  upper-Karoo  are  related  to  dolerite  intrusions  that have  a  number  of  characteristics that influence groundwater storage and dynamics. Magnetic, electromagnetic and electrical resistivity geophysical techniques are used to determine the different physical  characteristics  of  the  dolerite  intrusions,  such  as  size,  orientation  and  the  level  of weathering. Trends in the data collected from a large-scale development programme can provide evidence that intrusion characteristics also play a role in determining the hydrogeological characteristics of the area. Interpreted geophysical borehole drilling, aquifer  testing  and  water chemistry  data  can  be  used  to  indicate  hydrogeological  differences  between dolerite intrusion types. Observed trends could be used for more accurate future well-field target areas and development.

Abstract

When the South African Government in 1998 re-demarcated its 283 municipalities in such a manner that they now completely cover the country in a “wall-to-wall” manner (Section 21), their main focus was on facilitation of effective and sustainable developmental municipal management; in other words, the improvement of basic municipal services such as formalised municipal basic services (for example, safe potable water, effective refuse removal and environmental health) to all the residents of the new geographical areas consisting of millions of citizens who previously might have been neglected. Unfortunately, it seems like topographical, physical and environmental characteristics of all the resulting municipal areas have been negated in this important demarcation process. Fuggle and Rabie (2005:315) are of the opinion that this can lead to ineffective, inefficient and non- economical municipal management of basic services.

By means of a literature review as well as the use and study of geographical tools such as maps, ortho-photos and information data bases, and field visits, the bare essential geographical and geo- hydrological aspects of importance for the municipal service providers and managers in the Lindley area have been identified. From this research and various other obvious reasons (for example, deteriorating physical environment due to pollution, sub-standard storm water and sewage management, and migration [informal settlements] and increasing sophisticated needs of municipal residents), the presenters of this paper want to state  that the quest for improved cooperative governance in the developing South Africa, and especially in the case of the Lindley town’s geographical area of responsibility, must be facilitated according to the DWA identified surface water catchment regions.

In conclusion, the presenters will recommend adherence to the following requirements as essential:

  •  An  environmental,  holistical  and  integrated  management  (IWRM)  approach  by  all  the involved and committed role-players, researchers and stakeholders must be adopted in the whole Vals River catchment.
  • Effective co-operative governance must be facilitated and maintained.
  • Basic hydrological, geo-hydrological and engineering geology knowledge and skills must be identified,  obtained,  modified  into  layman  language  and  incorporated  in  the  afore- mentioned approaches.

Abstract

The colliery is situated in the Vereeniging–Sasolburg Coalfield, immediately southwest of Sasolburg in the Republic of South Africa. The stratigraphy of this coal field is typical of the coal-bearing strata of the Karoo Sequence. The succession consists of pre-Karoo rocks (dolomites of the Chuniespoort Group of the Transvaal Sequence) overlain by the Dwyka Formation, followed by the Ecca Group sediments, of which the Vryheid Formation is the coal-bearing horizon. Mainly the lava of the Ventersdorp and Hekpoort Groups underlie the coal. The Karoo Formation is present over the whole area and consists mainly of sandstone, shale and coal of varying thickness.

The underground mine was flooded after mining was ceased at the colliery in 2004. The colliery is in the fortunate position that it has a very complete and concise monitoring programme in place and over 200 boreholes were drilled in and around the mine throughout the life of the mine. To stabilise mine workings located beneath main roads in the area, an ashfilling project was undertaken by the colliery since 1999. A key issue is if the mine will eventually decant, and what the quality of the water will be. This is important for the future planning of the company, as this will determine if a water treatment plant is necessary, and what the specifications for such a plant will be, if needed. Therefore it was decided to do a down-the-hole chemical profile of each available and accessible borehole with a multi- parameter probe with the aim of observing any visible stratification. Ninety-four boreholes were accessible and chemical profiles were created of them.

From the data collected a three-dimensional image was created from the electrical conductivity values at different depths to see if any stratification was visible in the shallow aquifer.  The ash-filling operations disturbed the normal aquifer conditions, and this created different pressures than normally expected at a deeper underground  colliery.  From  the  three-dimensional  image  created  it  was  observed  that  no stratification was visible in the shallow aquifer, which lead to the conclusion that in the event that if decant should occur, the water quality of the decanting water will still be of very good quality unless external factors such as ash-filling activities are introduced. It is not often that it is possible to create chemical profiles of such a large number of boreholes for a single colliery and as a result a very complete and informative three-dimensional electrical conductivity image was created. This image is very helpful in aiding the decision-making process in the future management of the colliery and eventually obtaining a closure certificate, and also to determine whether ash-filling is a viable option in discarding the ash.

Abstract

This study, near Thyspunt between St. Francis and Oyster Bay in the Eastern Cape Province of South Africa, focused on identification and quantification of surface water–groundwater links between the mobile Oyster Bay dune field and the coast. The specific objective was to establish the extent to which important wetlands such as the Langefonteinvlei and the numerous coastal seeps along the coast are directly or indirectly dependent on groundwater as their main water source. A further objective was to establish the extent to which any of the coastal seeps derive their water from the Langefonteinvlei, and are thus interdependent on the integrity of this system. The study also investigated the contribution of the Algoa and Table Mountain Group aquifers to these wetlands. The   monitoring   network   established   as   part   of   this   study   focused   on   unpacking   the interrelationships between surface and groundwater flows, aquifer hydrochemistry and wetland function, as related to the Langefonteinvlei and the coastal seeps in particular. Results indicate that the Langefonteinvlei is fed by groundwater flowing from the mobile Oyster Bay dune field in the north and the water divide in the northeast, which emerges at the foot of the high dune in the north and northeast of the wetland. However, the majority of the vlei area is ‘perched’ above the local water table on a layer of organic-rich sediment. The coastal springs located southwest and west of the Langefonteinvlei are not fed by water from the Langefonteinvlei. They emerge near the coast, where the bedrock lies close to the surface, and are fed by groundwater draining directly from the Algoa and Table Mountain Group aquifers to the Indian Ocean.

