Conference Abstracts

All Abstracts were presented at the Groundwater Conferences

Displaying 501 - 550 of 795 results
Title Sort descending Presenter Name Presenter Surname Area Conference year Keywords

Abstract

A review from international literature discredits the capability of MODFLOW to simulate mine water rebound, due to the nonstandard hydrogeology of underground mine systems. The conceptual understanding is that, after cessation of dewatering, mine water inflow rates and hydraulic heads are related to the void-volume, the differences in head between the water in the mine void and head dependent source, plus natural recharge to the mine voids. The flooded mine voids in the study area are partially underlain by a dolomitic aquifer. The other head dependent source of inflow into the mine voids are the surrounding and overlying Karoo aquifers. Head independent inflow rates into the mine voids, using the long term decant rates, was estimated to be 0.2% of rainfall. During mining, dewatering occurred at approximately 3 to 6 Ml/d. The objective of the model was therefore to simulate the changes head-dependent inflow rates during the rebound period. Analysis of the water level recovery data depicted that once the mine filled up with water, the hydraulic head of the mine rose with the elastic storage coefficient value of the mine void and not the specific retention as conditions changed from unconfined to confined. A three layer model was setup, to represent the two seams mined, separated by a deep Karoo aquifer. The presence of the dolomite on the mine floor was incorporated using the general head boundary package. Head dependent influx from overlying shallow and intermediate Karoo aquifers were simulated using the river package. All model layers were simulated as confined, initially to avoid model convergence issues. The confined setup proved to be the core in simulating mine water rebound with MODFLOW. The modelling exercise showed that storage during rebound is a boundary condition. This simply means that the complexity of mine water rebound can only be achieved in MODFLOW by proper time stepping and dividing the model into different stress periods to represent the changes in storage. Rebound in the study area, modelled with 21 stress periods produced a perfect water level recovery data for the different mine compartments. This was achieved by applying storage capacities of between 0.3 to 0.006 to simulate rebound during unconfined conditions, and values of between 10-4 and 10-5 when the mine void is flooded. The results showed that the inflow from the dolomitic aquifer steadily decreased from 4121 m3/d to 0 m3/d as the mine hydraulic head increased and rose over the head in the dolomitic aquifer. During the same period, inflow from the surrounding Karoo aquifers decreased from 2422 m3/d to less than 10 m3/d. The results of the model were very important in determining the volumes of water to be abstracted from the mine voids for ash-backfilling. {List only- not presented}

Abstract

Many of South Africa’s coal fields are characterised by a complex lateral and vertical pattern of mine voids, targeting different lease areas and coal seams, and applying different mining methods such as open cast (strip) and underground (board and pillar) mining. Many are at different stages in their life of mine from exploration to closure stage.

Despite the general recognition that the water management or absence thereof at neighbouring mines influences each other (evident for example in the recognition of inter-mine flow in the overall water balance for a site), and the requirement of cumulative impact assessments, very few studies actually attempt to tackle and quantify cumulative impacts of numerous mines on the ambient groundwater environment. While the parameterisation and calibration of a groundwater model for a single mine is often hampered by environmental data scarcity, the absence of cumulative impact assessments is mostly related to the unwillingness of neighbouring and competing mines to share these data. Soft- and hardware as well as budget limitations pose additional challenges for the development of regional groundwater models taking cognisance of complex mining environments.

This paper describes a regional groundwater flow model that takes into account five surface and underground mining areas. The different start and closure dates for the opencast and underground mining areas result in a complex mining schedule, with groundwater abstractions and inflows for the different areas potentially influencing each other during life of mine and post-closure and requiring therefore a simultaneous simulation thereof.

A further complication in the model development was the explicit consideration of cut-and-fill operations, necessitating alterations of the model topography to reflect annual cuts as free seepage boundaries, and to reflect rehabilitated backfilled areas with topography different from the pre-mining environment. The case study has led to numerical model software developments to enable transient changes in layer elevations over a simulation period.

While the model attempted to simulate the cumulative impact of the mines, it was also used to predict the impact of a new mining development on the life of mine and post-closure water balances for the remainder of the neighbouring mines. The model outcomes could therefore theoretically inform apportionment of post-closure liabilities.

Abstract

POSTER Hydraulic fracturing, also known as hydrofracking or fracking, is being engaged in the Karoo region of South Africa in order to enhance energy supplies and improve the economic sector. It will also lead to independence in terms of reduced amount of imports for fuel due to an estimated 13.7 trillion cubic metres of technically recoverable shale-gas reserves in South Africa. 

Fracking is an extraction technique used with the purpose of having access to alternative natural methane gas, which is interbedded in shale deposits deep under the surface of the earth. In this process boreholes are drilled horizontally into shale formations to cover a larger area in the shale and  subsequently  attain  more  natural  gas.  After  these  horizontal  boreholes  are  drilled,  large volumes of water, mixed with chemicals and sand, are pumped into these boreholes under a very high pressure, forcing the natural gas out. This water mixture is referred to as the fracking fluid. Water is the main component in the fracking fluid and the water used for the fluid reaches volumes up to 30 million litres per borehole.

The aim of this study is to present a baseline study of the area and its water resources to ultimately facilitate in resolving the actual impact hydraulic fracturing will have in the area, using a simulation model which will predict the migration of the fracking fluid in the subsurface. In this model, the chemistry of  the fracking fluid  will  be  included  to determine  the impact  it might  have  on the groundwater quality in the area

Abstract

 Seyler, H; Vahrmeijer, JT; Wiegmans FE

The Steenkoppies dolomite aquifer/compartment is situated 15 km north-west of Krugersdorp and has received great attention in March 2007 when the naturally discharging spring (known as “Maloney’s Eye”) reached the lowest flow on record, which was an incident that has drawn much attention. This incident caused major concern to the downstream users as the spring forms part of the Magalies River’s flow. At the time of this incident the flow measured at a record low of 1.58 Mm3 /a compared to an average flow rate since 1908 of 13.8 Mm3 /a. Coincidently in March 2016 exactly nine years after this time the record low flow of 1.58 Mm3 /a was again measured at the Eye. Continued drought conditions in 2016 resulted in the lowest flow recorded for five consecutive months. The flow rate of less than 2.2 Mm3 /a is a mere 38 % of the average flows of (5.7 Mm3 /a) recorded for the last 10 years. While the interest in exploiting groundwater from the Steenkoppies compartment dates back to the late 1890s it is only since the 1980s to 1990s when abstraction for irrigation became substantial. The volume of groundwater abstracted for irrigation increased more than 7.5 times since 1980. The crop area increased 2.6 fold since 1997, while the volume of water abstracted increased 1.6 fold.

