springs

Springs of the Otavi Mountainland. Could they teach us something significant?

The work presented in this paper incorporates spring data for further conceptualizing the hydrogeology of northern Namibia’s so-called “Karst Area”, an area around the towns of Tsumeb, Otavi and Grootfontein. Also called the Otavi Mountainland, it can be described as a mountainous highland of parallel, east-west trending elongated valleys and ranges shaped by the underlying folded units of carbonate rocks of the Damara Supergroup. The karst aquifers are a supplementary source to the central areas of the country during drought.

Virtual Groundwater Seminar (DWS WCape)

Virtual event
  • groundwater research
  • Resource protection
  • remediation
  • springs
Register for

Event description



About this event

Virtual Groundwater Seminar (DWS WCape)

Virtual event

Sponsors / Engagement Partners

A Rapid Analysis Of Spring Water Quality In Some Neighbouring Villages Of Thohoyandou Town In Thulamela Local Municipality

POSTER A quick analysis of spring water quality was conducted in four neighbouring villages, namely Vondo, Matondoni, Maranzhe and Murangoni in Thohoyandou town under the Thulamela Local Municipality (TLM) of the Vhembe District Municipality (VDM). For the purposes of this study these villages will be termed VMMM villages.

Hydrogeological Heritage: the Springs supplying Pretoria

Despite majority of the terrestrial fresh water resources being groundwater, there still exists a public perception that the only source of potable water is from surface water bodies. Due to this misperception, the general public is often ignorant about the importance of groundwater as a resource. This is evident in the lack of appreciation for the Upper and Lower Fountains in Pretoria as the main reason for various historical events in and around Pretoria, leading to it eventually becoming the capital of South Africa.

Interannual variability in rainfall isotope composition as a tracer of spring water flow.

Table Mountain reaches 1086m elevation, the upper half of which comprises Table Mountain Group (TMG) quartzite with extensive fracture porosity. The lower half of the mountain comprises a mixture of Cape Granite intruded into Malmesbury Group metapelites, both of which are poor aquifers, but are in places overlain by scree slopes predominantly composed of TMG quartzite boulders. The region experiences a Mediterranean climate with warm, dry summers and cold, wet winters, with rainfall ranging from 600-1600mm/a depending largely on proximity to the mountain.

Isotope Constraints On The Source And Residence Time Of Spring Water From The Table Mountain Group Aquifer, Paarl, South Africa

Large scale groundwater abstraction is increasingly being used to support large urban centres particularly in areas of low rainfall but presents particular challenges in the management and sustainability of the groundwater system. The Table Mountain Group (TMG) Aquifer is one of the largest and most important aquifer systems in South Africa and is currently being considered as an alternative source of potable water for the City of Cape Town, a metropolis of over four million people.