Conference Abstracts

All Abstracts were presented at the Groundwater Conferences

Displaying 101 - 150 of 795 results
Title Presenter Name Presenter Surname Area Conference year Keywords

Abstract

There is a transboundary groundwater reservoir on the Polish–Ukrainian borderlands, which is of key importance in shaping strategic groundwater resources. Due to the particular importance of this reservoir, the two neighbouring countries are obliged to undertake joint actions to protect it. One of the main difficulties in building a common platform for the management of TBAs in the Polish-Ukrainian border area is the differences in the approach to the identification of GWB, monitoring methodologies and assessment of the condition of GWB, and the inconsistent hydrogeological databases between the two countries. A transboundary numerical groundwater flow model was developed to support internationally integrated management. The model research helped diagnose potential problems by determining the scope of the area with cross-border flows and quantifying the flows between Poland and Ukraine. In addition, the numerical model was used to define the optimal cross-border management unit and the conditions needed to exploit the Lublin–Lviv Reservoir sustainably. Abstraction on a current level slightly increased the transboundary groundwater flow from Poland to Ukraine and minimally reduced the flow in the opposite direction but did not reverse the direction of water flow at the border. The simulated drawdowns do not have a transboundary range, but negative effects on surface water resources are noticeable. Joint management should focus on a broader legal consensus, improvement of institutional relations, and integration of monitoring and groundwater status assessment systems.

Abstract

West of the world-renowned conservation site, Kruger National Park, lies the larger extent of the Greater Kruger National Park within the Limpopo province. Boreholes have been drilled for decades to provide water to game lodges, large resorts, and watering holes for game viewing and livestock. The area contains both primary and secondary aquifers classified as having yields between 0.5 and 5.0 l/s, based on the geological setting, which consists of gneiss intruded by dolerite dyke swarms. A geohydrological assessment revealed that groundwater quality within the project area has an EC of 100 - 350 mS/m, linked to borehole proximity to surface water systems. The Makhutswi Gneiss and Doleritic Dyke swarms are the major controlling geology of the area, with higher-yielding boreholes close to dykes and major structural lineaments (faulted / weathered zones). A concern identified through geohydrological assessment observations is that boreholes frequently dry up after a few years, requiring deeper drilling/redrilling or drilling a new borehole. Aggressive calcium hardness in the water frequently damages equipment and increases maintenance costs. This project investigated the feasibility of increasing recharge to the aquifer with seasonal flooding/rainfall events by constructing artificially enhanced recharge locations overlaying doleritic dykes. This is expected to decrease the groundwater’s salinity and hardness, reducing operational costs. This pre-feasibility assessment has been completed, and the project has continued through a gradual implementation phase.

Abstract

This study aims to contribute to the conceptual and methodological development of units of joint management in transboundary aquifers (TBAs) to prevent and mitigate cross-border groundwater impacts (GWIs) in quantity and/or quality. Joint management units are a relatively new but growing topic in the field of TBAs, and their conceptualisation and appropriate identification are still at an early stage. By reviewing the literature on the subject and elaborating on its terminology, main features, and current methodological progress, a comparison of the existing methodologies for identifying such units is analysed. On this basis, trends and recommendations for further research and application of such methodologies to the joint management of TBAs are presented. The literature on this issue is scarce and has been published mainly in the last five years. These publications lack consistency in the use of concepts and terminology. The above has led to miscommunication and semantic issues in the concept behind such units and in comprehending the particular challenges of identifying them. Still, some directions and methodologies for identifying or directly delineating these management units have been proposed in the literature. However, no analysis from these methodological attempts has been conducted; thus, there are no lessons to be learned about this progress. This research looks forward to closing these gaps and making headway toward dealing with cross-border GWIs in TBAs, thus helping countries meet international law responsibilities and maintaining stable relationships among them.

Abstract

The largely groundwater-dependent Sandveld region’s water resources have been put under severe strain due to increased agricultural and town development and recent increased interest in mineral exploration within these catchments. The area known locally as the Sandveld consists of the coastal plain along the west coast of South Africa, bordered by the Olifants River to the north and east, the Berg River to the south and the Atlantic Ocean coastline to the west. Groundwater is considered an essential source of fresh water for the town and agricultural supply. It also plays a major role in maintaining the functionality of the natural environment, especially concerning the coastal wetlands, such as the Verlorenvlei Wetland, designated as a Wetland of International Importance (Ramsar Site). Monitoring boreholes displayed a general drop in water levels, and a decrease in surface water flow has been reported. This has resulted in the drying up of wetland areas within the catchments. This investigation focused on conceptualising the geohydrological setting and defining the groundwater-surface water interactions and interdependencies. The assessment entailed a complete review and analyses of available hydrogeological and hydrochemical data and reports obtained through Stellenbosch University, the Department of Water and Sanitation and the private consulting sector. The priority groundwater areas were delineated, and recommendations on the regional management of these aquifers were made. The research characterised the geohydrological setting and outlined the Sandveld surface water systems’ dependency on groundwater baseflow and spring flow.

Abstract

The use of radiogenic isotope tracers, produced through bomb testing (e.g. 3H and 14C), and the application of these isotopes is yet to be fully explored now that atmospheric abundances have returned to background levels. New isotope-enabled institutions and laboratories have recently been established in developing countries to apply isotopes in practical research. This study utilized several laboratories in South Africa and in Europe to compile a robust hydrochemical (major cations and anions) and isotope (d18O, d2H, 3H, 14C, 86Sr/87Sr) dataset of groundwater from 95 sample locations in the Maputo province of Mozambique. Groundwater is hosted in different aquifers and recharged through variable mechanisms ranging from direct infiltration of exposed alluvial soils to inter-aquifer transfer between fractured aquifer systems in the mountainous regions and the weathered bedrock in the lowlands. A combination of hydrochemistry and isotopes provided insight into the heterogeneous nature of recharge, mixing of modern and fossil groundwaters, and aquifer vulnerabilities when combined with other physical parameters in the region. However, it is also clear that grab sampling over a regional spatial extent and two sampling seasons (wet and dry) did not capture all the system variability, and more regular monitoring would uncover details in the system’s behaviour not captured in this study.

Abstract

 Predicting and quantifying the hydrogeological interference of big underground works is a complex effort. This is due to the considerable uncertainty in estimating the key geomechanical and hydrogeological parameters affecting the area of potential interference of the projects. Moreover, the pattern of involved groundwater flow systems is hardly identified, either in natural or disturbed conditions. Base tunnels through mountain ridges are particularly complex in their interactions with groundwater. Several approaches and tools have been published to predict the magnitude and distribution of water inflows inside tunnels and their impact on many receptors (springs, rivers, lakes, wells, groundwater-dependent ecosystems). The research, co-funded by Italferr Spa (Italian railway national company for tunnel design), deals with calibrating and validating these methods based on huge datasets. Main engineering companies provided data from completed base tunnel projects. In particular, in this study, the Drawdown Hazard Index (DHI) method has been calibrated with a dataset of a 15 km long sector of the Gotthard base tunnel drilled through a crystalline geological setting. The calibration involved only the Potential Inflow (PI) parameter to verify the matching between the probability of inflow and the actual output of the excavation, according to the available data in the preliminary stage of the project. An alternative tool based on a machine-learning approach was then applied to the same dataset, and a comparison was presented.