Abstract

The concept of the ‘Groundwater Reserve’ is enshrined in the National Water Act that stipulates that a classification of all significant water resources must be undertaken and the Reserve requirements be determined and gazetted. The Reserve covers two different aspects, the Ecological Reserve to protect the water dependent ecosystems and the Basic Human Needs (BHN) Reserve to ensure that all people who depend on that water resource have sufficient water for their livelihood. The approach for determining and implementing the Reserve that was developed for surface water resources was adopted for groundwater resources as provided for in the Groundwater Resource Directed  Measures  (GRDM)  Manual,  inter  alia.  However,  there  is  no  separate  ‘Groundwater Reserve’, but rather a groundwater component of, or contribution to, the ecological Reserve and BHN. Hence, the implementation of this methodology often results in undesirable outcomes and is one of the inhibiting factors for sustainable groundwater development, as some of the aspects and methods are not applicable to groundwater and not appropriate for implementation. The current separation of the ‘Groundwater Reserve’ determination process from the ecological Reserve determination emphasises this pitfall of the process and methodology. This paper provides a critical review of the current concept of the ‘Groundwater Reserve’ and its implementation based on several case studies. It concludes  with recommended changes to the standard methodology and a possible way forward for developing an appropriate methodology for addressing and protecting the groundwater contribution to both the ecological and BHN Reserve.

Abstract

The article presents the application of a water balance model as a preliminary tool for investigating groundwater–surface water (GW–SW) interactions along an alluvial channel aquifer located in a semi-arid climate in the central province of South Africa. The model is developed based on the conservation of mass; solute and stable isotopic mixing of the model components. Discharge measurements were made for the river segment inflow and outflow components using stream velocity-area technique. The Darcy equation was used to calculate the groundwater discharge from the alluvial channel aquifer into the river segment. Electrical conductivity (EC) and δ2H isotope were measured for the inflow and outflow components of the model as indicators of solute and stable isotopic ratios. Measurements were conducted during a low river flow once-off period in October 2011, thus offering a great opportunity to assess GW–SW exchanges when other potential contributors can be regarded as negligible. The model net balance shows that the river interval is effectively losing water. The mass and solute balance approach provided close to a unique solution of the rate of water loss from the model. The model outcome provides a platform from which to develop appropriate plans for detailed field GW–SW interaction investigations to identify the mechanism through which the river is losing water.

 

Abstract

Evidence suggests that physical availability of groundwater may be only one of many factors in determining whether groundwater-based rural water supply schemes in South Africa are reliable or "sustainable". Other factors include budgetary constraints, community preferences, policy decisions, operation and maintenance procedures, and the availability of skilled staff. These factors and others combine to create "complex problems" around the issue of rural water supplies that require a multidisciplinary approach if they are to be effectively resolved. This work is an on-going part of Water Research Commission Project K5/2158, “Favourable Zone Identification for Groundwater Development: Options Analysis for Local Municipalities”, due to be completed in March 2014.

Abstract

National legislation is the outcome of processes, locally, provincial and nationally. Certain aspects of water management have first been the product of legal initiatives of the South African government, seeking  to  address  local  problems.  As  a  result,  the  National  Water  Act,  3of  1998,  was promulgated. The Act is in line with the Constitution of the Republic of South Africa, 108 of 1996, which embrace human rights. The Water Services Act, 108 of 1997, regulates the accessibility of water and sanitation by domestic users. Groundwater, in many parts of South Africa, provides the sole  and/or  partial  water  supply  for  meeting  basic  human  needs.  With  an  increase  in  the dependency on groundwater usage, the need to properly and effectively protect, use, develop, conservemanage  and  control  groundwater  resources  has  become  a  national  priority  by  the custodian of all water resources: the National Department of Water Affairs. The question arises whether  onot  the  current  groundwater  allocatiodecision-making tools  are  enough  to  make informed  decisions  regarding  the  final  approval,  or  not,  of  groundwater  use  licenses,  and whether  a  proper  framework  that  includes  guidelines  together  with  licensing  conditions  are available  for  decision- making   in   complex  groundwater   scenario   situations   as   part   of   the groundwater license decision process. The current research contributes to answering this question and finding solutions in order to improve and make the groundwater use authorisation process more  effective.  The  groundwater  situation  will  bdiscussed  on  a  comparative  basis  from international case studies regarding water legislation and groundwater resource management tools. A full evaluation and analysis of groundwater use authorisation process and decision-making tools oregional annational level  in  South  Africa will be done  and a Framework and tool for the evaluation, decision-making and determination of authorisation conditions of groundwater use authorisations, which includes existing lawful water use, general authorisations, and groundwater use licensing, will be developed. Scenarios and case studies are currently implemented.

Abstract

Limestones  and  dolomites  form  an  important  aquifer  system  in  Zambia.  The  municipal  water supplies for Lusaka and several population centres on the Copperbelt all depend on the carbonates for a substantial proportion of their water supply. Currently 155,912 ha of land are irrigated in Zambia, which is about 30 percent of the economical irrigation potential. Development of large scale irrigation schemes from carbonate rock aquifers proves to be a viable groundwater resource in Zambia.

The Katanga carbonate rock aquifers are considered to have good groundwater potential, with high yielding anomalies of up to 60l/s common in certain areas of the country. A phased approach was adopted  to   characterise   the   Katanga   Carbonates   by  means  of  quantifying   the  volume  of groundwater available for abstraction within the geological boundaries. The first phases included geophysical surveys (mainly electrical resistivity and magnetic methods), exploration drilling and aquifer   testing.   Later   phases   included   the   drilling   of   production   boreholes   and   wellfield development. 

Lessons learned during the exploration included the identification of high yielding drilling targets and the role of anomaly frequency in target selection. Further development of the Katanga aquifers for production provided challenges regarding production borehole construction and design. The feasibility of the optimum  design of  production  boreholes versus  the  initial capital  cost of the development of these carbonates proved to be an important consideration in this regard.

Abstract

This paper outlines the core factors related to the economic assessment of groundwater resources. Included in the discussion is a delineation of the factors that determine the economic value of groundwater as well as a thorough description of the range of ecosystem services that are derived from groundwater resources.

Several factors affect the economic value of aquifers, but these factors can split into two categories, natural asset values and ecosystem services values.

Ecosystem services are the benefits that humans receive from ecosystems, and are officially defined by the Millennium Ecosystems Assessment. Ecosystems produce these ecosystem services on an annual basis, and the value of these services accrue on a country’s national income statement, and should ideally be measured through indicators that relate to Gross Domestic Product (GDP).

Aquifer themselves are natural assets. They form part of the ecological infrastructure of a country and the values of these assets theoretically appear on a country’s natural resources balance sheet. The asset value can be determined by calculating the Net Present Value (NPV) of the perpetual stream of aquifer ecosystem services delivered.

By understanding the full range of factors that underlie the natural asset values of aquifers, along with their ecosystem service values and the full range of inter-temporal and inter-ecosystem service characteristics, we can begin to adequately assess the economic value of groundwater resources.

