Conference Abstracts

All Abstracts were presented at the Groundwater Conferences

Displaying 1 - 50 of 795 results
Title Presenter Name Presenter Surname Area Conference year Sort ascending Keywords

Abstract

Emerging contaminants (e.g. pharmaceuticals or pesticides) are increasingly detected in aquatic environments. The most apparent contamination source of river water pollution by pharmaceuticals is sewage treatment plant stations that discharge treated sewage effluent to the rivers. The river bank filtration systems (RBF) can effectively remove these contaminants. The two RBF sites were examined for pharmaceuticals: Śrem and Gorzów waterworks. The water samples for pharmaceuticals investigation were taken from the river and four continuously pumped wells at each site. Two wells near the river were chosen at each site (40-50 m) and two at a greater distance from the river (70 m in Śrem and 110 m in Gorzów). A visible increase in pharmaceutical concentrations was observed along the river. The sum of pharmaceuticals concentration is 8151 ng/l in Śrem (upstream), while in Gorzów (downstream) concentration is 9142 ng/l. A very big differentiation in pharmaceutical occurrence was observed. In Śrem, the sum of pharmaceuticals concentration is between 657 and 3290 ng/l, while in Gorzów, despite the higher concentrations of pharmaceuticals in the river, these substances were detected only in one well located at a close distance from the river (two substances at a concentration of 92 ng/l).

The research proves a very big differentiation of pharmaceutical concentration even on sites located at similar hydrogeological conditions and demonstrates the necessity of its monitoring, especially in groundwater strongly influenced by river water contamination (like at RBF sites). This work has received funding from the National Science Centre Poland (grant no. 2021/41/B/ST10/00094).

Abstract

Integrated geophysical methods can be useful tools in mapping the subsurface characteristics likely to control groundwater occurrence and hence are useful in identifying potential drill targets in different aquifer formations in Southern Africa. This study applied hydrogeophysical methods (natural, electrical, and electromagnetic) to identify potential groundwater-bearing targets within the Kalahari sand aquifers in Namibia and the crystalline basement aquifer system in Namibia and South Africa. The results suggest that hydrogeophysical assessments in Kalahari sandstone aquifers could clearly show that the system exhibits a well-defined layered aquifer formation likely recharged from surface water. On the other hand, crystalline basement formations could be combined with geological observations and used to identify groundwater controls like lineaments and depths to fractured zones. The magnetic method, horizontal and vertical frequency domain electromagnetic geophysical methods presented herein managed to delineate the main dykes and lineament features associated with groundwater occurrence in typical crystalline basement aquifers, while the natural magneto telluric investigations managed to delineate the deep and shallow aquifer formation in Kalahari sandstone aquifer formation. The study also advocates for integrating geophysical methods with local and regional geology for groundwater evaluation to provide a more detailed approach to resource assessment in some of the vulnerable aquifer systems in Southern Africa. Results from this study are useful for technical groundwater management and promoting the utilization of groundwater as a climate-resilient strategy in Southern Africa.

Abstract

The geochemical study of deep aquitard water in the southern Golan-Heights (GH), Israel, reveals the complex paleo-hydrological history affected by the intensive tectonic activity of the Dead Sea Rift (DSR). The sampled water collected from new research boreholes exhibits relatively high salinities (2,000-10,000 mg Cl/L), low Na/Cl ((HCO3 +SO4 )). δ18OV-SMOW and δDV-SMOW values are relatively depleted (~-7‰ and ~-42‰, respectively), while 87Sr/86Sr ratios are enriched compared to the host rocks. Lagoonary brines with similar characteristics (excluding the water isotopic compositions) are known to exist along the DSR. These brines formed 10-5 Ma ago from seawater that transgressed into the DSR and subsequently underwent evaporation, mineral precipitation and water-rock interactions. These hypersaline brines intruded into the rocks surrounding the DSR and based on the current study, also extended as far as the southern GH. Further, following their subsurface intrusion into the GH, the brines have been gradually diluted by isotopically depleted freshwater, leaving only traces of brines nowadays. The depleted isotopic composition suggests that the groundwater system is recharged at high elevations in the north. It is also shown that variable hydraulic conductivities in different formations controlled the dilution rates and subsequently the preservation of the entrapped brines. The paleo-hydrological reconstruction presented here shows that the flow direction has reversed over time. Brines that initially intruded from the rift have since been gradually flushed back to the rift by younger fresh groundwater.

Abstract

Streamwater and groundwater are changing in the Arctic region because of significant climate warming. Arctic amplification has intensified the melting of snow cover, glaciers and permafrost, leading to a prominent variation in the annual discharge of rivers, the groundwater occurrence, and their relationships. In high-latitude regions, evaluating groundwater flux/storage and river discharge is challenging due to a lack of hydrogeological data. Changes in river flows and groundwater discharge will alter freshwater and terrigenous material flux, with implications for freshwater and marine ecosystems. Consequently, a more timely and accurate evaluation of surface and groundwater is required. In this framework, through the ICEtoFLUX project (MUR/PRA2021/project-0027), hydrology, geophysics and geochemical-isotopic surveys have been started during 2022 in the Bayelva River catchment (W-Svalbard) from its glaciers and periglacial/proglacial systems up to the Kongsfjorden. The study aims to quantify hydrologic processes and related transport of matter (solid transport, chemical solutes flux) and investigate how subsurface and surface waters interact during active layer development. The first results suggest that electrical conductivity and total suspended solids increase from glaciers to the Bayelva monitoring station, about 1 km from the coast. Seasonal evolution of physical-chemical features was also observed. Results from geophysics data and piezometers indicate that the underground flow is spatially and temporally heterogeneous, both quantitatively and from a physicochemical-isotopic point of view. Springwater characteristics testify to a deep and well-organized groundwater flow path system. This study highlights the high complexity of these systems and their high sensitivity to the meteo-climatic regimes.

Abstract

The devastating socioeconomic impacts of recent droughts have intensified the need for improved drought monitoring in South Africa (SA). This study has shown that not all indices can be universally applicable to all regions worldwide, and no single index can represent all aspects of droughts. This study aimed to review the performance and applicability of the Palmer drought severity index (PDSI), surface water supply index (SWSI), vegetation condition index (VCI), standardised precipitation index (SPI), standardised precipitation evapotranspiration index (SPEI), standardised streamflow index (SSI), standardised groundwater index (SGI), and GRACE (Gravity Recovery and Climate Experiment)-based drought indices in SA and provide guidelines for selecting feasible candidates for integrated drought monitoring. The review is based on the 2016 World Meteorological Organization (WMO) Handbook of Drought Indicators and Indices guidelines. The PDSI and SWSI are not feasible in SA, mainly because they are relatively complex to compute and interpret and cannot use readily available and accessible data. Combining the SPI, SPEI, VCI, SSI, and SGI using multi-index or hybrid methods is recommended. Hence, with best fitting probability distribution functions (PDFs) used and an informed choice between parametric and non-parametric approaches, this combination has the potential for integrated drought monitoring. Due to the scarcity of groundwater data, investigations using GRACE-based groundwater drought indices must be carried out. These findings may contribute to improved drought early warning and monitoring in SA.

Abstract

he Namphu and Rangbua subdistricts in Ratchaburi province, in western Thailand, are affected by groundwater contamination. According to site characterization results, the aquifer has been contaminated with volatile organic compounds and heavy metals since 2014. Membrane filtration technology is an alternative method for treating groundwater to produce safe drinking water for household use. Nanofiltration membrane is a relatively recent development in membrane technology with characteristics that fall between ultrafiltration and reverse osmosis (RO). This study aimed to determine the hydrochemistry of contaminated groundwater and examine the efficiency of nanofiltration membranes for removing pollutants in groundwater and the potential implementation of the membrane. The membrane module used in this study is cylindrical in shape of 101.6 cm long and 6.4 cm in diameter, and the membrane surface charge is negative with monovalent rejection (NaCl) of 85-95%.

