Conference Abstracts

All Abstracts were presented at the Groundwater Conferences

Displaying 101 - 150 of 795 results
Title Presenter Name Presenter Surname Area Sort descending Conference year Keywords

Abstract

Gold Mining activities the past 60 years at AngloGold Ashanti polluted the groundwater underlain by 4000 ha of land at the Vaal River and West Wits operations in South Africa. Sulphide material in Tailings Storage Facilities, Waste Rock Dumps and extraction plants produce Saline Mine Drainage with Sulphate, minor salts and metals that seep to the groundwater and ultimately into surface water resources. Water regulation requires mines to prevent, minimise/ reduce or eliminate pollution of water resources. The waste philosophy has matured from tolerate and transfer to treat and termination of pollution sources. The impact of the pollution was determined and possible technologies to treat the impact were evaluated. Source controls of proper water management by storm water management, clean dirty water separation, lined water conveyance structures and reduced deposition of water on waste facilities is crucial. The aquifer character determines the possible remediation technology. From the possible technologies phytoremediation, physical interception and re-use of this water was selected. In future possible treatment of the water would be considered. This paper explain the strategy and report on the phased implementation of these plans and the expected results. The establishment of 750 ha of woodlands as phytoremediation, interception trenches of 1250 m, 38 interception boreholes and infrastructure to re-use this water in 10 water management areas is planned. The total volume of 15 Ml/day would be abstracted for re-use from the boreholes and trenches. The woodlands can potentially attenuate and treat 5 ml/day. The established woodlands of 150 ha proof successful to intercept diffused seep over the area of establishment and reduce the water level and base flow. The 2 implemented trenches of 1000 m indicate a local decline in the water level with interception of shallow groundwater within 1-2 m from surface. The 2 production interception well fields abstracting 50 and 30 l/s respectively indicate a water level decline of between 2 to 14 m with regional cones of depression of a few hundred meters to intercept groundwater flow up to 20 meter. Predictions from groundwater modelling indicate that these schemes can minimise pollution during the operational phase and protect downstream water resources. Predictions from modelling indicate that the pollution sources need to be removed to ensure long term clean-up to return the land to save use. The gold and uranium prize is securing the removal of the sources through re-processing of the tailings and waste rock dumps. After removal of the sources of pollution the remediation schemes would have to be operated for 20 years to return the groundwater to an acceptable standard of stock watering and industrial water use. The water quality is observed by a monitoring network of approximately 100 observation boreholes.

Abstract

Monitored Natural Attenuation (MNA) refers to the monitoring of naturally occurring physical, chemical and biological processes. Three lines of evidence are commonly used to evaluate if MNA is occurring, and this paper focusses on the second line of evidence: The geochemical indicators of naturally occurring degradation processes and the site-specific estimation of attenuation rates.

The MNA geochemical indicators include the microbial electron acceptors (e.g. dissolved oxygen, nitrate and sulphate) and the metabolic by-products (manganese (II), iron (II) and methane). In addition, redox and alkalinity are important groundwater indicators. So as to properly assess the geochemical trends a groundwater monitoring well network tailored to assessing and defining the contaminant plume is required.

The expressed assimilative capacity (EAC) is used to estimate the capacity of the aquifer to degrade benzene, toluene, ethylbenzene and xylene (BTEX compounds) using the concentrations of geochemical indicators. Using the EAC, the groundwater flow through a perpendicular cross-section of the source area, and the source mass, the life of the contaminant source can be made.

A practical example of the performance monitoring of MNA using geochemical parameters is described for a retail service station in KwaZulu-Natal, which has groundwater impacted by a petroleum hydrocarbon plume. This includes a description of the monitoring well network, the geochemical measurements, the calculation of the EAC, and the estimated life of the contaminant source.

Abstract

The provision, usage and discharge of water resources are major concerns for coal mines, both underground and opencast. Water resources in a coal mining environment will often account for a significant portion of the daily operational cost. In order to cut costs, the mine will often collect as much runoff as possible to recycle for future use. This on-going recycling of site water and management of the resource demands a complete site water balance model in order to understand the dynamics of the resource within the boundaries of the mine. To improve the understanding of the dynamics of the resource on a much larger scale, and the effect it will have on recharge in an open cast coal mine environment, one must consider alternative modelling approaches which can compensate for such conditions. This amounts to describing recharge as a modelling component in a physically based distributed model. The main goal of this project is to calculate recharge into the main pit at this specific colliery by applying parameters on a quaternary catchment scale. The colliery is located just west of the town of Ogies, Mpumalanga on the peripheral region of the quaternary catchment B20G. The physiography of the quaternary catchment B20F is described as a central Highveld region gently sloping to the north. The geohydrological modeling application MIKE SHE (developed by DHI) was used to develop a fully integrated catchment model. The model was created mainly to simulate the impact of human activities on the hydrological cycle and hence on water resource development and management. Different modules of MIKE SHE that was used during the modelling stage include saturated- and unsaturated flow and a small degree of overland flow.

Key words: Mpumalanga, MIKE SHE, recharge

Abstract

Burning of coal for electricity production has resulted in vast amounts of ash being deposited in ash dumps. Rain water and ash water conditioning results in the wetting of ash dumps and if the water retention capacity is exceeded there is a possibility of leaching to soil and underlying aquifers. In this study two different coal ash are used to determine the water retention as excess amount of process water at power stations ash dumps can lead to impeding the desired water balance, which can be critical for maintain various plant processes. The nonlinear relationship between soil water content and matrix suction of a porous material under unsaturated conditions is described by the soil water characteristic curve (SWCC). The SWCC for a given material represents the water storage capability enabling the determination of varying matric suction such as prediction of important unsaturated hydraulic processes including soil permeability, shear strength, volume change with respect to the water content changes. This paper presents an alternative, cost effective and rapid method for measuring and subsequent estimating of the soil-water characteristics of any soil type. Several methods are available to obtain the measurements required for defining soil-water characteristics. However, obtaining the required measurements for a SWCC is generally difficult since there is no laboratory or field instrument, capable of measuring a typical complete plant available water suction range accurately. Due to high methodological effort and associated costs of other methods, a simplified evaporation method which was implemented in the HYPROP (Hydraulic Property analyzer, UMS, 2012) becomes a possible alternative. It relies on the evaporation method initially proposed Schindler (1980). A typical work range for a HYPROP system is 0 to 100 KPa as read out from the two high capacity tensiometers installed at different heights within a saturated sample column. For a dry coal ash dump to be optimally used as sinks, input water applications should be matched with evaporation rates and capillary storage. This will ensure the moisture storage of the ash dump is not exceeded and consequently avert leachate generation at the base of the ash dump. The field capacity of waste materials is of critical importance in determining the formation of leachate in landfills which in this case is the coal ash dump facility. It is the field capacity limit when exceeded which give rise to leachate generation consequently promoting a downward movement of generated leachate.he study found that it is possible to use the Hyprop together with an empirical based fitting model to define a complete SWCC along a dewatering path. The study found the Brooks-Corey model as the suitable representative of the Hyprop measured data, confirmed by AICc and RMSE analysis. The Brooks-Corey estimated retention function parameters within +/- 1% error. A mean value of 35.3% was determined as the water retention or field capacity value for Matimba Coal ash. If the ash dump is operated in excess of this value, chances of groundwater pollution are high.

Abstract

In the wake of the ongoing water restrictions in South Africa, the issue of groundwater potential for drought relief has been debated on many environmental and socio-economic platforms, nationally. Consequently, the development of groundwater and its related vulnerabilities has become a key topic to the decision makers and stakeholders. Currently, the recruitment of water professionals into government and private water sectors adds substantial value to understanding the importance of protecting this precious resource. This has allowed the monitoring of groundwater to gain ever increasing momentum. Groundwater monitoring has become an essential scientific tool for role-players to achieve robust and verifiable data used for modelling aquifer potential and vulnerability to pollution and over-abstraction. The data is generally sourced from various hydrogeological and environmental investigations which include groundwater development, vulnerability assessment and remediation projects. Groundwater and environmental consulting firms are tasked with imperative roles for implementing groundwater monitoring programmes to the ever growing industrial, commercial, agricultural and public sectors in South Africa. However, groundwater monitoring data, especially in the private sector, are reliable but remains mostly inaccessible due to confidentiality clauses. This does limit our accuracy and comprehensive understanding for determining aquifer potential and vulnerability risks at large. The conceptualisation and modelling of vast monitoring datasets has been recognised as an important contributing factor to enhance groundwater sustainability. This research emphasises the significance of groundwater monitoring for development, protection and remediation of aquifers. Comparing monitoring results from typical sites and methods, provides scientific validation to support good governance of water. Deterioration of groundwater potability in the sight of an existing drought can have irreversible environmental and economic implications for South Africa.