Unfortunately, despite numerous conceptual reports, scientific papers, lawful water use verification studies and crop water use investigations, the Steenkoppies water users are still without a managing body and groundwater management/use plan. The lack of (adaptive) management has led to uncontrolled abstraction and issuing of new Water Use Licenses without the proper knowledge of the impact of additional water use on the system. The failed establishment of a water user association according to the National Water Act in 2013 dampened the hopes for any collaborated groundwater abstraction, -monitoring and -management plan.

The groundwater model developed for the Steenkoppies compartment should be seen as a prospective evaluation tool to determine the potential behaviour of the system with time, given a set of changing parameters. Numerical groundwater models are considered the best tools available to quantify/estimate groundwater, and the results can be used in management decisions.

Estimated groundwater abstraction per annum from the Steenkoppies compartment amount to between 25 Mm3 and 30 Mm3 , with a likely current rate of 28.5 Mm3 /a. Based on the modelled fluxes with average groundwater recharge (rainfall) conditions and induced recharge from irrigation return flows, it appears that 25 Mm3 is an optimal abstraction rate while maintaining a flow of around 5 Mm3 from the Maloney’s Eye. However, the Maloney’s Eye is sensitive to below average rainfall events leading to below average recharge conditions and resulting in lower volumes available for abstraction. Neglecting this fact for the past 30 years has resulted in the ‘unsustainable’ use of groundwater in the compartment

Abstract

The costs of acid mine drainage (AMD) monitoring result in the quest for alternative non-invasive method that can provide qualitative data on the progression of the pollution plume and ground geophysics was the ideal solution. However, the monitoring of AMD plume progression by ground geophysics (time-lapse electrical resistance) proves to be non-invasive but also time consuming. This gave way to a study that focuses on the modeling of different scenarios of the karstic aquifer. The models use the field parameters such as the electrical resistivity of the host rock and the target rock, depth to the target, noise level and electrode configuration in order to ensure that the model outcomes represent the field data as much as possible. This geoelectric modeling process uses Complex Resistivity Model (CRMod) and Complex Resistivity Tomography (CRTomo) to generate geoelectric subsurface images. Different resistivity values are applied to targets in order to assess the difference against the baseline model for each target scenario. The model resistivity difference is reduced to the smallest difference possible between the reference and new models in order to gauge the lowest percentage change in the model at which the background noises start to have impact on the results. The study shows that the behavior of targets (aquifer) could be clearly detected through resistivity difference tomography rather than inversion tomography. The electrode array plays a significant part in the detection of target areas and their differences in resistance because of its sensitivity. This therefore indicates that the electrode array should be chosen according to study requirements. Furthermore, the model geometry also plays a role and this can be seen with the modelling of different target sizes, alignments and shapes. Future studies that can provide a correlation between the field quantitative data from sampling and the model outcomes have the ability to add to the knowledge field of geophysical modelling therefore reducing costs associated with field based plume AMD monitoring300-500 words without references; reach your conclusions rather than only delivering promises.

Abstract

At a regional scale, groundwater recharge is often calculated using surface water models. Precipitation and surface water runoff are easier to measure than groundwater recharge, and evapotranspiration can be estimated with relative accuracy using indirect methods. In modelling, surface water measurements can be used for calibration, and groundwater is the residual term in the water balance of the catchment. This can give a good indication of regional trends, but provides limited scope for the accommodation of groundwater system characteristics and recharge processes. Recently, much research has been focused on the interaction of surface and groundwater models. The coupling of physically based surface and ground water models allows for calibration of the model using both surface and groundwater data while providing scope for improved insight into the processes which define the interaction of groundwater with the rest of the water cycle. For example: stream discharge, interflow, preferential flow through the unsaturated zone and interaction with surface water retained in dams and wetlands. One such model is GSflow (United States Geological Survey), which we are applying to the Upper Vaal Catchment. This model integrates the surface water model PRMS (Precipitation-Runoff Modelling System) with MODFLOW (Modular Groundwater Flow model). The model is initially being calibrated at quaternary catchment scale, starting with the surface water components and later adding the groundwater system. The quaternary catchment is subdivided into smaller, topologically defined hydrological response units. This scaling allows for a better understanding of how well the characteristics of the units are represented in the physical processes incorporated into the model, so that ultimately the sensitivity analysis can incorporate these processes. The results will be compared to current work on recharge being carried out using GRACE data and previous work done in the same area. Once the entire model has been calibrated, there will be scope to calculate future scenarios, allowing for climate and land-use changes. A brief overview of existing work as well as methods and initial results and sensitivity analysis will be presented.

Abstract

Lake Sibayi (a topographically closed fresh water lake) and coastal aquifers around the lake are important water resources, which the ecology and local community depend on. Both the lake and groundwater support an important and ecologically sensitive wetland system in the area.
Surface and subsurface geological information, groundwater head, hydrochemical and environmental isotope data were analysed to develop a conceptual model of aquifer-lake interaction which would later be integrated into the three dimensional numerical model for the area. Local geologic, groundwater head distribution, lake level, hydrochemistry and environmental isotope data confirm a direct hydraulic link between groundwater and the lake. In the western section of the catchment, groundwater feeds the lake as the groundwater head is above lake stage, whereas along the eastern section, the presence of mixing between lake and groundwater isotopic compositions indicates that the lake recharges the aquifer. Stable isotope signals further revealed the movement of lake water through and below the coastal dune cordon before discharging into the Indian Ocean. Quantification of the 9 year monthly water balance for the lake shows strong season variations of the water balance components. Based on lake volume and flow through rate, it was further noted that the average residence time for water in the lake was about 6 years.
A recent increase in the rate of water abstraction from the lake combined with decreasing rainfall and rapidly increasing plantations in the catchment may result in a decrease in lake levels. This would have dramatic negative effects on the neighbouring ecosystem and allow for potential seawater invasion of the coastal aquifer.

Abstract

The provision, usage and discharge of water resources are major concerns for coal mines, both underground and opencast. Water resources in a coal mining environment will often account for a significant portion of the daily operational cost. In order to cut costs, the mine will often collect as much runoff as possible to recycle for future use. This on-going recycling of site water and management of the resource demands a complete site water balance model in order to understand the dynamics of the resource within the boundaries of the mine. To improve the understanding of the dynamics of the resource on a much larger scale, and the effect it will have on recharge in an open cast coal mine environment, one must consider alternative modelling approaches which can compensate for such conditions. This amounts to describing recharge as a modelling component in a physically based distributed model. The main goal of this project is to calculate recharge into the main pit at this specific colliery by applying parameters on a quaternary catchment scale. The colliery is located just west of the town of Ogies, Mpumalanga on the peripheral region of the quaternary catchment B20G. The physiography of the quaternary catchment B20F is described as a central Highveld region gently sloping to the north. The geohydrological modeling application MIKE SHE (developed by DHI) was used to develop a fully integrated catchment model. The model was created mainly to simulate the impact of human activities on the hydrological cycle and hence on water resource development and management. Different modules of MIKE SHE that was used during the modelling stage include saturated- and unsaturated flow and a small degree of overland flow.