The filtration experiments were conducted at a pressure of 0.4-0.6 MPa, which yielded flow rates of approximately 2 L/min. To examine the nanofiltration membrane efficiency, groundwater samples were extracted from four monitoring wells and were used as feed water. According to laboratory results, the nanofiltration maximum removal efficiencies for 1,2-dichloroethylene, vinyl chloride, benzene, nickel, and manganese were 97, 99, 98, 99, and 99%, respectively. However, the treatment efficiency depends on several factors, including pretreatment requirements, influent water quality and the lifespan of the membrane. Further research should be conducted to determine the maximum concentration of VOCs and heavy metals in the feed water before applying this treatment method to a large scale.

Abstract

Groundwater resources in Africa face increasing threats of over-exploitation and pollution due to urbanization, agricultural and mining activities, yet monitoring remains challenging. Conventional approaches to monitoring groundwater at the exclusion of communities have not been successful. To overcome this, it is important to fully engage and train local communities in monitoring Groundwater Levels (GWLs), Rainfall and Water Quality (RWQ), which are important for understanding groundwater dynamics in wellfields. In this way, villagers can better understand groundwater issues and convey this information to others to cooperatively manage groundwater. A pilot program to monitor GWLs and RWQ by locals was initiated in two villages each in Botswana and Uganda to learn about its effectiveness. Through continuous stakeholder engagement, the local communities in the two case studies have been facilitated, trained and supported in monitoring groundwater and using the information collected to understand groundwater trends and their sustainability. Preliminary results indicate improvement in understanding the importance of groundwater monitoring by the communities and the implications on groundwater sustainability for improved livelihoods. This has become useful to one of the communities engaged in a village-level irrigation project which depends on groundwater resources. This project builds on a successful village-level participatory approach developed in the MARVI project (www.marvi.org.in ). It seeks to contribute to the United Nation’s 2022 call on “Groundwater: making the invisible visible” to highlight the importance of better monitoring and managing this vital resource.

Abstract

This study focuses on the coastal agricultural area of El-Nil River (Algeria), where anthropogenic activities heavily impact groundwater resources. A multi-tracer approach, integrating hydrogeochemical and isotopic tracers (δ2HH2O, δ18OH2O, δ15NNO3 and δ18ONO3), is combined with a hydrochemical facies evolution diagram and a Bayesian isotope mixing model (MixSIAR) to assess seawater contamination and distinguish the nitrate sources and their apportionment. A total of 27 groundwater samples and 7 surface water samples distributed over the entire study area were collected. Results show classic inland intrusion combined with an upstream seawater impact through the river mouth connected to the Mediterranean Sea. Results from nitrate isotopic composition, NO3 and Cl concentrations, and the MixSIAR model show that nitrate concentrations chiefly originate from sewage and manure sources. Nitrate derived from sewage is related to wastewater discharge, whereas nitrate derived from manure is attributed to an excessive use of animal manure to fertilise agricultural areas. The outcomes of this study are expected to help decision-makers prepare suitable environmental strategies for effective and sustainable water resources management in the study area.

Abstract

Water stewardship is achieved through a stakeholder’s inclusive process. It aims to guarantee long-term water security for all uses, including nature. Various actions can occur in the watershed’s recharge area, such as land cover restoration and artificial recharges. To measure the effectiveness of these actions, it is crucial to quantify their impact on water and communities. The common method for assessing the benefits of water stewardship activities is the volumetric water benefit accounting (VWBA) method. It allows for comparing the positive impact on water to the extracted groundwater volume for operations. We present the validation of the Positive Water Impact of DANONE Aqua operation at the Lido Site in West Java, Indonesia, within the VWBA framework. Different methods were used to evaluate three main water impact activities: (1) land cover restoration with reforestation, (2) artificial recharge with infiltration trenches and wells, and (3) water access. The curve number of the SWAT model was used to measure the reduced runoff impact of the land conservation action. The water table fluctuation method was employed to assess artificial recharge volume. The volume of pump discharge rates was used for water access. Results highlight the water impact at the Lido site, with the volumetric accounting of the three main activities. The discrepancy in the final calculation can be related to the variation in the field’s validated activities. VWBA framework is useful to validate water stewardship activities’ impact and plan further impactful actions.

Abstract

In recent years, practical applications of vector and raster multi-layers overlay analysis to enhance outcomes of conventional hydrogeological methods for allocation of productive boreholes have been applied in arid and semi-arid lands and is currently being tested in Ethiopia, Kenya, Somalia and Angola in cooperation with UNICEF. Advanced Remote Sensing (RS) and Geographic Information Systems (GIS) techniques combined with traditional geological, hydrogeological and geophysical methods are being used for improved access to sustainable drinking water supply boreholes in the scope of a WASH program. Identifying suitable areas with a good potential for sustainable groundwater resources exploitation mainly depends on a) consistent/reliable aquifer recharge and b) favourable hydrogeological conditions for groundwater abstraction. Multi-layer analyses and attribution of layer scores to the hydrogeological information layers – aquifer recharge, aquifer class, lineaments, slope, land cover, and presence of streams – combine into a qualitative Groundwater Suitability Map, using pairwise comparison (weights) to determine their relative importance with the Analytic Hierarchy Process (AHP). Additionally, traditional field methods enhance the quality of outputs and delineate Target Areas for detailed investigations: validation of hydrogeological conceptual models, hydrogeological assessment, groundwater sampling and finally, geophysical methods. Downscaling the remote sensed information of the groundwater suitability map with field verifications is required to recommend borehole drilling sites. The engagement of stakeholders is vital for the data collection and validation of the weighting criteria analyses (AHP method), as well as for the cooperation on the ground, validation of the Target Areas selection and implementation.

Abstract

The Galápagos Archipelago (Ecuador), traditionally considered a living museum and a showcase of evolution, is increasingly subject to anthropogenic pressures affecting the local population who has to deal with the challenges of accessing safe and sustainable water resources. Over the years, numerous national and international projects have attempted to assess the impact of human activities on both the water quality and quantity in the islands. However, the complexity of the stakeholders’ structure (i.e., multiple agents with competing interests and overlapping functions) and the numerous international institutions and agencies temporarily working in the islands make information sharing and coordination particularly challenging. A comprehensive assessment of water quality data (physico-chemical parameters, major elements, trace elements and coliforms) collected since 1985 in the Santa Cruz Island revealed the need to optimise monitoring efforts to fill knowledge gaps and better target decision-making processes. Results from a participatory approach involving all stakeholders dealing with water resources highlighted the gaps and potentials of water resources management in complex environments. Particularly, it demonstrated the criticalities related to data acquisition, sustainability of the monitoring plan and translation of scientific outcomes into common ground policies for water protection.

Shared procedures for data collection, sample analysis, evaluation and data assessment by an open-access geodatabase were proposed and implemented for the first time as a prototype to improve accountability and outreach towards civil society and water users. The results reveal the high potential of a well-structured and effective joint monitoring approach within a complex, multi-stakeholder framework.

Abstract

The Atlantis Water Resource Management Scheme (AWRMS) has operated since the 1970s. It demonstrates cost-effective and wise water use and recycling through visionary town planning and Managed Aquifer Recharge (MAR), offering water security to Atlantis’s residential and industrial sectors. For the AWRMS to succeed, it required integrating its water supply, wastewater and stormwater systems. Each of these water systems is complex and requires a multidisciplinary management approach. Adding to the challenges of inter-departmental co-operation and communication within a municipal system is the complexity and vulnerability of the coastal, primary Atlantis Aquifer. A combination of operational difficulties, biofouling, vandalism and readily available surplus surface water (leading to scheme augmentation from surface water) were negative drivers to decrease the reliance on groundwater supply from the scheme’s two wellfields. In response to the 2015-2018 drought experienced in the Western Cape of South Africa, the City of Cape Town has improved assurance of supply from the scheme and successfully built resilience by upgrading knowledge and insight through improved investigative techniques, monitoring, modelling and adaptive management of the various water resources and associated infrastructure systems. An integrated and adaptive management approach is essential to ensure continued water security and resilience to the effects of on-going urban expansion, population growth and climate change. Resilience is assured by institutions, individuals and communities taking timely and appropriate decisions, while the long-term sustainability of the AWRMS depends on proper management of all actors coupled with a high level of scientific confidence.