Abstract

This work is part of the AUVERWATCH project (AUVERgne WATer CHemistry), which aims to better characterise some Auvergne water bodies, specifically the alluvial hydrosystem of Allier River (France). Alluvial aquifers constitute worldwide a productive water resource, superficial and easily exploitable. In France, 45% of the groundwater use comes from these aquifers. The study site is a wellfield that withdraws 8.5 million m3 of water annually from an alluvial aquifer to produce domestic water for 80% of the local population. At the watershed scale, precipitations have decreased by -11.8 mm/y, air temperatures have increased by 0.06°C/y and the river flow has declined by 20.8 Mm3 /y on 2000 – 2020. In the summer period, at least 50% of the river flow is ensured by the Naussac dam (upstream catchment part), but the recent winter droughts have not allowed the dam to replenish. Thus, water stakeholders are concerned that the productivity of the wellfield could be soon compromised. Based on geological, geophysical, hydrochemical, and hydrodynamic surveys, a numerical model of the wellfield is being developed using MODFLOW. The calibration in natural flow regime is successful using a range of hydraulic conductivities going from 1×10-3 to 1×10-4 m/s (pilot points method), consistent with the pumping tests. Preliminary results show that the river entirely controls the groundwater levels at all observation points. The perspective is now to calibrate this model in a transient regime by integrating domestic water withdrawals to determine how low the river can go without affecting the wellfield productivity.

Abstract

Water stewardship is achieved through a stakeholder’s inclusive process. It aims to guarantee long-term water security for all uses, including nature. Various actions can occur in the watershed’s recharge area, such as land cover restoration and artificial recharges. To measure the effectiveness of these actions, it is crucial to quantify their impact on water and communities. The common method for assessing the benefits of water stewardship activities is the volumetric water benefit accounting (VWBA) method. It allows for comparing the positive impact on water to the extracted groundwater volume for operations. We present the validation of the Positive Water Impact of DANONE Aqua operation at the Lido Site in West Java, Indonesia, within the VWBA framework. Different methods were used to evaluate three main water impact activities: (1) land cover restoration with reforestation, (2) artificial recharge with infiltration trenches and wells, and (3) water access. The curve number of the SWAT model was used to measure the reduced runoff impact of the land conservation action. The water table fluctuation method was employed to assess artificial recharge volume. The volume of pump discharge rates was used for water access. Results highlight the water impact at the Lido site, with the volumetric accounting of the three main activities. The discrepancy in the final calculation can be related to the variation in the field’s validated activities. VWBA framework is useful to validate water stewardship activities’ impact and plan further impactful actions.

Abstract

The Atlantis Water Resource Management Scheme (AWRMS) has operated since the 1970s. It demonstrates cost-effective and wise water use and recycling through visionary town planning and Managed Aquifer Recharge (MAR), offering water security to Atlantis’s residential and industrial sectors. For the AWRMS to succeed, it required integrating its water supply, wastewater and stormwater systems. Each of these water systems is complex and requires a multidisciplinary management approach. Adding to the challenges of inter-departmental co-operation and communication within a municipal system is the complexity and vulnerability of the coastal, primary Atlantis Aquifer. A combination of operational difficulties, biofouling, vandalism and readily available surplus surface water (leading to scheme augmentation from surface water) were negative drivers to decrease the reliance on groundwater supply from the scheme’s two wellfields. In response to the 2015-2018 drought experienced in the Western Cape of South Africa, the City of Cape Town has improved assurance of supply from the scheme and successfully built resilience by upgrading knowledge and insight through improved investigative techniques, monitoring, modelling and adaptive management of the various water resources and associated infrastructure systems. An integrated and adaptive management approach is essential to ensure continued water security and resilience to the effects of on-going urban expansion, population growth and climate change. Resilience is assured by institutions, individuals and communities taking timely and appropriate decisions, while the long-term sustainability of the AWRMS depends on proper management of all actors coupled with a high level of scientific confidence.

Abstract

Floods result in significant human and economic losses worldwide every year. Urbanization leads to the conversion of natural or agricultural land covers to low-permeability surfaces, reducing the infiltration capacity of the land surface. This amplifies the severity and frequency of floods, increasing the vulnerability of communities. Drywells are subsurface structures built in the unsaturated zone that act as managed aquifer recharge facilities to capture stormwater runoff. They are particularly well-suited for the urban environment because of their low land occupancy. In this study, we utilized an integrated surface-subsurface flow modelling approach to evaluate the effectiveness of dry wells in reducing urban runoff at a catchment scale. We developed a 3D model with HydroGeoSphere, characterizing a synthetic unconfined aquifer covered by a layer of low-permeability materials. Sensitivity analyses of land surface conditions, aquifer properties, dry well designs, and rainfall conditions were performed. Model results indicated that dry wells are more effective in reducing runoff when the land surface has a higher Manning roughness coefficient or the aquifer material has a higher hydraulic conductivity. Dry wells should be situated beneath drainage routes with high runoff flux to achieve optimal performance. Increases in dry well radius or depth enhance the infiltration capacity, but deeper dry wells can contaminate groundwater through infiltrating stormwater. Dry well performance declines with higher rainfall intensity, emphasizing the need for local rainfall intensity–duration–frequency (IDF) data to inform the design level of dry wells in specific catchments.

Abstract

Access to safe water is not yet universal in Burkina because 30% of Burkinabes do not yet have access to drinking water. The objective of universal access to drinking water (ODD 6.1) is difficult to achieve in the context of population growth and climate change. Basement rocks underline 80% of Burkina Faso. However, about 40% of the boreholes drilled in the Burkina Faso basement rocks do not deliver enough water (Q < 0.2l/s) and are discarded. This study focuses on determining the appropriate hydrogeological target that can be searched to improve the currently low drilling success rate.

We set up a well-documented new database of 2150 boreholes based on borehole drilling, pumping tests, geophysical measurements, and geological analysis results. Our first results show that the success rate at 0.2l/s (i.e. 700 l/h) is 63% at the end of the drilling against 54% at the end of borehole development: the yield of 8% of the boreholes lowers significantly after only a few hours of development. We also found that the yield of the water intakes encountered during the drilling process slightly decreases with depth; beyond 60m, it is rare (only 15% of cases) to find water occurrences. We found clear relationships between the productivity of the borehole (yield after drilling and transmissivity obtained from the pumping test) and the thickness of the weathering rocks, indicating that the appropriate target to obtain a productive borehole is a regolith of about 35 meters thick.

Abstract

Recharge is an important factor in Water Resources Management as it is often used as a measure for sustainable groundwater abstraction and resource allocation. The recharge estimation is, however, linked to a specific time, area and conditions and then generalised over seasons and years. Current climate change estimations predict a warmer and drier future for western parts of southern Africa. Groundwater recharge estimation methods do not consider changes in climate over the short term and do not consider the longer trends of a changing climate. This article looks at the various methodologies used in recharge estimations and their application in a changing world, where rainfall period, pattern and intensity have changed, where higher temperatures lead to higher actual evapotranspiration and where there is a greater need for water resources for use in agriculture, industry and domestic use. Our study considers the implications of current recharge estimation methods over the long term for water allocation and water resources management of groundwater resources from local and aquifer catchment scale estimations.

