Conference Abstracts

All Abstracts were presented at the Groundwater Conferences

Displaying 51 - 100 of 795 results
Title Presenter Name Presenter Surname Area Sort ascending Conference year Keywords

Abstract

Cape Town... Home to over 3 and a half million people, the second most populated city in South Africa was born in the shadow of the Table Mountain. The mountain offered all the elements vital for human settlement... most importantly WATER. The reports of the abundance of fresh water and fertile land at the foot of the mountain and surrounds inspired the VOC to set up a refreshment station at the Cape. By the late-1800s, spring water was solely used for domestic supply to the settlers of Cape Town. Until the 1930s, the Stadsfontein or Main Spring was still being used as a source of drinking water but because of on-going concerns about the safety of the water for human consumption, and sufficient water being available from the new schemes like Steenbras and Wemmershoek, a decision was taken to discontinue using the Stadsfontein for drinking water purposes. Since then most of the water joined the stormwater to the sea, until 2010 when the City recommenced using the water for irrigation at Green Point Stadium and the Commons. City of Cape Town faces a number of water supply challenges. These include managing the ever increasing demands on the current water supply. The City of Cape Town Springs Study was born from this 2001 Water Demand Management study and it aims primarily to examine the possibility of using spring water as an alternative source of water for non-potable supply. Of these, the springs which hold the most potential for use are found in two areas - the CBD area of Oranjezicht, home to the Field of Springs

Abstract

Studies showed that the primary origin of salinity in river flows of the Sandspruit in the Berg Catchment located in the Western Cape Province of South Africa was mainly due to the weathering of the shales, while atmospheric deposition contributed a third of the total salinity. The salts are transported to rivers through surface runoff and subsurface flow (i.e. throughflow and groundwater flow). The purpose of this study was to determine the relative contributions of subsurface flow and surface flows to total flows in the Sandspruit River, Berg Catchment. Three rain events were studied. Water samples for two rain events were analyzed for environmental tracers ?18O, Silica (SiO2), Calcium (Ca2+) and Magnesium (Mg2+). Tracers used for two component hydrograph separation were ?18O and SiO2. These tracers were selected as Ca2+ and Mg2+ provided inconsistent contributions of both subsurface flow and surface flow. Two component hydrograph separations indicated that groundwater is the dominant contributor to flow, while surface runoff mainly contributes at the onset of the storm event. Groundwater response to precipitation input indicated that boreholes near the river have a greater response than boreholes further away from the rivers, which have minor response to the input of precipitation.
Keywords:
Stable Isotopes, Sandspruit River, Tracers, Hydrograph separation, Salinity

Abstract

POSTER The poster presents the modified hydrogeologic conceptual model that was used to assess the dynamics of groundwater flooding in Cape Flat Aquifer (CFA). The groundwater flooding remains poorly understood in the context of urban hydrogeology of the developing countries such as South Africa. While engineering intervention are relevant to providing solution to such events, continue estimation of hydrogeologic parameters at local scale alongside field measurements remain paramount to plausible modeling the groundwater flooding scenarios that inform such engineering interventions. However, hydrogeologic conceptual model which informs numerical simulation has not been modified to include local scale variation in the CFA to reflect various groundwater units. The current study argues that modifying hydrogeologic conceptual model improves numerical simulations thereby enhancing certainty for engineering solutions. The current study developed groundwater units, set up site specific models and estimated aquifer parameters using pumping step-drawdown and constant rate pumping tests in order to produce a comprehensive modified hydrogeological conceptual model for CFA to inform groundwater modeling at catchment level for water sensitive cities.

Key Words: Aquifer parameters, Groundwater flooding, specific models, hydrogeologic conceptual model, groundwater units, numerical simulations, water sensitive cities, CFA

Abstract

The Department of Water Affairs and Sanitation is the custodian of the Water Resources in South Africa. The Western Cape Provincial Office, Geotechnical Services (Geohydrology) Sub Directorate, is responsible for management of groundwater resources in two Water Management Areas (WMA), Berg Olifants and Breede- Gouritz. Thirty-eight monitoring routes comprising 700 sites in total are monitored across the Western Cape Province. The purpose of this paper is to show the use of GIS as a management tool for groundwater monitoring in the Western Cape. This is to assist and support the scientists, technicians, managers, external stakeholders and/or general public. The main question that needs to be answered is: “What is the current groundwater monitoring and data management situation in the Provincial office” With GIS as platform, geographical information was generated from existing data bases to answer questions such as, what is being monitored, where is it being monitored, who is monitoring it, why is it being monitored, when is it being monitored, are instruments installed, what instruments are installed, what equipment is involved and what energy source is used? These questions are applicable to the Region, Water Management Areas, the relevant monitoring route and geosites. Generated geographical information showed the gaps, hot spots and what is still needed for all the facets of groundwater management (from data acquisition to information dissemination) processes. The result showed the status of data bases, need for data in areas of possible neglect, training gaps, inadequate structure and capacity, instrumentation challenges, need for improvement of commitment and discipline, as well as many other issues. The information generated proves to be an easy tool for Scientists, Technicians and Data Administrators to assist them to be on top of the groundwater resource management in their area of responsibility. The expansion of the use of GIS as a groundwater management tool is highly recommended. This will ensure better understanding of the “The Hidden Treasure” resource.

Abstract

The Elandsfontein aquifer is currently under investigation to assist with the management of the system and to ensure the protection of the associated Langebaan lagoon RAMSAR site. The Elandfontein aquifer unit is situated adjacent to the Langebaan Road aquifer in the Lower Berg River Region and is bounded by the Langebaan Lagoon, possible boundary towards Langebaan Road aquifer, the Groen River bedrock high and the Darling batholith. The study will investigate the boundaries and hydraulic characteristics of the different aquifers and aquitards (Elandsfontein clay layer) in the Elandsfontein unit and their relationship to the Langebaan Lagoon. A literature review and baseline study has been completed to determine groundwater flow patterns and the general distribution of water quality, using historic data to characterize the different aquifers and aquitards of the system. An initial conceptual model has been formulated based on this data. Pumping tests will be used to acquire hydraulic characteristics of the Elandsfontein aquifer where data gaps exist, together with water quality and stable isotope sampling. Future plans are to construct a groundwater numerical flow model of the Elandsfontein system to assist with the management of the complex relationships between the recharge areas, flow paths through the different aquifer layers and aquitards towards the Langebaan Lagoon discharge. Results will be presented using graphical methods such as time series graphs amongst the monitoring boreholes over the years, piper diagrams to show water type characterization (Na-Cl type water) and initial results from the groundwater flow model. The expected results are envisaged to advance knowledge on groundwater availability and quality to inform the decision about water resource protection and utilization. Therefore this study is designed to provide large-scale background information that will improve the knowledge and understanding of the Elandsfontein aquifer unit and provide a basis for potential future studies of a more-detailed nature.

Abstract

The Western Cape of South Africa is rich in small stream sized rivers forming part of its water resources. The Lourens river and Eerste river, both situated in this region are the base for this study. Rivers are affected by their surrounding environments and the continuous development around these rivers could affect their health adversely. Diverse land-use patterns contribute to a wide range of pollutants with different characteristics. Indeed, some of the pollution levels in the Eerste and Lourens rivers were linked directly to specific land-use practices surrounding the rivers. However, the large change in weather during a seasonal cycle causes a significant difference in pollution levels too, because the transport of pollutants from the source to the rivers is primarily based on surface run-off, which in turn is predominantly dependent on the precipitation of the region.

A six months long monitoring in 2016 showed that processes like surface run- off, together with first flush events and dilution control the pollution concentrations in the Lourens river and Eerste river. Physicochemical parameters, major agricultural nutrients and industrially produced heavy metals all reacted differently to these processes, thus, providing an insight into the effects continuous development and climate change have on surface water as a national resource. Interestingly, both rivers included sections with substantial retention and/or reduction of pollutants. The natural riparian vegetation, hyporheic zone and microbial community present in these rivers are proposed to be the main drivers behind both rivers’ ability to reduce or retain pollutants. These drivers are sensitive to their environment and react differently depending on the weather, available nutrients, and physicochemical environment. With the effects of climate change becoming more apparent, it is important to study the impact of warmer temperatures, longer droughts, and heavier rain events, for instance, on the pollutant retaining capabilities of these streams.

Abstract

Groundwater  is  a  reliable  freshwater  resource.  Its  location   underground  prevents  it  from evaporative  forces.  Thus  it  serves  as  storage  of  most  of  the  world’s  liquid  fresh  water.  Being enclosed in the ground it is not also easily contaminated. Since groundwater can be used wherever it exists without costly treatments, there is over-dependence on the resource. Though in the past it was mainly used by rural dwellers for domestic water supply, presently, due to effects of climate change on surface water resources, pressures of population growth leading to expansion of towns and cities, groundwater is also supplied for agriculture and industrial purposes. But, the resulting effect from these additional users is the vulnerability of groundwater resources to reduction and pollution. Its importance in sustaining livelihood and development has been highly credited and its management  is  looked  upon  as  a  prerogative.  To  enhance  groundwater  management  in  the Sandveld, a qualitative content analysis approach was used to evaluate six factors considered to be highly needed in groundwater management. This background was used to find out how institutional arrangement in South Africa facilitates or constraints groundwater management in the Sandveld, a highly groundwater dependent area in the West Coast of the Western Cape. The results showed that all  six  factors  are  present,  but  three  facilitate  groundwater  management  while  three  others constrain management. The community involvement which ranked first, is deficient. Thus, institutional weaknesses that need to be strengthened have been identified.

