Conference Abstracts

All Abstracts were presented at the Groundwater Conferences

Displaying 751 - 795 of 795 results
Title Presenter Name Presenter Surname Area Sort ascending Conference year Keywords

Abstract

Currently limited progress is made in South Africa (and Africa) on the protection of groundwater used for drinking water. To achieve the objective of water for growth and development and to provide socio-economic and environmental benefits of communities using groundwater, significant aquifers and well fields must be adequately protected. Groundwater protection zoning is seen as an important step in this regard. Till today, limited case studies of groundwater protection zoning exists in Africa. A case study at the Rawsonville research site is conducted in this research project. Generic protection zones can be delineated at the site using published reports and database data. However, due to the complexity of the fractured rock at the research site, these would be of limited value and would not provide adequate protection for the well field Baseline data was collected by conducting a hydro census and through aquifer tests. An inventory of the activities that can potentially impact water quality was done and aquifer characteristics such as transmissivity and hydraulic conductivity were determined through various types of aquifer testing. Fracture positions were identified using fluid logging and fracture flow rates were also measured using fluid logging data. A conceptual model and preliminary 3D numerical model were created to try to understand groundwater movement at the research site. The knowledge gained will be used to guide information gathering and monitoring that can be used to build a more detailed numerical model and implement a trustworthy groundwater protection plan at a later stage. The expected results will have applicability to groundwater management in general. The protection plan developed during this project can be used as a case study to update and improve policy implementation. {List only- not presented}

Abstract

The Table Mountain Group (TMG) Formation in the Uitenhage region, in the Eastern Province of South Africa, has many groundwater users, which could result in the over-exploitation of the underlying aquifer. Consequently, several investigations have been conducted to help in the planning and management of groundwater resources within the region. Traditionally, these investigations have considered groundwater and surface water as separate entities, and have been investigated separately. Environmental isotopes, hydrochemistry and feacal colifom bacteria techniques have proved to be useful in the formulation of interrelationships and for the understanding of groundwater and surface water interaction. The field survey and sampling of the springs, Swartkops River and the surrounding boreholes in the Uitenhage area have been conducted. After full analysis of the study, it is anticipated that the data from the spring, Swartkops River and the surrounding boreholes show interannual variation in the isotope values, indicating large variation in the degree of mixing, as well as to determine the origin and circulation time of different water bodies. ?D and ?18O value for the spring ranges from ?18.9? to ?7.4?, and 5.25? to 4.82?, respectively, while ?D values for borehole samples range from ?23.5? to ?20.0? and ?18O values range from ?5.67? to ?5.06?. In the river sample, ?D values ranges from ?12.1? to ?4.2?, ?18O from ?3.7? to ?1.13?, respectively. The entrobacter aerogen and E.Coli bacteria were detected in the samples. E. coli population for spring and the artesian boreholes indicated low value while the shallow boreholes had higher values are relatively closer to those of the middle ridges of the Swartkops River. The EC values for the spring samples averages at 14 mS/m, borehole samples ranges from 21 mS/m to 1402 mS/m, and surface water ranges from 19 mS/m to 195 mS/m. Swartkops River is an ephemeral, therefore it is expected that diffuse recharge occurs into the shallow aquifer.

Abstract

Groundwater monitoring, especially from the end users' point of view, is often considered an add-on, or even unnecessary overhead cost to developing a borehole. Simply measuring groundwater level over time can however tell a story on seasonal rainfall fluctuations as well as the response of an aquifer to the removal of an abstracted volume of water. In this case an artesian borehole of high yield and exceptional quality was drilled in an area of minimal groundwater use because of known poor quality and low yields. The borehole was drilled in two stages with the deeper drilling resulting in significantly higher yields and the artesian flow. Sediment free water, deep artesian water strikes and a lack of flow around the casing led to the conclusion that capping at surface would control the visible artesian flow of 4 L/s. A slight drop in pressure indicated that subsurface leakage may however be occurring. Neighbouring boreholes with automated water level monitoring provided data showing a correlation of drop in water level to the second deeper drilling event. The artesian borehole was yield tested and this too was visible in the water level monitoring data. Hereafter it became apparent that each activity performed at the artesian borehole had an impact on the monitoring boreholes, and that a subsurface leak was causing local depressurization of a semi-confined to confined aquifer. An initial attempt to save the artesian borehole was unsuccessful, resulting in the necessary blocking and abandonment of a high yielding, superior quality borehole. If monitoring data was not available the local drop in water level would never have been noticed with disastrous effect and no evidence for the cause. Simple water level monitoring has averted this and kept neighbourly relations and ground water levels intact

Abstract

A large number of groundwater investigations have been carried out in the Western Cape over the last decade or so. Most of them were related to water supply options for individuals, agriculture, businesses, industries, government departments and municipalities. Some of these developments have confirmed what we already knew about the groundwater characteristics and aquifers of the Western Cape, while others provided us with surprises - surprises so significant that we may have to re-write what we thought we knew. This paper will not be able to cover all the interventions and groundwater studies that have been done. Two case studies linked to the major geological structure in the Western Cape, namely the Colenso Fault (also known as the Franschhoek-Saldanha Fault), will therefore be used as an illustration of the lessons that were learnt by comparing them with our historical understanding of the associated groundwater characteristics. It will also show that there is a need for updated groundwater maps on smaller scale and a reassessment of the aquifers status.

Abstract

This study explores some of the principle issues associated with quantifying surface and groundwater interactions and the practical application of models in a data scarce region such as South Africa. The linkages between the various interdependent components of the water cycle are not well understood, especially in those regions that suffer problems of data scarcity and there remain urgent requirements for regional water resource assessments. Hydrology (both surface and groundwater hydrology) is a difficult science; it aims to represent highly variable and non-stationary processes which occur in catchment systems, many of which are unable to be measured at the scales of interest (Beven, 2012). The conceptual representations of these processes are translated into mathematical form in a model. Different process interpretations together with different mathematical representations results in the development of diverse model structures. These structural uncertainties are difficult to resolve due to the lack of relevant data. Further uncertainty is introduced when parameterising a model, as the more complex the model, the greater the possibility that many different parameter sets within the model structure might give equally acceptable results when compared with observations. Incomplete and often flawed input data are then used to drive the models and generate quantitative information. Approximate implementations (model structures and parameter sets), driven by approximate input data will necessarily produce approximate results. Most model developers aim to represent reality as far as possible, and as our understanding of hydrological processes has improved, models have tended to become more complex. Beven (2002) highlighted the need for a better philosophy toward modelling than just a more explicit representation of reality and argues that the true level of uncertainty in model predictions is not widely appreciated. Model testing has limited power as it is difficult to differentiate between the uncertainties within different model structures, different sets of alternative parameter values and in the input data used to run a model. A number of South African case studies are used to examine the types of data typically available and explore the extent to which a model is able to be validated considering the difficulty in differentiating between the various sources of uncertainty. While it is difficult to separate input data, parameter and structural uncertainty, the study found that it should be possible to at least partly identify the uncertainty by a careful examination of the evidence for specific processes compared with the conceptual structure of a specific model. While the lack of appropriate data means there will always be considerable uncertainty surrounding model validation, it can be argued that improved process understanding in an environment can be used to validate model outcomes to a degree, by assessing whether a model is getting the right results for the right reasons.