Abstract

Managed aquifer recharge (MAR) has become increasingly popular in Central Europe as a sustainable, clean, and efficient method for managing domestic water supply. In these schemes, river water is artificially infiltrated into shallow aquifers for storage and natural purification of domestic water supply, while the resulting groundwater mound can simultaneously be designed to suppress the inflow of regional groundwater from contaminated areas. MAR schemes are typically not managed based on automated optimization algorithms, especially in complex urban and geological settings. However, such automated managing procedures are critical to guarantee safe drinking water. With (seasonal) water scarcity predicted to increase in Central Europe, improving the efficiency of MAR schemes will contribute to achieving several of the UN SDGs and EU agendas. Physico-chemical and isotope data has been collected over the last 3-4 decades around Switzerland’s largest MAR scheme in Basel, Switzerland, where 100 km3 /d of Rhine river water is infiltrated, and 40 km3 /d is extracted for drinking water. The other 60 km3 /d is used to maintain the groundwater mound that keeps locally contaminated groundwater from industrial heritage sites out of the drinking water. The hydrochemical/isotope data from past and ongoing studies were consolidated to contextualize all the contributing water sources of the scheme before online noble gas and regular tritium monitoring commenced in the region. The historical and the new continuous tracer monitoring data is now used to inform new sampling protocols and create tracer-enabled/assimilated groundwater-surface water flow models, vastly helping algorithm-supported MAR optimization

Abstract

Test-pumping drawdown curves do not always sufficiently indicate aquifer characteristics and geometry and should never be analysed in isolation. Using derivative analysis and flow dimension theory, inferring the regional geometries and flow characteristics of fractured aquifers that are otherwise unknown or inconclusive is possible. As the drawdown and/or pressure front propagates through the aquifer, it reaches various hydrogeological objects that influence flow regimes and imprints a sequence of signatures in the drawdown derivative curve. The conjunctive interpretation of these flow regime sequences and hydrogeological data results in a robust, well-informed conceptual model (in terms of both local groundwater flow and the aquifer), which is vital for sustainable groundwater resource management. Derivative and flow regime analysis was applied to the test-pumping data of confined and unconfined Nardouw Aquifer (Table Mountain Group) boreholes within Steenbras Wellfield (Western Cape). Major NE-SW trending folding and transtensional Steenbras-Brandvlei Megafault Zone, in association with cross-cutting faults/fractures and younger False Bay Suite dykes, make the Nardouw Aquifer (and deeper Peninsula Aquifer) hydrogeologically complex. The sequential flow regime analyses reveal domains of conceptual flow models, including open vertical fractures, T-shaped channels, double (triple) porosity models, and leaky/recharge boundary models, amongst others. Appropriate analytical flow models (type curve fitting) are then applied for accurate aquifer parameter estimations, which are used to evaluate recommended long-term yields through predictive pumping scenarios. The outcome is an improved hydrogeological understanding and enhanced conceptual model of the aquifer, which informs numerical modelling, ecological protection, and groundwater resource management.

Abstract

Research on Fracking in the Karoo basin yielded results that, if not considered “unexpected”, can be considered as “should have been foreseen”. Some aspects substantially impacting research on fracking are often overlooked when undertaking scientific research on an emotional topic such as fracking. This presentation aims to provide insights and recommendations based on the experiences and outcomes of current research on hydraulic fracturing or “fracking” in the Karoo basin of South Africa. Fracking has been a subject of significant research and debate over the past decade. Topics, each with its challenges, include 1) The scale of exploration/production extent (Site specifics), 2) Importance of robust and independent research, 3) Need for stakeholder engagement and participation, 4) The complexity of environmental risks and impacts, 5) The need for a precautionary approach, 6) Regulatory and policy challenges. Several methodologies can be relied upon to compare outcomes of different aspects of fracking research in the Karoo, such as 1) Comparative analysis, 2) Meta-analysis, 3) Stakeholder mapping and analysis and 4) Data visualisation. A combination of these methodologies can be used to compare outcomes of different aspects of fracking research in the Karoo and provide insights and recommendations for future decision-making and planning. Ultimately, the decision to allow Fracking should be based on a balanced assessment of potential risks and benefits, considering long-term impacts on the environment, economy, and communities.

Abstract

The occurrence of emerging organic contaminants (EOCs) in the aquatic environment is of no surprise since these are applied for various purposes daily. This study investigated the changes in EOCs concentrations in the water between 2019 and 2020. During rainy seasons, samples were collected from dams and surrounding boreholes in the Eastern Basin of the Witwatersrand Goldfields. During the first and second laboratory analyses, 24 and 11 analytes were screened in the water samples. The findings indicated that in 2020, compounds such as caffeine, sulfamethoxazole, atrazine and metolachlor displayed detection frequency exceeding 2019. This indicates that the occurrence of these compounds in the aquatic system has increased within a year. Whilst carbamazepine was still traced in 12 sites as previously observed in 2019, compounds estradiol, estrone, bisphenol A and ibuprofen were traced in fewer sites than they were detected in 2019. Compounds 4-nonylphenol, methylparaben, caffeine and atrazine were detected in all the samples analysed for 2019 and 2020, respectively. Antiretrovirals (ARVs) were analysed once and were detected in most sites, with efavirenz registering the highest (12/18) detection frequency. Assessing the occurrence of EOCs in boreholes according to the depth indicated that bisphenol A and estrone were traced in greater concentrations in deep than shallow aquifers, whilst the opposite was observed for atrazine. This study showed groundwater susceptibility to contamination by EOCs, with concentrations of most compounds increasing with time due to their high usage and improper sewer systems in the area.

Abstract

Salinization is one of the main threats to groundwater quality worldwide, affecting water security, crop productivity and biodiversity. The Horn of Africa, including eastern Ethiopia, northeast Kenya, Eritrea, Djibouti, and Somalia, has natural characteristics favouring high groundwater salinity. However, available salinity data are widely scattered, lacking a comprehensive overview of this hazard. To fill this gap, machine learning modelling was used to spatially predict patterns of high salinity with a dataset of 6300 groundwater quality measurements and various environmental predictors. Maps of groundwater salinity were produced for thresholds of 800, 1500 and 2500 μS/cm. The main drivers include precipitation, groundwater recharge, evaporation, ocean proximity, and fractured rocks. The combined overall model accuracy and area under the curve of multiple runs were both ~81%. The salinity maps highlight the uneven spatial distribution of salinity, with the affected areas mainly located in arid, flat lowlands.

These novel and high-resolution hazard maps (1 km2 resolution) further enable estimating the population potentially exposed to hazardous salinity levels. This analysis shows that about 11.5 million people (~7% of the total population) living in high-salinity areas, including 400,000 infants and half a million pregnant women, rely on groundwater for drinking. Somalia is the most affected country, with an estimated 5 million people potentially exposed. The created hazard maps are valuable decision-support tools for government agencies and water resource managers in helping direct salinity mitigation efforts

Abstract

Advances in groundwater age dating provide key information for groundwater recharge history and rates, which is of great significance for groundwater sustainable development and management. By far the, radioisotope 14C is the most frequently used in routine investigations. However, groundwater age can be misinterpreted given its dating range of up to 40 ka and its chemically active in nature. In comparison, 81Kr is less frequently used but chemically inert with a dating range of up to 1,300 ka, which overcomes the limit of 14C. Although it is not as precise as 14C when the groundwater age is younger than 40 ka, it may be helpful to determine the reliability of 14C dating results. In this study, we collected eight field samples from coastal aquifers in Nantong, China and analyzed them for 81Kr, 85Kr, and 14C. The 14C results show that all groundwater ages range from 2,400 to 35,300 years, with different correction methods yielding uncertainties of 1,500 to 3,300 years. Four of the 81Kr ages provided upper bounds, while three yielded groundwater ages which are consistent with the 14C dating results within measurement uncertainties. Interestingly, one 81Kr result gave an age of 189+11 - 12ka, whereas the corresponding corrected 14C age was less than 29,200 years. The great difference may indicate modern contamination in the sampling process or mixing between young and old groundwaters. Further investigation is needed to shed more lights in this case. Moreover, it shows the benefits of introducing 81Kr in routine hydrogeological investigations and the groundwater studies.