Abstract

The 11 coal-bearing zones currently being mined at Exarro's Grootegeluk mine, discard intraburden onto discard dumps. During mining operations the open pit will be backfilled with plant discards, overburden and interburden on completion of mining. The plant waste will be covered with overburden  and  topsoil.  Intraburden  spoils  consist  of  sandstone,  mudstone  and  shale  rich  in minerals such as pyrite and siderite. These intraburden spoils thus have the capacity to generate acid when exposed to the appropriate conditions. The oxidation of iron sulphides (Pyrite (FeS2)), present within the discard dumps and stockpiles, can influence the hydrochemistry by generating acid-mine drainage, while siderite (FeCO3) can have a basic effect to the immediate surroundings. Acid-base- accounting done on samples gathered from different boreholes in the Waterberg coalfield helped to determine lithological units that can generate acid, with specific regard to the interburden removed and placed on the discard dumps, the interburden used in the pit as backfill, and the acid generation possibility from coal seams in stock piles. This indicated the zones that are more prone to acid- and base-producing potentials. Mineralogical investigations with X-ray diffraction and X-ray fluorescence gave a better record of minerals and elements present in trace amounts within interburden zones that could also have additional problems during storage and use. The areas that possess the highest risk regarding acid generation are the zones enriched in pyrite, as well as the coal seams from stock piles. The management plan for the acid generating spoils of the area has two possibilities: Firstly where acid producing potentials are higher, spoils should not be used where it will be exposed to oxygen and water for long periods of time, as the amount of acid generated cannot be controlled. A second option would entail the immediate compaction and flooding of the mined area so that the amount of acid produced would be controlled and limited.

Abstract

Zachariashoek  catchment  was  one  of  the  study  areas  looking  into  the  hydrological characteristics  of winter rainfall catchments in the Western Cape. Nearly thirty years of historical data are available for the Zachariashoek area. This data include rainfall, gauge plate readings for the weirs, and water levels for the boreholes in the area. Numerous articles and reports had been written  about  the  research  done  in  the  area,  concentrating  mostly  on  the  effects  of  fire  on streamflow and vegetation. This article will look at patterns that can be observed from the data record and correlate the different data sets for the Zachariashoek sub‐catchment. It will use the data from the two weirs, three rain gauges and at least three of the boreholes that was drilled in this sub‐catchment.  The information gained from this comparison can then be used to evaluate possible future hydrological patterns and the interaction between the various components of the hydrological system.

Abstract

Zimbabwe occupies a tectonically stable plateau underlain by ancient Precambrian crystalline basement rocks. These  form a central craton bounded by east-west trending mobile belts; the Zambezi mobile belt to the north and the Limpopo mobile belt to the south. Zimbabwe receives generally low and variable quantities of seasonal rainfall within a semi-arid to savannah type climate characterised by moderate to high temperatures. Evaporation commonly exceeds rainfall so that recharge to the thin near surface aquifers is generally low and in some years non-existent. The groundwater resources of the weathered and fractured basement aquifers that underlie more than 60% of the country are of limited potential, typically sufficient to supply the needs of small villages and cattle ranches. However, within the central plateau area of the African to Post-African erosion surfaces, the weathered and fractured basement may exceed 60 m in thickness. The thickness of this zone diminishes towards the main valley systems where subsequent cycles of erosion have stripped the weathered zone away, leaving only a shallow surface fractured zone that may only be 20-30 m thick. Groundwater resources have been developed extensively in Zimbabwe since the 1920s. During 1991/92 drought abstraction from urban boreholes within the southern Harare area caused yield decline and ultimate failure of numerous boreholes. It is now time to question the long-term viability of groundwater development within the basement aquifers in Zimbabwe given the uncertainty in groundwater resources, the complexities of the climate–groundwater interactions and the projected demands of a growing rural population.

 

Abstract

The occurrence of groundwater around a mined-out open pit, connected to an active underground working is not completely understood, but it is fascinating. It has been established that gold mineralisation in study area was structurally controlled. The geomorphology of the local drainage system is highly controlled by the fold or fault architecture. Surface water flowed through, and eroded open fractures in exposed damaged zones (zone of subsidiary structures surrounding a fault). Previous  conceptual  hydrogeological models  of  groundwater  system  suggested  is  a  two-aquifer system, consisting of a fractured aquifer overlain by a weathered aquifer, where groundwater flow mimics surface topography. Based on recent drilling and reassessment of historic geological and hydrogeological data, the groundwater system around the mine could not only be described in terms of an elevation or stratigraphic units, as traditional aquifers are. The weight of the study was placed on accurately understanding the groundwater system in the deposit area by using structural hydrogeology as a best tool in the hydrogeological tool box. From a hydraulic head point of view, in addition to the weathered groundwater system, there are as many bedrock aquifers and aquitards as there are major structures in the pit area.

Abstract

POSTER All groundwater is vulnerable to contamination, and natural in homogeneity in the physical environment results in certain areas being more vulnerable to contamination than others. Inherent in the agricultural, domestic and industrial sectors of Pietermaritzburg, is the generation of contaminants which, upon reaching the aquifer, result in the deterioration of the quality of groundwater, thus resulting in the water no longer being fit for its intended use. The DRASTIC method is used to calculate the groundwater vulnerability of a 670 km2 region, including the city of Pietermaritzburg. The suggested ratings of each parameter are scrutinised and adapted, according to their relevance to the region and according to known geological occurrences. The use of this method enables the user to generate a regional scale vulnerability map of the groundwater in Pietermaritzburg. The vulnerability map generated has the ability to effectively highlight vulnerable areas to groundwater contamination, which is of critical importance in correct land-use planning, as well as in indicating areas of particular concern, where further detailed investigations are needed. The results of such an assessment are used as an input, together with a contamination inventory to assess the potential risk of groundwater pollution in a groundwater risk map. Furthermore, the result informs local decision-makers and enables proactive prevention of groundwater pollution, in accordance with section 13 of the 1998 National Water Act. The intrinsic vulnerability of the Pietermaritzburg region was found to range from low to very high. The area found to be highly vulnerable is the region northeast of Springbank which requires investigation at a local scale.