Key words: Mpumalanga, MIKE SHE, recharge

Abstract

Urban karst terrains can experience geotechnical issues such as subsidence or collapse induced/accelerated by groundwater withdrawal and civil works. Sete Lagoas, Brazil, is notable for overexploiting a karst aquifer, resulting in drying lakes and geotechnical issues. This study aims to evaluate the progression of geotechnical risk areas from 1940 to 2020 and to simulate future scenarios until 2100. Historical hydraulic head data from the 1940s (when the first pumping well was installed) to the 2000s, a 3D geological model, and a karst-geotechnical risk matrix for defining risk levels were employed to develop a calibrated Feflow numerical model. The results indicate that, before the first well in 1942, the groundwater flow direction was primarily towards the northeast. In the 1980s, due to the concentration of pumping wells in the central area, a cone of depression emerged, causing the flow directions to converge towards the centre of the cone, forming a zone of influence (ZOI) of approximately 30 km². All 20 geotechnical events recorded between 1940 and 2020 have occurred in high or considerable-risk zones where limestone outcrops or is mantled in association with the ZOI. For future scenarios, if the current global well pumping rate (Q = 144,675 m³/d) from 2020 remains constant until 2100, the high and considerable geotechnical risk zones will continue to expand. A 40% decrease in the global rate (Q = 85,200 m³/d) is necessary to achieve a sustainable state, defined by reduced and stabilized risk zones.

Abstract

The Kalahari iron manganese field (KIMF) in the Northern Cape, South Africa, was historically exploited by only three mines, with Hotazel the only town and the rest of the area being largely rural, with agricultural stock/ game farming the major activity. Since 2010, mining activities have increased to more than 10 operational mines with increased water demand and environmental impacts on groundwater. The area is within catchments of the Matlhwaring, Moshaweng, Kuruman and Gamogara rivers that drain to the Molopo River in the Northern Cape. All the rivers are non-perennial, with annual flow occurrence in the upstream areas that reach this downstream area once every 10 years. The area is semi-arid, with annual evaporation nearly five times the annual precipitation. The precipitation is less than 300mm, with summer precipitation in the form of thunderstorms. Vegetation is sparse, consisting mainly of grasslands, shrubs and some thorn trees, notably the majestic camel thorns. The Vaal Gamagara Government Water Supply Scheme imports 11 Ml/d or 4Mm3 /a water for mining and domestic purposes in the KIMF section. The area is covered with Kalahari Group formation of 30 to 150 m thick with primary aquifers developed in the basal Wessels gravels and Eden sandstones for local use. The middle Boudin clay forms an aquitard that isolates and reduces recharge. Water levels range from 25 to 70m, and monitoring indicates local dewatering sinks and pollution. This study will report on the water uses, monitoring and observed groundwater impacts within the current climatic conditions.

Abstract

Natural attenuation describes a set of natural processes which decrease the concentrations and/or mobility of contaminants without human intervention. In order to evaluate and demonstrate the effectiveness of natural attenuation, regular long term monitoring must be implemented. This entire process is called Monitored natural attenuation (MNA). The focus of MNA is generally placed on hydrocarbons and chlorinated solvents but according to the United States Environmental Protection Agency (USEPA) MNA can be used for various metals, radio nuclides and other inorganic contaminants. MNA was deemed the best method to reduce the concentration and mobility of contaminants impacting the groundwater environment, at a fertiliser plant in the Free State. A number of improvements in infrastructure were made in 2013which were assumed to have prevented further release of contaminants into the groundwater system, from the source areas on site. MNA was also considered to be the most effective affordable solution for the site as groundwater in the vicinity is not used for domestic purposes (low risk). Cl, NO3 and NH4 were used to monitor the movement of the contamination off site and the effectiveness of MNA. With regards to the inorganic contaminants emanating from the site, sorption, dispersion, dilution, and volatilization are the main attenuation mechanisms. These mechanisms are considered to be non-destructive attenuation mechanisms. Denitrification, nitrate reduction through microbial processes, may also facilitate in the attenuation of the in organic constituent nitrate. Denitrification is considered a destructive mechanism. Classed posts and temporal graphs of the Cl, NO3 and NH4 concentrations between 2008 and 2014 were utilised to show the movement and change in size and shape of the contamination plumes and subsequently, monitor MNA. The data indicates that the NO3, Cl and NH4 contamination plumes from the various source areas on the site have detached from the site and are currently moving down gradient along the natural drainage. Contaminant concentrations at the site have generally decreased in recent monitoring events while concentrations downstream of the site have remained stable. This indicates that MNA is currently an effective method of remediation for the site and monitoring should be continued to ensure that it remains effective.

Abstract

When considering how to reduce contamination of petroleum hydrocarbons in shallow aquifers, it is important to recognize the considerable capacity of natural processes continuously at work within the secondary sources of contamination. This natural processes are technically referred to as Monitored Natural Attenuation (MNA), a process whereby petroleum hydrocarbons are deteriorated naturally by microbes. This approach of petroleum hydrocarbon degradation relies on microbes which utilise oxygen under aerobic processes and progressively utilises other constituents (sulphates, nitrates, iron and manganese) under anaerobic processes. MNA process is mostly evident when light non-aqueous phase liquids (LNAPLs) has been removed while the dissolved phase hydrocarbon compounds are prominent in the saturated zone. The case studies aim at determining feasibility and sustainability of Monitored Natural Attenuation process at different sites with varying geological setting.