Abstract

Large scale groundwater abstraction is increasingly being used to support large urban centres particularly in areas of low rainfall but presents particular challenges in the management and sustainability of the groundwater system. The Table Mountain Group (TMG) Aquifer is one of the largest and most important aquifer systems in South Africa and is currently being considered as an alternative source of potable water for the City of Cape Town, a metropolis of over four million people. The TMG aquifer is a fractured rock aquifer hosted primarily in super mature sandstones, quartzites and quartz arenites. The groundwater naturally emanates from numerous springs throughout the cape region. One set of springs were examined to assess the source and residence time of the spring water. Oxygen and hydrogen isotopes indicate that the spring water has not been subject to evaporation and implies that recharge to the spring systems is via coastal precipitation. Although rainfall in the Cape is usually modelled on orographic rainfall, δ18O and δ2H values of some rainfall samples are strongly positive indicating a stratiform component as well. Comparing the spring water δ18O and δ2H values with that of local rainfall, indicates that the springs are likely derived from continuous bulk recharge over the immediate hinterland to the springs and not through large and/or heavy downpours. Noble gas concentrations, combined with tritium activities indicate that the residence time of the TMG groundwater in this area is decadal in age with a probable maximum upper limit of ~40 years. This residence time is probably a reflection of the slow flow rate through the fractured rock aquifer and hence indicates that the interconnectedness of the fractures is the most important factor controlling groundwater flow. The short residence time of the groundwater suggest that recharge to the springs and the Table Mountain Group Aquifer as a whole is vulnerable to climate change and reductions in regional precipitation. Any plans for large-scale abstraction to supplement the City of Cape Town water supply would need to factor this in to models of maximum sustainable yield.

Abstract

POSTER The study aims at using hydrogeochemical model to establish groundwater quality in shallow and deep aquifers in Heuningnes Catchment which is located within Bredasdorp in the Western Cape Province. The catchment is positioned at latitude of 34o42'50"S and longitude 20o07'13"E. The area is about 1400km2 has vleis, lakes and pans and its predominant formation is sedimentary rocks of Table Mountain and Bokkeveld Groups sitting on a crystalline basement of the Malmesbury granites. Comprehensive characterisation of the hydrogeochemical evolution is lacking and the current study argues that the use of hydrogeochemical Analysis Model (HAM) has potential to establish water-type, water source, water mixing/rock-water interactions, salinity, saturated adsorption ratio and hardness-softness of that predominant hydrochemical facies in the study area in addition to assessing the compliance of such water to WHO and South Africa water quality guidelines for drinking and agricultural use. Groundwater samples will be collected in 45 different locations (wellpoints/shallow wells, boreholes and wetland as end member) using in-situ sampling techniques to measure pH, electrical conductivity, total dissolved solids and temperature. Turbidity, total hardness, calcium, chloride and bicarbonate will be analysed using analytical chemistry methods including titrimetric method. Magnesium, potassium, sodium, nitrate and phosphate analysed by Atomic Absorption Spectrophotometer whilst sulfate will be analysed using spectrophotometer. Graphical methods such as piper diagram will be used to present the results to determine water-type, water freshness/hardness, water source, water mixing/rock-water interactions, salinity, saturated adsorption ratio and hydrogeochemical processes. The results from the present study are envisaged to inform formulation of science-based interventions strategies that will lead to sustainable utilization and management of the water resources in the area to improve the livelihoods of people and environmental integrity.

Key words: Groundwater quality, Heuningnes Catchment, hydrogeochemical Analysis Model, Piper diagrams, Hydrogeochemistry

Abstract

The City of Cape Town is a favourite tourist destination. With Table Mountain being one of the new seven natural wonders of the world, Cape Town is also uniquely positioned where the Benguela and Atlantic ocean currents meet. Proximate environs play home to some of the most unique biodiversity found in the world with the fynbos biome protected in numerous reserves such as the Cape Peninsula, Table Mountain and Kogelberg Nature Reserves. Cape Town is also South Africa’s cultural heartbeat where artists, film makers, designers and wine connoisseurs contribute to the tourism of the country.

The recent drought and increasing demands through urbanisation are raising concerns regarding water scarcity and supply. Will the city be able to supply this growing demand, notably with additional stress due to climate change?

The Hydrological Heritage Overview aims to address the important power water has over Mankind and how we can harness that to our benefit without compromising the environment. The selection of Cape Town (following completion of Pretoria and Johannesburg) supplies the opportunity to address the mechanical impacts of water: Table Mountain formed through the action of water, and was shaped into its characteristic landform due to subsequent erosion by water action. Additional emphasis on the power of water relates to aspects of hydropower, the impacts of floods and droughts, and additionally of the power of water as it is harnessed as a vital life supporting resource and as a means of recreation.

As the final deliverable of this project, a short 12-minute documentary film has been made for the information of the general public and interested parties. The film showcases the water history of the City of Cape Town, emphasising supply from springs, dams and, more recently, artificial groundwater recharge. Although not a technical presentation, showcasing of the film will advance citizen science and public appreciation for the value of water.

Abstract

The Sandveld (Western Cape, South Africa) is a critical potato production area on the national production scale, especially for table potatoes. As the area is situated on the continent’s West Coast, it is a dry area of low rainfall (less than 300 mm /a). The bulk of the irrigation water for agriculture in the region is derived from groundwater. Approximately 60 Mm3 /a of groundwater is abstracted for irrigation of potatoes in the broader Sandveld, assuming a 4-year rotation cycle. The abstraction of groundwater is a sensitive issue in the Sandveld as groundwater also plays a critical role in supplying water to towns in the area, water for domestic use, and it also plays a critical role in sustaining sensitive ecosystems (such as the coastal lake Velorenvlei).

The groundwater resources have been monitored for nearly thirty years now. The results indicate areas where a slow but consistent decline in groundwater levels and groundwater quality is occurring. The trends can also predict when the aquifers will become depleted, and the groundwater will become too saline for use. This is critical information for management interventions to be implemented now to protect the area from irreversible damage.

Abstract

A Waste Water Treatment Works (WWTW) is being constructed at Pearly Beach. A geohydrological assessment was conducted to assess the potential discharge of treated effluent above and below the subsurface calcrete layers. A hydrocensus has been completed of the area to confirm there is no use of groundwater down-gradient of the WWTW and there is no likely impact on ecosystem functioning. Based on existing boreholes, infiltration above the calcrete layer in the vadose zone was found to be more efficient. A geophysical study was conducted to determine the optimal locations of boreholes for disposal of the treated effluent. The geophysics included an extensive electromagnetic (EM) survey. Resistivity data were acquired along a single resistivity profile to use as calibration for the EM data. This information has been correlated with borehole information from the monitoring boreholes that were drilled at the proposed WWTW site. From this information it would seem that the areas with higher conductivity (lower resistivity) can be targeted for drilling boreholes to dispose of the treated effluent. Also, the higher conductivity areas are interpreted as the areas with increased porosity. However, the change in conductivity could result from an increase in salinity or changes in calcrete content in the subsurface. The expected depth of the unconsolidated sand formations is generally less than 10 m based on the interpreted depth of the saturated formation from the resistivity data. Drilling will target the unconsolidated sands, as well as potential higher porosity zones beneath the calcrete. The geophysics data should then be calibrated with the information obtained from drilling the first borehole. The other sites can then be confirmed or reviewed based on the information. The boreholes are to be drilled soon and pump tested. The obvious concern is that the boreholes may clog, however measures will be put in place to minimise this risk. A detailed monitoring network will also be established. On-going monitoring is crucial to ensure the success of the scheme. The full conference paper will include the drilling and pump testing results and infiltration tests. This method of disposal needs to be taken into consideration especially if such schemes can be run successfully so that another option is available for the disposal of treated effluent. {List only- not presented}

Abstract

The recent Western Cape drought initiated large scale development of the Cape Flats Aquifer (CFA) and refurbishment of the Atlantis Water Resource Management Scheme (AWRMS). Both aquifers are comprised of primary sediments of the Sandveld Group. Lithologies and depositional environments of the two aquifers are often directly compared and linked, but recent borehole drilling in these two aquifers is highlighting their inherent differences. The use of conventional mud rotary drilling techniques in these aquifers and changing nomenclature over time, has created uncertainty in their lithological character, leading to complications in borehole design and interpretation of test pumping results. Sonic drilling - Atlantis (20) and CFA (25) - was undertaken and incorporated with approximately 200 mud rotary borehole drill logs and geophysical survey results to investigate aquifer geometry and hydro-lithological characteristics. Results to date indicate the CFA is more heterogenous and has greater lateral variation compared to the Atlantis Aquifer. The CFA is interspersed with clay lenses, organic rich layers, calcrete and thick basal shell units. Whilst the Atlantis Aquifer displays a more homogeneous character with limited clay lenses, minor organic layers, interspersed calcrete and a near non-existent basal shell layer. Results of the sonic drilling have led to increased confidence in boreholes design, test pump analyses and numerical model results. The influence of CFA's heterogeneity on test pumping interpretation is displayed in the results through a variety of unconfined, confined, semi-confined and leaky type curves. Atlantis however, typically displays unconfined Neuman-type curves. Delayed gravity drainage signals, test pump duration, varying hydraulic conductivities of different lithological units and other boundary effects not only have an economic impact on test pump design, but can lead to the misinterpretation of test pump data which greatly influences planning for the aquifers' response to large scale abstraction and Managed Aquifer Recharge (MAR) alike.