Abstract

The groundwater quality component of the Reserve serves as guidance for groundwater quality requirements when assessing water use license applications. The Reserve is the quantity and quality of water required to satisfy the basic human needs and protect the aquatic ecosystem in order to ensure ecologically sustainable development and use of water resources. This component provides guidance when assessing the suitability of groundwater for drinking purposes. The current groundwater quality was based on the Quality of domestic water supplies, assessment guide (vol. 1,2nd   ed.,  1998).  The  parameters  that  were  assessed  in  the  current  template  include  chemicalssodium, magnesium, calcium, chloride, sulphate, nitrate and fluoride; and physical parameters: pH and  electrical  conductivity.  The  above-mentioned  ions  cater  fomost  water  uses  applied  for, whereas the revised template will also include microbiological (escherichia coli), toxics (zinc, manganese, iron, cadmium, cobalt and copper) for local government and mining commodity/by- product specific water use applications. The current water quality basic human needs values will also be replaced with SANS 241 (2011) guidelines. Inputs and suggestions are therefore requested from various end users/stakeholders.

Abstract

The study on estimation of groundwater recharge was done in Grasslands Catchment, about 70 km south-east of Harare, Zimbabwe. The catchment is underlain by Archean Granitic rocks intruded by dolerite  dykes/sheets  and  form  part  of  the  Basement  Complex.  The  catchment  is  a  stream headwater wetland, at the source of Manyame River. The catchment comprises an upland region or interfluves of area 2.12 km2 and a dambo area of 1.21 km2. The study focused on the assessment of temporal and spatial variability of moisture fluxes based on solute profiling, and groundwater recharge and investigations of moisture transport mechanisms. The methodology involved the use of  both  hydrometric  and  hydrochemical  techniques.  Groundwater  recharge  rates  and  moisture fluxes were calculated using a chloride mass balance technique in comparison to the hydrograph separation technique. Groundwater recharge was estimated to be 185 mm/year using the chloride mass  balance  and  215 mm/year  using  the  hydrograph  separation  technique.  Mechanisms  of recharge were investigated using the bimodal flow model that comprised of diffuse flow and preferential flow. The results revealed that preferential flow contributes up to 95% of the recharge in the interfluves, whilst diffuse flow contributes up to 5% of the total recharge. The results reveal that the groundwater hydrograph technique results are in agreement with the chloride mass balance method. The study illustrated how routine observations can improve process understanding on groundwater recharge mechanisms. The techniques are not expensive, are easy to use and can be replicated elsewhere depending on availability of data.

Abstract

The Deep Artesian Groundwater Exploration for Oudtshoorn Supply (DAGEOS) Project is culminating in development of the Blossoms Well-field (C1 Target Zone), about 20 km south of the town. The target Peninsula Aquifer is located at depths >300 m below ground level, geopressured to ~800 kPa (8 bar) artesian head. Each production well has to be uniquely designed for site-specific hydrogeological, hydrochemical and aquifer hydraulic conditions. Hydrostratigraphy rather than stratigraphy must inform the final well design. It is a recipe for unnecessary expense and deleterious consequences for aquifer management, to design and commence the drilling of wide-diameter production wells without the data and information provided by necessary exploration and essential pilot boreholes, yielding broader hydrogeological insights.

During discovery exploration at the C1b Target Site Area (TSA), drilling of a 715 m-deep  diamond-core exploration  borehole (C1b2)  was essential  for  the  proper  siting and  safe design  of  a  production  well  (C1b3).  Following confirmation  of  the  artesian nature  of  the  Peninsula Aquifer, the C1b2 borehole was equipped for monitoring, prior to the drilling of the nearby (~25 m distant) C1b3 production well, which was piloted with a core borehole down to a low level (~290 m) within the Goudini Aquitard, where it became marginally artesian and was then plugged and sealed. This pilot borehole was reamed with wide-diameter percussion tools to a depth where casing could be firmly cemented within the Goudini, above a solid, relatively unfractured zone. The final stage of drilling into the Peninsula Aquifer, using the Wassara water-hammer method, was thereafter continuously monitored from the C1b2 site, and the subsequent recovery history of C1b3 is comprehensively documented. The DAGEOS   drilling   and   deep-groundwater   monitoring   provides   significant   experience   in   solving technological problems likely to be encountered in the future development of shale-gas in the main Karoo basin. The confined, artesian aquifer behaves very differently to other, conventional groundwater schemes and requires a different management approach that focuses on managing the artesian pressure within the basin  and  its  response  to  abstraction.

The  potential  adverse  influences  of  high  and/or  extended abstraction on the Peninsula Aquifer may be divided into two general categories: 1) depletion or degradation of the groundwater resource, and 2) environmental or ecological consequences. Depletion in the case of a confined aquifer refers to depletion in storage capacity due to non-elastic behaviour. Environmental/ecological impacts of groundwater extraction arise only when the ‘radius-of-influence’, defined by the distance from the centroid of a well-field to the perimeter of the cone of depression in the ‘potentiometric surface’ (surface of pressure potential in the aquifer), reaches recharge and or discharge boundaries. The new Oudtshoorn Groundwater Scheme affords an opportunity to stage a transition from an increasingly risky reliance on surface water that is prone to severe reduction through climate change, to a deep groundwater resource that is capable of acting as a sustainable buffer against water-scarcity through drought intervals that may endure over decades rather than years, and can be operated without electricity supply by utilising the artesian pressure in the aquifer. This approach was demonstrated in a 3- month artesian flow test during 2009.

 

Abstract

The determination of a sustainable groundwater yield is a complex and challenging task. There is a high degree of uncertainty associated with most aquifer parameters such as recharge from rainfall and aquifer storativity, especially in  fractured aquifers. This leads  to  analysts often taking a  very  conservative and  risk  adverse approach  in  determining  the  sustainableyield  for  boreholes.  The  problem  with  this  approach  is  that groundwater can be considered as impractical or not an option, due to the low and conservative yields. Potential well-fields also become too expensive to develop. The concept of sustainability does not only cater for the environment, but also for people (social) and the economy (business). A popular method to determine groundwater sustainability is the groundwater balance (also known as the groundwater budget) method. This method has come under scrutiny as it is proposed that capture zone method is a more conservative and technically correct approach. Two of the most important parameters in determining long-term borehole yield, namely recharge and storativity, are unknown and unknowable at the time of well-field development. At best, qualified guesses can be made with regard to these two parameters. This makes the capture method impractical as boreholes have to be drilled and tested first and capital spent before any planning can be done. 