Abstract

The mountain catchments of the Western Cape winter rainfall area were identified as areas needing more study in the early 1960s and so the Mountain Catchment studies were born. A number of study areas were suggested for these studies, but it was finally narrowed down to three sites. The studies in Jonkershoek had already started in 1935, with Zachariashoek and Jakkalsrivier added on in the 1960s. The Zachariashoek site was the only one that included groundwater as part of the experimental setup. A number of publications had been written about the work done in Zachariashoek. Most of the publications focused on changes in runoff after deforestation and fires, as well as the recovery patterns of the vegetation. The studies in Zachariashoek were done from 1964 till its termination in 1991 because of a lack of funding. The groundwater component consisted of 14 boreholes, with recorders on the five boreholes near the five weirs. The Zachariashoek area is made up of three catchments, Zachariashoek, Bakkerskloof and Kasteelkloof. It is adjacent to the Wemmershoek catchment. Bakkerskloof was the control catchment, while different burn cycles were part of the experimental setup of the two other catchments. The vegetation of Kasteelkloof was burned every 6 years with a 12 year cycle for Zachariashoek. Monitoring of the 5 weirs, 14 boreholes and the 9 rain gauges was done every week, with recorders on all five weirs, five of the 14 boreholes and at least 4 of the rain gauges. This data was entered into the data bases of the Department of Water and Sanitation, stretching from 1964 to 1986, with a complete record contained in 10 small field books. In this publication, we will look at the experiments done in Zachariashoek to see how this long term monitoring data can assist in managing the water resources within a catchment, taking into account the effects of deforestation and fires on surface water, groundwater and recharge to groundwater, the interaction between groundwater and surface water, as well as climate change.

Abstract

A multi-data integration approach was used to assess groundwater potential in the Naledi Local Municipality located in the North West Province of South Africa. The geology comprised Archaean crystalline basement, carbonate rocks (dolomite and limestone) and windblown sand deposits of the Kalahari Group. The main objective of the study is to evaluate the groundwater resource potential using multi-data integration and environmental isotope approaches. Prior to data integration, weighting coefficients were computed using principal component analysis.

The results of integration of six layers revealed a number of groundwater potential zones. The most significant zone covers ~14% of the study area and is located within carbonate rocks in the southern part of the study area. The localisation of high groundwater potential within carbonate rocks is consistent with the results of principal component analysis that suggests that lithology significantly contributed to the total data variance corresponding to principal component 1. In other words, carbonate rocks consisting of dolomite and limestone largely account for groundwater occurrence in the southern part of the area. In addition, the relatively elevated isotopic signature of tritium (≥1.0 TU)  in  groundwater  samples  located  in  the  southern  part  of  the  area  suggests  a  groundwater recharge   zone.   Furthermore,   moderate-to-good   groundwater   potential   zones   within   the Ventersdorp lava coincide with maximum concentration of fractures, which is consistent with the results of statistical correlation between borehole yield and lineament density. The multi-data integration approach and statistical correlation used in the context of evaluating groundwater resource potential of the area provided a conceptual understanding of hydrogeological parameters that control the development of groundwater in crystalline and carbonate rocks. Such approach is crucial in light of the increasing demand for groundwater arising from municipal water supply and agricultural use. The two approaches are very effective and can be used as a sound scientific basis for understanding groundwater occurrence elsewhere in similar hydrogeological environments.

Abstract

Multi-data integration approach was used to assess groundwater potential in an area consisting crystalline basement and carbonate rocks that are located in the North West Province of South Africa. The main objective of the study is to evaluate the groundwater resource potential of the region based on a thorough analysis of existing data combined with field observation. Integration of six thematic layers was supplemented by a statistical analysis of the relationship between lineaments density and borehole yield. Prior to data integration, weighting coefficients were computed using principal component analysis.
The resulting thematic layer derived from integration of the six layers revealed a number of groundwater potential zones. The most probable groundwater potential zones cover ~14% of the entire study area and located within carbonate rocks consisting limestone and dolomite. The presence of pre-existing structures together with younger and coarse sedimentary rocks deposited atop the carbonate rocks played a significant role in the development of high well fields in the southern part of the area. Moderate-to-high groundwater potential zones within Ventersdorp lava coincide with maximum concentrations of fractures. The results of statistical correlation suggest that 62% of high borehole yield within the Ventersdorp lave can be attributed to fracture density. In general, the present approach is very effective in delineating potential targets and can be used as a sound scientific basis for further detailed groundwater investigation.
KEY WORDS:- Multi-data, thematic layers, groundwater, carbonate rocks, structures

Abstract

Diverse tools exist to study the transfer of contamination from its source to groundwater and related springs. A backward approach, i.e. sampling spring water to determine the origin of contamination, is more complex and requires multiple information. Microbial source tracking (MST) using host-specific markers is one of the tools, which, however, has shown to be insufficient as a stand-alone method, particularly in karst groundwater catchments. A karst spring in the Swiss Jura Mountains was studied concerning the occurrence and correlation of a set of faecal indicators, including classical parameters and bacteroidal markers. Sporadic monitoring proved the impact on spring water quality, mainly during high water stages. Additional event-focused sampling evidenced a more detailed and divergent pattern of individual indicators. A multiple-tool approach, complementing faecal indicator monitoring with artificial tracer experiments and measuring natural tracers, could specify the origin of ruminant and human faecal contaminations. Natural tracers allowed for distinguishing between water components from the saturated zone, the soil/epikarst storage, or freshly infiltrated rainwater. Additionally, the breakthrough of injected dye tracers and their remobilization during subsequent recharge events were correlated with the occurrence of faecal markers. The findings hypothesize that human faecal contamination is related to septic tanks overflowing at moderate rainfall intensities. Linkage with vulnerability assessment and land-use information can finally better locate the potential point sources. Such a toolbox provides useful basics for groundwater protection and catchment management and insight into general processes governing the fate and transport of faecal contaminants in karst environments.

Abstract

An integrated approach involving multivariate statistical analysis combined with graphical methods (Piper trilinear diagram and δ18O-δ 2H plots), and environmental isotope analyses were successfully applied to characterise the spatial distribution of hydrogeochemical parameters and their controlling factors within the Lake Sibayi catchment located in north-eastern South Africa. Bivariate and Multivariate statistical analyses (Factor and Hierarchical Cluster Analyses) were performed on 12 physiochemical parameters (variables) including pH, EC, TDS and major ions of 46 samples collected from various water sources (streams, Lake, shallow and deep boreholes). Bivariate Pearson’s correlation matrix of the measured variables revealed a strong positive correlation between EC and several major elements, which included Na+ , K+ , Mg2+, Ca2+ , Cland HCO3 - indicating their contribution to the salinity. These major ions were also found to be strongly correlated to one another with all correlations found to be significant. Factor analyses in the form of Principal components analyses were performed with the main aim of identifying the underlying factors or processes responsible for the observed hydrochemistry in the study area. The results revealed three principle factors explained about 95% of the hydrochemical variation in the study area. Most of the variance is contained within Factor-1 (69.5%), which has a high positive loading factor associated with EC, TDS, Na+ , Mg+ and Clconcentrations, interpreted in terms of the contribution of these major ions to the salinity of the water (EC and TDS). Factor-2 represents 17.7% of the total variation in the hydrochemistry and has high positive loadings for pH, HCO3 - , K+ , Ca+ and Fe concentrations. The HCO3 - , K+ and Ca+ could be the result of weathering and dissolution of carbonate minerals in calciferous Uloa and Umkwelane Formations and redox processes. The Fe concentrations could be related to leaching of ferricrete layers known to exist in the area and a result of anoxic condition within the aquifer. The variables NO3 - and SO4 - contribute most strongly to Factor-3, which explains 8.01% of the total variance. The loading for NO3 - was positive and could result from anthropogenic pollution of the shallow aquifer and streams, while that of SO4 - being negative and could result from historical marine influences. Hierarchical cluster analysis of hydrochemical data performed using the Ward method with squared Euclidean distance, grouped the water samples into two clusters, representing unique hydrochemical systems, i.e. surface water and groundwater. Each of these two clusters was in turn divided into two sub-clusters, representing stream and lake samples, and shallow and deep aquifers, respectively. These groupings were further supported by characteristic water types; namely, a Na-Cl-HCO3 facies for the river, lake and surrounding boreholes; a Na-Cl hydrochemical facies for shallow boreholes, while deep borehole samples were Na-Ca-Cl to Na-Cl-HCO3 in composition. These clustering were supported by isotopic signals that show a clear distinction between groundwater and lake water samples.