Abstract

There is a transboundary groundwater reservoir on the Polish–Ukrainian borderlands, which is of key importance in shaping strategic groundwater resources. Due to the particular importance of this reservoir, the two neighbouring countries are obliged to undertake joint actions to protect it. One of the main difficulties in building a common platform for the management of TBAs in the Polish-Ukrainian border area is the differences in the approach to the identification of GWB, monitoring methodologies and assessment of the condition of GWB, and the inconsistent hydrogeological databases between the two countries. A transboundary numerical groundwater flow model was developed to support internationally integrated management. The model research helped diagnose potential problems by determining the scope of the area with cross-border flows and quantifying the flows between Poland and Ukraine. In addition, the numerical model was used to define the optimal cross-border management unit and the conditions needed to exploit the Lublin–Lviv Reservoir sustainably. Abstraction on a current level slightly increased the transboundary groundwater flow from Poland to Ukraine and minimally reduced the flow in the opposite direction but did not reverse the direction of water flow at the border. The simulated drawdowns do not have a transboundary range, but negative effects on surface water resources are noticeable. Joint management should focus on a broader legal consensus, improvement of institutional relations, and integration of monitoring and groundwater status assessment systems.

Abstract

Coastal groundwater is a vulnerable resource, estimated to sustain the water needs of about 40% of the world’s population. The Roussillon aquifer is a regional aquifer near Perpignan (southern France). It covers over 800 km2 of land and is used for irrigation, drinking water, and industrial purposes. The aquifer has experienced significant piezometric lowering in the last decades, weakening the regional resource. An important aspect of modelling the hydrodynamic of this aquifer is the need to integrate data from agriculture and drinking water abstraction, natural and anthropogenic recharge, and account for the aquifer’s complex sedimentary arrangement. An ensemble of groundwater models has been constructed to understand the spatial evolution of the saline/freshwater interface and evaluate the impact of groundwater abstraction.

Three sets of physical parameter modelling approaches were used. The first is based on the direct interpolation of pumping tests. The second uses sequential indicator simulations to represent the geological uncertainty. The third is based on a detailed conceptual geological model and multiple-point statistics to represent the detailed geological structure. These models provide parameter fields that can be input for the transient state hydrodynamic simulations. Overall, the ensemble approach allowed us to understand the Roussillon plain’s hydrological system better and quantify the uncertainty on the possible evolution of the main groundwater fluxes and water resources over the last 20 years. These models can help to inform management decisions and support sustainable water resource development in the region.

Abstract

Groundwater is a critical resource in Namibia, particularly in the Kunene and Omusati Regions, which are among the driest in Sub-Saharan Africa. Hydrogeological mapping is essential to ensure this resource’s sustainable use and management. The hydrogeological map of Namibia was updated recently (2021). However, the details of a 1:1M map are too coarse for regional groundwater management. An ongoing study of groundwater potential assessment in the two regions required downscaling the information to 1:250 000. This work made use of geological maps 1:250 000 from the Geological Survey of Namibia, about 430 selected wells including 20 recent boreholes, 117 reinterpreted pumping tests, some existing reports from private companies, academic works including a PhD thesis, interviews with local water resource experts and statistical analysis of 6 500 wells from the National Groundwater Database (GROWAS II) maintained by the Ministry of Agriculture, Water and Land Reform (MAWLR). The regional hydrogeological map obtained was then associated with the recharge evaluated in a separate task of the same project to assess the available groundwater sustainability. By assessing abstraction costs and water demand, the work gives insights into areas where groundwater abstraction can be increased or restricted to ensure sustainable use. As conscientious and serious as this study may be, it does not replace a master plan but allows a global vision of the development potential of groundwater at a regional scale. This study was financed by the French Agency for Development (AFD) under a tripartite agreement (MAWLR-MEFT-AFD).

Abstract

The current understanding of groundwater within the larger Bushveld Complex (BC) is evaluated to gauge the potential for deep groundwater, specifically emphasising the lesser investigated eastern limb. From the review of publicly available literature and data, geohydrological databases and statistical analyses are presented as a collation of the current understanding of groundwater in the eastern limb of the BC. Unfortunately, information on deep groundwater (> 300 m) is scarce due to the cost associated with deep drilling, mining exploration holes often neglecting hydrogeological data collection, or lack of public access to this information. Nevertheless, the conceptual model developed from the available information highlights deep groundwater’s variable and structurally controlled nature and the uncertainty associated with groundwater characterisation of the deeper groundwater systems. This uncertainty supports the need for research-based scientific drilling of the deeper fractured lithologies in the eastern limb of the Bushveld Complex. The Bushveld Complex Drilling Project (BVDP) established an opportunity to perform such research-based drilling and was funded by the International Continental Scientific Drilling Program (ICDP). While the main focus of the BVDP is to produce a continuous vertical stratigraphic sequence of the BC, there is a sub-component to collect geohydrological information. The planned borehole, 2 500 m deep, will provide an opportunity to collect information from the deeper systems within the Bushveld Complex and the underlying Transvaal Supergroup, which will inform on the connection between shallow and deeper groundwater.

Abstract

Sacred wells are found across the world yet are rarely studied by hydrogeologists. This paper will present the results of a 5-year hydrogeological study of holy wells in Ireland, a country with a relatively large number of these wells (perhaps as many as 3,000). It was shown that holy wells occur in all the main lithology and aquifer types but are more numerous in areas with extreme or high groundwater vulnerability. Water samples were collected from 167 wells and tested for up to 60 chemical parameters, including a large range of trace elements. Statistical analyses were performed to see if there were any statistically significant associations between the chemical constituents and the reputed health cures for the different well waters, and the results will be presented here. One of the issues in communicating the research findings to the general public is in explaining the small concentrations involved and the likely very small doses pilgrims at holy wells receive during their performances of faith. The spiritual dimension, including the therapeutic value of the landscape where the well is located, is likely an important aspect of the healing reputation.

Abstract

Having knowledge of spatiotemporal groundwater recharge is crucial for optimizing regional water management practices. However, the lack of consistent ground hydrometeorological data at regional and global scales has led to the use of alternative proxies and indicators to estimate impacts on groundwater recharge, enabling effective management of future water resources. This study explores the impact of land use changes and wildfires on groundwater recharge at a regional scale in Bolivia, using an alternative indicator to estimate variations in groundwater recharge rates. Based on a study by de Freitas L. in 2021, the methodology developed the annual groundwater recharge reduction rate (RAPReHS) utilizing remotely sensed data from the FLDAS and TERRACLIMATE datasets. The RAPReHS employs a simplified version of the water balance equation, estimating direct vertical groundwater recharge by considering the difference between precipitation, evapotranspiration, and runoff. The methodology was upscaled to improve data processing and analysis efficiency using an open-source cloud-computing platform (Google Earth Engine) over a 20-year period. The first results reveal a strong correlation between decreasing groundwater recharge rates and natural vegetation in the eastern region. By utilizing the RAPReHS index, forest preservation strategies can be prioritized. This study is in the framework of SDG 13 (Climate Action), which aims to mitigate the impacts of climate change on the environment and society. By exploring the impact of land use changes and wildfires on groundwater recharge at a regional scale in Bolivia, this research contributes to the inclusion of groundwater in policy guidelines for sustainable water management

Abstract

Groundwater level monitoring is essential for assessing groundwater’s availability, behaviour and trend. Associated with a modelling tool, groundwater level fluctuations can be predicted in the short to middle term using precipitation probabilities or meteorological forecasts. This is the purpose of the MétéEAU Nappes tool implemented by BRGM for the City of Cape Town (CoCT) in the Table Mountain Group Aquifer (TMGA). This case study shows how near real-time groundwater level monitoring can support the municipality in managing its future groundwater withdrawals. The TMGA is an important source of groundwater in the Western Cape region of South Africa. The upper Nardouw Sub-Aquifer of the TMGA is an unconfined aquifer recharged by rainfall. It had been monitored in the Steenbras area for over 10 years before CoCT started groundwater production from the Steenbras wellfield in 2021. The MétéEAU Nappes forecasting tool is already implemented on many observation wells of the French national piezometric network, where it is used for decision-making by the French administration. It allows, in particular, to anticipate several threshold levels of drought and take appropriate measures. It combines real-time water cycle measurement data with a groundwater level lumped model (e.g. Gardenia model) and extrapolates observations for the next 6 months from statistical meteorological scenarios completed with abstraction scenarios. This tool can help protect the Steenbras wellfield as a critical water source for CoCT in the TMGA. This study was financed by the French Agency for Development (AFD).

