Assessing aquifer vulnerability using tritium and machine learning in Africa’s western Sahel

Understanding the sensitivity of groundwater resources to surface pollution and changing climatic conditions is essential to ensure its quality and sustainable use. However, it can be difficult to predict the vulnerability of groundwater where no contamination has taken place or where data are limited. This is particularly true in the western Sahel of Africa, which has a rapidly growing population and increasing water demands. To investigate aquifer vulnerability in the Sahel, we have used over 1200 measurements of tritium (3H) in groundwater with random forest modelling to create an aquifer vulnerability map of the region.

In addition, more detailed vulnerability maps were made separately of the areas around Senegal (low vulnerability), Burkina Faso (high vulnerability) and Lake Chad (mixed vulnerability). Model results indicate that areas with greater aridity, precipitation seasonality, permeability, and a deeper water table are generally less vulnerable to surface pollution or near-term climate change. Although well depth could not be used to create an aquifer vulnerability map due to being point data, its inclusion improves model performance only slightly as the influence of water table depth appears to be captured by the other spatially continuous variables.

Presenter Name
Joel
Presenter Surname
Podgorski
Area
Switzerland
Conference year
2023