Abstract

Groundwater is a vital source of water for many communities in South Africa and elsewhere. Besides the changing climate, rapidly spreading invasive alien plants with deep roots e.g. Prosopis spp, pose a serious threat to this water source. Dense impenetrable thickets of Prosopis occur in the drier parts of the country mainly along river channels in the Northern, Eastern and Western Cape Provinces. Few studies have quantified the actual water use by this species outside of the USA where it is native. Consequently the impacts of Prosopis invasions on groundwater resources are not well documented in South Africa. The aim of this study was to quantify the actual volumes of water used by Prosopis invasions and to establish the effects on groundwater. Because deep rooted indigenous trees that normally replace Prosopis once it has been cleared also use groundwater, we sought to quantify the incremental water use by Prosopis over and above that used by indigenous trees in order to determine the true impacts on groundwater. The study was conducted at a site densely invaded by Prosopis at Brandkop farm near the groundwater dependent town of Nieuwoudtville in the Northern Cape. One in seven trees at the site is the Vachellia karroo (formerly A. karroo) which is the dominant deep rooted indigenous tree species. Actual transpiration rates by five Prosopis and five V. karroo are being measured using the heat pulse velocity (HPV) sap flow technique. Additional HPV sensors were installed on the tap and lateral roots to study the water uptake dynamics of the trees. Groundwater levels are being monitored in four boreholes drilled across the site while sources of water used by the trees (i.e. whether soil or groundwater) is being determined using O/H stable isotopes. For similar size trees, V. karroo had higher transpiration rates than Prosopis because of the larger sapwood to heartwood ratio in V. karroo than in Prosopis. However, at the stand level Prosopis consumed significantly larger amounts of water than V. karroo. This is because Prosopis invasions had a much higher tree density than V. karroo. From August 2013 to July 2014, annual stand transpiration for Prosopis (~ 372 mm) was more than 4 times higher than that of V. karroo (~ 84 mm). Tree water uptake was correlated to changes in groundwater levels (R2 ~ 0.42) with groundwater abstractions of ~ 2600 m3/ha/y by Prosopis compared to ~ 610 m3/ha/y for V. karroo. In addition, Prosopis showed evidence of hydraulic redistribution of groundwater wherein groundwater was deposited in the shallow soil layers while V. karroo did not. Results of this study suggest that clearing of Prosopis to salvage groundwater should target dense stands while less dense stands should be prevented from getting dense. {List only- not presented}

Abstract

There is growing concern that South Africa's urban centres are becoming increasingly vulnerable to water scarcity due to stressed surface water resources, rapid urbanisation, climate change and increasing demand for water. Given South Africa's water scarcity, global trends for sustainable development, and awareness around the issues of environmental degradation and climate change, there is a need to consider alternative water management strategies. Water Sensitive Urban Design (WSUD) is an approach to sustainable urban water management that attempts to achieve the goal of a 'Water Sensitive City'. The concept of a Water Sensitive City seeks to ensure the sustainable management of water using a range of approaches such as the reuse of water (stormwater and wastewater), exploiting alternative available sources of supply, sustainable stormwater management and improving the resource value of urban water through aesthetic and recreational appeal. Therefore, WSUD attempts to assign a resource value to all forms of water in the urban context, viz. stormwater, wastewater, potable water and groundwater. However, groundwater is often the least considered because it is a hidden resource, often overlooked as a form a water supply (potable and non-potable) and it is often poorly protected. The management of urban groundwater and understanding the impacts of WSUD on groundwater in South African cities is challenging, due to complex geology, ambiguous groundwater regulations and management, data limitations, and lack of capacity. Thus, there is a need for an approach to assess the feasibility of management strategies such as WSUD, so that the potential opportunities and impacts can be quantified and used to inform the decision making process. An integrated modelling approach, incorporating both surface and subsurface hydrological processes, allows various urban water management strategies to be tested due to the complete representation of the hydrological cycle. This integration is important as WSUD is used to manage surface water, but WSUD known to utilise groundwater as a means of treatment and storage. This paper assesses the application, calibration and testing of the integrated model, MIKE SHE, and examines the complexities and value of establishing an integrated groundwater and surface water model for urban applications in South Africa. The paper serves to demonstrate the value of the application of MIKE SHE and integrated modelling for urban applications in a South African context and to test the models performance in Cape Town's unique conditions, accounting for a semi-arid climate, complex land use, variable topography and data limitations. Furthermore, this paper illustrates the value of integrated modelling as a management tool for assessing the implementation of WSUD strategies on the Cape Flats, helping identifying potential impacts of WSUD interventions on groundwater and the potential opportunities for groundwater to contribute towards ensuring to Cape Town's water security into the future.

Abstract

Fine ash is a by-product generated during coal combustion and gasification. It is often disposed of as slurry and stored on tailings dams over long periods of time, where it is exposed to weathering. Weathering causes soluble ions to go into solution and to be transported along preferred pathways through the tailings dam. This study was conducted to assess the leaching behaviour of fresh and weathered fine ash and to evaluate the impact on the underlying aquifers. A kinetic test was conducted over 21 weeks to analyse the leachate composition of progressively-aged fine ash and to calculate the release rates for major ions and trace metals of environmental concern. The leachate composition was compared to the groundwater composition of the underlying aquifers to assess the environmental impact of long term ash leaching. The study showed that the release rate of Ca decreased with increasing depth and age of the fine ash. The release rate of Mg, Na, K, Mo, V, Ba, Cr and Mo increased slightly between 22 m and 28 m in the tailings dam. Aluminium had a decreasing release rate from 28 m depth onwards. It was concluded that fine ash leaching influenced the water composition of the underlying aquifers because similarities were observed in the water type trend. The shallow aquifer south of the tailings dam contained Ca/Mg/SO4/Cl/NO3 water with a significant increase in Ca, Mg, Na, Cl and SO4 over time. These ions were expected to be found in the pollution plume due to their high release rate observed in the fine ash. The deeper aquifer northeast and south of the tailings dam showed a reverse trend of decreasing Ca, Mg and NO3 with time. This is possibly due to decreasing release rates in the aging fine ash and due to the cation exchange capacity (CEC) of the aquifer retarding the movement of Ca and Mg in the pollution plume. The shallower aquifer northwest of the tailings dam showed a decrease in Ca and Mg but an increase in K, while the water composition of the deeper aquifer increased in Ca, Mg, Na, K and Cl. This indicates that the pollution plume moved from the shallower to the deeper aquifer and that most of the Ca and Mg content in the fine ash has been leached from the tailings dam after more than 30 years of storage. The study confirmed that leaching of elements from the fine ash tailings dam had a negative influence on the underlying aquifers and that the clay lining was not sufficient in retaining the leachate.

Abstract

Many groundwater models are commissioned and built under the premise that real world systems can be accurately simulated on a computer - especially if the simulator has been "calibrated" against historical behavior of that system. This premise ignores the fact that natural processes are complex at every level, and that the properties of systems that host them are heterogeneous at every scale. Models are, in fact, defective simulators of natural processes. Furthermore, the information content of datasets against which they are calibrated is generally low. The laws of uncertainty tell us that a model cannot tell us what will happen in the future. It can only tell us what will NOT happen in the future. The ability of a model to accomplish even this task is compromised by a myriad of imperfections that accompany all attempts to simulate natural systems, regardless of the superficial complexity with which a model is endowed. This does not preclude the use of groundwater models in decision-support. However it does require smarter use of models than that which prevails at the present time. It is argued that, as an industry, we need to lift our game as far as decision-support modeling is concerned. We must learn to consider models as receptacles for environmental information rather than as simulators of environmental systems. At the same time, we must acknowledge the defective nature of models as simulators of natural processes, and refrain from deploying them in a way that assumes simulation integrity. We must foster the development of modelling strategies that encapsulate prediction-specific complexity supported by complexity-enabling simplicity. Lastly, modelers must be educated in the mathematics and practice of inversion, uncertainty analysis, data processing, management optimization, and other numerical methodologies so that they can design and implement modeling strategies that process environmental data in the service of optimal environmental management.

Abstract

The expectation that during yield tests, a borehole will react within the expected framework of the existing numerical models, is often not met within real-world scenarios. This is mainly due to the observation that the Theis solution for confined aquifers, Neuman solution for unconfined aquifer and Barker Generalised Radial Flow Model for hydraulic tests in fractured rocks all include idealised assumptions regarding the physical aspects of a hypothetical. In order to interpret the data from a yield test these methods, along with the Flow Characteristic method for sustainable yield estimates, are commonly used. However, as these assumptions are not always met, the analysis is usually focused on time periods within the test that approximate these solutions. In some cases, the extent to which these assumptions are not met can produce drawdown data that is not well described by the usual analytical models used to analyse this data. This study addresses some of the shortcomings experienced during testing in non-ideal aquifers, as well as briefly describing some tests where small budgets, short deadlines, a lack of information and/or unforeseen circumstances resulted in similar challenges to analyses. This study does not present new solutions to drawdown data analyses, but rather discusses how the mentioned solutions were used during testing to accommodate for the shortcomings experienced.