Abstract

Faced with climate change and population growth, Dutch drinking water company Dunea is looking for additional water resources to secure the drinking water supply for the coastal city of The Hague. One of the options is to enhance the existing managed aquifer recharge (MAR) system in the coastal dunes by extracting brackish groundwater. Extracting brackish groundwater provides an additional drinking water source, can protect existing production wells from salinization, and can effectively stabilise or even grow the freshwater reserves in the coastal dunes, according to numerical groundwater modelling. To test this concept in the field, a three-year pilot commenced in January 2022 at Dunea’s primary drinking water production site, Scheveningen. Brackish groundwater is extracted at a rate of 50 m3 /h with multiple well screens placed in a single borehole within the brackish transition zone (85-105 meters below sea level). The extracted groundwater is desalinated by reverse osmosis, whilst the flow rate and quality of extracted groundwater are continuously monitored. The hydraulic effects and the dynamic interfaces between fresh, brackish and saline groundwater are monitored with a dense network of piezometers, hydraulic head loggers and geo-electrical measurement techniques. At the IAH conference, the monitoring results of the pilot will be presented. Based on the results of the field pilot and additional numerical modelling, the feasibility of upscaling and replicating the concept of brackish groundwater extraction to optimize MAR and increase the availability of fresh groundwater in coastal areas is reflected.

Abstract

The potential role of groundwater in supporting the resilience of human societies is garnering increased attention in the context of climate change. Much of this attention focuses on the resilience of the groundwater resource itself. Less attention has been given to the way that groundwater is used by society and how this may influence human-centred resilience outcomes, particularly in urban settings. In this paper, I explore how questions of scale are fundamental to the role of groundwater in the resilience of urban areas, from the scale of individual households to more regional and catchment-based notions of scale. It is these variations in the geographies of urban groundwater exploitation that provide for the challenges of groundwater governance. Drawing on the practices revealed across 5 diverse cities in sub-Saharan Africa; the paper highlights the variety of ways that groundwater promotes the resilience of urban areas to water stress. The paper finds that groundwater can accommodate a prevalence of ‘self-supply’ and market-based models as urban populations seek to counter failings in public supply provision. Whilst these actions promote the resilience of the urban setting in the short to medium term, they raise important questions for the longer-term sustainability of the resource. The paper considers the implications of these questions for the future governance of resilient groundwater resources and the role of groundwater as part of a wider strategy for urban resilience.

Abstract

The alluvial aquifer in the Varaždin region has a long-standing problem with high groundwater nitrate concentrations, mainly from agricultural activities. Since groundwater is used in public water supply networks, it is important to ensure its sustainable use. The aquifer is also used to exploit gravel and sand, and the increased demand for this valuable construction material causes the excavation of gravel pit lakes, making groundwater more vulnerable. Although engineered processes can remove nitrate from groundwater, natural attenuation processes should be investigated to understand the nitrogen behaviour and additional mechanisms for groundwater remediation. Previous research has shown nitrate is a conservative contaminant in the critical zone. Aerobic conditions within an aquifer system prevent significant denitrification. Thus, nitrification is the main process controlling nitrogen dynamics in groundwater. Since groundwater and gravel pit lakes are hydraulically connected, and natural nitrate attenuation exists in these lakes, an additional mechanism for groundwater remediation is possible. This work used isotope hydrochemistry and groundwater modelling to investigate gravel pit lakes as possible sites to reduce nitrate concentration in groundwater. Based on the isotopic composition of groundwater and nitrate concentrations, water balance and solute mass balance were calculated, which made it possible to estimate the nitrate attenuation rate in gravel pit lakes. The gained retardation factor was applied to the groundwater flow and nitrate transport model through several scenarios to evaluate the contribution of gravel pit lakes in reducing the groundwater nitrate concentrations

Abstract

The identification of hydrogeological boundaries and the assessment of groundwater’s quantitative and qualitative status are necessary for delineating groundwater bodies, according to the European Guidelines. In this context, this study tries to verify the current delineation of groundwater bodies (GWBs) through hydrogeochemical methods and multicriteria statistical analyses. The areas of interest are three GWBs located in the northern part of Campania Region (Southern Italy): the Volturno Plain, a coastal plain constituted of fluvial, pyroclastic and marine sediments; the Plain of Naples, an innermost plain of fluvial and pyroclastic sediments and the Phlegrean Fields, an active volcanic area with a series of monogenic volcanic edifices. Hydrogeochemical methods (i.e., classical and modified Piper Diagram) and multivariate statistical analyses (i.e., factor analysis, FA) were performed to differentiate among the main hydrochemical processes occurring in the area. FA allowed the handling many geochemical and physical parameters measured in groundwater samples collected at about 200 sampling points in the decade of the 2010s. Results reveal five hydrogeochemical processes variably influencing the chemical characteristics of the three GWBs: salinization, carbonate rocks dissolution, natural or anthropogenic inputs, redox conditions, and volcanic product contribution. Hydrogeochemical methods and FA allow the identification of areas characterised by one or more hydrogeochemical processes, mostly reflecting known processes and highlighting the influence of groundwater flow paths on water chemistry. According to the current delineation of the three GWBs, some processes are peculiar to one GWB, but others are in common between two or more GWBs.

Abstract

The abstract presents a 2D modelling approach alternative to a 3D variable saturated groundwater model of solute or heat transport at the regional scale. We use FEFLOW to represent processes in the saturated zone, coupled with various models describing the unsaturated zone. The choice of the latter depends on modelling needs, i.e. simulation of the movement of seepage water and nitrate fate with respect to crop rotation patterns and dynamic characteristics of heat gradients, respectively. The flexibility of coupling specialized models of different subsurface compartments provides the opportunity to investigate the effects of land use changes on groundwater characteristics, considering the relevant drivers in sufficient detail, which is important in regions with intensive anthropogenic activities. The coupling can be operated either with (direct coupling) or without (sequential coupling) including the feedback between the saturated and the unsaturated zones depending on the depth of the groundwater table below the surface. Thus, the approach allows for reasonable computational times. The Westliches Leibnitzer Feld aquifer in Austria (43 km²; Klammler et al., 2013; Rock and Kupfersberger, 2018) will be presented as an example highlighting the needed input data, the modelling workflow and the validation against measurements.

Abstract

Annually, UNICEF spends approximately US$1B in water, sanitation and hygiene programming (WASH), approximately half of which is spent in humanitarian contexts. In emergencies, UNICEF supports the delivery of water, sanitation and hygiene programming under very difficult programming contexts – interruptions to access, power supply and a lack of reliable data. Many of these humanitarian situations are in contexts where water scarcity is prevalent and where the demand and competition for water are increasing, contributing to tension between and within communities. While water scarcity is not new to many of these water-scarce areas, climate change is compounding the already grave challenges related to ensuring access to safe and sustainable water services, changing recharge patterns, destroying water systems and increasing water demand. Incorrectly designed and implemented water systems can contribute to conflict, tension, and migration. Ensuring a comprehensive approach to water security and resilient WASH services can reduce the potential for conflict and use water as a channel for peace and community resilience. This presents an enormous opportunity for both humanitarian and development stakeholders to design water service programmes to ensure community resilience through a four-part approach: 1. Groundwater resource assessments 2. Sustainable yield assessments (taking into consideration future conditions) 3. Climate risk assessments 4. Groundwater monitoring/early warning systems UNICEF promotes this approach across its WASH programming and the sector through technical briefs, support and capacity building.

Abstract

The Sandveld (Western Cape, South Africa) is a critical potato production area on the national production scale, especially for table potatoes. As the area is situated on the continent’s West Coast, it is a dry area of low rainfall (less than 300 mm /a). The bulk of the irrigation water for agriculture in the region is derived from groundwater. Approximately 60 Mm3 /a of groundwater is abstracted for irrigation of potatoes in the broader Sandveld, assuming a 4-year rotation cycle. The abstraction of groundwater is a sensitive issue in the Sandveld as groundwater also plays a critical role in supplying water to towns in the area, water for domestic use, and it also plays a critical role in sustaining sensitive ecosystems (such as the coastal lake Velorenvlei).