In this paper, it was shown that the risk adverse approach in determining borehole yield will result in the most expensive groundwater development option. The principle of sustainability requires that environmental, social and economic considerations be taken into account. By following a risk adverse approach, which would be the most expensive, the principle of sustainability is violated and it cannot be claimed that the borehole yield is sustainable. Due  to  the  exponential relationship between  risk  and  cost,  a  no-risk  approach  would  be infinitely expensive. It was shown that due to the uncertainties, it is actually impossible to determine the sustainable yield of a borehole. The objective should rather be to develop a sustainable groundwater management plan. This can be achieved by following a systems management approach based on the minimum groundwater balance. The minimum groundwater balance approach makes use of, for example, hydro census data to determine a minimum groundwater balance for a system of aquifers based on recharge at a minimulevel of assurance, for example lower 95th percentile, rather than making use of the mean annual precipitation (MAP). The potential effects of storativity are neglected at this stage. The systems management approach was applied on a case study to demonstrate the application where some risk was taken for a limited period of time while monitoring takes place. Proactive warning systems would alert decision-makers when to develop new aquifers which are predefined, based on the minimum groundwater balance method. The difference is that in the case of the risk adverse approach, should it come to light that the recommended abstraction rates were wrong in the sense that it is too low, the capital is spent and cannot be recovered. In the case of the systems approach, where slightly risky abstraction rates are recommended for a limited period of time, additional well- fields can be developed well in advance, before any negative environmental impacts can occur.

Abstract

The key towards modern groundwater management lies in a profound strategy from monitoring data collection over data processing and information management to clear reporting on the development of groundwater resources. Only thus planners are enabled to take informed decisions towards sustainable use and well-keeping of available groundwater. A core in this strategy is the digital database in which all relevant data and information is stored, handled and displayed. It is thus that the Namibian Ministry of Agriculture, Water and Forestry (MAWF) decided to replace within the activities of the Namibian–German cooperation project “Groundwater for the north of Namibia”, the existing national groundwater database GROWAS with the completely new development of the GROWAS II  version.  Through  the  experience  of  the  project  partner  BGR  (Federal  Institute  for Geosciences and Natural Resources) the focus was put on the critical issue of data quality control. As the analysis of the old system indicated unclear data operation procedures as a major source of errors, improved user-friendliness was high on the agenda for the new database. Developed closely to  the  needs  of  Namibian  Water  Authorities,  GROWAS II  features  a  GIS-based  graphical  user interface (GUI) with a vast range of query functions, a modular system including time series tools, hydrochemistry, licenses for abstraction application and groundwater status reporting functions, among others. Quality control is secured through different measures like the “fosterage” option which allows the input of data into a temporary status with restricted access until released by senior experts, the quick and direct interaction with Google Earth to verify locations and the extensive use of look-up tables and descriptive keys in alignment with other regional geo-databases. Furthermore, data entries can be marked according to their estimated reliability with traffic light coding. These measures should ensure that only good quality data will be added in the future. Upcoming development steps are the practical tests of the single modules in day-to-day use, the integration into or exchange with other information systems and the improvement of older existing data as far as possible. Namibia will thus be better prepared for future groundwater challenges.

Abstract

With increasing focus on wasted expenditure within local government and recent media reports on the money spent on poor quality service, it is becoming progressively important for those in a position of engaging consultants, either for groundwater supply or environmental work, to have confidence in the company or person they have employed. This paper focuses on how to assess consultants  before   they   walk  through   the  door  based   on   qualifications,   CVs,   professional registrations and previous work experience. It goes through the project lifestyle, explaining in a non- technical fashion the different processes involved in a groundwater supply or groundwater contamination assessment and provide simple indicators of good practice that should be evident in the   consultant's   work.   Topics   covered   include   assessing   proposals,   gathering   background information, health and safety, appointing sub-contractors, data quality, the use of appropriate published procedural guidelines, the use of relevant quality guidelines and what deliverables should be provided. 

Abstract

The Heuningvlei pipeline scheme was built in the 1980s to supply water to rural communities in a low rainfall area (<300 mm/annum) – Northern Cape Province. In 2008, the Joe Morolong Local Municipality identified the need to refurbish and upgrade the pipeline scheme for socio-economic reasons. The safe yield and water quality information of existing sources supplying the scheme was unreliable. This was investigated by borehole test pumping and water quality sampling, which indicated reduced yields and deteriorating water quality since 1989.

Water demands, which includes supply to communities for domestic use, schools, clinics and stock watering in the Heuningvlei area, was estimated at 2 380 m3/day or 868 700 m3/annum. The potable groundwater  supply  recommended  from  11  existing  boreholes  is  316 937 m3/annum,  leaving  a deficit of 551 763 m3. The aquifers utilised for the existing water supply comprise fractured banded iron formations (BIF) and dolomite bedrock. Kalahari sedimentary and dolomite aquifers to the east of the pipeline scheme contain high saline water not suitable for domestic use.

No surface water sources exist in the area and the feasibility of the socio-economic development project depends on establishing local groundwater resources that would not impact on existing sources. A target area was identified which is approximately 10 km south from the pipeline. This area is covered by the thick Kalahari sediments (up to 130 m) underlain by dolomite bedrock with a potable groundwater balance of 2.3 million m3/a. Both the associated primary (Kalahari) and secondary (Dolomite) aquifers contain potable water. The target area was not investigated in the past due to perceived poor water quality (elevated salinity) conditions, very low (<10 %) borehole exploitability prospect and difficult drilling conditions.

The paper will discuss the importance of recharge estimate and understanding of flow regime at sub-catchment and local scale, use of an airborne magnetic survey in conjunction with ground geophysics, mapping of Kalahari sediment thickness, and successful drilling of exploration boreholes to exploit the deeper Kalahari sedimentary and dolomite bedrock aquifers. The successful development of localised potable water in a low rainfall area made it feasible to implement the Heuningvlei socio-economic development project.

Abstract

The aquifer vulnerability of the Molototsi (B81G) and Middle Letaba (B82D) quaternary catchments was assessed to determine the influence of the vadose zone on the groundwater regime. The aquifer vulnerability was assessed by developing a new method, which evaluates the vadose zone as a pathway for pollutants by using the following four parameters: Recharge, Depth to water table, Soil type (saturated vertical hydraulic conductivity) and Slope (RDSS). Recharge was estimated using the Chloride-mass balance method and the depth to the water table was measured in the field using dipmeter. The seepage behaviour (soil type) was determined as hydraulic conductivity from in situ infiltration and percolation testing (SABS 0252-2:1993 and double ring infiltrometer). The slopes were determined with the digital elevation method using ArcGIS software. The four parameters were overlaid using Weighted Sum, Weighted Overlay and Raster Calculator to produce the vulnerability map. Different weightings were attributed in the methods and the best selected. The results obtained indicated high vulnerability on the lower and upper parts of both catchments. Aquifers in areas which showed high vulnerability are at high risk of contamination. The benefits of the  method  described  are  (a) the  easy  quantification  of  the  parameters  through  fairly  simple methods and (b) the exclusion of arbitrary index values.