Abstract

Modelling of groundwater systems and groundwater-surface water interaction using advanced simulation software has become common practice. There are a number of approaches to simulate Lake-aquifer interactions, such as the LAK Package integrated into MODFLOW, the high conductivity and fixed stage approaches. LAK and the high conductivity approaches were applied and compared in simulating Lake- aquifer interaction in the Lake Sibayi Catchment, north-eastern, South Africa using the finite difference three-dimensional groundwater flow model, Visual MODFLOW Flex under steady state conditions. The steady state model consisted of two layers: an upper layer consisting of the Sibayi, KwaMbonambi, Kosi Bay and Port Durnford Formations which have similar characteristics, and a lower model layer representing the karst, weathered and calcareous Uloa Formation. The bottom model boundary is constrained by the impermeable Cretaceous bedrock. The model area covers the surface and groundwater catchments of Lake Sibayi which is constrained in the east by the Indian Ocean. A no-flow boundary condition is assigned to the northern, western and southern sides and a constant head boundary is assigned to the eastern side. The Mseleni River and neighbouring plantations were modelled using the River and Evapotranspiration boundary conditions respectively. Input parameters for the various boundary conditions were obtained from the previously developed high resolution conceptual model, including recharge

Abstract

Implementation of a mining project in South Africa involved dewatering of a fractured rock aquifer at considerable depth below ground level. Groundwater quality within this aquifer is not suitable for domestic use due to high levels of salinity. Numerous geological investigations in the area indicate that the target aquifer is confined, with a different piezometric head to the shallower aquifers. However, regulators and other interested and affected parties expressed concern regarding the potential mixing of more saline groundwater from the deeper aquifer to be dewatered with groundwater from shallower aquifers, which are extensively used for farming and domestic purposes.
A large database of groundwater quality monitoring data collected over 16 years was available to investigate the degree of mixing between the deeper more saline and shallower freshwater aquifers. The groundwater chemistry of selected boreholes with known geological profile, depth and construction was used to develop groundwater fingerprinting criteria for each of the aquifers in the area. These fingerprinting criteria were then applied to private and exploration boreholes in the area in order to identify the main aquifer from which groundwater was being sourced. Once the boreholes were classified in terms of groundwater origin, an attempt was made to identify indicators of mixing with deeper, more saline groundwater from the aquifer being dewatered.
Groundwater fingerprinting allowed identification of impacts related to the mining operations. The data showed that there was no upward mixing of water related to dewatering operations, but rather that surface spillages and disposal schemes may have resulted in minor changes in shallow groundwater quality. {List only- not presented}

Abstract

POSTER The Department of Water and Sanitation (DWS) is the custodian of South Africa's water and thus is imperative that it reports on its state as the National Water Act of 1998 requires regular reporting to Parliament by the Minister. Hence, the annual compilation of report entitled "The National State of Water in South Africa." This report aims to give an overview of the status and trends of water quality and quantity, further assisting with international water reporting obligations to SADC Region, African Continent, and Globally e.g. the United Nations Commission on Sustainable Development. This information empowers the public and provides knowledge to water managers for informed decision-making. The main purpose is to enhance quality, accessibility and relevance of data and information relating to the goal of Integrated Water Resource Management towards attaining holistic Integrated Water Management, and Integrated Water Cycle Management in future. Three distinct requirements for collecting data by DWS are: (i) assessing and comparing the status and trends for both quantity and quality; (ii) monitoring for water use and (iii) monitoring for compliance to licence conditions. Such information is further used to assess the effectiveness of policies implemented and identify the existing gaps. Various challenges to the country's water demand proper integrated water resources planning and management. The report is divided into Themes such as, Resource Management, Water Services/Delivery, Water Development and Finance, based on selected indicators. The indicators are strategically selected to provide a representative picture of the state, as well as the changes over time to the drivers, pressures, impacts and responses related to the chosen themes. These Indicators include: Climatic Conditions, Water Availability, Water Use, Water Protection, Water Quality, Water Service Delivery, Water Infrastructure, Water Finance, and Sanitation. The report for Hydrological Year 2013/2014 has been completed and it shows that the amount of water available varies greatly between different places and seasons, and from one year to another. The average total storage was around 85% of full supply capacity in September 2014. Surface water quality is generally facing a threat from eutrophication and microbial pollution emanating mainly from mismanaged water (and waste) treatment plants and related landuse activities. Groundwater quality is generally good except in some localised areas where mining and industrial activities are prevalent. With regards to infrastructure; vandalism, lack of maintenance & management skills reflect on/as non-revenue water, highlighting the need for more funding towards maintenance, especially in groundwater which is normally wrongly deemed as an unreliable resource. In the past 20 years, water services delivery to communities has improved as the Millennium Development Goals have been met and surpassed, while the sanitation access goals were likely to be met.

Abstract

Many groundwater models are commissioned and built under the premise that real world systems can be accurately simulated on a computer - especially if the simulator has been "calibrated" against historical behavior of that system. This premise ignores the fact that natural processes are complex at every level, and that the properties of systems that host them are heterogeneous at every scale. Models are, in fact, defective simulators of natural processes. Furthermore, the information content of datasets against which they are calibrated is generally low. The laws of uncertainty tell us that a model cannot tell us what will happen in the future. It can only tell us what will NOT happen in the future. The ability of a model to accomplish even this task is compromised by a myriad of imperfections that accompany all attempts to simulate natural systems, regardless of the superficial complexity with which a model is endowed. This does not preclude the use of groundwater models in decision-support. However it does require smarter use of models than that which prevails at the present time. It is argued that, as an industry, we need to lift our game as far as decision-support modeling is concerned. We must learn to consider models as receptacles for environmental information rather than as simulators of environmental systems. At the same time, we must acknowledge the defective nature of models as simulators of natural processes, and refrain from deploying them in a way that assumes simulation integrity. We must foster the development of modelling strategies that encapsulate prediction-specific complexity supported by complexity-enabling simplicity. Lastly, modelers must be educated in the mathematics and practice of inversion, uncertainty analysis, data processing, management optimization, and other numerical methodologies so that they can design and implement modeling strategies that process environmental data in the service of optimal environmental management.

Abstract

Estimating groundwater recharge response from rainfall remains a major challenge especially in arid and semi-arid areas where recharge is difficult to quantify because of uncertainties of hydraulic parameters and lack of historical data. In this study, Chloride Mass Balance (CMB) method and Extended model for Aquifer Recharge and soil moisture Transport through unsaturated Hardrock (EARTH) model were used to estimate groundwater recharge rates. Groundwater chemistry data was acquired from the Department of Water and Sanitation (DWS) and Global Project Management consultants, while groundwater samples were collected to fill-in the identified gaps. These were sent to Council for Geoscience laboratory for geochemical analysis. Rainfall samples were also collected and sent for geochemical analysis. An average value of rainfall chloride concentration, average groundwater chloride concentration and mean annual precipitation (MAP) were used to estimate recharge rate at a regional scale. Local scale recharge was also calculated using chloride concentration at each borehole. The results were integrated in ArcGIS software to develop a recharge distribution map of the entire area. For EARTH model, long term rainfall and groundwater levels data were acquired from the South Africa Weather Services and DWS, respectively. Soil samples were collected at selected sites and analysed. These were used to determine representative values of specific yield to use on EARTH model. 60% of the groundwater levels data for 5 boreholes was used for model calibration while the remaining 40% was used for model validation. The model performance was evaluated using coefficient of determination (R2), correlation coefficient (R), Root Mean Square Error (RMSE) and Mean square error (MSE). Regional recharge rates of 12.1 mm/a (equivalent to 1.84% of 656 mm/a MAP) and 30.1 mm/a (equivalent to 4.6% MAP) were calculated using rainfall chloride concentrations of 0.36 and 0.9 mg/L, respectively. The estimated local recharge rates ranged from 0.9-30.2 mm/a (0.14 - 4.6%) and 2 - 75 mm/a (0.3 - 11.4%) using chloride concentration of 0.9 and 0.36 mg/L, respectively. The average recharge rate estimated using EARTH model is 6.12% of the MAP (40.1 mm/a). CMB results were found to fall within the same range with those obtained in other studies within the vicinity of the study area. The results of EARTH model and CMB method were comparable. The computed R2, R, RMSE and MSE ranged from 0.47-0.87, 0.68-0.94, 0.04-0.34, 0.16-3.16, and 0.50-0.79, 0.68-0.89, 0.07-0.68, 0.15-8.78 for calibration and validation, respectively. This showed reasonable and acceptable model performance. The study found that there is poor response of groundwater levels during rainy season which is likely to be due to lack of preferential flows between surface water and groundwater systems. This has resulted in poor relationship between estimated and observed groundwater levels during rainfall season.

Key words: ArcGIS, CMB, EARTH, Groundwater recharge, rainfall

Abstract

Water has been recognized and acknowledged as a fundamental natural resource that sustains environmental diversity, social and economic development (Liu et al., 2017; Fisher et al., 2017). With increasing populations, climate change and limited monitoring networks for both ground and surface water, freshwater resources are becoming difficult to assess due to rapid changes in water supply and uses. Several efforts have been devoted towards the monitoring and management of water resources and discovery of alternative sources of freshwater. One of the more recent efforts is using gravity information to track changes in water storage on the earth's surface. The Gravity Recovery and Climate Experiment (GRACE) mission (https://www.nasa.gov/mission_pages/Grace/index.html) holds great potential for assessing our water resources in areas with little monitoring data. The increasing interest in the use of GRACE as a water resource information and monitoring tool, is due to its cost effectiveness and user-friendly system which affords a broad understanding of the world we live in and its processes, specifically in water resource management and hydrological modelling. South Africa's National Water Act (NWA) of 1998 highlights the importance of the sustainable development of water resources. However, it is difficult to sustainably manage South Africa's groundwater resources due to the difficultly in measuring and understanding our complex aquifers. The challenges in establishing sustainable monitoring of groundwater resources and its Reserve, are due to insufficient knowledge about the contribution that groundwater makes to surface water, and methods which reliably monitor groundwater resources. The GRACE is a joint satellite mission by the Deutschen Zentrum fur Luftund Raumfahrt (DLR) in Germany and the United States National Aeronautics and Space Administration (NASA). The satellite was launched on 17 March 2002 and provides monthly temporal differences of earth's gravity field and its mean gravity field (Schmidt et al., 2008). It can afford insights into the location of groundwater resources, and their changes. GRACE can however, only determine the change in total water storage and therefore information on other components of the water balance are required to isolate the groundwater component. Therefore, the integrated Pitman Model is ideal to be applied together with GRACE and the Model can isolate surface water, soil moisture and groundwater into various components. Many studies have evaluated GRACE-derived groundwater storage changes as a response to drought (Famiglietti et al. 2011; Scanlon et al., 2012), while Thomas et al. (2017b) evaluated a groundwater drought index based on GRACE observations in an effort to understand and identify groundwater drought. Typically, GRACE is applied at scales of 150 000 km2, however Thomas et al., (2017) has developed a recent method that allows for the application of his GRACE derived Groundwater Drought Index (GGDI) at smaller scales. This study applies Thomas et al. 2017 GGDI in South Africa to the Crocodile, Sedgefield and Doring catchments, in hopes to to evaluate drought characterisation using data from GRACE satellites, focusing on the total water storage deficits to characterise groundwater drought occurrence.