Abstract

Ladismith was established in 1852 at a point where freshwater springs discharge from the Swartberg mountains. Growth of the town required building of the Goewerments Dam in 1920 and the Jan F le Grange Dam in 1978. However, water demand now matches supply, and water shortages are being experienced. Poor management and recent droughts exacerbated the situation. A project was initiated to address problems with the existing water supply and identify additional sources of water. Groundwater is an obvious option, with the regionally extensive Cango-Baviaanskloof fault being located directly north of the town. The west-east trending fault juxtaposes the highly productive Table Mountain Group aquifer with less productive argillaceous rocks of the lower Witteberg Group. This paper presents the results of initial geohydrological exploratory work and examines the role groundwater can play in the future water supply to the town.
{List only- not presented}
KEYWORDS
groundwater, exploration, water supply, Ladismith

Abstract

The present study applied multivariate statistical analysis (MSA) to investigate the status of the hydrochemistry of groundwater Upper Berg River Catchment, Western Cape, South Africa. Factors that influence the quality of groundwater are well established. The aim of the present study was to characterize groundwater quality in the Upper Berg River Catchment, using multivariate statistical analysis methods in order to establish the evolution and suitability of such waters for agricultural use in addition to confirming major factors that explain groundwater quality in the study area. Principal Component Analysis (PCA) and Hierarchical Cluster Analysis (CA) were applied to groundwater physicochemical data that were collected from 30 boreholes. Data collection and analysis followed standard procedure. The use of a Piper Diagram showed that Na-Cl water types were the predominant groundwater facies. Furthermore, PCA extracted five major factors that explained 83.11 % of the variation in the physicochemical characteristics of groundwater. Using Varimax rotation, two main factors, namely, surface water recharge and rock-water interactions, were extracted which collectively explained 60.81% of the variation in the groundwater physicochemical data. The two factors indicate that the predominant factors affecting groundwater quality in the study area are natural (biochemical) processes in the subsurface as well as interactions between the rock matrix and passing water. Cluster Analysis extracted three major groundwater clusters based on dissimilarities in groundwater physicochemical characteristics in different sites. The first cluster included 7 borehole sites located in the Franschhoek Valley area and 14 borehole sites located in the Robertsvlei Saddle area as well as the upper catchment (behind the Berg River Dam). The second and third clusters collectively included 9 groundwater sites within the Franschhoek Valley area. These sites were located on agricultural land where extensive vineyard and orchid cultivation is done. Groundwater quality in the Upper Berg River Catchment mainly reflects the influence of natural process of recharge, rock-water interactions and microbial activity. The quality of groundwater fell within Target Water Quality Guidelines for agricultural water use published by the Department of Water and Forestry Affairs meaning such waters are suitable for agricultural use.

Key words: Dendrogram, Groundwater quality, Hierarchical Cluster Analysis, Principal Component Analysis, Physicochemical, Spatial.

Abstract

Groundwater flow system responses have been understood using derivative analysis. The argument is that the use of derivative analysis derived from pumping test data improves the understanding of aquifer types and curve matching in a hydrogeologic setting. The different aquifer systems encountered in Western Cape Government Business Continuity Programme (WCBCP) of South Africa was used as case study where the analysis of the time versus draw-down derivative plots were applied to validate the aquifer characteristics to explaining the groundwater flow systems. Key findings showed that analysis from the time versus draw-down derivative plots can be used to infer conditions within the wellbore, groundwater flow to boreholes and boundary conditions within the aquifer to provide insights. In addition, results confirmed that the archetypal time vs draw-down responses enabled characterizing the aquifer types and such analysis showed unique responses to the pumping. Lastly, long term operation of boreholes for water supply were ascertained when the analysis was interpreted. The analysis was enhanced when the geological information that was collected during drilling operations, were added to the conceptual understanding of groundwater flow studied aquifer system. However, due to costs implications of conducting long-term aquifer hydraulic pumping tests, deviations from the conventional draw-down responses are expected. In this study, it is suggested that due to complexities associated with heterogeneous flow in aquifer types, it is essential to combine derivative analysis with pumping methods to improve interpretation and assessing long term operation of boreholes for water supply

Abstract

The overexploitation of water resources has resulted in a global decline in groundwater levels. Managed aquifer recharge (MAR) is a globally acceptable practice to manage the depletion of water in overexploited aquifers in regions with limited water availability. The West Coast of South Africa experiences a semi-arid climate with predominantly dry summers. This study aims to identify potential areas suitable for MAR in the Saldanha Bay area to maximize the water available to these areas during the dry season. This will be done through the delineation of the aquifer(s) units to determine the distribution of suitable aquifers, understanding the aquifer(s) hydraulic and hydrogeological characterises and investigate the water quality. This study focuses on 1) Frequency domain electromagnetic and electrical resistivity geophysical methods to characterise the subsurface; 2) Aquifer testing, to estimate the hydraulic properties of the aquifer(s); 3) Water quality sampling and analysis for water quality investigations. Practical considerations like distance from suitable water sources will also be considered. The expectations for this study, based on the results that should be obtained from these methods, should include the identification of several zones that would allow for MAR practices

Abstract

Different biological and chemical transport results are evaluated in this study. Ecoli and PDR1 were selected as the biological tracers with salt and rhodamine as chemical tracers. The transport experiments were evaluated through the primary aquifer material found at the University of the Western Cape research site. A series of controlled experiments under laboratory and field conditions was conducted. Each provides a different kind of data and information. The results from laboratory studies could be used to better design the field studies. In both cases, the data collected was to provide information on fate and transport of microbes in groundwater. The field design phase of the experiment was an up-scaling of the laboratory phase of this project. The amount injected into the aquifer was increased in proportion to the size of the research site. Tracer tests using chemical and microbial tracers were carried out simultaneously. Results of laboratory tests show a 5 times slower transport of microbes, compared to salts.. The salts at field scale show a breakthrough occurring after 2 days whereas the microbes never managed to breakthrough with the experiment stopped after 45 days. A new borehole was drilled closer to reduce distance/ travel time, but this had no effect on field results for the microbes. {List only- not presented}

Abstract

The quality of groundwater is, in part, controlled by the character of the rock in which it is stored and the water - rock contact time. Rainfall (or recharge) is also a contributing factor as the mineralisation of groundwater increases from east to west across South Africa. It is well established that groundwater is more mineralised than surface water, and with most of South Africa's domestic supplies being sourced from dams, municipal water supplies are generally of low salinity. The exception to this is where water supplies are sourced from groundwater - such as in the Karoo and along the West Coast. The assessment of water potability is based on both the South African National Standard 241 and the Department of Water and Sanitation guidelines, with the former being a legal requirement. Previously, SANS 241 had two classes of water with the lower class only being allowed for a limited period. In 2015, Class II water was done away with and only a single class of water is now specified. While this may have been done to conform to World Health Organisation standards, it disregarded the realities of a resource-strapped South Africa where in large parts the municipal water supplies simply cannot meet the SANS241 standard. This paper examines the implications of the SANS 241 standard on efforts to establish emergency groundwater supplies during the drought impacting the Western Cape Province.

Abstract

The Deep Artesian Groundwater Exploration for Oudtshoorn Supply (DAGEOS) Project is culminating in development of the Blossoms Well-field (C1 Target Zone), about 20 km south of the town. The target Peninsula Aquifer is located at depths >300 m below ground level, geopressured to ~800 kPa (8 bar) artesian head. Each production well has to be uniquely designed for site-specific hydrogeological, hydrochemical and aquifer hydraulic conditions. Hydrostratigraphy rather than stratigraphy must inform the final well design. It is a recipe for unnecessary expense and deleterious consequences for aquifer management, to design and commence the drilling of wide-diameter production wells without the data and information provided by necessary exploration and essential pilot boreholes, yielding broader hydrogeological insights.