Abstract

Unconventional gas mining is a new and unprecedented activity in South Africa that may pose various risks to groundwater resources. According to legal experts, South Africa does not currently have the capacity to manage this activity effectively due to various lacunae that exist in the South African legislation. The possible impacts of unconventional gas mining on groundwater, as well as governance strategies that are used in countries where unconventional gas mining is performed; have been analysed and will be discussed. Based on possible impacts and strategies to manage and protect groundwater internationally, possible governance options for the management of South Africa’s groundwater resources are proposed

Abstract

The aim of this study was to determine the geohydrological status of the aquifer within the boundaries of the Vanrhynsdorp Water User Association with emphasis on the central catchment, E33F. This will assist the Department of Water Affairs with the introduction of compulsory groundwater-use licensing and empowerment of the Vanrhynsdorp Water User Association to manage the resource. In this study emphasis was given to the determination of the water balance and  groundwater  reserve  of  the  central  catchment  and  the  designing  of  a  representative groundwater monitoring network. A literature study of five projects conducted since 1978 was done. Comparisons were made between the data and results of these studies. All the historical data from these studies, as well as the data from the current monitoring programme up until December 2012, were put together and analysed. A conceptual model and groundwater reserve determination, as well as a representative monitoring network, were produced. The study showed a general decline in groundwater levels over a 34-year period. It also showed an increase in rainfall over the last 20 years. Based on the reserve determination and the declining groundwater level in spite of increased rainfall and thus recharge, it was concluded that over-abstraction of groundwater in the study area is taking place. It is recommended that compulsory licensing should be put in place as soon as possible and  that  no  additional  groundwater-use  licences  should  be  granted  in  the  study  area.  The installation  of  flow  meters  on  all  production  boreholes  should  be  stipulated  in  the  licensing condition. This will assist the monitoring and regulation of groundwater abstraction volumes.

Abstract

Characterisation of fracture positions is important when dealing with groundwater monitoring, protection and management. Fractures are often good conduits for water and contaminants, leading to  high  flow  velocities  and  the  fast  spread  of  contaminants  in  these  conduits.  Best  practice guidelines related to groundwater sampling suggest that specific depth sampling with specialised bailers or low flow purging are the preferred methodologies to characterise a pollution source. These methods require knowledge about the fracture positions and, more importantly, flow zones in the boreholes. Down-the-hole geophysical and flow logging are expensive, complicated and time consuming. Not all fracture zones identified with geophysical logging seem to contribute to flow through   the   borehole.   An   efficient   and   cost-effective   methodology   is   required   for   the characterisation of position and flow in individual fractures. This research reviewed the use of Fluid Electrical Conductivity (FEC) logging to assist with the development of a monitoring protocol. FEC logging  proved  to  be  beneficial  as  it  provided  individual  fracture  positions,  fracture  yields  and vertical groundwater flow directions. FEC logging proved to be fast, cost-effective and practical in deep boreholes. The technique allows the development of a site-specific sampling protocol. The information so obtained assists with the identification of the appropriate sampling depths during monitoring.

Abstract

Only 40% of all the available groundwater resources are developed in South Africa and the development of surface water are becoming more costly and challenging. The Minister of Water and Environmental Affairs acknowledge this and identified the need to increase the use of groundwater as one of the interventions to address the increasing water requirement of towns and communities. Over the last seven years the Department of Water Affairs developed many reconciliation strategies for the area of water management, the big metro municipalities and for the smaller towns and villages in South Africa. The reconciliation strategies entails, among other things, sustainable ways to source additional water supplies for the selected towns/metro’s or villages. 

Groundwater played a major role in the recommended interventions. The challenges are now the implementation of the groundwater schemes and sustainable management of the groundwater resources. Or differently put: the balancing act between selling of groundwater and the prevention of over-abstraction. The bankability of regional schemes, the credibility of groundwater as a bulk scheme source, poor management of boreholes/well-fields, institutional responsibility, acceptable quality and treatment of groundwater, still challenge the use of groundwater development. Groundwater need to play its role in addressing the future water needs of South Africa, or can it?

Abstract

Gold mining on the Witwatersrand has started in the late nineteenth century as sporadic open cast mining and ceased in the late twentieth century, leaving a complex network of haulages, tunnels and ultra-deep vertical shafts/sub-vertical shafts. At least three ore bodies (conglomeritic horizons) were mined down to a depth in excess of 3 000 m from surface. Three large mining basins resulted from the mining methodology applied, namely the Western, Central and Eastern (Rand) Basins.

In  the  early  days  of  mining  on  the  Witwatersrand  reefs,  gold  mine  companies  realised  that dewatering of their mine workings is required to secure mining operations at deeper levels and decades of pumping and treatment of pumped mine water followed. As the majority of deep gold mines on the Witwatersrand ceased operations since 1970, the deeper portions of the mine voids became flooded and led to a new era in the mining history in the Witwatersrand.

Rewatering of the mine voids is a combination between excessive surface water ingress generated by surface runoff, and to lesser degree recharge from an overlying fractured and weathered aquifer system (where developed). The flow regime in the mine voids from a scattering of ingress/direct recharge points and single discharge points are complex and is driven by shallow (<100 m) and probably deep (>1 000 m) man-made preferential pathways.

The high concentrations of iron sulphide minerals (pyrite. for example FeS2) content, three percent (by weight), of the mined reefs/backfilled stopes and surrounding waste rock piles/tailings dams mobilised significant levels of sulphates (SO4) and ferrous iron (Fe2+) producing an acidic mine-void water (<3 pH).

Monitoring of the rewatering mine void hydrological regime became necessary following the first acid-mine water decant from a borehole in the West Rand Basin, and the Department initiated a mine-void water table elevation trend and water quality monitoring programme. Results from this monitoring programme will be illustrated and discussed in this paper with some views on the future water quality and discharge scenarios.

Abstract

The mineral-rich basin of the West African region has vast reserves of gold, diamond as well as iron ore deposits. Throughout the regional geological setting characterised by structural variations and intrusive belts with metamorphic mineral-rich sequences covered by saprolite soils, one common chemical constituent remains a constant in the water reserves. Arsenic is in high concentrations throughout the region with chemical ranges commonly above the various country guidelines as well as international IFC and WHO standards. The aqueous chemical species is associated with arsenopyrite-rich mineralogy of the regional greenstone belts and highly weathered soils.