Abstract

Groundwater quality and groundwater sample representativeness depend on the integrity of the water supply and monitoring wells. Well-integrity issues can occur by improper placement of grout seals behind the protective casing and/or by improper backfilling processes between ports. Multi-level monitoring systems are becoming common in the industry, providing depth-discrete groundwater samples and hydraulic head data from a single borehole. However, isolation between the monitoring intervals can be challenging when backfilled methods are used. No independent verification method exists to confirm seal placement for isolating monitoring intervals in such multi-level wells. A new approach using a hybrid fibre optic cable for adding heat, referred to as Active Distributed Temperature Sensing (A-DTS), is deployed in the annular space of a backfilled multi-level well. This new method is used to quantify the position of bentonite used as seals and sand packs that define the monitoring interval lengths and to identify issues associated with backfilling. A-DTS data from three boreholes with back-filled multilevel systems to 85 mbgs in a dolostone aquifer in Guelph, Ontario, Canada, demonstrates clear boundaries between backfill materials. In one interval, a deviation in the thermal data suggests a bridge in the bentonite seal, and this interval coincides with challenges in the backfilling from the field notes. The proposed method verifies well completion details, is repeatable and provides an efficient and effective way to assess well integrity impacting measurement uncertainty in a range of well types.

Abstract

One-third of the world faces water insecurity, and freshwater resources in coastal regions are under enormous stress due to population growth, pollution, climate change and political conflicts. Meanwhile, several aquifers in coastal regions extending offshore remain unexplored. Interdisciplinary researchers from 33 countries joined their effort to understand better if and how offshore freshened groundwater (OFG) can be used as a source of potable water. This scientific network intends to 1) estimate where OFG is present and in which volumes, 2) delineate the most appropriate approaches to characterise it, and 3) investigate the legal implications of sustainable exploitation of the offshore extension of transboundary aquifers. Besides identifying the environmental impact of OFG pumping, the network will review existing policies for onshore aquifers to outline recommendations for policies, action plans, protocols and legislation for OFG exploitation at the local to international levels. Experienced and early-career scientists and stakeholders from diverse disciplines carry out these activities. The Action leads activities to foster cross-disciplinary and intersectoral collaboration and provides high-quality training and funded scientific exchange missions to develop a pool of experts to address future scientific, societal, and legal challenges related to OFG. This interaction will foster new ideas and concepts that will lead to OFG characterisation and utilisation breakthroughs, translate into future market applications, and deliver recommendations to support effective water resource management. The first exchange mission explored the Gela platform carbonate reservoir (Sicily), built a preliminary 3D geometrical model, and identified the location of freshened groundwater

Abstract

To increase the security of groundwater resources, managed aquifer recharge (MAR) programs have been developed and implemented globally. MAR is the intentional recharge and storage of water in an aquifer, which will be recovered later. It was previously known and implemented as Artificial Recharge (AR). In South Africa, the documented practice dates back 40 years. There are five main MAR methods: Well-Shaft-Borehole, Spreading-induced bank infiltration, In-channel modifications, and Runoff harvesting. Two regional-scale MAR suitability maps for the Spreading Method (SM) and the Well-Shaft-Borehole (WSB) Method were compiled for South Africa, using the Geographic Information System combined with Multi-Criteria Decision Analysis (GIS-MCDA) methodology. Parameters used to compute the maps included the nature of the different aquifers, groundwater level, water quality (EC), distance to river, terrain slope, mean annual rainfall, land cover, soil moisture availability and clogging (Fe-iron content). To create a suitability map, the parameters were combined using the weighted overlay method and the Analytic Hierarchy Process (AHP – specifically the pairwise comparison). The site suitability maps indicated that most areas in South Africa are suitable for the Spreading and Well-Shaft-Borehole methods. The results were verified with the location of existing MAR schemes and were found to agree. However, these maps are not applicable for siting projects at a local scale but can serve as a guide and screening tool for site-specific studies looking for highly suitable or target areas for MAR implementation

Abstract

Groundwater is connected with the earth’s interior, atmosphere, ocean sphere, and human sphere. Fluid, heat, and dissolved materials are crossed over the boundaries of adjacent spheres with different time scales in dynamics. These different time scales include event scales such as earthquakes and Tsunami, seasonal scales such as precipitation seasonality, a decade or longer scales such as climate change, and human scales such as groundwater pumping, land cover/use changes, and social revolutions such as industrialization, green revolution, urbanization, and globalization in Anthropocene. This study shows two examples of groundwater connected with different time scales. The first is thermal signals preserved in groundwater by earthquake, climate change, and anthropogenic impacts with different time scales. Thermal signals in groundwater from the Kumamoto earthquake in 2016 revealed evidence of fluid flow from the earth interior and Aso mountain. The thermal signal in groundwater in Kumamoto also showed the impacts of global warming and urbanization, as well as changes in precipitation and land use. The second example is the connectivity between residence time of groundwater and groundwater consumption in social revolutions such as industrialization and urbanization in the Anthropocene, as well as World War II as an example of groundwater for emergency situations.

Abstract

Studies have examined the effects of groundwater pumping on nearby streams. Groundwater pumping affects streamflow, surface water rights, and aquatic ecosystems. This study investigates the impact of groundwater abstraction on surface water bodies. A secondary objective aims to develop a conceptual model to evaluate alternative approaches for streamflow depletion. The study area is a previous UFS/WRC test site along Modder River, Free State, South Africa. Streamflow depletion was simulated using four (4) analytical solutions, i.e., Jenkins (1968), Hantush (1964), Hunt (1999) and Hunt (2003). STRMDEPL08 analytical computer program tool is used to evaluate streamflow depletion. The aquifer parameters: distance of the boreholes to the stream; pumping periods analyzed in steady states conditions for a simulation period of 1 year; transmissivity with an average of 71 m/d; storativity of 0.02; specific yield of the aquitard range between 0.1 to 0.3; and abstraction rate of 2 l/s are defined for the hypothetical model. The average distances tested range from 10 m to 6,000 m. Pumping rate scenarios for an order of magnitude lower (0.2 l/s), 1 l/s; 4 l/s, and an order of magnitude larger (20 l/s) were simulated. Simulated graphs indicate that streamflow depletion rates are largest if the borehole is closer to the stream and decrease as the distance of the pumped borehole from the stream increases. Cumulative volume graphs for both analytical solutions decrease streamflow depletion volume

Abstract

Carbon Capture and Storage (CCS) in deep saline aquifers is a viable option for Green House Gas (GHG) mitigation. However, industrial-scale scenarios may induce large-scale reservoir pressurization and displacement of native fluids. Especially in closed systems, the pressure buildup can quickly elevate beyond the reservoir fracture threshold and potentially fracture/ reactivate existing faults on the cap rock. This can create pathways, which could act as conduits for focused leakage of brine and/or CO2 up-dip and mobilization of trace elements into capture zones of freshwater wells. Careful pressure management can ensure the reservoir’s hydraulic integrity. This can theoretically be achieved through simulation with appropriate mathematical tools. This research aims to quantify pressure buildup at a CO2 injection well by applying fractional derivatives to the pressure diffusivity Differential Equation (PDE). A numerical solution has been developed to (1) predict and assess the consequence of pressure buildup within the storage formation on groundwater flow in shallow aquifers and (2) assess the impact of pressure-mobilized contaminants (CO2 , brine and/or trace elements) on the quality of usable groundwater, if there is a leakage. The efficiency of each derivative is shown to depend on the type of reservoir heterogeneity. The Caputo derivative captured the long tail dependence characteristic of fracture flow, while the ABC derivative was able to model the cross-over from matric into the fracture flow. The numerical tools presented here are useful for successful risk assessments during geo-sequestration in basins with freshwater aquifers.