Abstract

Until 1998 groundwater was managed separately from surface water and was seen as a private resource. The National Water Act of 1998 (Act 36 of 1998) (NWA) was forward thinking in that it saw groundwater as an integrated part of the water resource system and as a common resource to be managed by the Department of Water and Sanitation (DWS) as custodian. Various tools had been provided to manage the water resources equitably, sustainably and efficiently. A limited understanding of groundwater and the prevalence to revert to engineering principles when managing water resources had led to an Act that is mostly written with surface water in mind. The tools and principles that had been tested for surface water was used directly for groundwater without considering the practicalities in applying and enforcing the NWA. This did not provide too many problems, as groundwater was not considered a viable, sustainable water resource, and the use of groundwater was mostly limited to private use for garden irrigation, in agriculture for irrigation and for bulk supply in a number of small towns where surface water was not available. This has changed drastically during the recent drought that affected the whole country, but especially the Western Cape. Groundwater was suddenly seen as the solution to the problem of water availability. The problem was that the understanding of groundwater has not increase sufficiently over the years, and water resources management is still skewed to hydrology principles that apply to surface water. Groundwater sustainability is at the heart of the questions of scale and measurements. The Department has been flooded by the large number of water use licence applications that have been submitted by municipalities, industries and agriculture as a result of the drought. This article will look at groundwater resource assessment and allocation methodology in a South African context.

Abstract

Pollution of underground water is fast becoming a global problem and South Africa is not immune to this problem. The principal objective of this paper is to investigate the effectiveness of laws and policies put in place to mitigate underground water pollution. The paper also seeks to examine the causes and types of underground water pollution followed by a closer look into the laws and policies in place to mitigate the pollution levels. Finally, the paper seeks to ascertain whether the current policies are properly implemented. The paper follows content analysis (desk research) to achieve the objectives. Policy recommendations are given based on the findings. {List only- not presented}

Abstract

In the following study, the soil and groundwater regime of the Rietvlei wetland near Cape Town are characterised. This has been done by means of logging the subsurface material during the construction of 8 shallow wells, complimented with field observations, and surveying the dug wells. The water stemming from these wells was sampled and analysed for Oxygen 18 and Deterium. Downhole salinity logs of the wells were also undertaken and rainfall samples were analysed for the aforementioned stable isotopes. Results indicate a distinct relationship between elevation and soil structure. Through the use of the water table method, it was found that the relationship between elevation and soil moisture had a direct impact on spatially distributed groundwater recharge on an event basis. Furthermore, higher salinities were found with depth in groundwater in the same wells which had higher recharge values. Isotopic results indicate that groundwater all stems from rainfall, with the exception of Well 8 is influenced by the river due to its proximity to the surface water body. The various water chemistries and soil profiles have a direct impact on the type of flora and its distribution throughout the study area. This study managed to conceptualize the relationship between groundwater, soil profiles and the various plant types surviving in the Rietvlei wetland. Future studies can focus on computer based approaches in order to predict how changes in groundwater characteristics caused by natural or anthropogenic factors would affect other ecohydrological processes within the wetland. These findings can be incorporated in decision making processes concerning groundwater management.

Abstract

POSTER Researching a subject on the internet the slogan "Water flows upstream to money" popped up. The context was drought, and the meaning clear. If politics come into play as well, it would seem that science is relegated to a distant third place. The proclamation of the National Water Act, of 1998 (Act 36 of 1998), recognized the importance of groundwater and its role in the hydrological cycle and water supply issues. Groundwater governance has grown since then and is becoming increasingly important. One of the most important tenets on which groundwater based is the concept of sustainability. Various definitions of sustainability is used with the best know being "?development which meets the needs and aspirations of the present generation without compromising the ability of future generations to meet their own needs." Even though the basic understanding of sustainability may have been around for much longer than the term, it is the application of the theory in our current context that present us with challenges. Concepts like the precautionary principle, corporate governance and other buzz words that is being used does not always ensure good groundwater governance. One of the greatest problems is often the lack of scientific understanding and knowledge. Groundwater systems tend to be more complex and thus more difficult to manage than surface water. Understanding how groundwater and surface water interact, and that it is actually a linked water resource adds to the complexity. Add to this its importance in the functioning of groundwater dependent ecosystems that is still poorly understood. This article will look at principles for good groundwater governance and the tools that are needed to achieve it. It will finally look at real case studies where scientific considerations fall by the wayside for the requirements of the economy and political goals.

Abstract

Groundwater is an important resource for multiple uses in South Africa. Hence, setting limits to its sustainable abstraction while assuring basic human needs is required. Due to prevalent data scarcity related to groundwater replenishment, which is the traditional basis for estimating groundwater availability, the present article presents a novel method for determining allocatable groundwater in quaternary catchments through information on streamflow. Using established methodologies for assessing baseflow, recession flow, and instream ecological flow requirement, the methodology develops a combined stepwise methodology to determine annual groundwater storage volume using linear reservoir theory, essentially linking low flows proportionally to upstream groundwater storages. The approach was trialled for twenty-one perennial and relatively undisturbed quaternary catchments with longterm and reliable streamflow records. Using the Desktop Reserve Model, maintenance low instream flow requirements necessary to meet present ecological state of the streams were determined, and baseflows in excess of these flows were converted into allocatable groundwater storages on an annual basis. Results show that groundwater development potential exists in nineteen of the catchments, with upper limits to allocatable groundwater volumes (including present uses) ranging from 0.02 to 2.60 Mm3/a over the catchments. With a secured availability of these volumes 75% of the years, variability between years is assumed to be manageable. A significant (R2 = 0.86) correlation between baseflow index and the drainage time scale for the catchments underscores the physical basis of the methodology and also enables the reduction of the procedure by one step, omitting recession flow analysis. The method serves as an important complementary tool for the assessment of the groundwater part of the Reserve and the Groundwater Resource Directed Measures in South Africa.

Abstract

Three dimensional numerical flow modelling has become one of the best tools to optimise and management wellfields across the world. This paper presents a case study of simulating an existing wellfield in an alluvial aquifer directly recharged by a major perennial river with fluctuating head stages. The wellfield was originally commissioned in 2010 to provide a supply of water to a nearby Mine. Ten large diameter boreholes capable of abstracting ±2 000 m3 /hour were initially installed in the wellfield. The numerical groundwater flow model was used to evaluate if an additional 500 m3 /hour could be sustainably abstract from the alluvial aquifer system. A probabilistic river flow assessment and surface water balance model was used to quantify low and average flow volumes for the river and used to determine water availability in the alluvial aquifer over time. Output generated indicated that the wellfield demand only exceeded the lowest 2% (98th percentile) of measured monthly river flow over a 59 year period, thereby proving sufficient water availability. Conceptual characterisation of the alluvial aquifer was based on previous feasibility studies and monitoring data from the existing hydrogeological system. Aquifer parameters was translated into the model discretisation grid based on the conceptual site model while the MODFLOW River package was used to represent the river. Actual river stage data was used in the calibration process in addition to water levels of monitoring boreholes and pump tests results. The input of fluctuating river water levels proved essential in obtaining a low model error (RMSE of 0.3). Scenario modelling was used to assess the assurance of supply of the alluvial aquifer for average and drought conditions with a high confidence and provided input into further engineering designs. Wellfield performance and cumulative drawdown were also assessed for the scenario with the projected additional yield demand. Scenario modelling was furthermore used to optimise the placement of new boreholes in the available wellfield concession area.

Abstract

LNAPL present in a monitoring well forms part of the broader groundwater system and is effectively influenced by hydrogeological conditions, which are always changing. Monitoring of LNAPL is therefore of utmost importance to identify and assess the LNAPL hydrogeological conditions. Both groundwater and LNAPL can exist as unconfined and confined. Groundwater is unconfined when the upper boundary is the water table and is confined as a result of the presence of a confining layer with a relatively low vertical hydraulic conductivity that inhibits the flow of all liquids. LNAPL becomes unconfined when the apparent free product thickness increases with a decreasing groundwater elevation and confined when apparent free product thickness increases with an increasing groundwater elevation. The LNAPL is confined as a result of the difference between the capillary properties of the mobile LNAPL zone and its confining layer. Specifically, LNAPL is confined when it cannot overcome the pore entry pressure of the confining unit. Consequently, LNAPL may be confined when groundwater is not. The paper attempts to describe the hydrogeological conditions in case histories of both primary and fractured aquifers and illustrate how to identify and assess the conditions. Data such as free phase and groundwater level monitoring, well logs, sieving of soil and LNAPL bail tests are used as assessment tools. The additional required data is gathered and integrated in the conceptual site model, followed by a revision of the CSM and a refinement of decision goals over time. Thus the CSM matures and enables an improved understanding of the site characteristics and the re-adjustment of decision criteria. {List only- not presented}