This conference presentation investigates the natural source of the arsenic through baseline data, as well as the effect of mining on the already high concentrations of arsenic in both the groundwater and surface water. Natural levels of various chemical species in the regional area are already high at baseline level. One of the main research questions is thus whether mining and other anthropogenic activities will have  an impact on the environment or will  the changes to concentrations be so insignificant to allow the ecosystems and water users to continue in their current ways without any effect. Various case studies in Burkina Faso, Liberia, Sierra Leone and other countries have been combined to investigate the arsenic-rich resources of the West African region through groundwater specialist investigative methods with emphasis on geochemical modelling of the fluid–rock and fluid–fluid interactions leading to the aqueous chemical conditions in the region.

Abstract

The Fountains East and Fountains West groundwater compartments (by means of the Upper and Lower Fountain springs) have been supplying the City of Pretoria with water since its founding in 1855. These adjacent compartments which are underlain by the Malmani dolomites of the Chuniespoort Group are separated by the Pretoria syenite dyke and are bounded to the north by the rocks of the Pretoria Group (Timeball Hill Formation). Inorganic chemistry data (2007-2012), as well as spring discharge volumes (2011-2012) for the Upper and Lower Fountain springs, supplied by the City of Tshwane Municipality, is being used to characterise the two compartments. This is done by means of piper diagrams, bar graphs and temporal plots. Interpretation of the combined chemical and discharge volume data as well as geotechnical and isotope data (in progress) will aid in understanding  the  karst  aquifer  and  the  controls  on  groundwater  system  within  and  possibly between these compartments.

Abstract

In this study, a petroleum hydrocarbon contamination assessment was conducted at a cluster of petroleum products storage and handling facilities located on the Southern African Indian Ocean coastal zone. The Port Development Company identified the need for the assessment of the soil and groundwater pollution status at the tank farms in order to develop a remediation and management plan to address hydrocarbon related soil and groundwater contamination. Previous work conducted at the site consisted of the drilling and sampling of a limited number of boreholes. The current investigation was triggered by the presence of a free-phase product in the coal-grading tippler pit located ~350 m down gradient and south-east and east of the tank farms, rendering the operation thereof  unsafe.  The  assessment  intended  identifying  the  source  of  product,  distribution  and mobility, the extent of the contamination, and the human health risks associated with the contamination. To achieve these, the investigation comprised site walkover and interviews, drilling of 76 hand auger and 101 direct push holes to facilitate vertical soil profile VOC screening and sampling  (soil  and  groundwater),  as  well  as  granulomeric  analysis  to  understand   grain   size distribution  within  the  soil  profile.  The  highest  concentrations  were  associated with the coarse sand layers with the highest permeability. Free-phase hydrocarbons product was found in holes adjacent to the pipeline responsible for the distribution of the product from the jetty to the different tanks farms. Of the 57 soil samples, 21 had high values of GRO and DRO, with 22 below Detection Limit and 14 can be described having traces of hydrocarbon. Both TAME and MTBE were detected in most of the water samples, including from wells located far down gradient. The groundwater sink, adjacent to the pipeline running from west to east, resulted in the limited lateral spread of MBTE in this area, with limited movement towards the sea. The depth of the soil contamination varies over the sites. Based on the site  assessment  results  it  was  concluded  that  most  of  the groundwater contamination, which is a mixture of different product types, is associated with the pipeline responsible for transporting product from the jetty to the different petroleum companies.

Abstract

An understanding of the movement of moisture fluxes in the unsaturated zone of waste disposal sites play a critical role in terms of potential groundwater contamination. Increasing attention is being given to the unsaturated or vadose zone where much of the subsurface contamination originates, passes through, or can be eliminated before it contaminates surface and subsurface water resources. As the transport of contaminants is closely linked with the water flux through the unsaturated zone,  any quantitative analysis of contaminant transport must first evaluate water fluxes into and through this region. Mathematical models have often been used as critical tools for the optimal quantification of site-specific subsurface water flow and solute transport processes so as to  enable  the  implementation of management practices that minimize  both surface water  and groundwater pollution. For instance, numerical models have been used in the simulation of water and solute movement in the subsurface for a variety of applications, including the characterisation of unsaturated zone solute transport in waste disposal sites and landfills. In this study, HYDRUS 2D numerical simulation was used to simulate water and salt movement in the unsaturated zone at a dry coal ash disposal site in Mpumalanga, South Africa. The main objective of this work was to determine the flux dynamics within the unsaturated zone of the coal ash medium, so as to develop a conceptual model  that  explains  solute  transport through  the unsaturated  zone  of the coal ash medium for a period of approximately 10 year intervals. Field experiments were carried out to determine the model input parameters and the initial conditions, through the determination of average moisture content, average bulk density and the saturated hydraulic conductivity of the medium. A two-dimensional finite-element mesh of 100 m × 45 m model was used to represent cross  section  of  the  ash  dump.  Two-dimensional  time  lapse  models  showing  the  migration  of moisture fluxes and salt plumes were produced for the coal ash medium. An explanation on the variation of moisture content and cumulative fluxes in the ash dump was done with reference to pre-existing ash dump data, as well as the soil physical characteristics of the ash medium.

Abstract

The thermal springs of Swaziland and adjacent KwaZulu-Natal have, over the years, attracted attention from hydrogeologists, hydrochemists and structural geologists. While some of the springs in Swaziland are well known amenities, others are less well-visited and some difficult to access. There are eleven warm springs in Swaziland, discharging between 1 and 10 l/s from Precambrian age rocks; all are situated at or near valley bottoms. The springs have surface discharge temperatures of between 25 and 52 oC and total dissolved solids concentrations of less than 400 mg/l. In all cases the water is meteoric in origin. Geothermometry indicates that maximum temperatures up to 100 oC are achieved during circulation. If the average geothermal gradient is about 20 oC/km as recorded in a deep mine at Barberton, then this would require circulation up to a depth of several kilometres. However, it is likely that circulation bottoms at about 1 km, as pressure of overburden inhibits dilation of fractures at such depths, and the excess temperature may derive from a locally enhanced geothermal gradient. The discharge water is young, with 14C ages of between 4 000 and 5 000 years.