Abstract

When the South African Government in 1998 re-demarcated its 283 municipalities in such a manner that they now completely cover the country in a “wall-to-wall” manner (Section 21), their main focus was on facilitation of effective and sustainable developmental municipal management; in other words, the improvement of basic municipal services such as formalised municipal basic services (for example, safe potable water, effective refuse removal and environmental health) to all the residents of the new geographical areas consisting of millions of citizens who previously might have been neglected. Unfortunately, it seems like topographical, physical and environmental characteristics of all the resulting municipal areas have been negated in this important demarcation process. Fuggle and Rabie (2005:315) are of the opinion that this can lead to ineffective, inefficient and non- economical municipal management of basic services.

By means of a literature review as well as the use and study of geographical tools such as maps, ortho-photos and information data bases, and field visits, the bare essential geographical and geo- hydrological aspects of importance for the municipal service providers and managers in the Lindley area have been identified. From this research and various other obvious reasons (for example, deteriorating physical environment due to pollution, sub-standard storm water and sewage management, and migration [informal settlements] and increasing sophisticated needs of municipal residents), the presenters of this paper want to state  that the quest for improved cooperative governance in the developing South Africa, and especially in the case of the Lindley town’s geographical area of responsibility, must be facilitated according to the DWA identified surface water catchment regions.

In conclusion, the presenters will recommend adherence to the following requirements as essential:

  •  An  environmental,  holistical  and  integrated  management  (IWRM)  approach  by  all  the involved and committed role-players, researchers and stakeholders must be adopted in the whole Vals River catchment.
  • Effective co-operative governance must be facilitated and maintained.
  • Basic hydrological, geo-hydrological and engineering geology knowledge and skills must be identified,  obtained,  modified  into  layman  language  and  incorporated  in  the  afore- mentioned approaches.

Abstract

The  possible  future  exploitation  of  methane  in  the  Karoo  has  stimulated  work  from  various disciplines to examine its occurrence, exploitability and exploitation risks. Groundwater issues are vital in this context because of its possible use during exploration and exploitation, and more important, to understand the risks of its pollution during and after all these activities. This paper presents the experiences of the authors to document the presence of methane in the Karoo based on data from boreholes, springs, tunneling and deep drilling. There have been frequent anecdotal reports of explosive gas in boreholes, both dry and wet, in the Karoo. In some cases the gas is identified as methane. Thermal spring waters in the Karoo invariably contain some amounts of methane. Methane pockets have been found in the Karoo during tunneling projects and in some deep Soekor boreholes. A groundwater study in the vicinity of the Gariep Dam indicated substantial quantities of methane in warm groundwater and an association with helium. The isotope concentrations of carbon and hydrogen in methane characterise the methane-forming processes. Such analyses in samples from the central Karoo basin are consistent with that of thermogenic gas found  elsewhere  in  the  world.  Towards  the  edges  of  the  basin,  lower  13C-values  indicate  that methane  there  is  produced  by  microbial  processes  at  shallower  depths.  The  presence  of thermogenic methane together with helium on the surface is likely to give clues to pathways from depth.

Abstract

The Netherlands produces about 2/3 of drinking water from groundwater. Although there is seemingly abundant groundwater, the resource needs to be carefully managed and used wisely to safeguard the resource for future generations and in case of disasters whilst also preventing negative impacts from groundwater extraction on other sectors such as nature. Provincial governments are responsible for the protection of existing groundwater abstractions for water supply against pollution. To secure groundwater resources for the future, two additional policy levels have been introduced: Provincial governments have been made responsible for mapping and protecting Additional Strategic Reserves. These allow for additional groundwater abstractions to meet growing demands in coming decades (horizon 2040/2050). The National Government is responsible for mapping and protecting the National Groundwater Reserves (NGRs) as a third level of resource protection. NGRs serve multiple goals: to protect natural groundwater capital for future generations, to provide reserves for large-scale disasters affecting water supply and to provide reserves for possible use as structural water supply in the far future (horizon 2100 and beyond). NGRs are being delineated in 3D using detailed existing geological models and the Netherlands’ national (fresh-saline) hydrological model. The dynamics of the groundwater system are analysed through scenario analyses. Reserves for potential structural use are selected such that negative impacts on nature are prevented if future abstractions are to be realised. The policies being developed must balance interests of water supply against other sectoral interests such as the green-energy transition with increased use of geothermal energy and aquifer-thermal-energy-storage.

Abstract

The study focuses on the overlapping effects of low-enthalpy geothermal plants in urbanized areas, showing the importance of quantifying thermal groundwater exploitation to manage the resource adequately. Geothermal energy connects groundwater use to one of the ever-growing needs nowadays: energy. For low-temperature geothermal, the form of energy we can harness is thermal energy for building heating or cooling, one of the most polluting sectors, representing 34% of CO2 emissions in Europe. As in the main European cities, geothermal energy use is constantly growing, and understanding the status of groundwater exploitation for geothermal purposes is essential for proper resource management. To this end, the study’s first phase focused on quantifying geothermal use in the study area selected in Milan city-Italy.

Knowing the characteristics of geothermal plants in the area allows us to understand the extent of the resource exploitation and the consequences of its mismanagement at a large scale. In fact, the plant designers often focus on the local scale, not considering the presence of neighbouring plants, which risks decreasing the plant’s efficiency or amplifying its subsurface thermal effect. To minimize the thermal effects/interferences of geothermal plants in the subsoil, the study of the application of D-ATES systems (Dynamic Aquifer Thermal Energy Storage) with significant groundwater flow is promising. A numerical model of the study area is then implemented with MODFLOW-USG for thermal transport in porous media to evaluate the advantages of installing D-ATES systems instead of typical open-loop systems.