During discovery exploration at the C1b Target Site Area (TSA), drilling of a 715 m-deep  diamond-core exploration  borehole (C1b2)  was essential  for  the  proper  siting and  safe design  of  a  production  well  (C1b3).  Following confirmation  of  the  artesian nature  of  the  Peninsula Aquifer, the C1b2 borehole was equipped for monitoring, prior to the drilling of the nearby (~25 m distant) C1b3 production well, which was piloted with a core borehole down to a low level (~290 m) within the Goudini Aquitard, where it became marginally artesian and was then plugged and sealed. This pilot borehole was reamed with wide-diameter percussion tools to a depth where casing could be firmly cemented within the Goudini, above a solid, relatively unfractured zone. The final stage of drilling into the Peninsula Aquifer, using the Wassara water-hammer method, was thereafter continuously monitored from the C1b2 site, and the subsequent recovery history of C1b3 is comprehensively documented. The DAGEOS   drilling   and   deep-groundwater   monitoring   provides   significant   experience   in   solving technological problems likely to be encountered in the future development of shale-gas in the main Karoo basin. The confined, artesian aquifer behaves very differently to other, conventional groundwater schemes and requires a different management approach that focuses on managing the artesian pressure within the basin  and  its  response  to  abstraction.

The  potential  adverse  influences  of  high  and/or  extended abstraction on the Peninsula Aquifer may be divided into two general categories: 1) depletion or degradation of the groundwater resource, and 2) environmental or ecological consequences. Depletion in the case of a confined aquifer refers to depletion in storage capacity due to non-elastic behaviour. Environmental/ecological impacts of groundwater extraction arise only when the ‘radius-of-influence’, defined by the distance from the centroid of a well-field to the perimeter of the cone of depression in the ‘potentiometric surface’ (surface of pressure potential in the aquifer), reaches recharge and or discharge boundaries. The new Oudtshoorn Groundwater Scheme affords an opportunity to stage a transition from an increasingly risky reliance on surface water that is prone to severe reduction through climate change, to a deep groundwater resource that is capable of acting as a sustainable buffer against water-scarcity through drought intervals that may endure over decades rather than years, and can be operated without electricity supply by utilising the artesian pressure in the aquifer. This approach was demonstrated in a 3- month artesian flow test during 2009.

 

Abstract

The assumed interconnection between palaeochannels and subsurface water resources is described. This paper (poster) discusses the different methods that can be used to indicate the significance of palaeochannels into groundwater recharge. Hydraulic parameters such as permeability and transmissivity of the layer underlying the palaeochannel act as the main dependents of groundwater recharge on palaeochannels. Considering the drastic drought from which South Africa is recovering or has recovered the importance of artificial recharge through palaeochannels is explained. The Langebaan Road Aquifer with its palaeochannel is used as a practical example and a detailed explanation on how palaeochannels can be used to enhance groundwater recharge is further demonstrated. Enhancement of recharge would ensure groundwater sustainability and augmentation to surface water especially during drought periods.

Abstract

POSTER Water resources are not just lakes, glaciers and polar ice caps and rivers; however one of the largest water resources is underground water well-known as Groundwater. Groundwater is one of the most important source of water as it the huge reservoir for freshwater. Groundwater can be defined as water existing underneath the earth surface in rock bodies known as aquifers. Approximately 140 communities in South Africa depend on groundwater as the source of water (Department of water affairs and forestry, 1998). Nevertheless groundwater is vulnerably to pollutants resulting from surrounding environmental effects which lead to poor groundwater quality. Numerous environmental effects have a huge impact in polluting groundwater such as pesticides, seawater encroachment, sewage effluent discharges to the ground and storage tanks underground; hence one need to identify, evaluate and come up with solutions on eradication of all these environmental effects that lead to groundwater pollution ( Hearth 1983).

The objectives of the report will be based on minimizing the groundwater pollution at the source and to restore groundwater quality to extent that the beneficial users recognise its suitability. Inspection in University of the Western Cape (UWC) campus site and Rawsonville site will be conducted by BSc Environment and Water Science students of UWC in June using various tools in order to identify and monitor surrounding environmental effects towards groundwater pollution. UWC campus research site is located on top of the Cape Flats primary aquifer (unconfined sand aquifer); Cape Flat aquifer is overlain by an impermeable bedrock Malmesbury (shale) secondary fractured aquifer. Generally this borehole test will be based on testing on how the surrounding environmental impacts with various aquifer properties affect the groundwater quality or whether the surrounding environment interrupts the groundwater quality in Cape flats aquifer and Rawsonville site. The UWC campus site has low infiltration compared with Rawsonville site as it is surrounded by vegetation that plays role in trapping water from infiltrating therefore this aquifer is less likely to be contaminated by pollutants from the land surface, however with it being surrounded by residential areas and industries it is likely to be polluted. Rawsonville on the other hand is located in the grape farm which makes it easier for the site to be contaminated by fertilisers used for agricultural practice. The pumping test will further enable one in knowing the quantity of groundwater in UWC campus site and Rawsonville site thus extraction levels for municipal works, irrigation and so forth will be monitored in a correct manner (Department of water affairs and forestry, 1998). Finally groundwater models will be used to further investigation on the behaviour of groundwater systems.

Abstract

The Table Mountain Group is a major fractured rock aquifer system throughout the Western Cape, with many interconnected but semi-independent parts, each having its own recharge area, flow paths and discharge area. Groundwater is known to travel long distances and reach great depths, including through the Olifants River syncline, such as at The Baths hot spring near Citrusdal. Stable isotope compositions of rain and groundwater in the Cederberg and Olifants River Mountains were measured over a period of 2-3 years. Rainfall in the Cederberg averaged -22‰ and -4.7‰ for D and  18O respectively, whereas rainfall in the Olifants River Mountains averaged -11‰ and -3.0‰ similarly. Groundwater used by farmers in the Olifants River Mountains averaged -13‰ and -2.9‰ similarly. The similarity between groundwater and rainfall isotope compositions in the Olifants River Mountains suggests local groundwater movement. It was concluded that the source of groundwater abstracted by farmers in the Olifants River Mountains is from the peaks west of the Olifants River with little to no contribution from the Cederberg, east of the Olifants River syncline. Geological evidence (thinning of the Olifants River syncline and increased faulting northwards) supports this conclusion.

Abstract

Accurate parameter estimation for fractured-rock aquifers is very challenging, due to the complexity of   fracture   connectivity,   particularly   when   it   comes   to   artesian   flow   systems   where   the potentiometric  is  above  the  ground  level,  such  as  semi-confined,  partially  confined  and  weak confined aquifers in Table Mountain Group (TMG) Aquifer. The parameter estimates of these types of aquifers are largely made through constant-head and recovery test methods. However, such tests are seldom carried out in the Table Mountain Group Aquifer in South Africa due to the lack of a proper testing unit made available for data capturing and an appropriate method for data interpretation. 

An artesian borehole of BH-1 drilled in TMG Peninsula Formation on the Gevonden farm in Western Cape Province was chosen as a case study. The potentiometric surface is above the ground level in the rainy season, while it drops to below ground level during the dry season. A special testing unit was designed and implemented in BH-1 to measure and record the flow rate during the free-flowing period, and the pressure changes during the recovery period. All the data were captured at a function of time for data interpretation at later stage. 

Curve-fitting software developed with VBA (Visual Basic Application) in Excel was adopted for parameter estimation based on the constant-head and recovery tests theories. The results indicate that a negative skin zone exists in the immediate vicinity of the artesian borehole in Rawsonville, and the  hydraulic  parameters  estimates  of  transmissivity  (T)  ranging  from  6.9  to  14.7 m2/d  and storativity  (S)  ranging  from  2.1×10-5   to  2.1×10-4   appear  to  be  reasonable  with  measured  data collected from early times. The effective radius is estimated to be 0.5 to 1.58 m. However, due to formation losses, the analytical method failed to interpret the data collected at later times. Consequently the analysed results by analytical solution with later stage data are less reliable for this case. Numerical modelling is proposed to address the issue in future.