Abstract

The uncertainties associated with both the sampling process and laboratory analysis can contribute to the variability of the results. In most cases, it does appear that if the water samples have been analysed by an accredited laboratory, the results are acceptable. While the accreditation of analytical laboratory and therefore its credibility is very important to uphold quality and integrity, the same should be said about the sampling process. The quality and credibility of a sampling process is typically left to the responsibility of the appointed groundwater practitioner without any criteria to evaluate the quality and integrity of the sampling process. Perhaps the quality and integrity of the sampling process is evaluated based on trust or experience of the practitioner. However without any form of scientific criteria to evaluate the quality and integrity of the sampling process, it is difficult for the sampling process to be scrutinized. The quality and integrity of both the sampling process and laboratory analysis must be scientifically evaluated based on the uncertainty of measurements in line with the monitoring goals/requirements. This presentation discusses the aspects of evaluation of measurement uncertainties associated with groundwater sampling as an important component of quality assessment of groundwater sampling processes. The potential implications of the uncertainties on the final results and their use in decision making is also discussed. The credibility of the decisions made also depends on the knowledge about the uncertainties of the final results

Abstract

Approximately 982 km3 /annum of the world’s groundwater reserve is abstracted, providing almost half of all drinking water worldwide. Globally, 70% is used for agricultural purposes while 38% for irrigation.

Most water resources of South Africa are threatened by contamination caused by industrial, agricultural, and commercial activities, and many parts of the country face ongoing drought with an urgent need to find alternative freshwater sources, such as groundwater. Groundwater constitutes approximately 15% of the total volume consumed, hence it is an important resource that supplements insufficient surface water supplies across South Africa.

Very little attention has been afforded to understanding the anthropogenically altered vadose zone as a potential source or buffer to groundwater contamination. This is evident from few research studies that has applied multiple isotopic tracers to characterise this zone. Most subsurface systems in South Africa are characterised by fractures, whereby flow and transport are concentrated along preferential flow paths.

This study aims to evaluate the performance of different tracer classes (environmental and artificial) with one another, and create a better understanding of the hydraulic properties, mean residence time and transport mechanisms of these tracers. The influence of unsaturated zone thickness on recharge mechanisms will also be evaluated.

Site visits will be conducted for the proposed study areas, and the neighbouring sources of contamination will be assessed. The matric potential and unsaturated hydraulic conductivities will be measured using various techniques. Water samples will be collected and analysed for the various tracers from the vadose zone using gravity lysimeters including suction cups. Several tracers will also be injected into boreholes where samples will be collected to calculate tracer residence times (BTC’s) and further constrain the hydraulic properties of the vadose zone. All samples will be analysed, interpreted, and simulated using the numerical finite-element modelling code SPRING, developed by delta h. The software derives quantitative results for groundwater flow and transport problems in the saturated and unsaturated zones of an aquifer.

The research is expected to provide more insight into the selection and use of environmental and artificial tracers as markers for detecting, understanding the transport processes and pathways of contaminants in typical altered South African subsurface environments. The impact derived improved characterisation of the pathways, transport, and migration processes of contaminants, leading to groundwater protection strategies and appropriate conceptual and numerical models. The output from this study will determine the vertical and horizontal flux for both saturated and unsaturated conditions.

Abstract

Model calibration and scenario evaluations of 2D and 3D groundwater simulations are often computationally expensive due to dense meshes and the high number of iterations required before finding acceptable results. Furthermore, due to the diversity of modelling scenarios, a standardised presentation of modelling results to a general audience is complicated by different levels of technical expertise.

Reducing computational time
In this presentation we look briefly at the use of Reduced Order Models (ROM's), which is one of the recent developments in groundwater modelling. The method allows significant speed-up times in model calibration and scenario evaluation studies. In saturated flow for example, these approaches show speed-up times of >1000 when compared to full models created with Finite Element of Finite Difference methods. These methods are demonstrated to a case study in the Table Mountain Group, in which we show a simplified parameter calibration and scenario evaluation study.

Standardising presentation
In order to present the results to as wide an audience as possible, the use of a web-browser as a GUI is proposed, where the web-page is coupled to a geo-spatial database and data is presented in a spatial and numeric format. The use of the spatial database manager PostgreSQL with PostGIS is proposed. Through a browser interface, users can run modelling scenarios using the ROM, which is evaluated in near real-time. Following the evaluation of the model, we show how PostGIS can spatially present data on a base-map such as google maps. In keeping with the current trends in online map customisation, viewers can interactively choose to overlay the base-map with a data-type (such as pressure or hydraulic head contours or flow direction) that is most intuitive for their level of familiarity with the data.

Conclusion
In using advanced modelling techniques and a simplified browser based presentation of results, high-level decisions in water resource management can be significantly accelerated with the use of interactive scenario evaluations. Furthermore, by reaching a broader audience, public participation will be significantly enhanced.

Abstract

The Gravity Recovery and Climate Experiment (GRACE) satellites detect minute temporal variation in the earth's gravitational field at an extraordinary accuracy, in order to make estimation of the total water storage (TWS). GRACE provides a unique opportunity to study and monitor real time water variation in the hydrologic stores (snow, groundwater, surface water and soil moisture) due to increases or decreases in storage. The GRACE monthly TWS data are being used to estimate changes in groundwater storage in the Vaal River Basin for a period (2002 to 2014). The Vaal River Basin has been selected, because it is one of the most water stressed catchments in South Africa; it is well-renowned for its high concentration of industrial activities and urbanized zones. Therefore, in order to meet future water demands, it is critical to monitor and calculate changes in groundwater storages as an important aspect of water management, where such a resource is a key to economic development and social development. Previous studies in the Vaal River Basin were mostly localised focusing mainly on groundwater quality and to a lesser extent groundwater assessment. Hydrological models have been generated for the whole of South Africa, but many of these models do not take into account the groundwater component. Thus, there is a significant gap in the understanding of surface and ground water dynamics in the Vaal River Basin. The paucity of data and monitoring networks are often the limitation in calculating changes in water storage over a large area, particularly in Africa. In this scenario GRACE is a good approach to estimate changes in hydrological storages as it covers large areas and generates real time data. It does not require information on soil moisture, which is often difficult to measure. The accuracy of calculating change in groundwater storage lies in the processing of GRACE data and smoothing radii. For this study, smoothing radii of 1500, 900, 500, 300, 150 and 1 km are used. Currently the associated error with different smoothing radii is unknown. The preliminary results indicate that the study area experienced a loss in TWS of -31.58 mm equivalent water height over a period of 144 months in TWS at 300 km smoothing radius. The change in groundwater storage is calculated by incorporating hydrologic components to the TWS (work in progress). The results obtained from this study will be compared to existing hydrological models and results generated from models applicable to the semi-arid region of South Africa. It is anticipated that this satellite observation technique, GRACE, will provide an accurate estimate of change in groundwater storage. Furthermore, it will show the usefulness of satellite based techniques for improving our understanding of groundwater dynamics, which will improve water management practices.

Abstract

Degradation of chloroethene in groundwater primarily occurs via microbially-mediated reductive dechlorination (RD). Anaerobic organohalide-respiring bacteria (OHRB) use chloroethenes as electron acceptors to gain energy. They produce reductive dehalogenase enzymes (RDases) to perform this function by transcription of functional genes into mRNA and translation to proteins (metabolic regulation). However, how hydrodynamics and hydrogeochemistry control the metabolic efficiency of OHRB in biodegrading chloroethene is essential for effective bioremediation design yet an under-investigated topic. For this reason, we implemented a virtual experiment (1D reactive transport model) to investigate the effects of site conditions on transcription-translation and, hence, biodegradation processes within chloroethene plumes. In the model, RD was simulated using Enzyme-Based Kinetics, explicitly mimicking the production of RDases via metabolic regulation, calibrated on microcosm experimental data gained from literature. Features of an actual contaminated site (Grindsted, Denmark) were then used to set up the virtual experiment. Here, chloroethene leaked from a former pharmaceutical factory migrates through a sandy aquifer and gets discharged into the Grindsted stream. Preliminary results show that substrate (electron donors) limiting conditions caused by competing electron acceptors and dispersion and high flow rates represent the key factors controlling biodegradation via RDase production.