Abstract

In the Federal Capital Territory of Abuja (Abuja FCT, Nigeria), a population growth of about 400% between 2000 and 2020 has been reported. This trend, coupled with the persisting urban sprawling, is likely to result in severe groundwater quality depletion and contamination, thus undermining one of the area’s main freshwater supplies for drinking purposes. In fact, groundwater in Nigeria and Abuja FCT provides over 70% of the drinking purposes. Results of a groundwater vulnerability assessment that compared land use data from 2000 and 2020 showed that the region had been affected by a dramatic change with an increase in urbanized (+5%) and agricultural (+27%) areas that caused nitrate concentrations to exceed the statutory limit for drinking purposes in more than 30% of the monitored wells in 2021 and 40% in 2022. Although fertilizers are generally considered the main source of nitrate contamination, results suggest a possible mixed (urban and agricultural) pollution origin and a legacy of previous nitrogen pollution sources. The comparison between the DRASTIC-LU map and nitrate concentrations shows that the highest values are found in urban/peri-urban areas, in both shallow and deep wells. This investigation is the first step of a comprehensive nitrate pollution assessment in the region, which will provide decision-makers with adequate information for urban planning given the expected population growth in the area

Abstract

The assessment and prediction of mine water rebound has become increasingly important for the gold mining industry in the Witwatersrand basin, South Africa. The cessation of dewatering lead to large volumes of contaminated surface discharges in the western parts of the basin. Towards the eastern extremity of the Witwatersrand basin the detached Evander Goldfield basin has been mined since the early 1950s at depths between 400 and 2 000 m below ground, while overlain by shallower coal mining operations. The hydrogeology of the Evander basin can be categorised by a shallow weathered-fractured rock aquifer comprising of the glacial and deltaic sediments of the Karoo Supergroup, while the deeper historically confined fractured bedrock aquifer consist predominantly of quartzite with subordinate lava, shale and conglomerate of the Witwatersrand Supergroup. The deep Witwatersrand aquifer has been actively dewatered for the last 60 years, with a peak rate o60 Ml per day in the mid late 1960s. Modelling the impacts of mine dewatering and flooding on a regional scale as for the Evander basin, entails challenges like the appropriate discretisation of mine voids  and  the  accurate  modelling  of  layered  aquifer  systems  with  different  free  groundwater surfaces on a regional scale. To predict the environmental impacts of both the historic and future deep mining operations at Shaft 6, the detailed conceptual model of the aquifer systems and three- dimensional model of the mine voids were incorporated into a numerical groundwater model to simulate the dewatering and post-closure rebound of the water tables for the basin. The presented model could serve as an example for the successful modelling of mine dewatering and flooding scenarios for other parts of the Witwatersrand basin.

Abstract

A coal mine in South Africa had reached decant levels after mine flooding, where suspected mine water was discharging on the ground surface. Initial investigations had indicted a low-risk of decant, but when ash-backfilling was performed in the defunct underground mine, decant occurred. Ash-backfilling was immediately suspended as it was thought to have over-pressurised the system and caused decant. Contrariwise, a number of years later decant was still occurring even though ash-backfilling had been terminated. An investigation was launched to determine whether it was the ash-backfilling which had solely caused decant, or if additional contributing factors existed. Understanding the mine water decant is further complicated by the presence of underlying dolomites which when intersected during mining produced significant inflows into the underground mine workings. Furthermore, substantial subsidence has taken place over the underground mine area. These factors combined with the inherent difficulty of understanding unseen groundwater, produced a proverbial 1000-piece puzzle. Numerical groundwater modelling was a natural choice for evaluating the complex system of inter-related processes. A pre-mining model simulated the water table at the ground surface near the currently decanting area, suggesting this area was naturally susceptible for seepage conditions. The formation of a pathway from the mine to the ground surface combined with the natural susceptibility of the system may have resulted in the mine water decant. This hypothesis advocates that mine water was going to decant in this area, regardless of ash backfilling. The numerical groundwater flow model builds a case for this hypothesis from 1) the simulated upward flow in the pre-mining model and 2) the groundwater level is simulated above the surface near the currently decanting area. A mining model was then utilised to run four scenarios, investigating the flux from the dolomites, subsidence, ash-backfilling and a fault within the opencast mine. The ash-backfilling scenario model results led to the formation of the hypothesis that completing the ash-backfilling could potentially reduce the current decant volumes, which is seemingly counterintuitive. The numerical model suggested that the current ash-backfill areas reduce the groundwater velocity and could potentially reduce the decant volumes; in spite of its initial contribution to the mine water decant which is attributed to incorrect water abstraction methods. In conclusion, the application of numerical models to improve the understanding of complex systems is essential, because the result of interactions within a complex system are not intuitive and in many cases require mathematical simulation to be fully understood.

Abstract

The management of groundwater inflows into an opencast colliery in Mpumalanga is normally fairly easily achievable due to low inflow volumes and high evaporation rates. But, when flooded underground mine workings are encountered, groundwater inflow complexity increases dramatically. Understanding, predicting and managing groundwater inflow under these conditions can be challenging and highly complex. While normal opencast inflows are easily modelled these connected mines are pushing numerical models to their limits. This case study aims to illustrate an approach based on a finite difference model that has been used successfully in a South African coal mine. Based on a study at a colliery near Ermelo, Mpumalanga, the understanding and conceptualisation of the aquifer geometry, geological structures, hydrogeology, defunct underground mine geometry and interconnection between opencasts and the underground, proved to be vital, not only in calibration of the model, but also in the construction of the various layers and calculation of flow volumes between the various sources and sinks. This also aided greatly in constant source contaminant transport modelling to trace which mining areas may have a contamination effect on each other or the surrounding aquifer. In constructing the numerical flow model, the underground mine geometry was found to intersect various layers in the MODFLOW based model and pinching out in some areas. Due to the requirement of MODFLOW that layers should be continuous with no pinchouts to the model boundaries, this presented a notable challenge in the model construction. Therefore, mine geometry was divided into various slices, fitting within the hydrogeological layers, but still retaining the original geometry. The layers were then further divided laterally using different materials to represent the mine hydraulic properties and aquifer properties respectively, ensuring that the lateral distribution of materials also represents the underground mine geometry accurately. Using this model construction, the calculated mean residual head for the simulation of the current situation was found to be less than 3m while the simulation of the current mining situation with no underground mine present, yielded a mean residual head of approximately 10m. Additionally, inflows measured in the opencast penetrating the underground were measured at approximately 1000m3/d while the calibrated model calculated inflows of 1160m3/d, while simulating the current mining situation including the defunct underground. The current decant from the defunct underground, to the southeast of the site, was calculated as 1.9 L/s by the model while the measured rate was just over 1 L/s. Also, as expected, the dewatering of the opencast penetrating the flooded, defunct underground mine, was calculated to predominantly impact an underground mine compartment, isolated by underground seals, as opposed to the aquifer, which has a much lower hydraulic conductivity. {List only- not presented}