Abstract

In this paper we present results of a field study that focused on the characterisation of submarine groundwater discharge (SGD) into False Bay (Western Cape) with emphasis on its localisation. SGD is defined here as any flow of water from the seabed to the ocean. Thus, it includes (1) advective flow of fresh terrestrial groundwater as well as (2) seawater that is re-circulated across the ocean / sediment interface. Groundwater discharge into the coastal sea is of general interest for two reasons: (i) it is a potential pathway of contaminant and nutrient flux into the ocean, and (ii) it may result in the "loss" of significant volumes of freshwater. In our investigation we applied environmental aquatic tracers, namely radionuclides of radon (222-Rn) and radium (223-Ra, 224-Ra), as well as physical water parameters (salinity and temperature). The concentrations of radon and radium can be used as tracers for groundwater discharge since radon and radium are highly enriched in groundwater relative to seawater. We conducted discrete point measurements of seawater and of terrestrial groundwater as well as continuous radon time-series measurements of near-coastal seawater. A large-scale survey was performed along the entire shoreline of False Bay and revealed distinct positive anomalies of radon in the area of Strand/Gordons Bay and a rather diffuse anomaly along the Cape Flats, which is indicating possible groundwater discharge in these areas. The location of these anomalies remained constant to a large extent throughout several surveys that were performed during different seasons, although these anomalies varied with regard to their magnitude and clearness. Further detailed studies were undertaken in the area of Strand/Gordons Bay including radon time-series measurements in the coastal sea at a fixed location in order to estimate the quantity of SGD and its variability on a tidal time scale. The results indicate that groundwater discharge rates are significantly elevated during low tide. Furthermore, the distribution of radium isotopes (224-Ra/223-Ra ratios) in the Strand/Gordons Bay area indicate a "groundwater" residence time of less than 10 days within a distance of 5 km from the shore. In summary, we found spatially considerable constant SGD locations during different field campaigns. Additionally, we gained a rough understanding of the SGD dynamics on a tidal time scale, its magnitude and groundwater residence time within the inner bay after discharge. These results can be beneficial to trace back contamination in near-coastal waters or to find potential locations for groundwater abstraction.

Abstract

The Saldanha / Langebaan area is expanding at a significant rate, increasing the water demand for the area. The expansion comes from the industrial, residential and tourism sector. In addition there are economically viable deposits of silica and phosphate in the area. Ecosystem functioning in the area is also to a degree dependent on groundwater. All of these factors require an improved understanding of the geohydrology of the area. The geology of the area consists of basement Cape Granite and Malmesbury Group rocks that underlie the sediments of the Sandveld Group. The unconsolidated formations present, are (in order of oldest to youngest) as follows: - Elandsfontyn Formation (oldest): This formation overlies the bedrock in depressions and palaeo-channels in the bedrock. This formation is about 40 m thick and is composed of upward fining quartz sediments. - Varswater Formation: This formation is composed of marine deposits and is restricted to the western (seaward) parts of a bedrock depression to the east of the Langebaan Lagoon and Saldanha. The formation is characterized by rounded quartz grains. - Langebaan Formation: This formation consists of calc-arenites. The sediments are generally grey to cream coloured and consist of quartz and shell fragments, the grain size ranges from coarse to fine and the consolidation is variable. - Witzand Formation (youngest). This formation consists of light-coloured, calcareous, coastal dune sand that can be distinguished from the underlying consolidated Langebaan Formation. The Elandsfontyn Aquifer System (EAS) and the Langebaan Road Aquifer System (LRAS) are the main aquifer systems in the area. These aquifer systems are defined by palaeo-channels that have been filled with gravels of the Elandsfontyn Formation and represent preferred groundwater flow paths. Within each of these aquifer systems (EAS and LRAS) two aquifer units are present. Namely, the confined Lower Aquifer Unit (LAU) geologically consisting of the basal gravels of the Elandsfontyn Formation and the Upper Aquifer Unit (UAU) composed of consolidated sands and calcrete. The two units are separated by a clay aquitard. A numerical model has been established for the area, and extends from the Berg River to the Langebaan Lagoon. Granite outcrop and river system define the other boundaries of the model. Extensive logging of groundwater levels by the Department of Water and Sanitation (DWS) has enabled the accurate establishment of a model. In addition extensive field work and a detailed hydrocensus, as well as the capture of a lot of historical information has resulted in a comprehensive GIS which assists with the refinement of the numerical model. The model provides a valuable tool in modelling potential impacts whether they been from planned groundwater abstraction or artificial recharge. {List only- not presented}

Abstract

Due to the recent drought in the Western Cape province of South Africa, surface water can no longer meet our current demand of water and as a result groundwater usage has increased. High iron concentration in groundwater is a problem which results in iron encrustation and iron clogging. This results in decreased borehole yields, decreased water quality and expensive treatments to remove iron encrustation or the drilling of entirely new boreholes. From both international and local literature there are two common factors which stand out which is that high concentration of iron in groundwater is a global issue, the second common factor is that the occurrence and influencing factors of high iron concentrations are site specific. Boreholes drilled for drought relief in health facilities across the Western Cape have reported increased concentrations of iron. Understanding of the geology, hydrogeology and hydrogeochemical conditions that cause the increased iron concentrations in groundwater at these specific locations is required. The objectives of this research project are to: 1) Assess spatial and temporal variations in iron and manganese concentrations; 2) Establish site specific processes that control the concentration of iron in groundwater; and 3) model the geochemical processes that impact iron levels in groundwater. These objectives will be achieved through historical groundwater quality data analysis, geochemical modeling, field work where samples will be collected and laboratory analysis of the samples collected. The information provided from this research project will allow for the effective management decisions to be made in terms of iron removal from groundwater and early preventative measures that can be made to ensure iron clogging and encrustation does not occur. The study is currently ongoing and there are currently no results available at this point however, at the time of the conference there will be information ready to share.

Abstract

Agriculture in Citrusdal is dominated by citrus fruit farms with the majority of freely available land been occupied by citrus crops. However, agriculture uses large amounts of water, which is often in short supply. During periods of stress where rainfall is low and surface water sources are not recharged and increase in demand for the citrus crops due to global economy has lead farmers to seek alternative sources of water to augment current sources for irrigation. One source in particular is groundwater. Groundwater has become the primary alternative source of water as building dams is an expensive exercise and has inherent limitations, such as faulty dam walls and inflow streams drying up. The development of groundwater sources is relatively cheaper and can be spatially convenient. The Citrusdal valley is located in the Western Cape province of South Africa, the valley is located between latitudes 18o15’ and 19°10’ and longitudes 32o20’ and 32°52’. It is composed of the Precambrian Table Mountain Group (TMG) consisting of sequences of arenites and subordinate argillites overlain by extensive cover of Tertiary to Quaternary sediments. The Citrusdal valley TMG overlies the basement Malmesbury shales at great depth. The Citrusdal Valley is primarily composed of the Peninsula sandstone, Cedarberg shale Formations and the topmost Nardouw Subgroup sandstone. Groundwater is located within two units within the Citrusdal basin, the Nardouw aquifer and Peninsula aquifer. Groundwater in the basin is constrained by large faults, small-scale fracture networks, lithologies, and topography. This project uses groundwater chemistry, exploration drilling and pumping tests to examine the groundwater system in the region to understand the complex geometric and hydraulic properties of the syncline basin. Understanding the geometric and hydraulic properties plays a significant role in developing agriculture in the region and to help manage the groundwater so that it is sustainable.

Abstract

The frequency, intensity, and duration of droughts are increasing globally, putting severe pressure on water supply systems worldwide. The Western Cape Province suffered from a period of severe water shortages that began around January 2015 and lasted until about July 2018. During this recent drought, there was a forced reduction in water use, predominantly from the agricultural sector. Citizens also reduced water use and increasingly tapped into groundwater for their needs irrespective of whether the hydrogeology was considered favourable or not. Unmonitored and unregulated abstraction of groundwater, especially under unstable climatic conditions, poses a significant risk to the future water security of the Western Cape.
We hypothesize that groundwater enabled the municipalities, residents, and industries of the Western Cape to survive the recent drought. Our aim is to evaluate the change in groundwater storage during the 2015 to 2018 drought and its subsequent recovery. To achieve this, we must gain a comprehensive understanding of the dynamics of separate components of the water cycle, as well as the overall water balance.

While there is data on surface water use during the drought, the impact on groundwater resources has yet to be evaluated. However, the accurate assessment of groundwater use is difficult, especially in data-scarce regions, such as South Africa. In our study, we combine remote sensing from NASA’s Gravity Recovery and Climate Experiment (GRACE), the Global Land Data Assimilation Systems, groundwater level measurements from the National Groundwater Archive, and ancillary datasets from the City of Cape Town’s weekly water dashboard to assess the total change in groundwater storage in the Cape Town Metropolitan area and surrounding cities over an 8-year period, from 2012 to 2020. Preliminary results from GRACE data analysis show a steady decline in aquifer saturated thickness over the drought, indicative of an increase in groundwater use.

Abstract

The mineral-rich basin of the West African region has vast reserves of gold, diamond as well as iron ore deposits. Throughout the regional geological setting characterised by structural variations and intrusive belts with metamorphic mineral-rich sequences covered by saprolite soils, one common chemical constituent remains a constant in the water reserves. Arsenic is in high concentrations throughout the region with chemical ranges commonly above the various country guidelines as well as international IFC and WHO standards. The aqueous chemical species is associated with arsenopyrite-rich mineralogy of the regional greenstone belts and highly weathered soils.