Abstract

Water management is a difficult and complex business requiring appropriate institutional arrangements as well as guidance and support from government, which is often unable to act effectively to address day-to-day water resource management (WRM) issues. Theoretically, water as a 'common pool resource' is best managed by users self-organised at a local level and within a basin framework. Water users and other stakeholders have detailed and up-to-date local knowledge as well as an interest in ensuring effective management to share water equitably between different users and to control pollution. This approach is supported by South Africa's National Water Act (NWA), which provides for the establishment of Catchment Management Agencies (CMAs) to perform a range of WRM activities within the framework of a National Water Resource Strategy (NWRS).
Hence, water resource management in general and conjunctive use in particular requires cross sector and cross level cooperative governance. Relevant institutions include the DWA at national and regional level, the CMA, if established, provincial departments that might impact on the water resources, water user associations, water services authorities, water services providers, water boards, and individual water users. These institutions are responsible for various activities and often require some level of inter- and intra-institutional cooperation. Ideally, multiple organisations, policies, legislation, plans, strategies and perspectives should be involved in water-related decision-making, which in turns creates complex leadership challenges. Globally, the lack of sustainable groundwater management can be ascribed to poor governance provisions. These include, but are not limited to, institutional arrangements and political will, including fragmented and overlapping jurisdictions and responsibilities, competing priorities, traditional approaches, rights and water pricing systems, diverging opinions, incomplete knowledge, data as well as uncoordinated information systems. Adding the poor operational and maintenance issues, decision-makers often view groundwater as an unreliable resource and are hesitant to make significant investments in groundwater infrastructure and capacity.
The recent Worldbank and WRC report on groundwater governance in South Africa revealed that the technical, legal, institutional and operational governance provisions were found to be reasonable at the national level but weak concerning cross-sector policy coordination. At the local level, basic technical provisions such as hydrogeological maps and aquifer delineation with classified typology are in place but other governance provisions such as institutional capacity, provisions to control groundwater abstraction and pollution, cross-sector policy coordination and the existence and implementation of groundwater management action plans are weak or non-existent.
It appears from this review that the major hindrances for sustainable groundwater governance and more so for integrated water resource management and conjunctive use scenarios are the discrepancy between groundwater and surface water provisions in the relevant legislation, associated guidelines and their implementation at regional and local, and the lack of skills and clear responsibilities for implementing water resource management actions at municipal level. This is demonstrated with several case studies.

Abstract

Preventing the spread of seepage from tailings storage facilities (TSF's) in groundwater is necessary as it often contains toxic contaminants. Experience has shown that seepage from TSFs is inevitable and that zero seepage remains difficult even with complex liner systems. Multiple seepage control methods are often required to minimise seepage to ensure that environmental regulations are met. Control methods can be grouped into either barrier or collection systems. Barrier systems are used to hinder seepage whereas collection systems are used to intercept seepage. A blast curtain, which is the focus of this article, is a type of collection system that is still at a conceptual level but has seen little or no application worldwide. It works in principle, similarly to a curtain drain, but is typically extended to greater depths depending on the aquifer vulnerability. Numerical modeling has shown that this mitigation measure could add another line of defence for seepage control. The depth and effectiveness of the curtain can be optimized with a numerical model to ensure optimal interception of contaminated seepage around the TSF. Depths of up to 30 m in fractured aquifers have been simulated in this study. A blast curtain is constructed by drilling a set of boreholes around a TSF in close proximity to one another and then fracturing the rock using either explosives or fracking methods to create a more permeable zone. This is then combined with a series of scavenger wells or natural seepage to abstract the contaminated water. Numerical simulation has shown that blast curtains are effective especially if groundwater flow is horizontal. The effectiveness decreases if the vertical flow component is significant. A blast curtain can result in the lowering of the water table, however, local depression is a less of a concern than potential groundwater contamination. {List only- not presented}

Abstract

For a long time, professionals regarded social media as a superficial, unprofessional platform where internet users would submerge themselves in a virtual world, detached from real-life issues. Slowly, the myths and stigmas surrounding the use of social media has faded as more and more professionals and scientists have realized that these social platforms could be positively exploited in a professional manner which could be beneficial. In a digital age where information at our fingertips is the norm, professionals should co-evolve and ensure that their work is just as accessible and appealing, without the unnecessary jargon. Currently, science is mostly restricted to a very particular audience and conveyed in one direction only. Using a social media platform such as Twitter-which limits messages to only 140 characters-challenges scientists to convey their work in a very concise manner using simpler terminology. Furthermore, it dismisses the usual one-way form of communication by opening dialogue with fellow Twitter users. At conferences, Twitter can serve as a useful tool for active engagement which will not only "break the ice" between delegates but also ensure that important information is communicated to a much wider audience than only those in attendance. This idea was tested at the 2014 Savanna Science Network Meeting held in Skukuza, Kruger National Park, where the hashtag #SSNM was used. More than 63% of the Twitter users who participated in the #SSNM hashtag were actually not present at the conference. These external "delegates" were interested individuals from five different continents and in different professions besides Science. This highlights how social media can be exploited at conferences to ensure that key messages are conveyed beyond the immediate audience at the event.

Abstract

Well-established engineered systems for depth-discrete monitoring in fractured rock boreholes (referred to as a Multilevel System or MLS) are commercially available and offer much diversity in design options, however, they are used infrequently in professional practice and have seen minimal use in groundwater research. MLSs provide information about hydraulic head and hydrochemistry from many different depths in a single borehole and, therefore, magnify greatly the knowledge value of each borehole. Conventional practice globally is devoted to standard monitoring wells, either alone as longer single screened wells or in clusters or nests with a few wells screened at different depth intervals. These are the mainstay of the groundwater science and engineering community and severely limit prospects for each borehole to provide the information needed to solve the complex problems typically posed by fractured rock. This paper outlines the nature and evolution of MLS technologies and points to recent literature showing how MLSs add important insights that cannot be obtained using conventional wells. Also, it reviews commercially available MLS technologies, which present a range of robust options with each system having different characteristics and niches depending on characterization and monitoring goals and site conditions. The paper also describes refined MLS criteria aimed at improving the cost effectiveness and expanding capabilities of MLSs, so as to improve their accessibility for high resolution data acquisition in the context of both groundwater system characterization and long-term monitoring.

Abstract

Inadequate characterization of contaminated sites often leads to the development of poorly constructed conceptual site models and consequently, the design and implementation of inappropriate risk management strategies. As a result, the required remedial objectives are not achieved or are inefficient in addressing the identified risks. Unfortunately, it is all too common to find remedial intervention strategies that run for lengthy periods of time at great cost while generating little environmental benefit due to inadequate characterization of site conditions. High resolution site characterization (HRSC) can provide the necessary level of information to allow for development of rigorous conceptual site models, which can be used to develop and implement appropriate risk management solutions for environmental problems. At the outset, the HRSC approach generally has comparatively higher costs than traditional state-of-the-practice assessment methods. However, the project lifecycle costs can be substantially reduced due to development of optimal risk management strategies. In developing countries where there is a lack of legislation relating to soil and groundwater contamination or, a lack of enforcement of legislation which is present, the long-term liabilities related to contaminated sites are often not immediately apparent to the parties responsible for the sites. This often creates a reticence to employ HRSC techniques due to their increased cost, especially when much of the technology must be imported on a project specific basis from either Europe or the United States. The Authors provide information from several case studies conducted in South Africa where HRSC techniques have been employed to gain a greater understanding of subsurface conditions. Techniques employed have included surface-based geophysical techniques such as electrical resistivity tomography (ERT) and multi-channel analysis of seismic waves (MASW), passive soil gas surveys, deployment of Flexible Underground Technologies (FLUTe?) liners, diamond core drilling, fluid electrical conductivity profiling, downhole geophysical logging tools, the Waterloo Advanced Profiling System (APS), and the use of field laboratories. Several of the techniques required importing equipment and personnel from Europe or the US, and in several case studies, were a first to be employed in South Africa, or the continent of Africa for that matter. The Authors present data obtained using the HRSC techniques from the case studies and elaborate on how the information obtained was used to drive effective decision making in terms of managing long term environmental risks at the various sites, which has been positively embraced by local clients. The authors also highlight key challenges in conducting HRSC investigations in an emerging market context.

Abstract

South Africa utilizes coal for energy and chemical feedstock thereby generating millions of tons of ash every year. The ash is stockpiled in surface waste facilities where it poses a risk of leaching and contaminating groundwater. This study utilizes standard leaching tests, TLCP and SPLP, to evaluate and predict the mobility of different elements that leach from fly ash. Two different fly ash samples (Ash M and Ash T) were used in the study. A QEMSCAN analysis was also performed on the samples as well as the coal to determine the elementary and mineralogical compositions. Both Ash samples were generated from bituminous coals and had similar physical properties. Both ash samples were mixed respectively with the two different leachates one more acidic (Leachate A) the other more basic (Leachate B). Trace elements are present in ash in small amounts, but still at lower levels still pose threat to the environment and human health. Only three trace elements were found present in both ash samples. The detected trace elements in an increasing concentration order are: Manganese>Chromium>Copper. It appears the leaching behaviour of these trace elements is similar to the other metals, being insoluble at near neutral and alkaline pH range while dissolvable at low pH ranges. The results show that Leachate B was found to extract more material than Leachate A on a milligrams per gram of ash basis. The risk to groundwater contamination can be minimized by understanding the leaching dynamics and water retention of fly ash dumps as the results show.