Abstract

Water scarcity is a global challenge, particular in South Africa, which is a semi-arid country. Due to the continuing drought, appropriate groundwater management is of great importance. The use of groundwater has increased significantly over the years and has become a much more prominent augmentation component to the supply chain especially in rural communities. However, the approach used to develop groundwater resources, specifically in rural areas, can be improved in numinous ways to ensure drilling of successful boreholes that could meet water demands. A recent study done in the Thaba Nchu area focused on an adapted approach, which resulted in drilling successful boreholes that would be able to sustain their augmentation role in the long term. The adapted approach involves (i) a hydro-census that includes local knowledge and focused field observations, (ii) study of aerial photographs and geological maps on a regional scale, rather than on a village scale area, (iii) an optimised geophysical investigation to identify and map geological structures to drill production boreholes, (iv) conducting aquifer pump test to determine an optimum sustainable yield, (v) collecting water samples to determine if water quality is suitable for its specific use (vi) providing a monitoring program and abstraction schedule for each borehole. The adapted approach highlights the following improvements: (i) drilling of new production boreholes during times of bounty to allow for better time management on the project; (ii) including an experienced geohydrologist during planning phases, (iii) including a social component focussing on educating local communities on the importance of groundwater and introducing them to the concept of citizen's science, (iv) establishing a communication channel through which villagers can report any mechanical, electrical, quantity or quality issues for timeous intervention. Through applying these small changes to established components of development of groundwater resources, budgets and time management were optimised and additional communities could be added to the project without additional costs. This approach not only emphasised ways to improve the awareness and potential of groundwater resources, but also affects the economical-, social- and environmental welfare in rural communities.

Abstract

Water monitoring is a key aspect in the mining industry, in terms of gathering baseline data during the pre-construction stage, identifying potential areas of concern and mitigating source pollutants during the operational stage. A proper water monitoring program assists in the monitoring of plume development and water level rebound during the closure phase. The data made available through consistent long term monitoring should not be underestimated. Monitoring the effect that coal mine operations have on the water quality and quantity of surface and groundwater resources is a complex and multidisciplinary task. Numerous methodologies exist for monitoring of this kind. This paper will supply an overview of the water- rock chemistry associated with coal mine environments and the key indicator elements that should be focused on for water monitoring as well a review of the Best Practice Guidelines requirements in terms of water monitoring. Two case studies of coal mines in KwaZulu Natal will be reviewed, the key challenges outlined and mitigation measures implemented. The impact of requirements such as those set out by the Department of Water and Sanitation in terms of strict water quality limits for water containment and waste facilities as specified by Water Use Licences has also created unrealistic non-compliance conditions. The initial approach to creating a water monitoring programme should involve first identifying gaps in previous datasets and delineating potential sources of contamination. The sampling frequency will depend primarily on the water resource being monitored and the water quality analysis will depend on the type of facility. The facilities required for a specific situation will depend on the type and amount of waste generated, potential for leachate formation, vulnerability of groundwater resources and potential for water usage or resource sensitivity.

Abstract

Climate change contributes to the way in which people live. Natural resources such as groundwater, wood and surface water form a great part of livelihood in rural communities and are used extensively in rural areas where basic services have not yet been provided. The effect of climate change to all these natural resource may impact the lives of those in rural communities. Climate change is already starting to affect some of the poor and most vulnerable communities around the world. The aim of the dissertation is to develop a framework to assess the vulnerability of rural communities to climate change, with a specific focus groundwater and issues relating to gender. A questionnaire and interviews were used to collect data about rural communities' level of awareness climate change, their attitudes toward coping with climate change impact, level of education, income scale and how does this affect their security. Hyrodocensus was taken around the village to determine the rivers, dams, boreholes, abandoned boreholes and wells. Water samples were collected and analysed. The response rate was higher in females than in male's stakeholders (54% vs 46%).the results show that woman were mostly doing the hard work to complete daily basic activities. Education was found to be of high school level and incomes were low. The framework was developed with basic need showed that the area was at risk of poverty .Boreholes was found and water quality was analysed to be adequate for drinking water purpose. More information will be discussed on presentation.

Abstract

The Department of Water Affairs and Sanitation is the custodian of the Water Resource in South Africa. The Western Cape Regional Office, Geotechnical Service Sub Directorate, is responsible for management of groundwater resources in two Water Management Areas (WMA), Olifants Doorn-Berg and Breede-Gouritz. Twenty-nine monitoring routes comprising 800 sites in total are monitored across the Western Cape Region. The purpose of this paper is to create awareness of groundwater related databases and the type of information products used in assessing the status of data bases and groundwater resources. This is to assist and support the scientists, technicians, managers, external stakeholders and/or general public. The main question that needs to be answer is: "What is the current groundwater data management situation in the Regional office?" With the GIS as platform, geographical information was generated from existing data bases to answer questions such as, what is being monitored, where is it being monitored, who is monitoring it, why is it being monitored and when is it being monitored? These questions are applicable to the Region, Water Management Areas, the monitoring route and geosites. Graphical time-series information generated from available data, in combination with the generated geographical information, showed the gaps, hot spots and what is still needed for all the facets of groundwater management (from data acquisition to information dissemination) processes. The result showed the status of data bases, need for data in areas of possible neglect, training gaps, inadequate structure and capacity, instrumentation challenges, need for improvement of commitment and discipline, as well as many other issues. The information generated proves to be an easy tool for Scientists, Technicians and Data Administrators to assist them to be on top of the groundwater resource management in their area of responsibility. The expansion of the use of GIS as a groundwater management tool is highly recommended. This will ensure better understanding of the resource: "The Hidden Treasure".

Abstract

Artificial Intelligence (AI) has been used in a variety of problems in the fields of science and engineering in particular automation of many processes due to their self-learning capabilities as well as their noise-immunity. In this paper, we describe a study of the applicability of one of the popular branch of AI (Artificial Neural Network (ANN)) as an alternative approach to automate modelling of one-dimensional geoelectrical resistivity sounding data. The methodology involves two ANNs; first one for curve type identification and the other one for model parameter estimation. A three-layer feedforward neural network that was trained from geoelectrical resistivity data taken at boreholes with geology logs was used to predict earth models from measured data without the need to guess the initial model parameters or use synthetic data as is done with most conventional inversion approaches. The motivation for using the ANN for geophysical inversion is that they are adaptive systems that perform a non-linear mapping between two sets of data from a given domain. For network training, we use the back-propagation algorithm. An example using data from southern Malawi shows that the ANN results outperforms the conventional approaches as the results after adequate training, produce reasonably accurate earth models which are in agreement with borehole log data.

Abstract

In the wake of the ongoing water restrictions in South Africa, the issue of groundwater potential for drought relief has been debated on many environmental and socio-economic platforms, nationally. Consequently, the development of groundwater and its related vulnerabilities has become a key topic to the decision makers and stakeholders. Currently, the recruitment of water professionals into government and private water sectors adds substantial value to understanding the importance of protecting this precious resource. This has allowed the monitoring of groundwater to gain ever increasing momentum. Groundwater monitoring has become an essential scientific tool for role-players to achieve robust and verifiable data used for modelling aquifer potential and vulnerability to pollution and over-abstraction. The data is generally sourced from various hydrogeological and environmental investigations which include groundwater development, vulnerability assessment and remediation projects. Groundwater and environmental consulting firms are tasked with imperative roles for implementing groundwater monitoring programmes to the ever growing industrial, commercial, agricultural and public sectors in South Africa. However, groundwater monitoring data, especially in the private sector, are reliable but remains mostly inaccessible due to confidentiality clauses. This does limit our accuracy and comprehensive understanding for determining aquifer potential and vulnerability risks at large. The conceptualisation and modelling of vast monitoring datasets has been recognised as an important contributing factor to enhance groundwater sustainability. This research emphasises the significance of groundwater monitoring for development, protection and remediation of aquifers. Comparing monitoring results from typical sites and methods, provides scientific validation to support good governance of water. Deterioration of groundwater potability in the sight of an existing drought can have irreversible environmental and economic implications for South Africa.

Abstract

A groundwater assessment was conducted to identify and predict the contamination and transport properties of a groundwater system. The motivation for the study was the rising concern of a farm owner about the deteriorating water quality of the aquifer system. An investigation of the surface and groundwater quality indicated that two fertilizer dumpsites were the sources of pollution. Water analyses revealed elevated concentrations of Ca, Mg, K, F, NO3, SO4, Mn and NH4 within boreholes near the pollution sources. The NH4 and NO3 concentrations were exceptionally high: 11 941 mg/L and 12 689 mg/L, respectively. These high concentrations were the direct result of the dumping of fertilizer. The rise in these concentrations may also have been catalysed by the nitrogen cycle and the presence of the Nitrosomonas bacterium species. Due to the high solubility of NO3, and because soils are largely unable to retain anions, NO3 may enter groundwater with ease, and could migrate over large distances from the source. Elevated NO3 in groundwater is a concern for drinking water because it can interfere with blood-oxygen levels in infants and cause methemoglobinemia (blue-baby syndrome). A geophysical study was undertaken within the area of investigation to gain insight on the underlying geological structures. The survey indicated preferential flow paths within the aquifer system along which rapid transport of contaminant is likely to occur.
Key words: aquifer system, groundwater quality analyses, fertilizer, nitrogen cycle, Nitrosomonas species, geophysics.