The groundwater resources have been monitored for nearly thirty years now. The results indicate areas where a slow but consistent decline in groundwater levels and groundwater quality is occurring. The trends can also predict when the aquifers will become depleted, and the groundwater will become too saline for use. This is critical information for management interventions to be implemented now to protect the area from irreversible damage.

Abstract

The Lower Berg River Aquifer System, situated in the Western Cape province of South Africa, is important to the towns that overlay it, as they rely on the aquifer for water supply, which supplements industrial development and residential growth. This aquifer system is important because surface water resources in the area are finite and fully allocated. Despite studies on the Lower Berg River Aquifer System since 1976, knowledge of the geological layers, recharge and discharge areas, and groundwater flow paths remain limited. This study aimed to provide greater insight and understanding of the aquifer to assist in better management. Investigations included a Time Domain Electromagnetic airborne geophysical survey, the assessment of groundwater levels, infiltration tests, hydrochemical analyses, and stable and radioactive isotope analyses. These methods allowed for the identification of the aquifer’s layers and extent, determination of water quality in different parts of the aquifer, delineation of flow paths through the saturated and unsaturated zones, identification of inter-aquifer flow, as well as different modes of recharge.

Abstract

Knowledge of the nature and extent of groundwater-dependent ecosystems (GDE) at an aquifer scale enables incorporating ecological water requirements in integrated groundwater resource management activities, including transboundary aquifer cases (TBA). This way, sustainable groundwater management and functional ecosystem services can be achieved. Therefore, understanding groundwater- ecosystems-surface water interactions is crucial for assessing resources’ resilience or susceptibility towards certain impacts. Unfortunately, this subject is widely under-researched with fragmented information, especially in southern Africa. This study was thus initiated to understand groundwater processes controlling the maintenance of Tuli-Karoo TBA (Botswana, South Africa, Zimbabwe) GDEs towards developing a model that can be utilised in impact assessments, especially in climate change. The employed approach included stable isotope analysis (mainly 2 H and 18O) for groundwater, streams, springs, rainwater, vegetation, and soil; spatial imagery and GIS classification (incl. NDVI, NDRE, NDWI); and plant moisture stress techniques. Identified GDEs in the study area (characterized by intergranular alluvium aquifer underlain by the Karoo sandstone of intergranular and fractured secondary aquifer type) are riparian vegetation, floodplain and depression wetlands, and springs. Precipitation recharged alluvium aquifer’s contribution to Limpopo River baseflow is negligible as the discharge is mainly through springs and evapotranspiration. Monitoring data scarcity and skewed availability among sharing countries hamper research and its output applicability to TBA’s entirety. Therefore, data generation, exchange, and joint databases development are crucial for sustainable comanagement of groundwater and supported ecosystems and science-based decision-making.

Abstract

Due to technical, social, and economic limitations, integrated groundwater management presents a significant challenge in developing countries. The significance of this issue becomes even more pronounced in groundwater management, as this resource is often overlooked and undervalued by decision-makers due to its status as a “hidden resource,” despite the fact that it provides multiple ecosystem services. This study aims to establish the technical hydrogeological foundation in rural basins of central Bolivia through alternative, simplified, and cost-effective methods and tools. The study includes applying geophysical techniques, such as Electrical Resistivity Tomography, to determine the conceptual hydrogeological model of a micro-basin. In addition, a soil water balance approach was applied, characterizing 24 biophysical variables to identify groundwater recharge zones, while global circulation models provided a substitute for unreliable meteorological data. Furthermore, a participatory model was developed to identify recharge areas in upper basin areas within the framework of developing a municipal policy for their protection. The participatory model included local knowledge in all stages of methodology development, considering the characteristics of the local plant communities and the spatial distribution of local rainfall. The research findings have already contributed to resolving socio-environmental conflicts in Bolivia and establishing a foundation for effective water governance by empowering local rural communities. This study has demonstrated the feasibility of using alternative, simplified, and low-cost methods and tools to establish the technical hydrogeological basis, which can inform public policies to promote sustainable groundwater management in developing countries.

Abstract

The work presented relates to the influence of regional scale dykes in groundwater flow in karst aquifers of northern Namibia’s Otavi Mountainland around the towns of Tsumeb, Otavi and Grootfontein. The aquifers are well studied and are an important water source locally and for populated central areas of the country during drought. The area has parallel, eastwest trending elongated valleys and ranges shaped by the underlying synclines and anticlines of folded carbonate units of the Damara Supergroup. The role of the regional scale dolerite dykes that cut across the dolomitic aquifers has not been fully appreciated till recently. Aeromagnetic data is effective in mapping the dykes in detail. The dykes trend in a north-easterly to northerly direction into the Otavi Platform carbonate rocks. The dykes are normally magnetised with the odd remanent dyke. They consist mainly of dolerite, although in some cases are described as tectonic with hydrothermal magnetite and no dolerite material. The dykes appear to focus southwest of the Otavi Mountainland near the Paresis Alkaline Intrusive (137Ma). Examination of existing hydrogeological data reveals different characteristics of the dykes that influence groundwater flow, forming: a) conduits that enhance flow along contact zones, b) barrier to flow with compartmentalization and c) partial barrier to flow. An advantage has been taken of the understanding gained to manage mines’ dewatering and pumped water management. Future water resources management and contaminant studies will need to recognise the compartmentalised nature of the aquifer

Abstract

Groundwater is a strategic long-term water resource used by an estimated 70% of the populations in sub-Saharan Africa for drinking, irrigation and a wide range of economic activities. Understanding groundwater recharge processes is key for effectively using and managing water resources. Very few studies have used direct groundwater observations to assess the impact of different farming systems on groundwater recharge processes. This study focused on assessing basement aquifer recharge in 4 instrumented catchments in Malawi (Chitedze), Zambia (Liempe and Kabeleka) and Zimbabwe (Domboshawa) within the SADC region between 2019-2022. Employing a range of methods, including direct field observations (groundwater hydrographs, precipitation data, stable isotopes, chloride mass balance and residence time tracer data), we quantify the amount of groundwater recharge as well as the timing and nature of recharge processes under both conservation and conventional tillage systems in these four study sites. Groundwater recharge was measured in most years across the study sites. The study reveals the strong climate controls on seasonal groundwater recharge volumes, the influence of low permeability layers in the unsaturated zone, and the likely magnitude of impact from different farming practices. Groundwater residence times are high (i.e. low fractions of modern recharge, interquartile range 1-5%, n=46), even in shallow piezometers, suggesting these unpumped systems may be highly stratified. The results provide an evidence-based suite of data that reveals much about key controls on groundwater recharge in basement aquifers in sub-humid drylands and will inform the development and management of such groundwater systems.

Abstract

Groundwater systems are complex and subject to climate change, abstraction, and land use stresses, making quantifying their impacts on aquifers difficult. Groundwater models aim to balance abstraction and aquifer sustainability by simulating the responses of an aquifer to hydrological stresses through groundwater levels. However, these models require extensive spatial data on geological and hydrological properties, which can be challenging to obtain. To address this issue, data-driven machine learning models are used to predict and optimize groundwater levels using available data. This paper argues that using machine learning to model groundwater level data improves predicting and optimizing groundwater levels for setting up a managed aquifer recharge scheme. The West Coast Aquifer System in South Africa was used as a case study. The neural network autoregression model was used for the analysis. Multiple variables such as rainfall, temperature, and groundwater usage were input parameters in the mode to facilitate predictions. Outputs from the model showed how machine learning models can enhance the interpretation of observed and modelled results on groundwater levels to support groundwater monitoring and utilization. In areas with high dependence on groundwater and where data on abstraction (use) and monitoring were scarce, results showed that feasible measures were available to improve groundwater security. Although the simulation results were inconclusive, the results provided insights into how the use of machine learning can provide information to inform setting up a managed aquifer recharge scheme.