Abstract

Slightly more out of the box idea is the use of anthropogenic aquifers as storage and chemical conditioners.  This concept was first introduce by Eland Platinum Mine(EPM) and reported on in previous papers.  At EPM water is used through a serious of natural aeration and aerobic storage facilities to reduce nitrate levels.  In 2013 another group introduced pilot studies by virtue of abstraction in support of the water conservation and demand management strategy; which has proven that it could enable the operations to overcome water shortage periods and reduce pressure on Rand Water (RW). The pilot sites would deliver water into the dirty water circuit, but within five to ten years it may further be used to overcome months with zero potable water supply. .  In platinum mines the more the aquifers are used the cleaner the water becomes, simply because introduced pollutants are not constant sources and country rock is mostly inert.  In the future these aquifers have the potential to become larger storage facilities protected from floods and limited evaporation losses. It is foreseen that some of the mines in the western belt may have more water stored in primary aquifers than water stored within major water dams. Yields from these aquifers for individual aquifers may be up to 450 m3/hour and storage of 18 Mm3.  . Why then this paper if we are already using it?  The issue is that the true value of these aquifers an only be unlocked when they are  used as recharging aquifers and thereby actively storing dirty water within a dirty water aquifer.  Once we are able to undertake this the positive environmental gains such of environmental overflows, condition dirty water, reduction of pollution and significant reduction of the use of potable water from RW. {List only- not presented}

Abstract

The SADC Grey Data archive http://www.bgs.ac.uk/sadc/ provides a chronology of groundwater development within the constituent countries of the SADC region. Early reports show how groundwater development progressed from obtaining water by well digging to the mechanical drilling of boreholes for provision of water for irrigation, township development, transport networks and rural settlement. During the 1930s steam driven drilling rigs were supplanted by petrol engine driven cable tool percussion drilling. Dixey (1931), in his manual on how to develop groundwater resources based on experiences in colonial geological surveys in eastern and southern Africa, describes aquifer properties, groundwater occurrence and resources as well as water quality and groundwater abstraction methods. Frommurze (1937) provides an initial assessment of aquifer properties in South Africa with Bond (1945) describing their groundwater chemistry. South African engineers transferred geophysical surveying skills to the desert campaign during World War II. Paver (1945) described the application of these methods to various geological environments in South Africa, Rhodesia and British colonial territories in eastern and central Africa. Test pumping methods using electric dippers were also developed for the assessment of groundwater resources. Enslin and others developed DC resistivity meters, replacing early Meggar systems, produced data that when analysed, using slide rules with graphs plotted by hand, identified water bearing fractures and deeply weathered zones. Tentative maps were drawn using interpretation of aerial photographs and heights generated using aneroid altimeters. The problems faced by hydrogeologists remain the same today as they were then, even though the technology has greatly improved in the computer era. Modern techniques range from a variety of geophysical surveying methods, automated rest level recorders with data loggers to GPS location systems and a whole host of remotely sensed data gathering methods. Worryingly, using such automated procedures reduces the ability of hydrogeologists to understand data limitations. The available collection of water level time series data are surprisingly small. Surrogate data need to be recognised and used to indicate effects of over abstraction as demand grows. As the numbers of boreholes drilled per year increases the number of detailed hydrogeological surveys undertaken still remains seriously small. Has our knowledge of hydrogeological systems advanced all that much from what was known in the 1980s? Case histories from Malawi, Zimbabwe and Tanzania illustrate a need for groundwater research with well-judged sustainability assessments to underpin safe long-term groundwater supply for the groundwater dependent communities in the region.

Abstract

Coastal wetlands are complex hydrogeological systems in which groundwater have a significant influence on both its water balance and hydrochemistry. Differences in groundwater flow and groundwater chemistry associated with complex hydrogeologic settings have been shown to affect the diversity and composition of plant communities in wetland systems. A number of wetlands can be found across the flat terrain of the Agulhas Plain, of which the most notable is the Soetendalsvlei and the Vo?lvlei. Despite the ecological and social importance of the Vo?lvlei, the extent to which local, intermediate and regional groundwater flow systems influences the Vo?lvlei is poorly understood. The aim of this work is to characterize the spatial and temporal variations in surface water and groundwater interactions in order to demonstrate the influence of groundwater flow systems on the hydrology of the Vo?lvlei. The specific objectives of the study are; 1) to establish a geological framework of the lake sub-surface, 2) to determine the physical hydrological characteristics of the Vo?lvlei and 3) to determine the physical-chemical and isotopic characteristics of groundwater and surface water. Data collection will be done over the period of a year. Methods to be used will include the use of geophysical (electrical resistivity) to determine high water bearing areas surrounding the wetland, a drilling investigation (the installation of piezometers at 5-10m depths and boreholes at 30m depth, sediment analysis (grain size analysis, colour and texture), hydraulic (slug testing to determine hydraulic properties; hydraulic conductivity and transmissivity), hydrological (to estimate groundwater discharge; Darcy flux and hydraulic head difference between groundwater level and lake level), physical-chemical (electrical conductivity, temperature and pH) and stable environmental isotopic (oxygen and hydrogen) analysis of surface water and groundwater, to determine flow paths and identify processes. Thus far, results obtained for the geophysical survey has revealed that the sub-surface of this wetland system is highly variable. Three traverses were done on the South-Western, South-Eastern and Northern side of the wetland (See Figure 1). In VOEL1 (South west), the upper couple of meters show areas of very low resistivity, which is associated with clays, poor water quality and water which has high dissolved salts. The changing of medium to high resistivity values on the North-eastern side is usually indicative of weathered sandstone (Table Mountain Group). VOEL2 (South eastern), indicates that the subsurface is of low resistivity. These low values are the result of noticeable salt grains in the sand. VOEL3 (Northern), indicated upper layers of low resistivity, while the lower depth indicate areas of high resistivity. It is expected that the results of this study will provide a conceptual understanding of surface water-groundwater interactions and the processes which control these interactions, in order to facilitate the effective management and conservation of this unique lacustrine wetland.

Abstract

Precision agriculture continuously seeks improved methods to enhance productivity whether it is for greater crop yields or economic viability regarding labour inputs and satisfying the demand in a shorter time span. Soil moisture is one important factor that drives the agricultural industry and is therefore of utmost importance to manage it correctly. A shortage of water may result in reductions in yield, while excess irrigation water is a waste of water resources and can also have a negative impact on plant growth. Knowledge of the spatial distribution of soil moisture is important for determining soil moisture storage and soil hydraulic transport properties. Capturing field heterogeneity without exhaustive sampling and costly sample analysis is difficult. Electromagnetic induction, Frequency Domain Reflectometry, Neutron Scattering and conventional soil sampling have been utilised to determine the spatial variability of soil moisture within a field. Emphasis has been placed on practicality and accuracy of all the methods. Electromagnetics have proven itself to be the primary method to determine soil moisture within the field by comparing the results of the volumetric soil water content present in the field together with a combination of various soil properties such as clay and silt content, sand fraction, concretions, density and soil depth that contribute towards the accumulation of soil water. Electromagnetic induction has the highest resolution of data collected for a specific time period of all considered methods making it economically the best option for soil moisture management within a variable rate irrigation system. Electromagnetic induction has proven to be successful in delineating a field into management zones consisting of different classes based on observed conductivity values. Higher conductive zones are considered with small water demand. Lower conductive zones are considered with a greater water demand through a variable rate irrigation system. These water management zone maps could be informative for modelling, experimental design, sensor placement and targeted zone management strategies in soil science, hydrogeology, hydrology, and agricultural applications.

Abstract

Until 1998 groundwater was managed separately from surface water and was seen as a private resource. The National Water Act of 1998 (Act 36 of 1998) (NWA) was forward thinking in that it saw groundwater as an integrated part of the water resource system and as a common resource to be managed by the Department of Water and Sanitation (DWS) as custodian. Various tools had been provided to manage the water resources equitably, sustainably and efficiently. A limited understanding of groundwater and the prevalence to revert to engineering principles when managing water resources had led to an Act that is mostly written with surface water in mind. The tools and principles that had been tested for surface water was used directly for groundwater without considering the practicalities in applying and enforcing the NWA. This did not provide too many problems, as groundwater was not considered a viable, sustainable water resource, and the use of groundwater was mostly limited to private use for garden irrigation, in agriculture for irrigation and for bulk supply in a number of small towns where surface water was not available. This has changed drastically during the recent drought that affected the whole country, but especially the Western Cape. Groundwater was suddenly seen as the solution to the problem of water availability. The problem was that the understanding of groundwater has not increase sufficiently over the years, and water resources management is still skewed to hydrology principles that apply to surface water. Groundwater sustainability is at the heart of the questions of scale and measurements. The Department has been flooded by the large number of water use licence applications that have been submitted by municipalities, industries and agriculture as a result of the drought. This article will look at groundwater resource assessment and allocation methodology in a South African context.

Abstract

Quantification of groundwater is important as it should determine the maximum sustainable use of the resource. The SAMREC Code that is required for mineral resource quantification sets out minimum standards, guidelines and recommendations for public reporting of exploration results for mineral resources and reserves. The code serves as the basis for mineral asset valuation and provides quality assurance to the process and an understanding of the results. In groundwater far too often, various methods are used for resource quantification that leads to various results even should the same resource be investigated by two different hydrogeologists. In far too many cases, the resource is not quantified properly which leads to vast over or under estimations. The result is a lack of trust in groundwater resources. As has been done in the international arena, it is similarly proposed that a code be developed for South Africa to ensure that the sustainability of groundwater resources is determined and the impacts of utilization on the water Reserve and the environment be quantified at a minimum level and that basic hydrogeological principles are followed. A South African Groundwater Regulation Code for sustainable resource quantification and impact assessment (SAGREC) is developed that is proposed to guide groundwater investigations and development processes from planning to baseline assessments, drilling and aquifer testing to resource quantification and sustainability modeling. The aim is to ensure trust being built on groundwater as a resource due to projects that follow a formal process that quantifies the assurance of supply and determines the environmental impacts.