Abstract

Floods result in significant human and economic losses worldwide every year. Urbanization leads to the conversion of natural or agricultural land covers to low-permeability surfaces, reducing the infiltration capacity of the land surface. This amplifies the severity and frequency of floods, increasing the vulnerability of communities. Drywells are subsurface structures built in the unsaturated zone that act as managed aquifer recharge facilities to capture stormwater runoff. They are particularly well-suited for the urban environment because of their low land occupancy. In this study, we utilized an integrated surface-subsurface flow modelling approach to evaluate the effectiveness of dry wells in reducing urban runoff at a catchment scale. We developed a 3D model with HydroGeoSphere, characterizing a synthetic unconfined aquifer covered by a layer of low-permeability materials. Sensitivity analyses of land surface conditions, aquifer properties, dry well designs, and rainfall conditions were performed. Model results indicated that dry wells are more effective in reducing runoff when the land surface has a higher Manning roughness coefficient or the aquifer material has a higher hydraulic conductivity. Dry wells should be situated beneath drainage routes with high runoff flux to achieve optimal performance. Increases in dry well radius or depth enhance the infiltration capacity, but deeper dry wells can contaminate groundwater through infiltrating stormwater. Dry well performance declines with higher rainfall intensity, emphasizing the need for local rainfall intensity–duration–frequency (IDF) data to inform the design level of dry wells in specific catchments.

Abstract

Water balance partitioning within dryland intermittent and ephemeral streams controls water availability to riparian ecosystems, the magnitude of peak storm discharge and groundwater replenishment. Poorly understood is how superficial geology can play a role in governing the spatiotemporal complexity in flow processes. We combine a new and unusually rich set of integrated surface water and groundwater observations from a catchment in semi-arid Australia with targeted geophysical characterisation of the subsurface to elucidate how configurations of superficial geology surrounding the stream control the variability in streamflow and groundwater responses. We show how periods of stable stream stage consistently follow episodic streamflow peaks before subsequent rapid recession and channel drying. The duration of the stable phases increases in duration downstream to a maximum of 44±3 days before reducing abruptly further downstream. The remarkable consistency in the flow duration of the stable flow periods, regardless of the size of the preceding streamflow peak, suggests a geological control. By integrating the surface water, groundwater and geological investigations, we developed a conceptual model that proposes two primary controls on this behaviour which influence the partitioning of runoff: (1) variations in the permeability contrast between recent channel alluvium and surrounding deposits, (2) the longitudinal variations in the volume of the recent channel alluvial storage. We hypothesise optimal combinations of these controls can create a ‘Goldilocks zone’ that maximises riparian water availability and potential for groundwater recharge in certain landscape settings and that these controls likely exist as a continuum in many dryland catchments globally.

Abstract

Access to safe water is not yet universal in Burkina because 30% of Burkinabes do not yet have access to drinking water. The objective of universal access to drinking water (ODD 6.1) is difficult to achieve in the context of population growth and climate change. Basement rocks underline 80% of Burkina Faso. However, about 40% of the boreholes drilled in the Burkina Faso basement rocks do not deliver enough water (Q < 0.2l/s) and are discarded. This study focuses on determining the appropriate hydrogeological target that can be searched to improve the currently low drilling success rate.

We set up a well-documented new database of 2150 boreholes based on borehole drilling, pumping tests, geophysical measurements, and geological analysis results. Our first results show that the success rate at 0.2l/s (i.e. 700 l/h) is 63% at the end of the drilling against 54% at the end of borehole development: the yield of 8% of the boreholes lowers significantly after only a few hours of development. We also found that the yield of the water intakes encountered during the drilling process slightly decreases with depth; beyond 60m, it is rare (only 15% of cases) to find water occurrences. We found clear relationships between the productivity of the borehole (yield after drilling and transmissivity obtained from the pumping test) and the thickness of the weathering rocks, indicating that the appropriate target to obtain a productive borehole is a regolith of about 35 meters thick.

Abstract

Groundwater (GW) is a target of climate change (CC), and the effects become progressively more evident in recent years. Many studies reported the effects on GW quantity, but of extreme interest is also the assessment of qualitative impacts, especially on GW temperature (GWT), because of the consequences they could have. This study aims to systematically review the published papers dealing with CC and GWT, to determine the impacts of CC on GWT, and to highlight possible consequences. Scopus and Web of Science databases were consulted, obtaining 144 papers. However, only 45 studies were considered for this review after a screening concerning eliminating duplicate papers, a first selection based on title and abstract, and an analysis of topic compatibility through examination of the full texts. The analysed scientific production from all five continents covers 1995-2023 and was published in 29 journals. As a result of the review, GWT variations due to CC emerged as of global interest and have attracted attention, especially over the past two decades, with a multidisciplinary approach. A general increase in GWTs is noted as a primary effect of CC (especially in urban areas); furthermore, the implications of the temperature increase for contaminants and groundwater-dependent ecosystems were analysed, and various industrial applications for this increase (e.g. geothermy) are evaluated. It’s evident from the review that GWT is vulnerable to CC, and the consequences can be serious and worthy of further investigation.

Abstract

In Java Island, Indonesia, andesitic volcanic aquifers are the main water resource for domestic, agricultural, and industrial use. To guarantee sustainable management, a hydrogeological conceptual model is key. Electrical resistivity tomography (ERT) survey is one tool to characterize aquifer structures and extension, specifically in the medial facies of the Arjuno Welirang volcano. Fadillah et al. (2023) proposed a hydrogeological interpretation of the aquifers in the central to proximal-medial transition zone of the Arjuno Welirang volcano. This interpretation was based on geology, hydrogeology, and ERT and focused on major springs and boreholes. Nine additional ERT profiles and borehole data were collected downstream to enhance the medial facies’ understanding further. Seven ERT lines were conducted throughout the midstream part of the watershed. The results confirm the presence of two superimposed aquifers, a first unconfined aquifer made of volcanic sandstone and breccia with a vertical extension of 25 meters and a confined aquifer from 35 to 120 meters (maximum depth of investigation). This last one consists of tuffaceous breccia and volcanic sandstone and includes lava layers as well. A clayey layer with an average thickness of 10 meters constitutes the aquiclude/aquitard between those two aquifers. Furthermore, two ERT lines were conducted in the vicinity of the major spring located in the distal part of volcanic deposits, highlighting the development of a multi-layer alluvial aquifer system.

Abstract

The National Park Plitvice Lakes (NPPL) in the Republic of Croatia was declared in 1949 due to its exceptional natural beauty. However, in addition to its attraction, the NPPL also encompasses an area of significant karstic water resources in the Dinaric karst region, on the border between the Black Sea and the Adriatic Sea catchment. In some parts, groundwater connections to the Klokot Spring and Una River in Bosnia and Herzegovina have been assumed by hydrogeological research and proven by tracing tests, which confirm transboundary aquifer. Assessing transboundary aquifer systems already presents challenges in managing this area, considering not only the well-defined physical catchment. Therefore, comprehensive protection is necessary, which must reconcile people’s aspirations for spatial development with the sustainability of natural systems. Protecting karstic water resources can be achieved through separate analyses of the natural vulnerability of surface and groundwater and their integration into a comprehensive protection system. Protection should be layered through three levels: (1) protecting the area from the impact of the upstream catchment, (2) protecting surface water in the catchment that is most affected by anthropogenic influences, and (3) protecting the surrounding area from the impact of the NPPL, which with numerous visitors every year and tourist facilities, also represents significant pressure on downstream catchments. The ultimate goal is a scientifically based proposal for sustainable development of the protected area, in line with the needs of protection and spatial use, and based on an assessment of the overall risk to water resources.