Abstract

Mining site remnants are everlasting and impact the groundwater regime on a long term scale. An integrated approach to geoscience is necessary due to the complexity of nature and the unknown relationships that must be discovered to further the understanding of impacts on the natural environment. Furthermore, groundwater resources are negatively impacted by mining activities affecting the groundwater quality and quantity. Underground coal mining can be accompanied by roof failure events. This may change the matrix which subsequently alters the flow regime; leads to variations within the water chemistry, provided there is inter- aquifer connectivity; and alters the recharge rate. Dewatered mine voids are in direct contact with oxygen initiating oxidation reactions, depending on the geology of the specific site. A change in water chemistry was analyzed, and this coincides with a roof failure event as interpreted from water level measurements. Concentrations of Mg, Ca, and alkalinity indicate anomalous changes that are still in effect, five to six years after the majority of water levels had stabilized. The changes in the system coincides with and correlates to events of roof failure and different parameters. The latter changes are applied as extra tools when interpreting different site specific anthropogenic induced impacts on the system. Also within this study, constant rate pumping tests were conducted for the interest of the hydraulic properties, using three farming boreholes. The results put forward a range of 0.21 – 0.44L/s and 6.5 – 11.5m2 /d, for sustainable yield and transmissivity, respectively. Furthermore, it is recommended that a better understanding can be gained on system behaviors if chemistry correlations can be gathered through certain events causing specific systems to be in disequilibrium. It is also recommended that additional pumping tests will allow more insightful interpretation and delineation between the abovementioned chemical and water level changes. Finally, the combination of parameters during events can aid in deciding the most appropriate analytical models used for further analysis.

Abstract

Unicef is the WASH sector lead globally and is, present at the country level, the main counterpart of government, especially regarding the component of the water balance utilised for potable safe water supplies. This mandate means that Unicef then has a role in looking at water resources nationally and not just as individual projects, and in doing so, contributes to good water governance as an integral part of system strengthening. Ensure this is done in partnership with other ministries and stakeholders that support them through advocacy for humanitarian and developmental access and support in technical areas such as groundwater assessments and monitoring. The focus on groundwater is especially linked with the fact that groundwater plays a major role due to its buffering capacity to climate variations, easier access and global coverage. Since groundwater is the most significant component of accessible freshwater resources, it is in the interest of UNICEF to make this resource more visible to meet both development and humanitarian goals, strengthen national systems and ultimately build resilience in mitigating water scarcity to scale or at the National level. Therefore, examples will be presented where Unicef has engaged on this journey with nations such as Afghanistan, Yemen, Mozambique and Rwanda to understand their water resources better. The overall objective at the National level is to adapt the capacity to withstand and recover as quickly as possible from external stresses and shocks or build resilience.

Abstract

The Bedford Dam is the upper storage dam for the Ingula Pumped Storage Scheme and is situated in the Ingula/Bedford Wetland. This wetland has a high structural diversity which supports a unique assemblage of plants and invertebrates. The flow regulation and water purification value is of particular importance as the wetland falls within the Greater Vaal River catchment. Concern was raised with respect to the potential negative impact of the newly constructed dam on the dynamic water balance within the wetland. An assessment of the extent to which groundwater drives / sustains the wetland systems and the water requirements needed to sustain the wetland processes was determined. This includes establishing the impact of the Bedford Dam on the groundwater and wetland systems as well as providing recommendations on management and monitoring requirements. The hydropedological interpretations of the soils within the study area indicate that baseflow to the wetland is maintained through perennial groundwater, mainly recharged from infiltration on the plateau, and was confirmed through isotope sampling and hydrometric measurements. It is apparent that the surface flows in the main wetland are fed by recent sources, while the subsurface layers in the wetland are sustained by the slower moving near-surface and bedrock groundwater. The movement of groundwater towards the wetland is hindered by the numerous dykes creating a barrier to flow. Nevertheless, there seems to be a good connection between the groundwater sources in the upland and the surface drainage features that conduct this water to the contributing hillslopes adjacent to the main wetland. The surface flows of the main wetland are sustained by contributions from tributary fingers. The discharge out of the wetland is highly seasonal

Abstract

Burning of coal for electricity production has resulted in vast amounts of ash being deposited in ash dumps. Rain water and ash water conditioning results in the wetting of ash dumps and if the water retention capacity is exceeded there is a possibility of leaching to soil and underlying aquifers. In this study two different coal ash are used to determine the water retention as excess amount of process water at power stations ash dumps can lead to impeding the desired water balance, which can be critical for maintain various plant processes. The nonlinear relationship between soil water content and matrix suction of a porous material under unsaturated conditions is described by the soil water characteristic curve (SWCC). The SWCC for a given material represents the water storage capability enabling the determination of varying matric suction such as prediction of important unsaturated hydraulic processes including soil permeability, shear strength, volume change with respect to the water content changes. This paper presents an alternative, cost effective and rapid method for measuring and subsequent estimating of the soil-water characteristics of any soil type. Several methods are available to obtain the measurements required for defining soil-water characteristics. However, obtaining the required measurements for a SWCC is generally difficult since there is no laboratory or field instrument, capable of measuring a typical complete plant available water suction range accurately. Due to high methodological effort and associated costs of other methods, a simplified evaporation method which was implemented in the HYPROP (Hydraulic Property analyzer, UMS, 2012) becomes a possible alternative. It relies on the evaporation method initially proposed Schindler (1980). A typical work range for a HYPROP system is 0 to 100 KPa as read out from the two high capacity tensiometers installed at different heights within a saturated sample column. For a dry coal ash dump to be optimally used as sinks, input water applications should be matched with evaporation rates and capillary storage. This will ensure the moisture storage of the ash dump is not exceeded and consequently avert leachate generation at the base of the ash dump. The field capacity of waste materials is of critical importance in determining the formation of leachate in landfills which in this case is the coal ash dump facility. It is the field capacity limit when exceeded which give rise to leachate generation consequently promoting a downward movement of generated leachate.he study found that it is possible to use the Hyprop together with an empirical based fitting model to define a complete SWCC along a dewatering path. The study found the Brooks-Corey model as the suitable representative of the Hyprop measured data, confirmed by AICc and RMSE analysis. The Brooks-Corey estimated retention function parameters within +/- 1% error. A mean value of 35.3% was determined as the water retention or field capacity value for Matimba Coal ash. If the ash dump is operated in excess of this value, chances of groundwater pollution are high.

Abstract

A coal mine in South Africa had reached decant levels after mine flooding, where suspected mine water was discharging on the ground surface. Initial investigations had indicted a low-risk of decant, but when ash-backfilling was performed in the defunct underground mine, decant occurred. Ash-backfilling was immediately suspended as it was thought to have over-pressurised the system and caused decant. Contrariwise, a number of years later decant was still occurring even though ash-backfilling had been terminated. An investigation was launched to determine whether it was the ash-backfilling which had solely caused decant, or if additional contributing factors existed. Understanding the mine water decant is further complicated by the presence of underlying dolomites which when intersected during mining produced significant inflows into the underground mine workings. Furthermore, substantial subsidence has taken place over the underground mine area. These factors combined with the inherent difficulty of understanding unseen groundwater, produced a proverbial 1000-piece puzzle. Numerical groundwater modelling was a natural choice for evaluating the complex system of inter-related processes. A pre-mining model simulated the water table at the ground surface near the currently decanting area, suggesting this area was naturally susceptible for seepage conditions. The formation of a pathway from the mine to the ground surface combined with the natural susceptibility of the system may have resulted in the mine water decant. This hypothesis advocates that mine water was going to decant in this area, regardless of ash backfilling. The numerical groundwater flow model builds a case for this hypothesis from 1) the simulated upward flow in the pre-mining model and 2) the groundwater level is simulated above the surface near the currently decanting area. A mining model was then utilised to run four scenarios, investigating the flux from the dolomites, subsidence, ash-backfilling and a fault within the opencast mine. The ash-backfilling scenario model results led to the formation of the hypothesis that completing the ash-backfilling could potentially reduce the current decant volumes, which is seemingly counterintuitive. The numerical model suggested that the current ash-backfill areas reduce the groundwater velocity and could potentially reduce the decant volumes; in spite of its initial contribution to the mine water decant which is attributed to incorrect water abstraction methods. In conclusion, the application of numerical models to improve the understanding of complex systems is essential, because the result of interactions within a complex system are not intuitive and in many cases require mathematical simulation to be fully understood.