Abstract

Groundwater levels in E33F quaternary catchment are at their lowest level ever. The impact of climatic variation and increasing abstraction were determined to be the main factor. There are 115 registered groundwater users in E33F and the monthly abstraction volumes are not being measured. There is a need to use land use activities as well as the population to estimate groundwater use. The main objective is to use non-groundwater monitoring data to estimate groundwater use in order to protect the aquifer and ecosystem in general in varying climatic condition. Land use activities information was used to estimate groundwater use in E33F quaternary catchment. The estimated groundwater use volumes were compared to allocated and measured volumes. For domestic groundwater use estimation, population data and an estimation 100 litre per person per day were used. The water requirements for the types of crops being cultivated together with the area (m2) were used to estimate groundwater use volumes for irrigation. The number and type of live stocks were used with the water requirements for each livestock type to estimate the groundwater use volumes. 96 % of groundwater users are using groundwater for irrigation purposes with 9 966 105 m3/a allocated for irrigation. Mining, industries, domestic and livestock are allocated 100 200 m3/a. The estimated groundwater use volume for irrigation is 30 960 000 m3/a, which is three times higher than the allocated volume. Groundwater use volume for domestic use is estimated to be 38 225 m3/a which is higher than the 31 000 m3/a allocated. The total estimated groundwater use volume in E33F is estimated to be 30 998 225 m3/a, which is three times higher than the allocated groundwater use volume of 10 066 305 m3/a. This estimation could be higher as only registered boreholes were used and estimations from mining, Industries and live stocks were excluded due to lack of data

Abstract

This study intent to share the legal and institutional analysis of the UNESCO IHP project "Groundwater Resources Governance in Transboundary Aquifers" (GGRETA) project for the Stampriet Transboundary aquifer. The Intergovernmental Council (IGC) of the UNESCO International Hydrological Programme (IHP) at its 20th Session requested the UNESCO-IHP to continue the Study and Assessment of Transboundary Aquifers and Groundwater Resources and encouraged UNESCO Member States to cooperate on the study of their transboundary aquifers, with the support of the IHP. The GGRETA project includes three case studies: the Trifinio aquifer in Central America, the Pretashkent aquifer in central Asia and the Stampriet aquifer in southern Africa. This study focuses on the Stampriet Transboundary Aquifer System that straddles the border between Botswana, Namibia and South Africa. The Stampriet system is an important strategic resource for the three countries. In Namibia the aquifer is the main source of water supply for agricultural development and urban centers in the region, in Botswana the aquifer supplies settlements and livestock while in South Africa the aquifer supplies livestock ranches and a game reserve. The project methodology is based on UNESCO's Shared Aquifer Resources Management (ISARM) guidelines and their multidisciplinary approach to transboundary aquifers governance and management, addressing hydrogeological, socio-economic, legal, institutional and environmental aspects. The GGRETA builds recognition of the shared nature of the resource, and mutual trust through joint fact finding and science based analysis and diagnostics. This began with collection and processing of legal and institutional data at the national level using a standardized set of variables developed by the International Groundwater Resources Assessment Center (IGRAC). This was followed by harmonization of the national data using common classifications, reference systems, language, formats and derive indicators from the variables. The harmonized data provided the basis for an integrated assessment of the Stampriet transboundary aquifer. The data assisted the case study countries to set priorities for further collaborative work on the aquifer and to reach consensus on the scope and content of multicountry consultation mechanism aimed at improving the sustainable management of the aquifer. The project also includes training for national representatives in international law applied to transboundary aquifers and methodology for improving inter-country cooperation. This methodology has been developed in the framework of UNESCO's Potential Conflict Cooperation Potential (PCCP) program. The on-going study also includes consultation with stakeholders to provide feedback on proposals for multicountry cooperation mechanisms. It is anticipated that upon completion of the study, a joint governance model shall have been drawn amongst the three countries sharing the aquifer to ensure a mutual resource management.

Abstract

This paper was presented at the GWD Central Branch Symposium, Potchefstroom in 2012

Numerical modelling of hydrogeological systems has progressed significantly with the evolution of technology and the development of a greater understanding of hydrogeology and the underlying mathematical principles. Hydrogeological modelling software can now include complex geological layers and models as well as allow the pinching out of geological features and layers. The effects of a complex geology on the hydraulic parameters determined by numerical modelling is investigated by means of the DHI-WASY FEFLOW and Aranz Geo Leapfrog modelling software packages.

The Campus Test Site (CTS) at the University of the Free State in Bloemfontein, South Africa was selected as the locale to be modelled. Being one of the most studied aquifers in the world, the CTS has had multiple research projects performed on it and as a result ample information is available to construct a hydrogeological model with a high complexity. The CTS consists primarily of stacked fluvial channel deposits of the Lower Beaufort Group, with the main waterstrike located on a bedding-plane fracture in the main sandstone aquifer.

The investigation was performed by creating three distinct hydrogeological models of the CTS, the first consists entirely of simplified geological strata modelled in FEFLOW by means of average layer thicknessand does not include the pinching out of any geological layers. The second model was created to be acopy of the first, however the bedding-plane fracture can pinch out where it is known to not occur. The third and final model consisted of a complex geological model created in Leapfrog Geo which was subsequently exported to FEFLOW for hydrogeological modelling.

Abstract

Vapour intrusion (VI) is recognized to drive human health risk at numerous sites that have been contaminated by petroleum products and other volatile contaminants. The risks related to VI are typically evaluated using direct measurement (vapour sampling) or modelling methods. ERM has developed a toolbox approach using a combination of exclusion distance criteria, direct measurement and modelling methods to assess risks and achieve closure. For direct measurement, samples of vapour are taken beneath the floor slab of buildings (sub-slab sampling) or from the air inside the buildings (indoor air sampling). Modelling methods are often used to estimate the partitioning of volatile contaminants from soil or groundwater sources into the vapour phase and the subsequent transport of vapours from the subsurface environment into habitable buildings. A limitation of modelling approaches is that they are designed to be conservative to be adequately protective of sensitive receptors. VI models also do not typically take into account the degradation of hydrocarbon vapours in the presence of oxygen, which has been found to be a significant process for petroleum hydrocarbons. The authors have compiled a dataset of petroleum vapour and groundwater results from over 50 petroleum release sites in southern Africa. These data were used to develop exclusion distance criteria for vapours emitted from contaminated groundwater sources (i.e. distance from the source at which sufficient aerobic attenuation has occurred for the VI risk to be negligible). A standard "lines of evidence" approach has been applied to the assessment of VI risk by firstly applying the exclusion distance criteria to sites with groundwater contaminant plumes beneath buildings, and if these are met, the sites are considered to have no unacceptable VI risk. Where exclusion screening criteria are not met, risk is estimated using modelling, and if a potential risk is predicted, then direct sub-slab measurements are taken to more accurately assess the risk. Lastly, where sub-slab assessment predicts a potential VI risk, indoor vapour measurement are taken to evaluate actual risk, taking into account interferences from other sources and background levels of contaminants. Mitigating measures can then be applied as appropriate. Various case studies will be presented including direct measurements at industrial and residential sites overlying contaminant plumes and modelling methods at residential properties adjacent to service station sites. A risk-based approach to the assessment of contaminated land provides a sustainable and cost effective methodology, and also avoids unnecessary remediation. The results show that VI risks can be adequately addressed with a toolbox approach using multiple lines of evidence.

Abstract

Groundwater modelling at the mine sites involves assumptions from the geological model, mining stages, parametrization, and fractures, among others. Modelling work mainly focuses on calibrating against historical measurements before operations (pre-mining) or afterwards (transient calibration). Calibration is carried out mainly with gradient-based algorithms. However, the majorlimitation is the number of model runs, since the number of parameters can easily reach hundreds or more. PEST has become the common tool for parameter estimation. The Jacobin calculation required for the Levenberg Marquardt algorithm requires several model runs. This, a limited factor for the calibration and, subsequently, uncertainty quantification. The next generation of PEST, named PESTPP, is gained popularity in the groundwater community. The great advantage of PESTPP,, compared to the classical PEST, is its new module, Iterative Ensemble Smoother (IES). PESTPP-IES covers both parameter estimation and uncertainty quantification in one goal. Its empirical formulation of the Jacobian matrix reduces the number of runs; thus, the numerical bottleneck can be significantly reduced. PESTPP-IES has been extensively tested in an open-pit mine at the geological complex conditions in the Peruvian Andes. The work involves the task of model simplification, e.g., from a regional model to a detailed local pit model, calibration and uncertainty quantification of pit dewatering volumes. Detailed model was kept calibrated based on hydraulic-head measurements, and dewatering volumes were predicted. All these consider transient changes in the mining plan within the same FEFLOW model. Results validate the methodology and practicability in mining applications.

Abstract

Hydrogeological environments are commonly determined by the type of underlying geology; these environments may have a tremendous effect on the mobility and recovery of LNAPLs.  Hydrogeological environment include intergranular sediments and bedrocks of contrasting permeability and porosity. This paper synthesizes several case studies and conceptual models of different hydrological environments and illustrates how they affect the flow characteristics and rebound of LNAPLs.