Abstract

Recent advances in groundwater dating provide valuable information about groundwater recharge rates and groundwater velocities that inform groundwater sustainability and management. This talk presents a range of groundwater residence time indicators (85Kr, CFCS 14C, 81Kr, 36Cl and 4 He) combined with analytical and numerical models to unravel sustainability parameters. Our study site is the southwestern Great Artesian Basin of Australia where we study an unconfined confined aquifer system that dates groundwater from modern times up to 400 kyr BP. The study area is arid with a rainfall of <200 mm/yr and evaporation in the order of 3 m/yr. Despite these arid conditions we observe modern recharge rates in the order of 400 mm/yr. This occurs via rapid ephemeral recharge beneath isolated riverbeds where the sandstone aquifer directly outcrops. Groundwater dating and stable isotopes of the water molecule indicates that this recharge comes from monsoonal activity in the north of the continent that travel some 1500 kms. Furthermore, this is restricted to recharge in the Holocene.as we move down the hydraulic gradient groundwater “ages” increase and recharge rates dramatically decrease by orders of magnitude. We conclude that there has been a significant decline in monsoonal precipitation and hence recharge in the deserts of central Australia over this time. We present a couple environmental numerical model that describes how to estimate temporal recharge rates and estimates of hydraulic conductivity from groundwater age data that can be used for groundwater management.

Abstract

With the revision of the European Drinking Water Directive (Directive on the quality of water intended for human consumption 2020/2184) in December 2020, the preparation of Water Safety Plans (WSP) is foreseen according to the guidelines of WHO. Within the EU Interreg Adrion MUHA project, a decision support tool (DST) has been developed to provide a holistic approach to drinking water infrastructure risk analysis. The project mainly addresses four water-related risks: accidental pollution, floods, droughts and earthquakes. The core of the DST is the inventory of hazardous events (causes, their consequences and impacts) for each component of the drinking water supply chain: (1) drinking water source - catchment area, (2) water supply system, and (3) domestic distribution system. For each identified potential hazard, the type of hazard was determined (e.g., biological, chemical, radiological, or physical hazard (including turbidity), inadequate availability of water supplied to customers, safety to personnel, external harm to third parties, including liability). The DST was tested in the partner countries (Italy, Slovenia, Croatia, Serbia, Montenegro and Greece) to verify the resilience of the measures and elaborate the WSP.

In the end, the REWAS-ADRION strategy was elaborated, aiming to increase the resilience of drinking water supplies to floods, droughts, accidental pollution, and earthquake-related failures by improving the water safety planning mechanism based on the concept of inter-agency cooperation to support water utilities, civil protection organizations, and water authorities.

Abstract

Groundwater is a strategic long-term water resource used by an estimated 70% of the populations in sub-Saharan Africa for drinking, irrigation and a wide range of economic activities. Understanding groundwater recharge processes is key for effectively using and managing water resources. Very few studies have used direct groundwater observations to assess the impact of different farming systems on groundwater recharge processes. This study focused on assessing basement aquifer recharge in 4 instrumented catchments in Malawi (Chitedze), Zambia (Liempe and Kabeleka) and Zimbabwe (Domboshawa) within the SADC region between 2019-2022. Employing a range of methods, including direct field observations (groundwater hydrographs, precipitation data, stable isotopes, chloride mass balance and residence time tracer data), we quantify the amount of groundwater recharge as well as the timing and nature of recharge processes under both conservation and conventional tillage systems in these four study sites. Groundwater recharge was measured in most years across the study sites. The study reveals the strong climate controls on seasonal groundwater recharge volumes, the influence of low permeability layers in the unsaturated zone, and the likely magnitude of impact from different farming practices. Groundwater residence times are high (i.e. low fractions of modern recharge, interquartile range 1-5%, n=46), even in shallow piezometers, suggesting these unpumped systems may be highly stratified. The results provide an evidence-based suite of data that reveals much about key controls on groundwater recharge in basement aquifers in sub-humid drylands and will inform the development and management of such groundwater systems.

Abstract

Prevention of threats to the quality and quantity of groundwater supply is critical to ensure its sustainability. Several African studies have shown that contamination of aquifers is primarily caused by improper placement of land-based human activities. Therefore, adequate preventative measures are required to safeguard the water quality of African aquifers to avoid long-term deterioration. Spatially explicit, 3D numerical groundwater modelling is a common methodology to assess contaminant transport. However, model development is time-consuming and complex. Contrastingly, DRASTIC-L is a 2D, GIS-based aquifer vulnerability mapping technique. The method is simple to apply, but analyses are qualitative and subjective. The study aims to compare both methods and to combine their strengths using GIS overlay. Overall, aquifer vulnerability was determined using the DRASTIC-L method, while wellhead protection areas were delineated using steady-state numerical modelling. This study focuses on the Cape Flats area due to its rapid development and growing municipal water supply supplementation needs. DRASTIC-L mapping revealed that aquifers in the Cape Flats are highly vulnerable to contamination due to the region’s unconfined hydrogeological properties, shallow water table and high-risk land use types. Moreover, groundwater vulnerability mapping combined with the delineation of wellhead protection areas allows for reduced uncertainty in the contamination potential of delineated groundwater protection zones. As a result, this study highlights the need for overall resource protection of the Cape Flats aquifers and provides insights into mapping out potential source protection areas of existing water supply wells.

Abstract

Across Africa, given the pressing challenges of climate change and widespread water, food and livelihood insecurity and poverty, there is an ever-increasing expanding role for groundwater in resilience building, especially in borderland communities. This situation is being investigated in several projects and geographies. This paper’s groundwater management analysis was based on literature reviews, key informant interviews (KIIs), and focus group discussions (FGDs) in selected case study areas throughout sub-Saharan Africa. The KIIs included representatives of water management institutions, community leaders, international development partners, the private sector and non-governmental organisations (NGOs) involved in the use or management of groundwater. The FGDs occurred in borderland communities in Ethiopia, Kenya, and Somalia (with these three countries sharing borders) and Mozambique, South Africa and Zimbabwe (with these three also sharing borders). The findings show that informal institutions such as clan, tribal or ethnic affiliations dictate access to natural resources such as groundwater in borderlands. These same Institutions also play a significant role in conflict resolution in the borderland areas. In addition, informal institutions play an essential role in groundwater management and should also be recognised – in engagements and formal water policies and legislation. Formal organisations, institutions and government structures should strengthen their focus on ensuring that discussions and decisions include informal role players. Further developing and enforcing conventions, land-use plans, and bylaws governing access to and use of groundwater should ensure engagement and co-creation of solutions towards effective water resource management.

Abstract

Groundwater discharge is crucial for transporting terrestrial carbon into streams and rivers, but the effects of groundwater flow paths on terrestrial carbon inputs are poorly understood. Here, we investigated environmental tracers (EC, Cl-, 2H, 18O, 220Rn, and 222Rn) and carbon concentrations in riparian groundwater, streambed groundwater, and stream water over six groundwater-stream monitoring sites. Significantly high 220Rn and 222Rn activities in the stream and endmember analysis results of the environmental tracers reveal that vertical groundwater discharge from the streambed (VGD) and lateral groundwater discharge from the riparian zone (LGD) is of equal importance for the stream. We quantified VGD by modelling the detailed 222Rn and Cl- profiles at the streambed and then combined differential flow gauging to estimate LGD. VGD (2.9 ± 1.4 m2 d-1) prevailed in relatively wide and shallow channels, while LGD (2.6 ± 2.6 m2 d-1) dominated narrow and deep channels. Carbon measurements indicate that LGD had the highest CO2, CH4, DIC, and DOC, while VGD had relatively higher CO2 but lower CH4, DIC, and DOC than stream water. Our findings suggest that LGD is the primary carbon source for the stream, while VGD mainly dilutes the stream (except CO2). Finally, we observed that groundwater discharge and temperature overrode metabolism in controlling stream carbon dynamics, implying the importance of groundwater discharge for understanding stream carbon cycling. Overall, this study identified the impacts of groundwater flow paths on carbon exchanges between terrestrial and stream ecosystems.