This conference presentation investigates the natural source of the arsenic through baseline data, as well as the effect of mining on the already high concentrations of arsenic in both the groundwater and surface water. Natural levels of various chemical species in the regional area are already high at baseline level. One of the main research questions is thus whether mining and other anthropogenic activities will have  an impact on the environment or will  the changes to concentrations be so insignificant to allow the ecosystems and water users to continue in their current ways without any effect. Various case studies in Burkina Faso, Liberia, Sierra Leone and other countries have been combined to investigate the arsenic-rich resources of the West African region through groundwater specialist investigative methods with emphasis on geochemical modelling of the fluid–rock and fluid–fluid interactions leading to the aqueous chemical conditions in the region.

Abstract

The Elandsfontein Phosphate Mine is situated midway between the Langebaan Lagoon and the town of Hopefield. It is located on the Cape West Coast, within the Saldanha Bay Municipality. The mine is positioned within the Elandsfontein Aquifer Unit – which comprises an upper and lower aquifer separated by an aquitard. The economic phosphate layer is situated within the saturated zone of the Upper Aquifer Unit. There are fresh water inflows into the Langebaan Lagoon and all measures must be taken to ensure the natural geohydrological flows are not impacted. Numerous groundwater studies and numerical modelling was carried out to optimize the best way of minimizing the impact on the geohydrology of the area. The dewatering system that has been designed includes re-injection of the groundwater approximately 2 km down-gradient of the open pit. This paper reviews the geological and geohydrological setting of the area and the outcomes of the dewatering and injection systems in place.

Abstract

The Verlorenvlei estuarine lake is one of only two freshwater estuarine systems in South Africa. Whilst being important ecologically it is also a critical agricultural region, supporting a significant proportion of South African potato crops as well as a number of other diverse crops. The vlei itself is fed by the Verloren River which is thought to be fed by surface water inflows and baseflow throughout the year along several tributaries, namely the Krom Antonies, Hol, Berg Vallei and Kruismans. Each of these tributaries has a distinct hydrochemical character defined by cation and anion concentrations, as well as O, H and Sr isotopes. Simulated discharge from each tributary suggests that all tributaries contribute to the chemistry of the Verloren River. The Krom Antonies which has the freshest water has the highest discharge at around 50% of surface water inflows, whilst the Hol with the highest EC values contributes around 35% of surface water inflows. In spite of this, the surface water hydrochemistry in the Verloren River, is remarkedly fresh and very similar in character to the surface water of the Krom Antonies. Sr isotopes in each of the tributaries are distinct and support mixing of different components of each tributary above the confluence. However, below the confluence, they drop significantly which indicates mixing with another unidentified Sr-source. This source was thought to be baseflow from the deeper groundwater system, but the Sr isotope composition of deeper groundwater indicates that it is not the contributing component. Recent years have seen dramatic reductions in precipitation, while increases in pumping for agricultural purposes potentially exceeds the long-term sustainable yield of the aquifer system. Identification of this unknown component has therefore become a priority for groundwater management in the area as it is unclear how vulnerable this component will be to climate change and hence what impact climate change will have on the vlei.

Abstract

Mining is becoming a problem in the Western Cape - different kinds of mining and other resources, different problems than in other parts of the country. The West Coast had been declared a development corridor and a mining priority area. It is an arid to semi-arid area, where surface water is scarce, and rainfall relatively low and decreasing as one moves north. Some areas have significant volumes of good quality groundwater available, with potential impacts by the mining activities. This would play the importance of different resources off against the other. Most see resources as minerals, such as gold, silver, phosphate, and others where the value of these resources is measurable. Resources are also human capital, time, water, air, a healthy environment. It is more difficult to measure the value of the second group, as some of them have more than just a Rand and cent value. The value of resources is mostly done by measuring its monetary value, i.e. how much you will get when you sell the resource to a customer, providing the way the value of most resources is measured, i.e. resource economics. Economics is an area that most scientists are not familiar with as it contains a way thinking, of rules and laws unrelated to the way they have been taught. Supply and demand determines the value of a commodity, with scarce resources normally fetching higher prices. The value of the second group of resources is more difficult to determine. When does a resource become a strategic resource? This would be a resource that has a limited supply, does not get regenerated through natural processes and that is needed for defence, energy supply and others important for the stability of a country. There are also a category of resources we cannot live without such as water, and air - pure, fresh air and water. Without it life on this planet will cease to exist. This could be termed critical resources. What do you do if the occurrence of two very important critical resources overlaps, where the extraction of the one will lead to irreparable damage to the other? This article will look at one site where a strategic resource occurs at the same site as an important water resource. It will compare the potential value of the mineral resource with the value of the water resource in the aquifer measured at the current value of water as available to the public. It will also take into account the value of the water resource from the perspective of a healthy functioning ecosystem and a RAMSAR site. This analysis becomes more valuable when considering the potential effects of climate change in the area and the cost of desalination.

Abstract

The West Coast in the Western Cape of South Africa is a water-scarce area. With pressure from population and industrial growth, recurring droughts and climate change, there is increasing urgency in the West Coast to protect groundwater resources. Saldanha Bay is dependent on groundwater as part of its bulk water supply system. Where the natural groundwater recharge is no longer sufficient to meet the growing groundwater needs, practices such as Managed Aquifer Recharge (MAR) can be used to ensure the sustainability of these groundwater resources.

This study aims to identify areas within the Saldanha Bay Local Municipality suitable for Managed Aquifer Recharge to maximize the water available during periods of limited surface water supply. As such, the MAR study site identification requires a comprehensive geohydrological assessment of the Saldanha Bay aquifer. This includes an understanding of the quality and quantity of the source water available for recharge, the aquifer structure and hydraulic properties, the space available to store water, and the compatibility of the recharged water with the groundwater.

MAR research methods included Time Domain Electromagnetic (TDEM) airborne geophysical surveys, infiltration tests, pumping tests and hydrochemical analysis. TDEM surveys provided clarity on the various aquifer geological properties. Infiltration and pumping tests shed light on the horizontal and vertical hydraulic properties of the aquifer. PhreeqC modelling outputs helped predict the outcome of the mixing between groundwater and potential MAR water resources.

Geological features were delineated through TDEM surveys and inferred five suitable MAR sites where clay layers were missing. Infiltration and pumping tests showed that Langebaan Road is better suited to borehole injection, whereas Hopefield has the benefit of infiltration MAR techniques as an additional option. PhreeqC outputs exhibit that both pipeline and Berg River water show promising results as potential source water resources for MAR as compared to other resources.

Abstract

Israel, S; Kanyerere, T

Globally, surface waters are severely unsustainably exploited and under pressure in semi-arid coastal regions, which results in increasing demand for groundwater resources. Currently, Cape Town and its neighbouring towns along the West Coast of South Africa are facing water shortage related problems. Managed Aquifer Recharge (MAR) is a nature based solution to improve groundwater security in drought prone regions such as the West Coast. The objective of this study was to design a groundwater monitoring network using a hybrid hydrochemical, geophysical and numerical modelling approach to assess and mitigate the potential impacts of MAR for the West Coast Aquifer System (WCAS). An Analytical Hierarchy Process method was used to perform a Multi-criteria analysis employed in GIS (ArcMap 10.3).

The factors of importance for optimized groundwater monitoring network design were based on available data and consultations with hydrogeologists and environmental scientist at stakeholder workshops. The factors which were considered included: elevation (m), geology, density of existing boreholes (wells/km2), electrical conductivity (mS/m), water rise (m), water level decline (m), transmissivity (m/day), saturation indices and lithological thickness (m). Factors were weighted based on their level of importance for the design of the groundwater monitoring network using Analytical Hierarchy Process (AHP). Priorities were calculated from pairwise comparisons using the AHP with Eigen vector method. The Consistency Ratio (CR) calculated was 5.2% which deems the weighting coefficients statistically acceptable. The results show that high priority monitoring areas occurs in the areas where there are fresh groundwater, high borehole density, elevated topography, higher recharge rates and decline in water levels are found. The monitoring network will include boreholes from the low priority areas to ensure that hydrogeological conditions are monitored and impacts are not worsened. Geophysical, numerical and chemical modelling aspects of the methodological approach will be incorporated into the initial groundwater monitoring network design.

 

Abstract

The CSIR has embarked on a study to investigate the potential for additional water in the West Coast, Western Cape through the application of Managed Aquifer Recharge (MAR). The benefits of MAR is that it may generate additional water supplies from sources that may otherwise be wasted with the recharged water stored in the aquifer to meet water supply in times of high demand. Determining recharge is the most important aspect of hydrological system. However, the accurate estimation of recharge remains one of the biggest challenges for groundwater investigators. Numerous studies have been conducted using geochemical methods to estimate and distinguish sources of recharge in different groundwater units of unconfined and confined aquifers internationally. The application of geochemical methods to produce accurate conceptual model describing natural recharge in aquifer units of Lower Berg River Region has not been widely published. The Lower Berg River catchment, consisting of 4 primary aquifer units (Adamboerskraal, Langebaan Road, Elandsfontein and Grootwater) will be used to demonstrate the applicability of such methods. The aim of the study is to estimate recharge in the lower berg river catchment, and develop a conceptual natural recharge model that will improve understanding of the aquifer system and be an indicator for water availability in the Lower Berg River Catchment. The objectives in developing the conceptual model includes establish groundwater recharge sources, groundwater flow paths, recharge mechanism and potential mixing of groundwater by using environmental isotopes; and obtain a reliable estimation of its recharge amount using the Chloride Mass Balance. As this study is still in progress, this publication will focus on reviewing literature and the outcomes envisioned from the project as to provide a complete understanding of the complex geology. This will lead to a better understanding of the functioning of natural recharge of the aquifer units in the Lower Berg River Catchment.