Abstract

An understanding of the movement of moisture fluxes in the unsaturated zone of waste disposal sites play a critical role in terms of potential groundwater contamination. Increasing attention is being given to the unsaturated or vadose zone where much of the subsurface contamination originates, passes through, or can be eliminated before it contaminates surface and subsurface water resources. As the transport of contaminants is closely linked with the water ?ux in through the unsaturated zone, any quantitative analysis of contaminant transport must ?rst evaluate water ?uxes into and through the this region. Mathematical models have often been used as critical tools for the optimal quantification of site-speci?c subsurface water ?ow and solute transport processes so as to enable the implementation of management practices that minimize both surface and groundwater pollution. For instance, numerical models have been used in the simulation of water and solute movement in the subsurface for a variety of applications, including the characterization of unsaturated zone solute transport in waste disposal sites and landfills. In this study, HYDRUS 2D numerical simulation was used to simulate water and salt movement in the unsaturated zone at a dry coal ash disposal site in Mpumalanga, South Africa. The main objective of this work was to determine the flux dynamics within the unsaturated zone of the coal ash medium, so as to develop a conceptual model that explains solute transport through the unsaturated zone of the coal ash medium for a period of approximately 10 year intervals. Field experiments were carried out to determine the model input parameters and the initial conditions, through the determination of average moisture content, average bulk density and the saturated hydraulic conductivity of the medium. A two dimensional finite-element mesh of 100m x 45m model was used to represent cross section of the ash dump. Two dimensional time lapse models showing the migration of moisture fluxes and salt plumes were produced for the coal ash medium. An explanation on the variation of moisture content and cumulative fluxes in the ash dump was done with reference to preexisting ash dump data as well as the soil physical characteristics of the ash medium.
{List only- not presented}

Abstract

It is estimated that the three coal layers in the Springbok Flats contain about 5 TCF of coal bed methane (CBM). Two sedimentary basins, namely the southern Tuinplaas basin and the northern Roedtan basin, exist with coal layers with a total thickness of 7m which occurs mainly in three mayor seams. The coal layers are located between 20 m to more than 600m.
Farmers in the Flats are concerned about the environmental impact of fracking the coal beds. They are mostly worried about the risk of groundwater pollution; the drawdown of the water table and the producing of a bad quality water during the mining process. They set up an EPA for the Springbok Flats in 2010 and until now, they have stopped more than 6 companies to conducted exploration (stopped strictly on account of the different laws in SA that were not adhered too).
On average, 1000 liters of water is produced for every 2000 cubic feet coal bed methane mined in the USA. The quality of the produced water is not good (with typical Na values of more than 5 000 mg/l) and cannot be used for irrigation purposes.
It is thus expected that about 500 million m3 of bad quality water will be produced for every 1 TCF mined in the Flats. This groundwater will be removed from the system and it is expected that a drawdown of up to 30m will be evident at places in the Springbok Flats. There are also a large number of dykes and faults in the Flats which imply that the upward movement of methane and water will be very probable after abandonment of each coal methane well.

Abstract

The Transboundary Groundwater Resilience (TGR) Network-of-Networks project brings together researchers from multiple countries to address the challenges of groundwater scarcity and continuing depletion. Improving groundwater resilience through international research collaborations and engaging professionals from hydrology, social science, data science, and related fields is a crucial strategy enabling better decision-making at the transboundary level. As a component of the underlying data infrastructure, the TGR project applies visual analytics and graph-theoretical approaches to explore the international academic network of transboundary groundwater research. This enables the identification of research clusters around specific topic areas within transboundary groundwater research, understanding how the network evolved over the years, and finding partners with matching or complementary research interests. Novel online software for analysing co-authorship networks, built on the online SuAVE (Survey Analysis via Visual Exploration, suave.sdsc.edu) visual analytics platform, will be demonstrated. The application uses OpenAlex, a new open-access bibliographic data source, to extract publications that mention transboundary aquifers or transboundary groundwater and automatically tag them with groundwater-specific keywords and names of studied aquifers. The analytics platform includes a series of data views and maps to help the user view the entire academic landscape of transboundary groundwater research, compute network fragmentation characteristics, focus on individual clusters or authors, view individual researchers’ profiles and publications, and determine their centrality and network role using betweenness, eigenvector centrality, key player fragmentation, and other network measures. This information helps guide the project’s data-driven international networking, making it more comprehensive and efficient.

Abstract

With the revision of the European Drinking Water Directive (Directive on the quality of water intended for human consumption 2020/2184) in December 2020, the preparation of Water Safety Plans (WSP) is foreseen according to the guidelines of WHO. Within the EU Interreg Adrion MUHA project, a decision support tool (DST) has been developed to provide a holistic approach to drinking water infrastructure risk analysis. The project mainly addresses four water-related risks: accidental pollution, floods, droughts and earthquakes. The core of the DST is the inventory of hazardous events (causes, their consequences and impacts) for each component of the drinking water supply chain: (1) drinking water source - catchment area, (2) water supply system, and (3) domestic distribution system. For each identified potential hazard, the type of hazard was determined (e.g., biological, chemical, radiological, or physical hazard (including turbidity), inadequate availability of water supplied to customers, safety to personnel, external harm to third parties, including liability). The DST was tested in the partner countries (Italy, Slovenia, Croatia, Serbia, Montenegro and Greece) to verify the resilience of the measures and elaborate the WSP.

In the end, the REWAS-ADRION strategy was elaborated, aiming to increase the resilience of drinking water supplies to floods, droughts, accidental pollution, and earthquake-related failures by improving the water safety planning mechanism based on the concept of inter-agency cooperation to support water utilities, civil protection organizations, and water authorities.

Abstract

The so-called apparent increase of transmisivity (T) or hydraulic conductivity (K) with scale is an artifact and does not exist in the field. The reason for the apparent increasing of T with scale is due to the use of the "not applicable" random log Gaussian stochastic models that are used by geohydrologists. In the petroleum field, which uses deterministic methods, the apparent increase of T with aquifer volume does not occur. Groundwater practitioners have to change their view and use models that do not show this effect.

By using intuitive inspection of geological, fracture and connectivity data as well as real pumping test data, this paper shows that up-scaling must be performed with an exponential decaying function, where T always decreases with scale
.
Two types of heterogeneities exists namely a.) horizontal and b.) vertical. Connectivity between fractures is extremely important in both cases, but it is only in semi-confined and watertable aquifers that the vertical heterogeneities are really important (typical case of fracture dewatering)
{List only- not presented}

Abstract

The current study investigated the subsurface of aquifers in Heuningnes Catchment focusing on aquifer characteristics for groundwater resource assessments. Surface geophysical resistivity method was adapted for mapping the shallow subsurface layers and hydrogeologic units at selected sites within the catchment. The aim was to provide a preliminary overview of the subsurface nature of aquifers within the study area, by establishing features such as geological layers, position of weathered zones, faults and water bearing layers. The multi-electrode ABEM SAS 1000 resistivity meter system, using the Wenner array, was used to obtain 2D resistivity data of the subsurface. The acquired data was processed and interpreted using Res2DINV software to produce the 2D resistivity models. The analysis of the resistivity models of the subsurface reveals maximum of four layers; sandstone, shale, poor clayed and brackish water saturated layer. On comparing the model results with the surficial geological formation of the catchment geological map, the identified layers were found to correspond with the geology of the area. The findings i) provide insights on sites that can be drilled for groundwater exploration, ii) show possible water-type variations in the subsurface. Although the results are not conclusive but they provide basis for further research work on quality and flow dynamics of groundwater.

{List only- not presented}
Key words: aquifer properties, hydrogeologic units, geo-electric model, electrical-resistivity method

Abstract

Artesian boreholes are a common feature worldwide in confined aquifers, but the hydraulic testing of these boreholes, and estimation of aquifer properties from such tests, still poses a challenge for hydrogeologists. Common hydraulic tests, such as step-drawdown or constant-discharge rate tests require a static water level at the start of the test, and the measurement of drawdown (increasing over time) and abstraction rate (fixed for a period of time). Usually, when undertaking a pumping test in an artesian borehole, the drawdown is measured from ground level, and the drop in hydraulic head between static pressure and ground level is often ignored. This procedure also implies that the starting time of the test is not at the static water level. A constant-head test, set at ground level, is the other option. However, the decrease in flow rate is not only dependent on the hydraulic properties of the aquifer, but also masked by pipe hydraulic effects within the well. This kind of test would also limit the available drawdown to be utilized for the test. Hence, it was required to develop a method for undertaking hydraulic tests in strong artesian boreholes, allowing for the drawdown to fluctuate between levels both above and below ground and avoiding the pitfalls described above. The solution is a specially designed and constructed wellhead for the installation of the pump and monitoring equipment prior to the hydraulic test. The standard tests are slightly modified and are only undertaken after sealing the wellhead and reaching static hydraulic pressure. The recommended wellhead construction and subsequent hydraulic tests were implemented at a strong artesian borehole in the Blossoms Wellfield, south of Oudtshoorn in the Western Cape province of South Africa.

 

Abstract

Stringent drinking water standards for constituents like chromium, arsenic, and nitrates, combined with continually higher demand for groundwater resources have led to the need for more efficient and accurate well characterization. Many boreholes are screened across multiple aquifers to maximize groundwater production, and since these aquifers can have different water qualities, the water produced at the wellhead is a blend of the various water qualities. Furthermore, the water entering a well may not be distributed equally across the screened intervals, but instead be highly variable based on the transmissivity of the aquifers, the depth of the pump intake, the pumping rate, and whether any perforations are sealed off due to physical, chemical, or biological plugging. By identifying zones of high and low flows and differing water qualities, well profiling is a proven technology that helps optimize operational groundwater production from water supply boreholes or remediation systems. This frequently results in increased efficiencies and reduced treatment costs. By accurately defining groundwater quantity and quality, dynamic profiling provides the data needed to optimize well designs. Conventional exploration methods frequently rely on selecting well screen intervals based on performing and analyzing drill stem tests for one zone at a time. Using dynamic flow and water quality profiling, the transmissivity and water quality can be determined for multiple production zones in a matter of one to two days. It also allows the location and size of the test intervals to be adjusted in the field, based on real-time measurements.

In this paper we discuss dynamic well profiling techniques with project case examples of characterization different types groundwater boreholes for a variety of applications and industries resulting in significant cost saving and sustainable water abstraction.