Abstract

An end-member mixing analysis has been conducted for the hydrogeological system of the endorheic catchment of the Fuente de Piedra lagoon (Malaga, Southern Spain). Three end-members have been considered because of the three main groundwater types related to the different kinds of aquifers found in the catchment. The model’s objective is to help understand the distribution of the organic contaminants (including contaminants of emerging concern [CECs]) detected in groundwater samples from the catchment. Results suggest that some contaminants can be related to long groundwater residence time fluxes, where contaminant attenuation can be limited due to low oxygen levels and microbial activity. The three main aquifer types are: (i) unconfined carbonate aquifers with low mineralized water corresponding to two mountain ranges with no human activities over theirs surface; (ii) an unconfined porous aquifer formed by Quaternary and Miocene deposits, exposed to pollution from anthropogenic activities (agriculture and urban sources); and (iii) a karstic-type aquifer formed by blocks of limestones and dolostones confined by a clayey, marly and evaporite matrix from Upper Triassic. The groundwater monitoring campaign for the analysis of organic contaminants was carried out in March 2018. Target organic contaminants included pharmaceuticals, personal care products, polyaromatic hydrocarbons, pesticides, flame retardants and plasticizers. For the mixing model, a dataset was built with the hydrochemistry and isotopic results (δ2 H, δ18O) from the monitoring campaign conducted in March 2018 and from campaigns carried out in previous years and retrieved from the literature.

Abstract

There is an urgent need to support the sustainable development of groundwater resources, which are under increasing pressure from competing uses of subsurface geo-resources, compounded by land use and climate change impacts. Management of groundwater resources is crucial for enabling the green transition and attaining the Sustainable Development Goals. The United Nations Framework Classification for Resources (UNFC) is a project-based classification system for defining the environmental-socio-economic viability and technical feasibility of projects to develop resources and recently extended for groundwater. UNFC provides a consistent framework to describe the level of confidence in groundwater resources by the project and is designed to meet the needs of applications pertaining to (i) Policy formulation based on geo-resource studies, (ii) Geo-resource management functions, (iii) Business processes; and (iv) Financial capital allocation. To extend use in groundwater resources management, supplemental specifications have been developed for the UNFC that provide technical guidance to the community of groundwater professionals to enhance sustainable resource management based on improved decision-making. This includes addressing barriers to sustainably exploiting groundwater resources, avoiding lack of access to water and also related to ‘common pool resources’ in which multiple allocations are competing with domestic water supply (e.g. geo-energy, minerals, agriculture and ecosystems, and transboundary allocation of natural resources). UNFC for groundwater resources is designed to enhance governance to protect the environment and traditional users while ensuring socio-economic benefits to society. Consequently, it is a valid and promising tool for assessing both the sustainability and feasibility of groundwater management at local, national and international levels.

Abstract

Water scarcity has driven many countries in arid regions, such as Oman, to desalinate seawater for freshwater supply. Episodic problems with seawater quality (e.g., harmful algae), extreme weather events that affect energy supply and hence the desalination process have nurtured the urgent need to store desalinated seawater (DSW) in the aquifers for use during emergency and peak demand time. Aquifer Storage and Recovery (ASR) using injection wells is a possible strategic option for Oman Water and Wastewater Services Company (OWWSC) to augment aquifer storage using excess desalinated water during low demand times. ASR strategically serves as a water supply backup to optimize production capacities against seasonal demand patterns. The technical-economic feasibility of implementing ASR schemes was investigated in Jaalan, Oman, using hydrogeological and geophysical field measurements, groundwater flow and hydraulic modelling, and economic analysis. Analysis of modelled scenarios results revealed that the Jaalan aquifer is suitable for storing and recovering about 4,000 m3 /hr in 2045. Various well field designs have been tested and optimized numerically using MODFLOW 6, showing that with 160 dual-purpose wells, 7.9 Mm3 can be injected and abstracted within the constraints defined for a robust and sustainable ASR system. Simulations with the density-dependent flow model (MF6 BUY) show that the injected volume can be fully recovered considering the drinking water quality standard. Other sites were also studied. ASR capacity was found to be site-specific, and the groundwater developments near the ASR site governed its feasibility

Abstract

Periodic climate variability, such as that caused by climate teleconnections, can significantly impact groundwater, and the ability to predict groundwater variability in space and time is critical for effective water resource management. However, the relationship between climate variability on a global scale and groundwater recharge and levels remains poorly understood due to incomplete groundwater records and anthropogenic impacts. Moreover, the nonlinear relationship between subsurface properties and surface infiltration makes it difficult to understand climate variability’s influence on groundwater resources systematically. This study presents a global assessment of the impact of climate teleconnections on groundwater recharge and groundwater levels using an analytical solution derived from the Richards equation. The propagation of climate variability through the unsaturated zone by considering global-scale climate variability consistent with climate teleconnections such as the Pacific-North American Oscillation (PNA) and the El Niño/Southern Oscillation (ENSO) is evaluated, and it is shown when and where climate teleconnections are expected to affect groundwater levels. The results demonstrate the dampening effect of surface infiltration variability with depth in the vadose zone. Guidance for predicting long-term groundwater levels and highlighting the importance of climate teleconnections in groundwater management is provided. The obtained insights into the spatial and temporal variability of groundwater recharge and groundwater levels due to climate variability can contribute to sustainable water resource management.

Abstract

Groundwater is a hidden resource, so as part of making it more visible, geophysical methods can be very useful in inferring the delineation of aquifers and/or more productive zones to target in fractured rock environments. The most commonly used techniques to assist groundwater studies or exploration are still resistivity profiles or sections known as ERT or electrical resistivity tomography and vertical electrical soundings or VES. One of the limiting factors with this technique is the scale of what surveys can be conducted, resulting in, at best, some kilometers per day. The Hydrogeophysics group of Aarhus University have developed the towed transient electromagnetic (tTEM) system as a cost-efficient tool for characterizing regional hydrological systems to depths of up to 70 m as an alternative to these more traditional methods - which is highly productive in that collection of 40- to-80-line kilometers of data per day is feasible. The system is based on the transient electromagnetic (TEM) method, which involves using a transmitter and receiver coil to measure the electrical resistivity of the subsurface. The hydrological value in electrical resistivity images stems from the ability to delineate different hydrogeological units based on their contrasting electrical properties. Consequently, 3D electrical resistivity images can infer the subsurface hydrogeology and enhance the success of installing productive boreholes. This work presents case studies from several African countries (e.g., South Africa, Zimbabwe, Ethiopia, Senegal, and Togo). It demonstrates how the tTEM method can identify reliable drinking water sources in these countries.

Abstract

Managed aquifer recharge (MAR) has become increasingly popular in Central Europe as a sustainable, clean, and efficient method for managing domestic water supply. In these schemes, river water is artificially infiltrated into shallow aquifers for storage and natural purification of domestic water supply, while the resulting groundwater mound can simultaneously be designed to suppress the inflow of regional groundwater from contaminated areas. MAR schemes are typically not managed based on automated optimization algorithms, especially in complex urban and geological settings. However, such automated managing procedures are critical to guarantee safe drinking water. With (seasonal) water scarcity predicted to increase in Central Europe, improving the efficiency of MAR schemes will contribute to achieving several of the UN SDGs and EU agendas. Physico-chemical and isotope data has been collected over the last 3-4 decades around Switzerland’s largest MAR scheme in Basel, Switzerland, where 100 km3 /d of Rhine river water is infiltrated, and 40 km3 /d is extracted for drinking water. The other 60 km3 /d is used to maintain the groundwater mound that keeps locally contaminated groundwater from industrial heritage sites out of the drinking water. The hydrochemical/isotope data from past and ongoing studies were consolidated to contextualize all the contributing water sources of the scheme before online noble gas and regular tritium monitoring commenced in the region. The historical and the new continuous tracer monitoring data is now used to inform new sampling protocols and create tracer-enabled/assimilated groundwater-surface water flow models, vastly helping algorithm-supported MAR optimization

Abstract

This work is part of the AUVERWATCH project (AUVERgne WATer CHemistry), which aims to better characterise some Auvergne water bodies, specifically the alluvial hydrosystem of Allier River (France). Alluvial aquifers constitute worldwide a productive water resource, superficial and easily exploitable. In France, 45% of the groundwater use comes from these aquifers. The study site is a wellfield that withdraws 8.5 million m3 of water annually from an alluvial aquifer to produce domestic water for 80% of the local population. At the watershed scale, precipitations have decreased by -11.8 mm/y, air temperatures have increased by 0.06°C/y and the river flow has declined by 20.8 Mm3 /y on 2000 – 2020. In the summer period, at least 50% of the river flow is ensured by the Naussac dam (upstream catchment part), but the recent winter droughts have not allowed the dam to replenish. Thus, water stakeholders are concerned that the productivity of the wellfield could be soon compromised. Based on geological, geophysical, hydrochemical, and hydrodynamic surveys, a numerical model of the wellfield is being developed using MODFLOW. The calibration in natural flow regime is successful using a range of hydraulic conductivities going from 1×10-3 to 1×10-4 m/s (pilot points method), consistent with the pumping tests. Preliminary results show that the river entirely controls the groundwater levels at all observation points. The perspective is now to calibrate this model in a transient regime by integrating domestic water withdrawals to determine how low the river can go without affecting the wellfield productivity.