Abstract

The Natural Background Level (NBL) of contaminants in groundwater is typically determined using regional-scale monitoring networks or site-specific studies. However, regional scale values are limited in their ability to capture natural heterogeneities that affect contaminant mobility at smaller scales, potentially leading to local over- or underestimation of the natural contaminant concentration. Conversely, site-specific studies can be expensive and time-consuming, with limited use outside the specified case study. To overcome this issue, a study was conducted in a 2600 km2 area, analyzing arsenic concentration values from monitoring networks of sites under remediation as an alternative source of information. The main drawbacks of the alternative dataset were the lack of information on monitoring procedures at the remediation sites or potential anthropogenic influences on the concentration data. However, these limitations were adequately managed with a thorough data pre-treatment procedure informed by a conceptual model of the study area. The NBLs estimated with the alternative dataset were more reliable than that from the regional monitoring network, which, in the worst case (i.e., in the area with the highest geological and geochemical heterogeneity), the NBL of one order of magnitude was underestimated. As a future step, the project seeks to incorporate geological and geochemical heterogeneities as secondary variables in a geostatistical analysis to produce a continuous distribution of arsenic concentrations at the mesoscale. This would provide a useful tool for managing contaminated sites and a reproducible protocol for NBL derivation in different areas, overcoming the scale issue.

Abstract

On the slopes of Mount Bromo, East Java (Indonesia), the land use of the Rejoso watershed is dominated by rice fields and sugarcane ( lowland area ), agroforestry (midstream) and horticulture and pine plantation in the upstream part. During the last three decades, some land changes driven by socio-economic development, with conversion of agroforests to rice fields, tree monoculture and horticulture, and the development of urban areas nearby, increased pressure on the watershed. Intensive irrigated rice cultivation is using groundwater from free-flowing artesian wells. Due to a lack of management, the hydraulic head and discharge of the major spring are decreasing. Rejoso watershed, like others in urban and rural areas in Indonesia, is facing challenges to guarantee sustainable integrated water resources management. Collective solutions have been implemented between 2016 and 2022 within this watershed. In the downstream, sustainable paddy cultivation and wells management with local stakeholders, aiming at improving water efficiency, have been piloted on 65 ha with 184 farmers. Water governance at the district level was re-activated and strengthened thanks to the project. Various capacity-building tools were used via radio talk shows and workshops. Members of the watershed forum of Pasuruan took some actions to reshape the structure and set up a roadmap. The implementation of collective solutions in the field was a real catalyst and serves all levels of water governance, as it is replicable. This example will be explained and illustrated after the presentation of the socio-hydrogeological context.

Abstract

Northern India and Pakistan face some of the world’s most challenging surface water and groundwater management issues over the coming decades. High groundwater abstraction, widespread canal irrigation, increases in glacier melt and changes to rainfall impact the dynamics of surface water/groundwater interactions in the Indus Basin and Upper Ganges. Studies using newly available data from long-term hydrographs, high-frequency stable isotope sampling and campaign sampling for groundwater residence time indicators are shedding light on the complex interactions between groundwater, surface water and rainfall. Interactions vary spatially: (1) with distance down the catchment, related to the prevailing rainfall gradient, and (2) with position in the canal command, both distance from barrage and distance from feeder canals. Interactions are also observed to vary with time due to (1) the historical evolution of the canal network, (2) patterns in precipitation over the past 120 years, (3) changes in river flow due to glacial melting, and (4) increased pumping, which has also led to increased capture of surface water. Only by understanding and quantifying the different processes affecting groundwater/surface water coupling in the Indus and Upper Ganges is it possible to forecast future groundwater storage changes.

Abstract

Transboundary aquifers in Europe are managed according to the Water Framework Directive (WFD) through international river basin districts (IRBD) management plans. Paragraph 11 in the WFD states that each Member State shall ensure the establishment of a programme of measures, PoM, for each river basin district, RBD, or part of an IRBD within its territory. Easy access to harmonized data from neighbouring countries part of the aquifer is essential to analyse the groundwater status and make proper PoMs. The datasets must be available in machine-readable format via an Application Programming Interface (API) and, where relevant, as a bulk download. The metadata describing the data shall be within the scope of the Infrastructure for Spatial Information in the European Community (INSPIRE) data themes set. The datasets must also be described in a complete and publicly available online documentation describing the data structure. Using a questionnaire survey of nine European countries, groundwater sampling and analysis routines are compared to evaluate if data are comparable and accessible across borders.

Abstract

Having knowledge of spatiotemporal groundwater recharge is crucial for optimizing regional water management practices. However, the lack of consistent ground hydrometeorological data at regional and global scales has led to the use of alternative proxies and indicators to estimate impacts on groundwater recharge, enabling effective management of future water resources. This study explores the impact of land use changes and wildfires on groundwater recharge at a regional scale in Bolivia, using an alternative indicator to estimate variations in groundwater recharge rates. Based on a study by de Freitas L. in 2021, the methodology developed the annual groundwater recharge reduction rate (RAPReHS) utilizing remotely sensed data from the FLDAS and TERRACLIMATE datasets. The RAPReHS employs a simplified version of the water balance equation, estimating direct vertical groundwater recharge by considering the difference between precipitation, evapotranspiration, and runoff. The methodology was upscaled to improve data processing and analysis efficiency using an open-source cloud-computing platform (Google Earth Engine) over a 20-year period. The first results reveal a strong correlation between decreasing groundwater recharge rates and natural vegetation in the eastern region. By utilizing the RAPReHS index, forest preservation strategies can be prioritized. This study is in the framework of SDG 13 (Climate Action), which aims to mitigate the impacts of climate change on the environment and society. By exploring the impact of land use changes and wildfires on groundwater recharge at a regional scale in Bolivia, this research contributes to the inclusion of groundwater in policy guidelines for sustainable water management

Abstract

Groundwater quality and groundwater sample representativeness depend on the integrity of the water supply and monitoring wells. Well-integrity issues can occur by improper placement of grout seals behind the protective casing and/or by improper backfilling processes between ports. Multi-level monitoring systems are becoming common in the industry, providing depth-discrete groundwater samples and hydraulic head data from a single borehole. However, isolation between the monitoring intervals can be challenging when backfilled methods are used. No independent verification method exists to confirm seal placement for isolating monitoring intervals in such multi-level wells. A new approach using a hybrid fibre optic cable for adding heat, referred to as Active Distributed Temperature Sensing (A-DTS), is deployed in the annular space of a backfilled multi-level well. This new method is used to quantify the position of bentonite used as seals and sand packs that define the monitoring interval lengths and to identify issues associated with backfilling. A-DTS data from three boreholes with back-filled multilevel systems to 85 mbgs in a dolostone aquifer in Guelph, Ontario, Canada, demonstrates clear boundaries between backfill materials. In one interval, a deviation in the thermal data suggests a bridge in the bentonite seal, and this interval coincides with challenges in the backfilling from the field notes. The proposed method verifies well completion details, is repeatable and provides an efficient and effective way to assess well integrity impacting measurement uncertainty in a range of well types.

Abstract

Globally, losses of excess nitrogen (N) from agriculture are affecting our air and water quality. This is a well-known environmental threat and is caused by food production for an ever-growing population. Since the 1980s, many European countries, such as Denmark, have successfully combatted N pollution in the aquatic environment by regulating and introducing national agricultural one-size-fits-all mitigation measures. However, further reduction of the N load is still required to meet the demands of, e.g., the EU water directives. Scientifically and politically, implementing additional targeted N regulation of agriculture is a way forward. A comprehensive Danish groundwater and modelling concept has been developed to produce high-resolution groundwater N retention maps showing the potential for natural denitrification in the subsurface. The concept’s implementation aims to make future targeted N regulation successful environmentally and economically. Quaternary deposits, formed by a wide range of glacial processes and abundant in many parts of the world, often have a very complex geological and geochemical architecture. The results show that the subsurface complexity of these geological settings in selected Danish catchments results in large local differences in groundwater N retention. This indicates a high potential for targeted N regulation at the field scale. A prioritization tool is presented that has been developed for cost-efficient implementation at a national level to select promising areas for targeted N regulation.