Abstract

The Palla Road well-field is located in the Central District of Botswana approximately 160 km from Gaborone and 50 km from Mahalapye. The aim of this project was to review and update the existing groundwater model developed in the late 1990s of the Palla Road well-field in order to assess the viability of long-term groundwater abstraction due to the increasing water demands in the region. The  main  hydrogeological  units  recognised  in  the  project  area  comprise  of  aquifer  systems developed in the Ntane Sandstone Formation and formations of the Middle Ecca Group with minor aquifers developed in Mosolotsane Formation and the Stormberg Basalt. The finite-difference model boundary covers an area of 3 702 km2  and was set-up as a three-dimensional semi-uniform grid comprising of four layers. Eight recharge and 14 hydraulic conductivity zones in accordance with the geological  model  were  distinguished.  Steady  state calibration  was  accomplished  by  varying the hydraulic conductivity values, while keeping the recharge rates constant in order to achieve a unique solution. Transient calibration of the model covered three larger stress periods namely: (1) initial condition (pre-1988), (2) abstraction period (1988 to 2012) and  (3) predicted model simulations (2013 to 2036).

The calibrated groundwater flow model was used to assess the impacts associated with  the  proposed  abstraction  scenarios  for  the  Palla  Road  and  Chepete  well-fields  with consideration  of  potential  cumulative  impacts  due  to  the  Kudumatse  well-field.  Three  basic scenarios comprising certain sub-scenarios based on the future water demand for the Palla Road and Kudumatse region were considered. The model simulations show that the abstraction scenario 2a, namely simultaneous abstractions from the Chepete/Palla Road and Kudumatse well-fields, poses a risk to the sustainability of downstream water resources. The maximum simulated drawdown in the central and  southern parts of the Palla Road well-field  reach 14 m after six years of  pumping. Although outflow diminishes after a six-year period, it is restored to approximately 80-90% after the simulated recovery period. The presented 3-D multi-layer model can be used as a tool to determine the optimal abstraction rates while giving cognisance to the sustainability of the resource.

Abstract

The City of Windhoek in Namibia has developed wellfields and a managed aquifer recharge scheme within the fractured Windhoek Aquifer to ensure a sustainable potable water supply to the city during drought. A three-dimensional numerical groundwater model of the aquifer was developed using the finite-difference code MODFLOW to determine the potential impacts of varying pump inlet depth elevations and varying production borehole abstraction rates for optimal wellfield and aquifer management. The initial steady-state numerical model was calibrated to September 2011 groundwater levels, representing the best approximation of “aquifer full” conditions (following a good rainfall period and best available data). The subsequent transient numerical model was calibrated against groundwater level fluctuations from September 2011 to August 2019, the period after steady-state calibration for which data was available (and during which monitored groundwater abstraction occurred). The calibrated transient model was used to run various predictive scenarios related to increased emergency groundwater abstraction and estimate potential impacts on the Windhoek Aquifer. These predictive scenarios assessed groundwater level drawdown and recovery, aquifer storage potential, and potential abstraction rates under different pump elevations. Model results indicated a sharp initial groundwater level drop followed by a gradual decrease as groundwater levels approached the 100 m saturated depth mark. Pumping elevations were subsequently updated with recommended abstraction rates and volumes for the entire Windhoek Aquifer. The numerical groundwater model, in association with extensive groundwater monitoring, will be used to assess/manage the long-term sustainable and optimal utilisation of the Windhoek Aquifer.

Abstract

The proposed underground copper mine is one of the first Greenfield developments in the Kalahari Copper Belt. Groundwater resources in the region are scare and saline mainly due to minimal recharge. Management and simulations of groundwater inflows formed an integral part of the new mine design to reduce production losses caused by the inflows and to ensure a safe mining environment. The mine is located is a complex hydrogeological setting characterised by folding and deep water levels. Multiple fractured aquifers are associated with the mining area. Groundwater numerical modelling was performed in Groundwater Modelling System (GMS) using MODFLOW-NWT. Results of the scenarios were used as a management tool to aid in the potential inflow predictive simulations and dewatering management. The numerical model was calibrated by using field measured aquifer parameters and piezometric heads. Numerical simulations assisted in estimating average groundwater inflows at certain stages of the proposed mine development. The simulated mine groundwater inflow volumes were used as input into the design of the dewatering measures to ensure a safe mining environment.

Abstract

In order to meet the increasing national and international demand for coal, substantial expansion plans for existing as well as new coal mines were put forward in recent years. The mine developments are often proposed in environmentally sensitive areas and require an appropriate assessment of potential environmental impacts, including impacts on groundwater dependent ecosystems. This paper describes the development of a conceptual and numerical groundwater model as part of a wetland reserve determination in the Witbank coalfields. The model was used to assess potential mining related impacts on the shallow groundwater flow, including surface seepages and spring discharges feeding hill slope and valley bottom wetlands as well as pans. A number of shallow monitoring boreholes were sited, drilled and tested in the focus area around a pan to characterise the shallow perched and weathered aquifers. While these aquifers were generally found to be very low to low yielding, higher yields were encountered in a coarser grit layer intersected by two of the eight boreholes. The grit layer represents a potential preferential groundwater flow path towards the pan and was subsequently further delineated based on the exploration drilling logs from the mine. The different aquifers, the target coal seam, and over 60 mapped hill slope and valley bottom wetlands as well as pans, were incorporated into a numerical groundwater flow model. A free seepage boundary was assigned to the entire surface area to evaluate if the model is able to represent the observed seepages and spring discharges. The simulation of unsaturated flow processes (Richard's equation) was found to be crucial for the representation of discharges from perched aquifers. Following a satisfactory calibration of the model, different open cast mine layouts were then incorporated into the model to assess their impacts on the groundwater contribution to wetlands. The presented quantitative simulation of groundwater contributions towards wetlands and pans based on site specific groundwater investigations and data is considered a best practice example in assessing the groundwater component for a wetland reserve determination.