Abstract

Modern societies rely heavily on subsurface resources and need open access to accurate and standardized scientific digital data that describe the subsurface’s infrastructure and geology, including the distribution of local and regional aquifers up to a depth of five kilometres. These data are essential for assessing and reducing climate change’s impact and enabling the green transition. Digital maps, 3D and 4D models of the subsurface are necessary to investigate and address issues such as groundwater quality and quantity, flood and drought impacts, renewable geo-energy solutions, availability of critical raw materials, resilient city planning, carbon capture and storage, disaster risk assessment and adaptation, and protection of groundwater-dependent terrestrial and associated aquatic ecosystems and biodiversity. For over a decade, EuroGeoSurveys, the Geological Surveys of Europe, has been working on providing harmonized digital European subsurface data through the European Geological Data Infrastructure, EGDI.

These data are invaluable for informed decision-making and policy implementation regarding the green transition, Sustainable Development Goals, and future Digital Twins in earth sciences. The database is continuously developed and improved in collaboration with relevant stakeholders to meet societal needs and facilitate sustainable, secure, and integrated management of sometimes competing uses of surface and subsurface resources.

Abstract

Understanding and quantifying hydrology processes represent a mandatory step in semi-arid/arid regions for defining the vulnerability of these environments to climate change and human pressure and providing useful data to steer mitigation and resilience strategies. This generally valid concept becomes even more stringent for highly sensitive ecosystems, such as small islands like Pianosa. The project intends to deploy a multi-disciplinary approach for better understanding and quantifying the hydrological processes affecting water availability and their evolution, possibly suggesting best practices for water sustainability.

First results pointed out as over the last decade the precipitation regime has led to a major rate of evapotranspiration and minor effective infiltration that caused a decreasing of piezometric level over several years. Quantity and chemical-isotopic features of rainfall and effective infiltration water measured/collected by a raingauge and a high precision lysimeter describe the hydrological processes at soil level and characterize the rate and seasonality of groundwater recharge. Hydrogeological and geochemical data of groundwater are highlighting the distribution and relationship among different groundwater components, including the seawater intrusion. Furthermore, the comparative analyses of continuative data monitoring in wells and weather station showed the presence of possible concentrated water infiltration processes during rainfall extreme events that induce a quick response of shallow groundwater system in terms of water level rise and decrease of electrical conductivity. Thus, elements of vulnerability of the aquifer to pollution are pointed out, as well as the possibility to provide technical solutions for enhancing water infiltration and groundwater availability.

Abstract

Recharge is one of the most significant parameters in determining the sustainability volume of groundwater that can be abstracted from an aquifer system. This paper provides an updated overview and understanding of potential and actual groundwater recharge and its implications for informing decision-makers on efficiently managing groundwater resources. The paper argues that the issue of potential and actual recharge has not been adequately addressed in many groundwater recharge studies, and if not properly addressed, this may lead to erroneous interpretation and poor implementation of groundwater resource allocations. Groundwater recharge has been estimated using various methods, revised and improved over the last decade. However, despite numerous recharge methods, many studies still fail to distinguish that some assess potential recharge while others estimate actual recharge. The application of multiple recharge methods usually provides a wide range of recharge rates, which should be interpreted in relation to the type of recharge they represent; as a result, the wide range of recharge findings from different methods does not necessarily imply that any of them are erroneous. A precise distinction should, therefore, be made between the potential amount of water available for recharge from the vadose zone and the actual recharge reaching the water table. This study cautions groundwater practitioners against using “potential recharge values” to allocate groundwater resources to users. The results of this paper may be useful in developing sustainable groundwater resource management plans for water managers.

Abstract

Crystalline basement underlies much of Africa, and the groundwater within the shallow, weathered layer provides reliable drinking water for many people. This resource is key in adapting to changing climate, particularly in providing reliable water for drinking and smallscale irrigation. However, this requires higher yields from boreholes than currently abstracted. Renewed research is required to investigate sustainable yields from this type of aquifer and how it varies spatially. Recent work on crystalline basement rocks in Africa has shown that there are a number of important geological and geomorphological controls on shallow aquifer parameters; variability of geological properties and the impact of the landscape history is likely to have a strong control. Typically, the basement has experienced high metamorphic grades, which reduces intergranular porosity. Consequently, the aquifer relies on the presence of fault/ fracture zones; and the regolith’s depth and nature, which can have significantly higher porosity and permeability than the underlying bedrock. The interaction and variability of these key factors and climatic and landuse variables are likely to impact shallow aquifer productivity strongly. Here, we report on an ongoing study by UK and African scientists to understand how to represent the variability of geological, regolith and landscape factors across African crystalline basements. In tandem, a data-driven modelling approach is being used to examine these controls’ influence on groundwater yields. Continental-scale mapping of basement groundwater yield is planned, supporting those planning further aquifer development, including the growing use of solar-powered pumps.

Abstract

This study aims to investigate the groundwater circulation and hydrogeochemical evolution in the coastal zone of Xiamen, southeast China, which can provide a reference for the development of water resources and the protection of soil and water environment in the coastal areas. A close connection between mountains and the sea characterizes the southeast coast of China. Although rainfall is abundant, the topography limits it, and water resources quickly run into the sea. Coupled with a concentrated population, water is scarce. In addition, this area’s water and sediment environment are influenced by human activities and geological conditions. Its changing trend also needs further study. Therefore, using hydrochemical analysis, isotope technology, numerical simulation and other techniques, this study took Xiamen City on the southeast coast as an example to study the groundwater circulation and the environmental evolution of water and sediment. The results show that although the aquifer is thinner, there is still deep groundwater circulation, and the seawater intrusion range of deep aquifer is much further than that of shallow aquifer. In addition to geological causes, human activities have become the main factors affecting groundwater quality, especially nitrate and lead. The nitrate content even exceeds the content of the major ionic components. Introducing land-based pollutants has also contributed to declining seawater and sediment quality in the Bay area. In general, the main pollutants in coastal areas include nutrients, heavy metals and new pollutants.

Abstract

Conjunctive use of surface water and groundwater plays a pivotal role in sustainably managing water resources. An increase in population, especially in the cities, increases the demand for water supply. Additional infrastructure to meet the needs and treatment techniques to remove the pollutants should be updated from time to time. Closing the urban water cycle by recycling and reusing treated sewage in the water sector can significantly reduce excessive groundwater extraction. However, this method is being implemented in only a few cities in developed countries. In the closed urban water cycle, treated sewage is discharged to rivers or other surface water bodies and used for managed aquifer recharge (MAR). Bank filtration, soil aquifer treatment and infiltration ponds are available MAR methods that augment the groundwater resources and remove pollutants during the natural infiltration process. These cost-effective natural treatment methods serve as a pre-treatment technique before public water supply to remove turbidity, algal toxins, bulk dissolved organic carbon and pathogenic microorganisms. The successful performance of these treatment methods depends on the need and feasibility for MAR, suitable hydrogeological conditions, sub-surface storage capacity of the aquifers, availability of suitable areas for MAR, type of MAR, source of recharge water, quality criteria, assessing the past, present and future climatic conditions. Case studies on groundwater resources management and water quality assessment, including for organic micropollutants from a large urban catchment in India, are presented.