Abstract

Huixian Karst National Wetland Park is the most typical karst wetland in the middle and low latitudes of the world and has become an internationally important wetland. The relationship between water quality and aquatic organisms in Huixian Wetland is a hot research topic in wetland ecology. This article focuses on the relationship between the current water quality situation in Guilin Huixian Karst Wetland and the growth of wetland plants. Sixteen sampling points are set up in the wetland to monitor and analyze water quality in wet, normal, and dry seasons. The Kriging index interpolation method is used to obtain a comprehensive water quality interpolation map in the survey area during normal water periods and in combination with the wetland plant survey sample data and the landscape status. A comprehensive analysis of the relationship between wetland plant growth and water quality. The results show that the centre of Huixian Wetland receives recharge from surrounding groundwater, which is greatly affected by the surrounding water quality. The comprehensive water quality is relatively good in the dry season, relatively poor in the normal season, and the worst in the wet season. Agricultural production, non-point source pollution, rural domestic sewage, and human interference affect wetland water quality, which directly affects the structure and function of plant communities and the ecological service function of wetlands.

Abstract

POSTER The Department of Water and Sanitation (DWS) is the custodian of South Africa's water and thus is imperative that it reports on its state as the National Water Act of 1998 requires regular reporting to Parliament by the Minister. Hence, the annual compilation of report entitled "The National State of Water in South Africa." This report aims to give an overview of the status and trends of water quality and quantity, further assisting with international water reporting obligations to SADC Region, African Continent, and Globally e.g. the United Nations Commission on Sustainable Development. This information empowers the public and provides knowledge to water managers for informed decision-making. The main purpose is to enhance quality, accessibility and relevance of data and information relating to the goal of Integrated Water Resource Management towards attaining holistic Integrated Water Management, and Integrated Water Cycle Management in future. Three distinct requirements for collecting data by DWS are: (i) assessing and comparing the status and trends for both quantity and quality; (ii) monitoring for water use and (iii) monitoring for compliance to licence conditions. Such information is further used to assess the effectiveness of policies implemented and identify the existing gaps. Various challenges to the country's water demand proper integrated water resources planning and management. The report is divided into Themes such as, Resource Management, Water Services/Delivery, Water Development and Finance, based on selected indicators. The indicators are strategically selected to provide a representative picture of the state, as well as the changes over time to the drivers, pressures, impacts and responses related to the chosen themes. These Indicators include: Climatic Conditions, Water Availability, Water Use, Water Protection, Water Quality, Water Service Delivery, Water Infrastructure, Water Finance, and Sanitation. The report for Hydrological Year 2013/2014 has been completed and it shows that the amount of water available varies greatly between different places and seasons, and from one year to another. The average total storage was around 85% of full supply capacity in September 2014. Surface water quality is generally facing a threat from eutrophication and microbial pollution emanating mainly from mismanaged water (and waste) treatment plants and related landuse activities. Groundwater quality is generally good except in some localised areas where mining and industrial activities are prevalent. With regards to infrastructure; vandalism, lack of maintenance & management skills reflect on/as non-revenue water, highlighting the need for more funding towards maintenance, especially in groundwater which is normally wrongly deemed as an unreliable resource. In the past 20 years, water services delivery to communities has improved as the Millennium Development Goals have been met and surpassed, while the sanitation access goals were likely to be met.

Abstract

Monitored Natural Attenuation (MNA) refers to the monitoring of naturally occurring physical, chemical and biological processes. Three lines of evidence are commonly used to evaluate if MNA is occurring, and this paper focusses on the second line of evidence: The geochemical indicators of naturally occurring degradation processes and the site-specific estimation of attenuation rates.

The MNA geochemical indicators include the microbial electron acceptors (e.g. dissolved oxygen, nitrate and sulphate) and the metabolic by-products (manganese (II), iron (II) and methane). In addition, redox and alkalinity are important groundwater indicators. So as to properly assess the geochemical trends a groundwater monitoring well network tailored to assessing and defining the contaminant plume is required.

The expressed assimilative capacity (EAC) is used to estimate the capacity of the aquifer to degrade benzene, toluene, ethylbenzene and xylene (BTEX compounds) using the concentrations of geochemical indicators. Using the EAC, the groundwater flow through a perpendicular cross-section of the source area, and the source mass, the life of the contaminant source can be made.

A practical example of the performance monitoring of MNA using geochemical parameters is described for a retail service station in KwaZulu-Natal, which has groundwater impacted by a petroleum hydrocarbon plume. This includes a description of the monitoring well network, the geochemical measurements, the calculation of the EAC, and the estimated life of the contaminant source.

Abstract

The hydraulic parameters of heterogeneous aquifers are often estimated by conducting pumping (and recovery) tests during which the drawdown in a borehole intersecting the aquifer is measured over time, and by interpreting the data after making a number of assumptions about the aquifer conditions. The interpreted values of the hydraulic parameters are then considered to be average values that represent the properties of the bulk aquifer without taking into account local heterogeneities and anisotropies. An alternative and more economic approach is to measure streaming potentials in the vicinity of the borehole being tested. The streaming potential method is a non-invasive geophysical method that measures electrical signals generated by groundwater flow in the subsurface through a process known as electrokinetic coupling. This method allows data to be recorded at a high spatial density around the borehole. The interpretation of streaming potential data in terms of aquifer hydraulic parameters is facilitated by a coupled flow relationship which links the streaming potential gradient to the hydraulic gradient through a constant of proportionality called the electrokinetic coupling coefficient. In the current study, field measurements of streaming potentials were taken during the pumping and recovery phases of pumping tests conducted at two sites with dissimilar geological and geohydrological conditions. The recorded streaming potential data were interpreted by calculating the hydraulic head gradient from the streaming potential gradient, and by using the potential field analytical solution for the transient mode, which relates the streaming potential field directly to the average hydraulic conductivity. Hydraulic conductivity values estimated from the streaming potential method were of the same order as values determined from the analysis of drawdown data, with a relative error of 0.2. This study demonstrates that the streaming potential method is a viable tool to compliment pumping tests and provide a spatial representation of the hydraulic parameters.

Abstract

The main purpose of this paper is to present a case study where a water balance concept was applied to describe the expected groundwater safe yield on a sub-catchment scale. The balance considers effective recharge based on local hydrogeology and land cover types, basic human needs, groundwater contribution to baseflow, existing abstraction and evaporation. Data is derived from public datasets, including the WRC 90 Water Resources of South Africa 2012 Study, 2013-2014 South African (SA) National Land Cover and Groundwater Resource Assessment Ver. 2 (GRAII) datasets. The result is an attempt to guide a new groundwater user regarding the volume of groundwater that can be abstracted sustainably over the long-term.

Abstract

An understanding of the movement of moisture fluxes in the unsaturated zone of waste disposal sites play a critical role in terms of potential groundwater contamination. Increasing attention is being given to the unsaturated or vadose zone where much of the subsurface contamination originates, passes through, or can be eliminated before it contaminates surface and subsurface water resources. As the transport of contaminants is closely linked with the water ?ux in through the unsaturated zone, any quantitative analysis of contaminant transport must ?rst evaluate water ?uxes into and through the this region. Mathematical models have often been used as critical tools for the optimal quantification of site-speci?c subsurface water ?ow and solute transport processes so as to enable the implementation of management practices that minimize both surface and groundwater pollution. For instance, numerical models have been used in the simulation of water and solute movement in the subsurface for a variety of applications, including the characterization of unsaturated zone solute transport in waste disposal sites and landfills. In this study, HYDRUS 2D numerical simulation was used to simulate water and salt movement in the unsaturated zone at a dry coal ash disposal site in Mpumalanga, South Africa. The main objective of this work was to determine the flux dynamics within the unsaturated zone of the coal ash medium, so as to develop a conceptual model that explains solute transport through the unsaturated zone of the coal ash medium for a period of approximately 10 year intervals. Field experiments were carried out to determine the model input parameters and the initial conditions, through the determination of average moisture content, average bulk density and the saturated hydraulic conductivity of the medium. A two dimensional finite-element mesh of 100m x 45m model was used to represent cross section of the ash dump. Two dimensional time lapse models showing the migration of moisture fluxes and salt plumes were produced for the coal ash medium. An explanation on the variation of moisture content and cumulative fluxes in the ash dump was done with reference to preexisting ash dump data as well as the soil physical characteristics of the ash medium.
{List only- not presented}