Abstract

The water quality in the crystalline rocks of the Johannesburg and its environs has been severely altered by the mining activity. Due to freshwater scarcity and dependency of the people on the groundwater, it is important to understand the extent of hydrogeochemical footprint in the area. The water quality characteristic has been thoroughly assessed in the crystalline aquifers based on the input from hydrogeochemical characteristics and environmental isotopes. The results show that the calculated dilution factor for acid-mine decant is in the range of 68% as a result of interaction with surrounding fresh water. The SO4/Cl ratio has a wide range of values that falls between 0 an306.37, while that of Fe/Ca ratio falls between 0 and 5.59. High SO4/Cl values potentially indicate thinterference of acid-mine decant with the groundwater system traced through sulphate concentration. Similarly, a high Fe/Ca ratio also indicates the impact of acid-mine decant on the groundwater system where iron is traced with respect to calcium concentration. In this regard the ratios above 0,25 (with the assumption of 1 to 4 natural abundance for Fe:Ca in water in the area) could potentially represent acid-mine decant source.The results confirm that most of the water- supply wells have heterogeneous chemistry with distinctive hydrogeochemical footprint represented by abnormally high Fe, SO4 and Si as a result of acid-mine decant.

Abstract

Lake  Sibayi  (a  topographically  closed  freshwater  lake)  and  coastal  aquifers  around  the  Lake  in eastern South Africa are important water resources and are used extensively for domestic water supplies. Both the Lake and groundwater support an important and ecologically sensitive wetland system   in   the   area.   Surface   and   subsurface   geological   information,   groundwater   head, hydrochemical and environmental isotope data were analysed to develop a conceptual model of aquifer–lake interaction for further three-dimensional numerical modelling. These local geologic, groundwater head distribution, lake level, hydrochemistry and environmental isotope data confirm a direct hydraulic link between groundwater and the Lake. In the western section of the catchment, groundwater flows to the lake where groundwater head is above Lake stage, whereas along the eastern section, the presence of mixing between Lake and groundwater isotopic compositions indicated that the Lake recharges the aquifer. Stable isotope signals further revealed the movement of lake water through and below the coastal dune cordon and eventually discharges into the Indian Ocean. Quantification of the 14-year monthly water balance for the Lake shows strong seasonal variations of the water balance components. Recent increase in rate of water abstraction from the lake combined with decreasing rainfall and rapidly increasing pine plantations may result in a decrease in lake level which would have dramatic negative effects on the neighboring ecosystem and a potential seawater invasion of the coastal aquifer.

Abstract

This paper was presented at the GWD Central Branch Symposium, Potchefstroom in 2012

Numerical modelling of hydrogeological systems has progressed significantly with the evolution of technology and the development of a greater understanding of hydrogeology and the underlying mathematical principles. Hydrogeological modelling software can now include complex geological layers and models as well as allow the pinching out of geological features and layers. The effects of a complex geology on the hydraulic parameters determined by numerical modelling is investigated by means of the DHI-WASY FEFLOW and Aranz Geo Leapfrog modelling software packages.

The Campus Test Site (CTS) at the University of the Free State in Bloemfontein, South Africa was selected as the locale to be modelled. Being one of the most studied aquifers in the world, the CTS has had multiple research projects performed on it and as a result ample information is available to construct a hydrogeological model with a high complexity. The CTS consists primarily of stacked fluvial channel deposits of the Lower Beaufort Group, with the main waterstrike located on a bedding-plane fracture in the main sandstone aquifer.

The investigation was performed by creating three distinct hydrogeological models of the CTS, the first consists entirely of simplified geological strata modelled in FEFLOW by means of average layer thicknessand does not include the pinching out of any geological layers. The second model was created to be acopy of the first, however the bedding-plane fracture can pinch out where it is known to not occur. The third and final model consisted of a complex geological model created in Leapfrog Geo which was subsequently exported to FEFLOW for hydrogeological modelling.

Abstract

For the Department of Water and Sanitation (DWS) to better leverage the wealth of information being collected by various “silo” operational source water information systems, a high-priority initiative was launched to establish a National Integrated Water Information System (NIWIS), which currently consists of over 40 web-accessible dashboards including groundwater related dashboards mostly accessible to the public. Dispersed and disintegrated data and information stored in different sources and formats would hinder decision support in the water sector and deter improvement in service delivery by the DWS. The DWS undertook an extensive and rigorous business requirements analysis exercise within the DWS to ensure that the proposed system does not become a white elephant and facilitate the prioritization of system deliverables. A prototype (waterfall) approach was adopted to develop the NIWIS to ensure the development was still within the suggested business requirements. NIWIS has enabled mostly DWS managers to establish one trusted source of decision-making information for timeous, effective and efficient responses to service delivery. The number of NIWIS dashboards continues to grow as improved data-related business processes are adopted. The unavailability of reliable data from DWS data sources and the exclusion of business requirements from organizations external to DWS were identified as the main challenges to NIWIS disseminating comprehensive, credible information. Therefore, this paper aims to provide some details of the geohydrological information that NIWIS provides and seek feedback from this International Hydrogeologists community for further development of NIWIS.

Abstract

The Namibian uranium province, located in the Namib Desert, derives its name from the local presence of almost ten uranium tenements. The mines conduct monitoring of natural radionuclide concentrations of Ra226, Ra228, Pb210, U234, U238, Th232 and Po210 in local aquifers. This data is useful in mine rehabilitation and developing closure criteria, as only radiation doses additional to natural doses are usually considered ‘controllable’ for radiation protection purposes. An accredited laboratory analyzed the baseline data collected through quarterly groundwater sampling with submersible pumps. The uranium deposits are hosted in Damara age granites or as secondary mineralization in Tertiary calcareous paleochannels. The analysis of the long-term baseline data provides the background radionuclide concentrations of three aquifer types in the province, i.e., the Quaternary saturated alluvium of the Khan and Swakop ephemeral Rivers, the Tertiary paleochannel sediments, and Proterozoic basement aquifers. The ephemeral rivers are important because they supply groundwater downstream of the mines for agricultural use. The analysis demonstrated that the alluvial aquifers have the lowest natural radionuclide content, with the U234 concentrations ranging between 0.03 and 3.4 Bq/l, while paleochannel and basement aquifers show intermittent U234 concentrations ranging between 0.25 and 5.1 Bq/l. The groundwater in the immediate ore zones shows the highest U234 concentrations, ranging between 44.8 and 86.3 Bq/l, exceedingly higher than the WHO standards of 1 Bq/l. This study illuminates that radioactivity is a natural phenomenon and that groundwater baseline data is paramount to groundwater protection.