A Baseline Study of Scarce Groundwater Resources in Anticipation of Fracking in the Karoo

The anticipated exploration and exploitation of Shale Gas in the Eastern Cape Karoo through hydraulic fracturing has raised considerable debate regarding the benefits and risks associated with this process for both the Karoo, and the country as a whole. Major concerns include the potential impact of hydraulic fracturing on ecological, environmental and especially scarce water resources. The Eastern Cape Karoo region is a water stressed area and with further climate change it will become increasingly so. Thus, effective and reliable groundwater management is crucial for sustainable development in this region. This research aims to hydrochemically characterise both the shallow groundwater (<500m) and deeper saline groundwater in the vicinity of the Shale Gas bearing formations, based on major and trace elements, as well as gas isotope analyses. Sampling will include water sampling and gas measurements from shallow boreholes (<300m), SOEKOR drillholes (oil exploration holes drilled in the 60's and 70's up to 4km deep) and thermal springs (source of water >500m).

To-date, a desktop study includes the collation of information determining the areas with the highest potential for Shale Gas Exploration throughout the Eastern Cape Karoo, from which the research area has been determined. This includes the identification of the respective oil companies' exploration precincts. A Hydrocensus has been initiated across this area, which includes slug testing and electrical conductivity profiling of open, unequipped boreholes. Further borehole selection will be finalised from this acquired information. The boreholes will be sampled and analysed a minimum of three times per year, which will occur after summer (April/May) and winter (October/November), after which the hydrochemistry will be analysed. The sampling will be preceded by purging of all inactive boreholes. The possible hydraulic connectivity between the shallow and deep aquifers will be tested, particularly in those areas where dolerite intrusions as well as fault systems may enhance preferential flow of water, using the chemical forensics complemented with passive seismic profiling/imaging and deep penetrating Magneto-Telluric (MT) imaging.

The data collected will form a record against which the impact of fracking can be accurately determined. The research is a critical first step towards the successful governance of groundwater in light of the proposed Shale Gas development. In its absence, effective regulation of the sector will not be possible.

Presenter Name
Divan
Presenter Surname
Stroebel
Area
Eastern Cape, Karoo
Conference year
2015