Abstract

Groundwater in the West Coast has been utilised for many years as there are not many surface water resources in the area, and is therefore extremely important. Despite studies being conducted on the aquifer systems since 1976, they are still poorly understood especially with regards to their recharge and discharge processes. This means that the amount of water entering and leaving these systems are unknown, which may lead to over abstraction. It is therefore important to investigate these systems to prevent overexploitation of the groundwater as it will have adverse effects for both humans and ecosystems dependent on it. As part of a managed aquifer recharge (MAR) project for the Saldanha Bay Municipality, this study aims at providing better insight and understanding on the natural resource volumes. The study focusses on groundwater recharge, flow paths and discharge processes and aims at quantifying the volume of water related to each. The study will be conducted by identifying aquifer characteristics through Frequency Domain Electromagnetic and Electrical resistivity geophysical methods. Groundwater flow paths through the unsaturated zone, into the groundwater and towards the discharge area will be determined using Chloride Mass Balance calculations and water isotope analyses. The mass balance equations along with isotope analyses will then aid in the identification of natural recharge and discharge areas of the West Coast aquifer systems, as well as quantifying the volume of water moving through each aquifer. Temperature profiles will also be generated to identify specific layers of the aquifer systems and to determine their groundwater-surface water interactions. The aquifer characteristics will be used in numerical models to test the conceptual understanding of recharge and flow through the systems as well as assessing the volumes of water available to the users of the system.

Abstract

The impact of the future closure of the KROPZ phosphate mine in the West Coast on the various potential receptors including the underlying Elandsfontein Aquifer System (EAS), Langebaan Lagoon (RAMSAR-site) and wetlands were assessed. This abstract/paper describes the geochemical characterization and management options related to the waste streams from the mining activity, to assess the post closure contribution to groundwater flow from the mine towards potential receptors. The PHREEQC geochemical modelling code was used to predict potential mine water impacts. The input water quality parameters used in the model included: background groundwater quality, pit water and processed water generated from phosphate separation process at the mine. Various scenarios were simulated combining the different process water streams with the tailings and soft stockpile material at the mine. The geochemical predictions showed some management options that should be prevented, while also providing guidance to promising options where most of the chemical parameters does not exceed the WUL stage 1 thresholds. There is however, an increase in sulphate concentrations that need attending to before the mine goes into production phase. Currently there seems to be no immediate concern on the Lagoon relating to the prediction of mine water impacts post mine closure. Some of the management scenarios do however show low levels of potential impacts on SANParks property 100 years post closure. These predictions do however correlate to areas where limited calibration data is available. At the time of this abstract the sites for new boreholes have been selected and the initial boreholes are being drilled to confirm aquifer properties in areas with limited data.

Abstract

The mineral-rich basin of the West African region has vast reserves of gold, diamond as well as iron ore deposits. Throughout the regional geological setting characterised by structural variations and intrusive belts with metamorphic mineral-rich sequences covered by saprolite soils, one common chemical constituent remains a constant in the water reserves. Arsenic is in high concentrations throughout the region with chemical ranges commonly above the various country guidelines as well as international IFC and WHO standards. The aqueous chemical species is associated with arsenopyrite-rich mineralogy of the regional greenstone belts and highly weathered soils. 

This conference presentation investigates the natural source of the arsenic through baseline data, as well as the effect of mining on the already high concentrations of arsenic in both the groundwater and surface water. Natural levels of various chemical species in the regional area are already high at baseline level. One of the main research questions is thus whether mining and other anthropogenic activities will have  an impact on the environment or will  the changes to concentrations be so insignificant to allow the ecosystems and water users to continue in their current ways without any effect. Various case studies in Burkina Faso, Liberia, Sierra Leone and other countries have been combined to investigate the arsenic-rich resources of the West African region through groundwater specialist investigative methods with emphasis on geochemical modelling of the fluidrock and fluid–fluid interactions leading to the aqueous chemical conditions in the region.

Abstract

The mineral rich basin of the West African region has vast reserves of gold, diamond as well as iron ore deposits. Throughout the regional geological setting characterised by structural variations and intrusive belts with metamorphic mineral rich sequences covered by saprolite soils, one common chemical constituent remains a constant in the water reserves. Arsenic is in high concentrations throughout the region with chemical ranges commonly above the various country guidelines as well as international IFC and WHO standards. The aqueous chemical species is associated with arsenopyrite rich mineralogy of the regional greenstone belts and highly weathered soils. This conference article and presentation investigates the natural source of the arsenic through baseline data as well as the effect of mining on the already high concentrations of arsenic in both the groundwater and surface water. Natural levels of various chemical species in the regional area are already high at baseline level. One of the main research questions is thus whether mining and other anthropogenic activities will have an impact on the environment or will the changes to concentrations be so insignificant to allow the ecosystems and water users to continue in their current ways without any effect. Various case studies in Burkina Faso, Liberia, Sierra Leone and other countries have been combined to investigate the arsenic-rich resources of the West African region through groundwater specialist investigative methods with emphasis on geochemical modelling of the fluid-rock and fluid-fluid interactions leading to the water quality in the region.

Abstract

The Birimian and Tarkwaian rocks of the Paleoproterozoic West African Shield host some of the most important gold reserves in the world, with Ghana the world's 10th largest gold producer and the region collectively producing more gold than all but five countries in the world. The gold was deposited during successive hydrothermal sulphide alteration events, which were channelled by shear zones and thrusts formed during the regional progressive Eburnean tectono-thermal deformation event. The hydrothermal fluids were auriferous and sulphide-rich, resulting in two distinct types of gold and sulphide mineralisation: (1) gold-bearing quartz- and quartz-ankerite veins, occurring in NNE-SSW trending shear zones or thrust folds, usually in Birimian metasediments, with associated sulphides deposited on the fragmented wall rock and (2) disseminated gold-bearing pyrite and arsenopyrite, occurring in halos within the same shear zones or thrust folds as the quartz veins. The sulphidic nature of the gold deposit leads to a high risk of acid rock drainage (ARD). During operations, inflowing groundwater may carry the ARD into underground workings and opencast pits. Post-closure, as the groundwater rebounds, there is a risk of acidic pit lakes forming or acidic decant of underground mines. However, the occurrence of ARD in such systems can be predicted by a combination of weathering profiling, mineralogical profiling and conventional acid base accounting (ABA). The weathering profile can be divided into three zones, readily distinguishable in borehole core: (i) Oxide Zone, from which both the acid-generating sulphide minerals and the acid-neutralising carbonate minerals have been largely leached, (ii) Transitional Zone, from which the carbonate minerals have been largely leached but the sulphide minerals remain, (iii) a Fresh/Primary Zone, where both sulphide and carbonate minerals occur. The Oxide Zone is generally non acid-generating, the Transitional Zone is acid-generating and the Fresh Zone is potentially acid-generating, depending upon the balance of sulphide vs carbonate minerals. Mineralogical profiles can be prepared from the relative abundance of macroscopic sulphide and carbonate minerals in the borehole core, again providing an assessment of ARD risk. Combined logs can then be prepared from these profiles with acid-generation and neutralisation data from ABAs, illustrating in space where the highest ARD risk zones are located. Using this information, groundwater and mine water management options can be developed for operations and closure, such as prioritisation of open pit backfilling or which levels of an underground mine water should be preferentially excluded from.

Abstract

In the social sciences, there has been a ‘posthuman’ turn, which seeks to emphasise the role of non-human agents as co-determining social behaviours. In adopting a ‘more-than-human’ approach, the academy seeks to avoid claims of human exceptionalism and extend the social to other entities. In this paper, we explore the extent to which the more-than-human approach might be applied to groundwater and aquifers and the implications that this may have for groundwater science. The role of groundwater in complex adaptive socio-ecological systems at different scales is increasingly well-documented. Access to groundwater resources positively influences societal welfare and economic development opportunities, particularly in areas where surface waters are scarce. The potential adverse effects of human activities on the quantity or quality of groundwaters are also widely reported. Adopting a ‘properties’ approach, traditional social science perspectives typically describe aquifers as structuring the agency of human actors. To what extent might aquifers also have agency, exhibited in their capacity to act and exert power? Drawing on insights from 5 cities across sub-Saharan Africa, we argue for the agency of aquifers in light of their capacity to evoke change and response in human societies. In doing so, we draw on the concept of the more-than-human to argue for a more conscious consideration of the interaction between the human and non-human water worlds whilst acknowledging the critical role played by researchers in shaping these interactions.