Abstract

Machine learning techniques are gaining recognition as tools to underpin water resources management. Applications range widely, from groundwater potential mapping to the calibration of groundwater models. This research applies machine learning techniques to map and predict nitrate contamination across a large multilayer aquifer in central Spain. The overall intent is to use the results to improve the groundwater monitoring network. Twenty supervised classifiers of different families were trained and tested on a dataset of fifteen explanatory variables and approximately two thousand points. Tree-based classifiers, such as random forests, with predictive values above 0.9, rendered the best results. The most important explanatory variables were slope, the unsaturated zone’s estimated thickness, and lithology. The outcomes lead to three major conclusions: (a) the method is accurate enough at the regional scale and is versatile enough to export to other settings; (b) local-scale information is lost in the absence of detailed knowledge of certain variables, such as recharge; (c) incorporating the time scale to the spatial scale remains a challenge for the future.

Abstract

This study aims to investigate the groundwater circulation and hydrogeochemical evolution in the coastal zone of Xiamen, southeast China, which can provide a reference for the development of water resources and the protection of soil and water environment in the coastal areas. A close connection between mountains and the sea characterizes the southeast coast of China. Although rainfall is abundant, the topography limits it, and water resources quickly run into the sea. Coupled with a concentrated population, water is scarce. In addition, this area’s water and sediment environment are influenced by human activities and geological conditions. Its changing trend also needs further study. Therefore, using hydrochemical analysis, isotope technology, numerical simulation and other techniques, this study took Xiamen City on the southeast coast as an example to study the groundwater circulation and the environmental evolution of water and sediment. The results show that although the aquifer is thinner, there is still deep groundwater circulation, and the seawater intrusion range of deep aquifer is much further than that of shallow aquifer. In addition to geological causes, human activities have become the main factors affecting groundwater quality, especially nitrate and lead. The nitrate content even exceeds the content of the major ionic components. Introducing land-based pollutants has also contributed to declining seawater and sediment quality in the Bay area. In general, the main pollutants in coastal areas include nutrients, heavy metals and new pollutants.

Abstract

Groundwater represents a crucial source of drinking water in the Lille metropolitan area. Despite its importance, the resource is vulnerable to the potential evolution of land use: recharge, runoff and evapotranspiration processes in a soil-sealing context and changes in cultural practices. As a result, stakeholders emphasized the importance of exploring the influence of land use on groundwater to ensure sustainable resource management and enhance territorial planning. The 3D hydrodynamic model helped manage groundwater resources, but the (MARTHE code) has a significant limitation in that it does not consider the impact of land use evolution. We propose to investigate the contribution of a hydrological distributed numerical approach incorporating land cover data in groundwater modelling compared to a global approach at the scale of a peri-urban territory. To do so, we use the HELP code by considering the temporal and spatial evolution of land use and their associated characteristics, such as vegetation and soil properties, to detail recharge and runoff over more than 20 years that we incorporate into the initial groundwater model.

The two approaches yielded comparable global water balance results. However, at the local scale, the model accounting for land use showed significantly different hydric components. Choosing the appropriate model depends on the specific research question and spatial scale, and considering land use evolution is crucial for accurate urban planning impact assessments, especially at the district level.

Abstract

In response to the Western Cape’s worst drought experienced during 2015-2018, the City of Cape Town implemented various projects to augment its water supply, including desalination, re-use and groundwater. The Cape Flats Aquifer Management Scheme (CFAMS) forms one of the groundwater projects that includes groundwater abstraction and managed aquifer recharge (MAR). The Cape Flats Aquifer (CFA) is a coastal, unconfined, primary aquifer within an urban and peri-urban environment. As such, it is well situated to take advantage of enhanced recharge using high-quality advanced treated effluent but also has challenges related to seawater intrusion (SWI) and risk of contamination. MAR is currently being tested and implemented with a three-fold purpose: (1) to create hydraulic barriers against seawater intrusion and other contamination sources, (2) to protect groundwater-dependent ecosystems harbouring biodiversity, and (3) to increase storage and improve water quality to enhance resilience to effects of drought. As no legislation for MAR exists in South Africa, international guidelines are used to determine water quality requirements related to clogging environmental and health concerns. Further consideration includes aquifer-scale design, the interaction of multiple abstraction and injection wellfields within an area, and the design of individual boreholes to enhance yield and limit clogging. We aim to present progress made to date that includes exploration, wellfield development, monitoring, numerical modelling, aquifer protection, and the lessons learnt.

Abstract

Rising shallow groundwater temperatures are observed in many cities worldwide and are expected to increase further over the next century due to anthropogenic activities and climate change. The impact of groundwater temperature increase on groundwater quality is poorly understood. This study conducted two high-spatial-resolution campaigns in Vienna (Austria, autumn 2021/ spring 2022). At 150 wells, a comprehensive parameter set (e.g. major ions, nutrients, and water stable isotopes) was analyzed in groundwater collected, and at 812 wells, the water temperature was measured. Results are compared to available long-term data on groundwater chemistry (1991-2020). In theory, temperature triggers a cascade of effects, where, finally, the depletion of dissolved oxygen (DO) causes a switch to anaerobic microbial processes and a deterioration of water quality. No direct relation between DO and water temperature was observed between 10 and 20 °C. However, many wells delivered anoxic groundwater, including the one with the highest measured temperature (27 °C). The highest temperatures were consistently observed near potential heat sources (local scale), with a rapid decrease in temperature with increasing distance from these sources. Long-term data from particular high-temperature wells revealed decreased dissolved oxygen after sudden temperature changes of > 5 K. On a regional scale, it is observed that groundwater-surface water interactions and aquifer properties play a pivotal role in oxygen availability and redox conditions. In conclusion, high-spatial-resolution sampling combined with long-term data analysis is needed to determine the impact of temperature on water quality.

Abstract

Prevention of threats to the quality and quantity of groundwater supply is critical to ensure its sustainability. Several African studies have shown that contamination of aquifers is primarily caused by improper placement of land-based human activities. Therefore, adequate preventative measures are required to safeguard the water quality of African aquifers to avoid long-term deterioration. Spatially explicit, 3D numerical groundwater modelling is a common methodology to assess contaminant transport. However, model development is time-consuming and complex. Contrastingly, DRASTIC-L is a 2D, GIS-based aquifer vulnerability mapping technique. The method is simple to apply, but analyses are qualitative and subjective. The study aims to compare both methods and to combine their strengths using GIS overlay. Overall, aquifer vulnerability was determined using the DRASTIC-L method, while wellhead protection areas were delineated using steady-state numerical modelling. This study focuses on the Cape Flats area due to its rapid development and growing municipal water supply supplementation needs. DRASTIC-L mapping revealed that aquifers in the Cape Flats are highly vulnerable to contamination due to the region’s unconfined hydrogeological properties, shallow water table and high-risk land use types. Moreover, groundwater vulnerability mapping combined with the delineation of wellhead protection areas allows for reduced uncertainty in the contamination potential of delineated groundwater protection zones. As a result, this study highlights the need for overall resource protection of the Cape Flats aquifers and provides insights into mapping out potential source protection areas of existing water supply wells.

