Quantification of river-aquifer interactions using multiple measuring methods for improved water abstraction in the Lower Vaal River catchment, South Africa

Previous studies have shown that river-aquifer connectivity exists. However, an integrated approach that consists of multiple measuring methods to quantify and characterise such connectivity still needs improved scientific understanding due to the underlying principles and assumptions of such methods, mainly when such methods are applied in a semi-arid environment. Three techniques (hydrogeochemistry, stable water isotopes, and baseflow separations) were applied to quantify and characterize river-aquifer interactions. The study’s objective was to improve knowledge and understanding of the implications of the results from the three methods. Field measurement, laboratory assessment, and record review were used to collect primary and secondary data. Results showed that Na- HCO3 water type dominated the upper stream, discharging onto the surface and forming stream sources. Na-HCO3 water type was an outlier when the area’s geology and land use activities were assessed. The isotope results showed that the studied aquifer had 9% recently recharged water. Being the upstream, the freshwater in such a mountainous aquifer was expected. The baseflow index (BFI) results showed that the dependency of the total river flow to aquifer discharge contributed 7.24 % in the upper stream, 7.31% in the middle stream, and 7.32% in the lower stream. These findings provided empirical evidence that hydrochemistry, stable isotopes, and baseflow separation methods provide key insights into aquifer-stream connectivity. Such findings inform choosing appropriate and relevant measures for protecting, monitoring, and allocating water resources in the catchments.

Presenter Name
Lucky
Presenter Surname
Baloyi
Area
South Africa
Conference year
2023