Abstract

The potential role of groundwater in supporting the resilience of human societies is garnering increased attention in the context of climate change. Much of this attention focuses on the resilience of the groundwater resource itself. Less attention has been given to the way that groundwater is used by society and how this may influence human-centred resilience outcomes, particularly in urban settings. In this paper, I explore how questions of scale are fundamental to the role of groundwater in the resilience of urban areas, from the scale of individual households to more regional and catchment-based notions of scale. It is these variations in the geographies of urban groundwater exploitation that provide for the challenges of groundwater governance. Drawing on the practices revealed across 5 diverse cities in sub-Saharan Africa; the paper highlights the variety of ways that groundwater promotes the resilience of urban areas to water stress. The paper finds that groundwater can accommodate a prevalence of ‘self-supply’ and market-based models as urban populations seek to counter failings in public supply provision. Whilst these actions promote the resilience of the urban setting in the short to medium term, they raise important questions for the longer-term sustainability of the resource. The paper considers the implications of these questions for the future governance of resilient groundwater resources and the role of groundwater as part of a wider strategy for urban resilience.

Abstract

Tamilo, T; Webb, S.J.

The Vredefort Dome 120 km southwest of Johannesburg is a meteorite impact crater that formed at approximately 2 Ga. The region hosts farmland, and the town of Parys is situated in the northwestern part of the dome. The dome is the location of the annual Wits University/AfricaArray Geophysical Field School. The aim of the field school is to teach geoscience students several geophysical techniques while conducting scientific research in the area.

A geophysical survey during the 2019 field school over an open field just outside of Parys revealed a buried fracture that hosts ground water. A 150 m long magnetic profile over the fractures shows a magnetic low (approximately 500 nT) that correlates with a low resistivity region on the inverted electrical resistivity data (dipole-dipole method). Euler deconvolution depth estimates and magnetic modelling estimate an overburden thickness of around 10 m and a similar fracture thickness. The magnetic low of the fracture is due to weathering and removal of any magnetic material in the granites in the region.

Two existing boreholes that lie 618m due south and at a 10 m lower elevation have water levels of around 6.4 m. Both boreholes lie near a riverbed and vegetation, and appear to lie along an extension to the fracture. This fractures detected using geophysical methods seems to form part of a larger fracture system within the Vredefort Dome, that is linked to the formation of the dome. These fractures provide a vital source of water for the local farming community.

Abstract

Rising shallow groundwater temperatures are observed in many cities worldwide and are expected to increase further over the next century due to anthropogenic activities and climate change. The impact of groundwater temperature increase on groundwater quality is poorly understood. This study conducted two high-spatial-resolution campaigns in Vienna (Austria, autumn 2021/ spring 2022). At 150 wells, a comprehensive parameter set (e.g. major ions, nutrients, and water stable isotopes) was analyzed in groundwater collected, and at 812 wells, the water temperature was measured. Results are compared to available long-term data on groundwater chemistry (1991-2020). In theory, temperature triggers a cascade of effects, where, finally, the depletion of dissolved oxygen (DO) causes a switch to anaerobic microbial processes and a deterioration of water quality. No direct relation between DO and water temperature was observed between 10 and 20 °C. However, many wells delivered anoxic groundwater, including the one with the highest measured temperature (27 °C). The highest temperatures were consistently observed near potential heat sources (local scale), with a rapid decrease in temperature with increasing distance from these sources. Long-term data from particular high-temperature wells revealed decreased dissolved oxygen after sudden temperature changes of > 5 K. On a regional scale, it is observed that groundwater-surface water interactions and aquifer properties play a pivotal role in oxygen availability and redox conditions. In conclusion, high-spatial-resolution sampling combined with long-term data analysis is needed to determine the impact of temperature on water quality.

Abstract

Groundwater is often used as an alternative source of drinking water in many places of the world mostly in rural areas. There is a perceived claim that groundwater is clean and safe. This study was carried out to assess the quality of various groundwater sources in the Vhembe District of South Africa. Questionnaires were distributed to residents of the area to evaluate the water use practices. Water quality indices were employed to estimate the usefulness of the groundwater water resources. Heavy metals and major ions were analysed using ICP-MS. E. coli and total coliforms were determined using membrane filtration method. Health risk of the heavy metals in the water was estimated using standard protocol. The results of the study showed that most of the metals complied with the South Africa National Standards. Some of the anions exceeded the recommended limit. Majority of the groundwater sources were fit for other uses except drinking due to the levels of E. coli determined. Sources of contamination determined were both natural and anthropogenic. Adequate monitoring of groundwater resources is recommended to avoid possible risk to public health.

Abstract

The colliery is situated in the Vereeniging-Sasolburg Coalfield, immediately southwest of Sasolburg in the Republic of South Africa. The stratigraphy of this coal field is typical of the coal-bearing strata of the Karoo Sequence. The succession consists of pre-Karoo rocks (dolomites of the Chuniespoort Group of the Transvaal Sequence) overlain by the Dwyka Formation, followed by the Ecca Group sediments, of which the Vryheid Formation is the coal-bearing horizon. Mainly the lava of the Ventersdorp and Hekpoort Groups underlie the coal. The Karoo Formation is present over the whole area and consists mainly of sandstone, shale and coal of varying thickness. The underground mine was flooded after mining was ceased at the colliery in 2004. The colliery is in the fortunate position that it has a very complete and concise monitoring programme in place and over 200 boreholes were drilled in and around the mine throughout the life of the mine. To stabilise mine workings located beneath main roads in the area, an ashfilling project was undertaken by the colliery since 1999. A key issue is if the mine will eventually decant, and what the quality of the water will be. This is important for the future planning of the company, as this will determine if a water treatment plant is necessary, and what the specifications for such a plant will be, if needed. Therefore it was decided to do a down-the-hole chemical profile of each available and accessible borehole with a multi-parameter probe with the aim of observing any visible stratification. Over 90 boreholes were accessible and chemical profiles were created of them. From the data collected a three - dimensional image was created from the electrical conductivity values at different depths to see if any stratification was visible in the shallow aquifer. The ash-filling operations disturbed the normal aquifer conditions, and this created different pressures than normally expected at a deeper underground colliery. From the three-dimensional image created it was observed that no stratification was visible in the shallow aquifer, which lead to the conclusion that in the event that if decant should occur, the water quality of the decanting water will still be of very good quality unless external factors such as ash-filling activities is introduced. It is not often that it is possible to create chemical profiles of such a large number of boreholes for a single colliery and as a result a very complete and informative three-dimensional electrical conductivity image was created. This image is very helpful in aiding the decision making process in the future management of the colliery and eventually obtaining a closure certificate, and also to determine whether ash-filling is a viable option in discarding the ash.

Abstract

POSTER Vanwyksvlei had always experienced problems with water supply and quality of drinking water. The town relies on 6 boreholes to supply the town with drinking water. Since 2011 the town was told not to use the water that was supplied from the borehole called Soutgat. This meant that the town could now rely only on the water being supplied from the other 5 boreholes.From 2011 till present the town has experienced a lot of problems regarding water supply, due to the fact that the Soutgat could not be used anymore. Extra stress was put on the other boreholes and these were pumped almost dry. The two aquifers are currently failing and monitoring data since 2009 shows that the water levels of the town are decreasing. Due to low rainfall, recharge to the boreholes are much lower, which exacerbates the problem. This poster will examine the effectiveness of using the Blue Drop system in small towns with limited water supply, at the hand of a case study of Vanwyksvlei. This review will take into account factors such as the point at which water quality is tested in the water supply system, the type of water treatment available for the town and a review the usefulness of certain standards in the Blue Drop system which may indicate failure of supply sources.

Abstract

The aim of this project was to establish a detailed geohydrological database and monitoring network for  the  karst  aquifer  within  the  boundaries  of  the  Vanrhynsdorp  Water  User  Association.  An adequate monitoring network is necessary for the Vanrhynsdorp Water User Association to implement sustainable water use management as well as for the Department Water Affairs to ensure its mandate as trustee of all water resources. Hydrocensus projects were conducted in phases as the project escalated from historic town supply during 1978 towards a catchment driven water user association after implementation of the new National Water Act in October 1998 (Act 36 of 1998). With the successive hydrocensuses conducted, the monitoring network also evolved in regard to area monitored, point locations, monitoring schedules and parameters measured. Hydrocensus data were captured on the National Groundwater Archive, time series data on the Hydstra database and chemical analysis on the Water Management System. Time series graphs were compiled to analyse the monitoring data and to create a conceptual model of the karst aquifer. The study showed a general decline in groundwater levels and quality in the study area. The conclusion is that the aquifer is over exploited. It is recommended that an extensive management plan is developed and implemented to ensure sustainable use of this sensitive water resource. The installation and monitoring of flow meters on all production boreholes should be seen as urgent and stipulated as such in licensing conditions. This will ensure the effective management and regulation of this valuable groundwater resource.