Abstract

Emerging contaminants (e.g. pharmaceuticals or pesticides) are increasingly detected in aquatic environments. The most apparent contamination source of river water pollution by pharmaceuticals is sewage treatment plant stations that discharge treated sewage effluent to the rivers. The river bank filtration systems (RBF) can effectively remove these contaminants. The two RBF sites were examined for pharmaceuticals: Śrem and Gorzów waterworks. The water samples for pharmaceuticals investigation were taken from the river and four continuously pumped wells at each site. Two wells near the river were chosen at each site (40-50 m) and two at a greater distance from the river (70 m in Śrem and 110 m in Gorzów). A visible increase in pharmaceutical concentrations was observed along the river. The sum of pharmaceuticals concentration is 8151 ng/l in Śrem (upstream), while in Gorzów (downstream) concentration is 9142 ng/l. A very big differentiation in pharmaceutical occurrence was observed. In Śrem, the sum of pharmaceuticals concentration is between 657 and 3290 ng/l, while in Gorzów, despite the higher concentrations of pharmaceuticals in the river, these substances were detected only in one well located at a close distance from the river (two substances at a concentration of 92 ng/l).

The research proves a very big differentiation of pharmaceutical concentration even on sites located at similar hydrogeological conditions and demonstrates the necessity of its monitoring, especially in groundwater strongly influenced by river water contamination (like at RBF sites). This work has received funding from the National Science Centre Poland (grant no. 2021/41/B/ST10/00094).

Abstract

The Geneva aquifer is internationally recognized for its transboundary resource management agreement between Switzerland and France, described as the first groundwater management agreement in the world. Signed in 1978 and renewed in 2008, this agreement on managing a shared underground resource has long been an example for establishing other agreements worldwide, particularly by UNESCO and its hydrological program via the TBA commission of the IAH. Like many countries worldwide, Switzerland and France experienced a critical summer of 2022 concerning the use of water resources, both surface and underground. The system applied in the cross-border agreement for using the aquifer involves French participation in the costs of managing aquifer recharge (MAR), depending on the total pumping. It shows that the French part, having consumed more water to compensate for the extreme drought of 2022, has seen its bills increase considerably. Development plans show that the population of Greater Geneva will increase considerably by 2030-2040, requiring significant medium-term water availability (30% additional water). Therefore, the French institutions’ political leaders have formally asked the authorities of the canton of Geneva to review the conditions linked to the quotas and calculation methods included in the 2008 agreement. A new agreement could be a real example of positive cross-border coordination for decision-makers finding themselves in a blocked or even conflicting situation due to differences in managing a shared resource revived by the effects of climate change.

Abstract

Drywells are extremely useful for coping with excess surface water in areas where drainage and diversion of storm flows are limited, facilitating stormwater infiltration and groundwater recharge. Drywells have been used for stormwater management in locations that receive high precipitation volumes, naturally or due to climate change; however, to date, they have not been developed in urban areas overlying karst landscapes. To test the performance of karst drywells, we constructed a pilot system for collecting, filtering, and recharging urban stormwater through drywells in karst rock. The study site is in the Judaean Mountains, an urban residential area in Jerusalem, Israel. The infiltration capacity of the drywells was evaluated using continuous and graduated water injection tests, and its effective hydraulic conductivity (K) was estimated. Drywells’ infiltration capacity was up to 22 m3 /hour (the maximum discharge delivered by a nearby fire hydrant), while monitored water levels in the drywells were relatively stable. Calculated hydraulic conductivities were in the range of K=0.1-100 m/ day, and generally, K was inversely proportional to the rock quality designation (RQD) index (obtained from rock cores during the drilling of the drywells). The pilot system performance was tested in the recent winter: during 9 days with a total rainfall of 295 mm, a cumulative volume of 45 m3 was recharged through the drywell, with a maximum discharge of 13 m3 / hour. High-conductivity karst drywells and adequate pre-treatment filtration can be valuable techniques for urban flood mitigation and stormwater recharge.

Abstract

A conceptual water budget model is required to “make groundwater visible” in the shared transboundary area of Estonia and Latvia, which doesn’t face any significant water management issues. Despite having a water management agreement since 2003, it wasn’t until 2018 that cooperation on groundwater began. In the EU-WATERRES project, the water balance modelling of the ~9,500 km2 transboundary (TB) area with MODFLOW 6 was performed. Based on budget calculations, the area’s average precipitation is 203 m3 /s, with ~50% (102 m3 /s) of it discharging to the sea as surface water. The infiltration share (7%, 14.4 m3/s) is a small fraction of overall precipitation, but as an average, it forms ~14% of surface water flow, with 98% of infiltrated groundwater forming the baseflow. Modelling produced two main conclusions: surface water and groundwater form a joint system in the upper ~150 m cross-section depth, and there is no preferred regional TB flow direction due to flat topography. This makes cross-border flow highly dependent on pumping close to the border area. The results of recent studies provide valuable information on groundwater’s importance in EE-LV TB areas and a basis for simple conceptual models to make groundwater visible to the general audience and decision-makers. These findings are critical for specialists in managing water resources in the region and will inform decisions related to the use and protection of groundwater in transboundary areas.

Abstract

The Transboundary Groundwater Resilience (TGR) Network-of-Networks project brings together researchers from multiple countries to address the challenges of groundwater scarcity and continuing depletion. Improving groundwater resilience through international research collaborations and engaging professionals from hydrology, social science, data science, and related fields is a crucial strategy enabling better decision-making at the transboundary level. As a component of the underlying data infrastructure, the TGR project applies visual analytics and graph-theoretical approaches to explore the international academic network of transboundary groundwater research. This enables the identification of research clusters around specific topic areas within transboundary groundwater research, understanding how the network evolved over the years, and finding partners with matching or complementary research interests. Novel online software for analysing co-authorship networks, built on the online SuAVE (Survey Analysis via Visual Exploration, suave.sdsc.edu) visual analytics platform, will be demonstrated. The application uses OpenAlex, a new open-access bibliographic data source, to extract publications that mention transboundary aquifers or transboundary groundwater and automatically tag them with groundwater-specific keywords and names of studied aquifers. The analytics platform includes a series of data views and maps to help the user view the entire academic landscape of transboundary groundwater research, compute network fragmentation characteristics, focus on individual clusters or authors, view individual researchers’ profiles and publications, and determine their centrality and network role using betweenness, eigenvector centrality, key player fragmentation, and other network measures. This information helps guide the project’s data-driven international networking, making it more comprehensive and efficient.

Abstract

Mt. Fuji is the iconic centrepiece of a large, tectonically active volcanic watershed (100 km2 ), which plays a vital role in supplying safe drinking water to millions of people through groundwater and numerous freshwater springs. Situated at the top of the sole known continental triple-trench junction, the Fuji watershed experiences significant tectonic instability and pictures complex geology. Recently, the conventional understanding of Mt. Fuji catchment being conceptually simple, laminar groundwater flow system with three isolated aquifers was challenged: the combined use of noble gases, vanadium, and microbial eDNA as measured in different waters around Fuji revealed the presence of substantial deep groundwater water upwelling along Japan’s tectonically most active fault system, the Fujikawa Kako Fault Zone [1]. These findings call for even deeper investigations of the hydrogeology and the mixing dynamics within large-scale volcanic watersheds, typically characterized by complex geologies and extensive networks of fractures and faults. In our current study, we approach these questions by integrating existing and emerging methodologies, such as continuous, high-resolution monitoring of dissolved gases (GE-MIMS [2]) and microbes [3], eDNA, trace elements, and integrated 3-D hydrogeological modelling [4]. The collected tracer time series and hydraulic and seismic observations are used to develop an integrated SW-GW flow model of the Mt. Fuji watershed. Climate change projections will further inform predictive modelling and facilitate the design of resilient and sustainable water resource management strategies in tectonically active volcanic regions