Abstract

South Africa has committed to achieving the United Nations Sustainable Development Goals (SDG's) by 2030. But what does this mean and how does groundwater fit in to this? SDG 6 in particular focuses on ensuring universal access to safe and affordable drinking water for all by 2030. SDG 6 requires that the country protects and restores water-related ecosystems such as forests, mountains, wetlands, aquifers and rivers which are essential if we are to mitigate water scarcity. To accomplish this, South Africa has proceeded to align various plans, strategies, and policies to encompass the targets of the SDG's. This paper will focus on SDG sub-goal 6.3 which incorporates improvement of water quality and sub-goal 6.6 which involves protection and restoration of ecosystems. The methodology given by the UN for the groundwater in indicator 6.3.2 stipulates that countries are required to report on "proportion of water with good ambient water quality", in South Africa however we had to domesticate the indicator i.e. render it suitable for South African conditions so we changed the methodology to "proportion of water the conforms to the Water Quality Objectives (WQO's)" but there are virtually no WQO's developed for groundwater. Four core groundwater quality parameters (Electrical Conductivity, pH, Nitrate and Sulphate) are available through ZQM stations categorized through 65 hydrogeological (Vegter) regions. Groundwater water quality baseline is calculated as a reference period/range per hydrogeological region. For SDG 6.6, the indicator required for groundwater is "Quantity of groundwater within aquifers" The methodology received by the UN for "Quantity of groundwater within aquifers" required a baseline (average reference period of five years) in meters per hydrogeological region. This indicator is again domesticated for South Africa and based on the 40-60 percentiles of groundwater levels per hydrogeological region. There are a number of future indicators that can be included for aquifers under SDG 6.6, but the groundwater sector needs to come together and decide what is important to report on. These SDG targets reporting has given the Water and Sanitation sector a new look at data. It has forced us to critically think of concepts such as baseline and performance monitoring. We now know where our data gaps and targets are, and we have to provide an action plan to address these.

Abstract

Annually, UNICEF spends approximately US$1B in water, sanitation and hygiene programming (WASH), approximately half of which is spent in humanitarian contexts. In emergencies, UNICEF supports the delivery of water, sanitation and hygiene programming under very difficult programming contexts – interruptions to access, power supply and a lack of reliable data. Many of these humanitarian situations are in contexts where water scarcity is prevalent and where the demand and competition for water are increasing, contributing to tension between and within communities. While water scarcity is not new to many of these water-scarce areas, climate change is compounding the already grave challenges related to ensuring access to safe and sustainable water services, changing recharge patterns, destroying water systems and increasing water demand. Incorrectly designed and implemented water systems can contribute to conflict, tension, and migration. Ensuring a comprehensive approach to water security and resilient WASH services can reduce the potential for conflict and use water as a channel for peace and community resilience. This presents an enormous opportunity for both humanitarian and development stakeholders to design water service programmes to ensure community resilience through a four-part approach: 1. Groundwater resource assessments 2. Sustainable yield assessments (taking into consideration future conditions) 3. Climate risk assessments 4. Groundwater monitoring/early warning systems UNICEF promotes this approach across its WASH programming and the sector through technical briefs, support and capacity building.

Abstract

Geochemical investigations for a planned coal mine indicated that the coal discard material that would be generated through coal processing would have a significant potential to generate acid rock drainage. A power station is planned to be developed in close proximity to the coal mine, and the potential for co-disposal of coal discard with fly-ash material required examination. Fly-ash is typically highly alkaline and has the potential to neutralise the acidic coal discard material. In order to investigate whether this was a viable option, the geochemical interaction between the coal discard and fly-ash was investigated. Geochemical data, including acid-base accounting, total chemical compositions, leach test data and kinetic test data, were available for the coal discard material and the fly-ash. Using these data as inputs, a geochemical model was developed using Phreeqci to predict the pH of leachate generated by mixing different ratios of coal discard and fly-ash. The ratio of coal discard to fly-ash was established that would result in a leachate of neutral pH. Using this prediction, a kinetic humidity cell test was run by a commercial laboratory for a total of 52 weeks using the optimal modelled ratio of discard and fly-ash. Although leachate pH from the kinetic test initially reflected a greater contribution from fly-ash, the pH gradually decreased to the near-neutral range within the first 20 weeks, and then remained near-neutral for the remainder of the 52-week test. During this period, sulphate and metal concentrations also decreased to concentrations below those generated by either the fly-ash or coal discard individually. The addition of fly-ash to the coal discard material provided sufficient neutralising capacity to maintain the near-neutral pH of the co-disposal mixture until the readily available sulphide minerals were oxidized, and the oxidation rates decreased. At the end of the test, sufficient neutralising potential remained in the humidity cell to neutralise any remaining sulphide material. The results of this investigation suggested that, under optimal conditions, co-disposal of fly-ash with coal discard is a viable option that can result in reduced environmental impacts compared to what would be experienced if the two waste materials were disposed of separately.

Abstract

Groundwater quantity and quality of shallow aquifers have deteriorated in recent years due to rapid development that has created an increased demand for drinking water, which is increasingly being fulfilled by groundwater abstraction. The study evaluates the hydrogeological framework of the Quaternary aquifer of the Kabul basin, Afghanistan, and the impact of urbanization on the groundwater resources around the Kabul city plain. Time series of Landsat satellite LCLU images indicate that the urban area increased by 40% between 2000 and 2020, while the agricultural area decreased by 32% and bare land decreased from about 67% to 52% during this period. The assumed groundwater overdraft 2019 was 301.4×103 m3 /day, while the recharge was 153.4×103 m3 /day, meaning a negative balance of about 54 million cubic meters (MCM) this year. Due to the long-term decline of water levels at 80 90 cm/year, and locally (Khairkhana, Dasht-e-Barchi) 30-50m during 2005-2019, a considerable groundwater drawdown is shown. Groundwater quality, on the other hand, reveals that chloride concentrations and salinity increased throughout the aquifer between 2005 and 2020. The nitrate concentration decreased in most Kabul Plain places over the period. In conclusion, the quantity and quality situation of urban groundwater in Kabul is worrying; urgent scientific and sustainable solutions and measures should be considered to manage this situation.

Abstract

This study focuses on the coastal agricultural area of El-Nil River (Algeria), where anthropogenic activities heavily impact groundwater resources. A multi-tracer approach, integrating hydrogeochemical and isotopic tracers (δ2HH2O, δ18OH2O, δ15NNO3 and δ18ONO3), is combined with a hydrochemical facies evolution diagram and a Bayesian isotope mixing model (MixSIAR) to assess seawater contamination and distinguish the nitrate sources and their apportionment. A total of 27 groundwater samples and 7 surface water samples distributed over the entire study area were collected. Results show classic inland intrusion combined with an upstream seawater impact through the river mouth connected to the Mediterranean Sea. Results from nitrate isotopic composition, NO3 and Cl concentrations, and the MixSIAR model show that nitrate concentrations chiefly originate from sewage and manure sources. Nitrate derived from sewage is related to wastewater discharge, whereas nitrate derived from manure is attributed to an excessive use of animal manure to fertilise agricultural areas. The outcomes of this study are expected to help decision-makers prepare suitable environmental strategies for effective and sustainable water resources management in the study area.

Abstract

Micro-electro-mechanical system (MEMs) technologies coupled with Python data analysis can provide in-situ, multiple-point monitoring of pore pressure at discrete and local scales for engineering projects. MEMs sensors are tiny, robust, inexpensive, and can provide wireless sensing measurements in many electrical and geomechanical engineering applications. We demonstrate the development of MEMs pressure sensors for pore pressure monitoring in open boreholes and grouted in piezometers. MEMs sensors with a 60 m hydraulic head range and centimetre vertical resolution were subject to stability and drawdown tests in open boreholes and in various sand and grouts (permeability 10-8 to 10-2 m/s). The resulting accuracy and precision of the MEMs sensors, with optimal calibration models, were similar to conventional pore pressure sensors. We also demonstrate a framework for estimating in-situ hydrogeological properties for analysis from vented pore pressure sensors. This framework method included Python code analysis of hourly pore pressure data at the millimetre vertical resolution, which was combined with barometric data and modelled earth tides for each borehole. Results for pore pressure analysis in confined boreholes (>50 m depth) included specific storage, horizontal hydraulic conductivity and geomechanical properties. Future improvements in the vertical resolution of MEMs pore pressure sensors and combined these two technologies will enable groundwater monitoring at multiple scales. This could include the deployment of numerous MEMs, at sub-meter discrete scale in boreholes and evaluating local site scale variations in pore pressure responses to recharge, groundwater pumping and excavations in complex sub-surface geological conditions.

Abstract

Having knowledge of spatiotemporal groundwater recharge is crucial for optimizing regional water management practices. However, the lack of consistent ground hydrometeorological data at regional and global scales has led to the use of alternative proxies and indicators to estimate impacts on groundwater recharge, enabling effective management of future water resources. This study explores the impact of land use changes and wildfires on groundwater recharge at a regional scale in Bolivia, using an alternative indicator to estimate variations in groundwater recharge rates. Based on a study by de Freitas L. in 2021, the methodology developed the annual groundwater recharge reduction rate (RAPReHS) utilizing remotely sensed data from the FLDAS and TERRACLIMATE datasets. The RAPReHS employs a simplified version of the water balance equation, estimating direct vertical groundwater recharge by considering the difference between precipitation, evapotranspiration, and runoff. The methodology was upscaled to improve data processing and analysis efficiency using an open-source cloud-computing platform (Google Earth Engine) over a 20-year period. The first results reveal a strong correlation between decreasing groundwater recharge rates and natural vegetation in the eastern region. By utilizing the RAPReHS index, forest preservation strategies can be prioritized. This study is in the framework of SDG 13 (Climate Action), which aims to mitigate the impacts of climate change on the environment and society. By exploring the impact of land use changes and wildfires on groundwater recharge at a regional scale in Bolivia, this research contributes to the inclusion of groundwater in policy guidelines for sustainable water management