Abstract

Globally, a growing concern have been that the heavy metal contents of soil are increasing as the result of industrial, mining, agricultural and domestic activities. While certain heavy metals are essential for plant growth as micronutrients, it may become toxic at higher concentrations. Additionally, as the toxic metals load of the soil increases, the risk of non-localized pollution due to the metals leaching into groundwater increases. The total soil metal content alone is not a good measure of risk, and thus not a very useful tool to determine potential risks to soil and water contamination. The tendency of a contaminant to seep into the groundwater is determined by its solubility and by the ratio between the concentration of the contaminant sorbed by the soil and the concentration remaining in solution. This ratio is commonly known as the soil partitioning or distribution coefficient (Kd). A higher Kd value indicate stronger attraction to the soil solids and lower susceptibility to leaching. Studies indicate that the Kd for a given constituent may vary widely depending on the nature of the soil in which the constituent occurs. The Kd of a soil represents the net effect of several soil sorption processes acting upon the contaminant under a certain set of conditions. Soil properties such as the pH, clay content, organic carbon content and the amount of Mn and Fe oxides, have an immense influence on the Kd value of a soil. Kds for Cu, Pb and V for various typical South African soil horizons were calculated from sorption graphs. In most cases there were contrasting Kd values especially when the cations, Cu and Pb, had high contamination levels, the value for V was low. There is large variation between the Kds stipulated in the Framework for the Management of Contaminated land (as drafted by the Department of Environmental Affairs) and the values obtained experimentally in this study. The results further indicate that a single Kd for an element/metal cannot be used for all soil types/horizons due to the effect of soil properties on the Kd. The results for Cu and Pb indicated that the Kds can range in the order of 10 to 10 000 L/kg for Cu and 10 to 100 000 L/kg for Pb. The variation in V Kd was not as extensive ranging from approximately 10 to 1 000 L/kg. {List only- not presented}

Abstract

The complexity of real world systems inspire scientists to continually advance methods used to represent these systems as knowledge and technology advances. This fundamental principle has been applied to groundwater transport, a real world problem where the current understanding often cannot describe what is observed in nature. There are two main approaches to improve the simulation of groundwater transport in heterogeneous systems, namely 1) improve the physical characterisation of the heterogeneous system, or 2) improve the formulation of the governing equations used to simulate the system. The latter approach has been pursued by incorporating fractal and fractional derivatives into the governing equation formulation, as well as combining fractional and fractal derivatives. A fractal advection-dispersion equation, with numerical integration and approximation methods for solution, is explored to simulate anomalous transport in fractured aquifer systems. The fractal advection-dispersion equation has been proven to simulate superdiffusion and subdiffusion by varying the fractal dimension, without explicit characterisation of fractures or preferential pathways. A fractional-fractal advection-dispersion equation has also been developed to provide an efficient non-local modelling tool. The fractional-fractal model provides a flexible tool to model anomalous diffusion, where the fractional order controls the breakthrough curve peak, and the fractal dimension controls the position of the peak and tailing effect. These two controls potentially provide the tools to improve the representation of anomalous breakthrough curves that cannot be described by the classical-equation model. In conclusion, the use of fractional calculus and fractal geometry to achieve the collective mission of resolving the difference between modelled and observed is explored for the better understanding and management of fractured systems.

Abstract

Vapour intrusion (VI) is the term used to define the encroachment of vapour phase contaminants from subsurface sources into structures such as buildings and basements. It is widely recognized that VI often forms the principal risk of exposure to receptors at petroleum release sites. Petroleum VI (PVI) generally occurs where a release of petroleum hydrocarbon product migrates from its source (e.g. from a leaking underground storage tank) to the groundwater table at which point, given favourable conditions, the hydrocarbon plume may migrate laterally beneath an adjacent building or structure. Subsequent volatilisation of the petroleum product results in the upward diffusion of vapours towards the surface where the vapours may enter into the building or structure at concentrations which may be harmful to human health. The subject of PVI with regards to its fate and transport mechanisms, as well as associated mitigation measures is rapidly gaining attention on a global scale, although to date this exposure pathway remains largely un-assessed in South Africa, with no regulatory guidance currently available. In the late 1990's and early 2000's focus was placed on the development of VI screening criteria by which sites could be screened with respect to their hydrogeological conditions and contamination status so as to determine whether VI could be a potential exposure pathway of concern, with much of the early work being completed by the United States Environmental Protection Agency. For the past decade the majority of the available screening criteria and guidance has had a partially incomplete understanding of hydrocarbon vapour fate and transport processes associated with VI, which has led to doubt over the application of such screening criteria in many cases. Furthermore, recent research conducted abroad has highlighted the importance of the role of oxygen in the vadose zone in the natural attenuation of petroleum hydrocarbon vapours as they diffuse through the soil profile. This research is pointing towards the notion that currently applied screening criteria may be overly conservative, leading to many unnecessary PVI investigations being conducted to the disruption of occupants of the buildings, and at great cost. Over the last two years ERM has compiled a dataset of PVI results from numerous investigations it has conducted throughout Southern Africa and in this paper the authors present data that supports the growing global trend towards recognizing the role that oxygen plays in attenuating petroleum hydrocarbon vapours in the vadose zone. The data also supports the notion that confirmed cases of PVI into buildings have generally been found to be the exception to the rule and not the norm.

Abstract

The costs of acid mine drainage (AMD) monitoring result in the quest for alternative non-invasive method that can provide qualitative data on the progression of the pollution plume and ground geophysics was the ideal solution. However, the monitoring of AMD plume progression by ground geophysics (time-lapse electrical resistance) proves to be non-invasive but also time consuming. This gave way to a study that focuses on the modeling of different scenarios of the karstic aquifer. The models use the field parameters such as the electrical resistivity of the host rock and the target rock, depth to the target, noise level and electrode configuration in order to ensure that the model outcomes represent the field data as much as possible. This geoelectric modeling process uses Complex Resistivity Model (CRMod) and Complex Resistivity Tomography (CRTomo) to generate geoelectric subsurface images. Different resistivity values are applied to targets in order to assess the difference against the baseline model for each target scenario. The model resistivity difference is reduced to the smallest difference possible between the reference and new models in order to gauge the lowest percentage change in the model at which the background noises start to have impact on the results. The study shows that the behavior of targets (aquifer) could be clearly detected through resistivity difference tomography rather than inversion tomography. The electrode array plays a significant part in the detection of target areas and their differences in resistance because of its sensitivity. This therefore indicates that the electrode array should be chosen according to study requirements. Furthermore, the model geometry also plays a role and this can be seen with the modelling of different target sizes, alignments and shapes. Future studies that can provide a correlation between the field quantitative data from sampling and the model outcomes have the ability to add to the knowledge field of geophysical modelling therefore reducing costs associated with field based plume AMD monitoring300-500 words without references; reach your conclusions rather than only delivering promises.

Abstract

Simple and cost-effective techniques are needed for land managers to assess and quantify the environmental impacts of hydrocarbon contamination. During the case study, hydrocarbon plume delineation was carried out using hydrogeological and geophysical techniques at a retail filling station located in Gauteng.

Laboratory and controlled spill experiments, using fresh hydrocarbon product, indicate that fresh hydrocarbons generally have a high electrical resistivity, whilst biodegraded hydrocarbons have a lower resistivity. This is attributed to the changes from electrically resistive to conductive behaviour with time due to biodegradation. As such, it should be possible to effectively delineate the subsurface hydrocarbon plume using two-dimensional (2D) Electrical Resistivity Tomography (ERT). As part of the case study, two traverses were conducted using an Electric Resistivity Tomography (ERT) survey with an ABEM SAS1000 Lund imaging system. The resultant 2D tomographs were interpreted based on the resistivity characteristics and subsurface material properties to delineate the plume. Localised resistivity highs were measured in both models and are representative of fresh hydrocarbons whereas areas of low resistivity represented areas of biodegraded hydrocarbons.

More conventional plume delineation techniques in the form of intrusive soil vapour and groundwater vapour surveys as well as hydrochemical anlayses of the on-site monitoring wells were used to compare the results and to construct the detailed Conceptual Site Model. During the investigation, four existing monitoring wells located on the site and additional two wells were installed downgradient of the Underground Storage Tanks (USTs) in order to determine the extent of the plume.

In conclusion, a comparison was found between the groundwater results and geophysical data obtained during the case study and it was concluded that ERT added a significant contribution to the Conceptual Site Model.

Abstract

Inadequate characterization of petroleum release sites often leads to the design and implementation of inappropriate remedial systems, which do not achieve the required remedial objectives or are inefficient in addressing the identified risk drivers, running for lengthy periods of time with little benefit. It has been recognized that high resolution site characterization can provide the necessary level of information to allow for appropriate solutions to be implemented. Although the initial cost of characterization is higher, the long-term costs can be substantially reduced and the remedial benefits far greater. The authors will discuss a case study site in the Karoo, South Africa, where ERM has utilized our fractured rock toolbox approach to conduct high resolution characterization of a petroleum release incident to inform the most practical and appropriate remedial approach. The incident occurred when a leak from a subsurface petrol line caused the release of approximately 9 000 litres of fuel into the fractured sedimentary bedrock formation beneath the site. Methods of characterization included:
- Surface geological mapping of regionally observed geological outcrops to determine the structural orientation of the underlying bedding planes and jointing systems;
- A surface electrical resistivity geophysics assessment for interpretation of underlying geological and hydrogeological structures;
- Installation of groundwater monitoring wells to delineate the extent of contamination;
- Diamond core drilling to obtain rock cores from the formation for assessment of structural characteristics and the presence of hydrocarbons by means of black light fluorescence screening and hydrocarbon detection dyes;
- Down-borehole geophysical profiling to determine fracture location, fracture density, fracture dip and joint orientation; and
- Down-borehole deployment of Flexible Underground Technologies (FLUTe?) liners to determine the precise vertical location of light non-aqueous phase liquid (LNAPL) bearing joint systems and fracture zones, and to assist in determining the vertical extent of transmissive fractures zones.
ERM used the information obtained from the characterization to compile a remedial action plan to identify suitable remedial strategies for mitigating the effects of the contamination and to target optimal areas of the site for pilot testing of the selected remedial methods. Following successful trials of a variety of methods for LNAPL removal, ERM selected the most appropriate and efficient technique for full-scale implementation.
{List only- not presented}

Abstract

Understanding the hydrogeochemical processes that govern groundwater quality is important for sustainable management of the water resource. A study with the objective of identifying the hydrogeochemical processes and their relation with existing quality of groundwater was carried processes in the shallow aquifer of the Lubumbashi river basin. The multivariate statistical approach includes self organizing maps (SOM'S) of neural networks, hierarchical cluster (HCA) and principal component analysis of the hydrochemical data were used to define the geochemical evaluation of aquifer system based on the ionic constituents, water types, hydrochemical facies and groundwater factors quality control. Water presents a spatial variability of chemical facies (HCO3- - Ca2+ - Mg2+, Cl- - Na+ + K+, Cl- - Ca2+ - Mg2+ , HCO3- - Na+ + K+ ) which is in relation to their interaction with the geological formation of the basin. The results suggests that different natural hydrogeochemical processes like simple dissolution, mixing, weathering of carbonate minerals and of silicate weathering and ion exchange are the key factors. Added to this is the imprint of anthropogenic input (use of fertilizers, septic practice poorly designed and uncontrolled urban discharges). Limited reverse ion exchange has been noticed at few locations of the study.

Abstract

Groundwater levels in E33F quaternary catchment are at their lowest level ever. The impact of climatic variation and increasing abstraction were determined to be the main factor. There are 115 registered groundwater users in E33F and the monthly abstraction volumes are not being measured. There is a need to use land use activities as well as the population to estimate groundwater use. The main objective is to use non-groundwater monitoring data to estimate groundwater use in order to protect the aquifer and ecosystem in general in varying climatic condition. Land use activities information was used to estimate groundwater use in E33F quaternary catchment. The estimated groundwater use volumes were compared to allocated and measured volumes. For domestic groundwater use estimation, population data and an estimation 100 litre per person per day were used. The water requirements for the types of crops being cultivated together with the area (m2) were used to estimate groundwater use volumes for irrigation. The number and type of live stocks were used with the water requirements for each livestock type to estimate the groundwater use volumes. 96 % of groundwater users are using groundwater for irrigation purposes with 9 966 105 m3/a allocated for irrigation. Mining, industries, domestic and livestock are allocated 100 200 m3/a. The estimated groundwater use volume for irrigation is 30 960 000 m3/a, which is three times higher than the allocated volume. Groundwater use volume for domestic use is estimated to be 38 225 m3/a which is higher than the 31 000 m3/a allocated. The total estimated groundwater use volume in E33F is estimated to be 30 998 225 m3/a, which is three times higher than the allocated groundwater use volume of 10 066 305 m3/a. This estimation could be higher as only registered boreholes were used and estimations from mining, Industries and live stocks were excluded due to lack of data

Abstract

Underground coal gasification (UCG) is considered a cleaner energy source as its known effect on the environment is minimal; it is cheaper and a lesser contributor to greenhouse gas emissions when compared to conventional coal mining. It has various potential impacts but the subsidence of the surface as well as the potential groundwater contamination is the biggest concerns. Subsidence caused by UCG processes will impact on the groundwater flow and levels due to potential artificial groundwater recharge. The geochemistry of the gasifier is strongly depended upon site specific conditions such as coal composition/type and groundwater chemistry. Independent of the coal rank, the most characteristic organic components of the condensates is phenols, naphthalene and benzene. In the selection of inorganic constituents, ammonia, sulphates and selected metals and metalloids such as mercury, arsenic, and selenium, are identified as the dominant environmental phases. The constituents of concern are generated during the pyrolysis and after gasification as dispersion and penetration of the pyrolysis take place, emission and dispersion of gas products, migration by leaching and penetration of groundwater. A laboratory-based predictive study was conducted using a high pressure thermimetric gasification analyser (HPTGA) to simulate UCG processes where syngas is produced. The HPTGA allows for simulation of the actual operational gasifier pressure on the coal seam and the use of the groundwater sample consumed during gasification. A gasification residue was produced by gasifying the coal sample at 800 °C temperature and by using air as the input gas. The gasification residue was leached using the high temperature experimental leaching procedure to identify the soluble phases of the gasified sample. The leachate analysis is used to determine the proportion of constituents present after gasification which will be removed by leaching as it is exposed to external forces and how it will affect the environment. The loading to groundwater for the whole gasifier is then determined by applying the leachate chemistry and rock-water ratio to the gasifier mine plan and volumes of coal consumed. 

Abstract

Data acquisition and Management (DAM) is a group of activities relating to the planning, development, implementation and administration of systems for the acquisition, storage, security, retrieval, dissemination, archiving and disposal of data. Data is the life blood of an organization and the Department of Water and Sanitation (DWS) is mandated by the National Water Act (No 36 of 1998) as well as the Water Services Act (No 108 of 1997), to provide useful water related information to decision makers in a timely and efficient manner. In 2009 the DWS National Water Monitoring Committee (NWMC) established the DAM as its subcommittee. The purpose was to ensure coordination and collaboration in the acquisition and management of water related data in support of water monitoring programs. The DAM subcommittee has relatively been inactive over the years and this has led to many unresolved data issues. The data extracted from the DWS Data Acquisition and Management Systems (DAMS) is usually not stored in the same formats. As a result, most of the data is fragmented, disintegrated and not easily accessible, making it inefficient for water managers to use the data to make water related decisions. The lack of standardization of data collection, storage, archiving and dissemination methods as well as insufficient collaboration with external institutions in terms of data sharing, negatively affects the management water resources. Therefore, there is an urgent need to establish and implement a DAM Strategy for the DWS and water sector, in order to maintain and improve data quality, accuracy, availability, accessibility and security. The proposed DAM Strategy is composed of the six main implementation phases, viz. (1) Identification of stakeholders and role players as well as their roles and responsibilities in the DWS DAM. (2) Definition of the role of DAM in the data and information management value chain for the DWS. (3) Development of a strategy for communication of data needs and issues. (4) Development of a DAM life Cycle (DAMLC). (5) Review of existing DAMS in the DWS. (6) Review of current data quality standards. The proposed DAM Strategy is currently being implemented on the DWS Groundwater DAM. The purpose of this paper is to share the interesting results obtained thus far, and to seek feedback from the water sector community.