Abstract

The assessment and prediction of mine water rebound has become increasingly important for the gold mining industry in the Witwatersrand basin, South Africa. The cessation of dewatering lead to large volumes of contaminated surface discharges in the western parts of the basin. Towards the eastern extremity of the Witwatersrand basin the detached Evander Goldfield basin has been mined since the early 1950s at depths between 400 and 2000 metres below ground, while overlain by shallower coal mining operations. The hydrogeology of the Evander basin can be categorised by a shallow weathered-fractured rock aquifer comprising of the glacial and deltaic sediments of the Karoo Supergroup, while the deeper historically confined fractured bedrock aquifer consist predominantly of quartzite with subordinate lava, shale and conglomerate of the Witwatersrand Supergroup. The deep Witwatersrand aquifer has been actively been dewatered for the last 60 years with a peak rate of 60 Ml per day in the mid late 1960s. Modelling the impacts of mine dewatering and flooding on a regional scale as for the Evander basin entails challenges like the appropriate discretisation of mine voids and the accurate modelling of layered aquifer systems with different free groundwater surfaces on a regional scale. To predict the environmental impacts of both the historic and future deep mining operations, the detailed conceptual model of the aquifers systems and a 3-dimensional model of the mine voids were incorporated into a numerical groundwater model to simulate the dewatering and post-closure rebound of the water tables for the basin. The presented model could serve as an example for the successful modelling of mine dewatering and flooding scenarios for other parts of the Witwatersrand basin.

Abstract

The Western Cape of South Africa is rich in small stream sized rivers forming part of its water resources. The Lourens river and Eerste river, both situated in this region are the base for this study. Rivers are affected by their surrounding environments and the continuous development around these rivers could affect their health adversely. Diverse land-use patterns contribute to a wide range of pollutants with different characteristics. Indeed, some of the pollution levels in the Eerste and Lourens rivers were linked directly to specific land-use practices surrounding the rivers. However, the large change in weather during a seasonal cycle causes a significant difference in pollution levels too, because the transport of pollutants from the source to the rivers is primarily based on surface run-off, which in turn is predominantly dependent on the precipitation of the region.

A six months long monitoring in 2016 showed that processes like surface run- off, together with first flush events and dilution control the pollution concentrations in the Lourens river and Eerste river. Physicochemical parameters, major agricultural nutrients and industrially produced heavy metals all reacted differently to these processes, thus, providing an insight into the effects continuous development and climate change have on surface water as a national resource. Interestingly, both rivers included sections with substantial retention and/or reduction of pollutants. The natural riparian vegetation, hyporheic zone and microbial community present in these rivers are proposed to be the main drivers behind both rivers’ ability to reduce or retain pollutants. These drivers are sensitive to their environment and react differently depending on the weather, available nutrients, and physicochemical environment. With the effects of climate change becoming more apparent, it is important to study the impact of warmer temperatures, longer droughts, and heavier rain events, for instance, on the pollutant retaining capabilities of these streams.

Abstract

One-third of the world faces water insecurity, and freshwater resources in coastal regions are under enormous stress due to population growth, pollution, climate change and political conflicts. Meanwhile, several aquifers in coastal regions extending offshore remain unexplored. Interdisciplinary researchers from 33 countries joined their effort to understand better if and how offshore freshened groundwater (OFG) can be used as a source of potable water. This scientific network intends to 1) estimate where OFG is present and in which volumes, 2) delineate the most appropriate approaches to characterise it, and 3) investigate the legal implications of sustainable exploitation of the offshore extension of transboundary aquifers. Besides identifying the environmental impact of OFG pumping, the network will review existing policies for onshore aquifers to outline recommendations for policies, action plans, protocols and legislation for OFG exploitation at the local to international levels. Experienced and early-career scientists and stakeholders from diverse disciplines carry out these activities. The Action leads activities to foster cross-disciplinary and intersectoral collaboration and provides high-quality training and funded scientific exchange missions to develop a pool of experts to address future scientific, societal, and legal challenges related to OFG. This interaction will foster new ideas and concepts that will lead to OFG characterisation and utilisation breakthroughs, translate into future market applications, and deliver recommendations to support effective water resource management. The first exchange mission explored the Gela platform carbonate reservoir (Sicily), built a preliminary 3D geometrical model, and identified the location of freshened groundwater

Abstract

The study area is located in a Swiss alpine valley at the border between Switzerland and France and is situated in Valais. It is delimited by the hydrologic catchment of the river “La Vièze de Morgins”. The catchment area is situated in the Municipality of Troistorrents and of Monthey. Its population is approximately 4500 inhabitants. From the geological point of view, the valley “Val de Morgins” is mostly comprised of sedimentary rocks, amongst others breccia, schist, flysch, limestone, and quaternary sediments. The valley is affected by several natural hazards, such as landslides, rockfalls, and avalanches. Hydrogeologically, the valley contains few main springs that are outlets of porous and fissured aquifers. For this study, an inventory and monitoring of springs and rivers has been carried out since 2018 until April 2021. Particularly, more than 110 springs and rivers have been registered and observed during this time. The data includes GPS coordinates, photos, measurements of physical-chemical parameters and flowrates. Complementary to measurements, specific geological and topographical maps, and site information have been gathered. The analysis and interpretation of this huge set of hydrogeological data will be concluded with a new and innovative approach using different data science libraries that are implemented for the Python programming language. In this case study, groundwater sampling training is used to increase the understanding of the water quality. Four years of field measurements enable a better understanding of the parameter variability in relation to seasonality. Furthermore, new data analysis can aid the integrated resource management for the municipal water supply. The sampling and monitoring are key aspects to ensure water security, in terms of quality and volume. Additionally, it can also unlock prospective groundwater resources for municipal water supply. Case study data will also be compared with South African and other Swiss dataset of similar aquifer type.

Abstract

Tailings storage facilities are significant contributors of dissolved solids to underlying aquifers and adjacent watercourses. Salt balances indicate estimated seepage loads of the order of 1 500 tonnes of chloride per year. Actual seepage loads will be determined by the hydraulic conductivity of the tailings and mechanisms of flow within the tailings. Field observations and sample analytical results from several platinum tailings facilities are presented. These indicate the development of lenses of clay sized material within coarser silty material and suggest a tortuous seepage flow path, perhaps characterised by zones of preferential flow. The implications of seepage modelling and geochemical data on the salt loads mobilised from tailings are discussed. Results suggest that tailings facilities are effective at retaining salts and that release of accumulated salts after closure may take place at long time scales. {List only- not presented}

Abstract

There are various software packages used by hydrogeologists for a variety of purposes ranging from project management, database management, data interpretation, conceptual and numerical modelling and decision making. Software is either commercial (produced for sale) or open source (freely available to anyone and for any purpose).

The objective of this paper is to promote open source software that can be used by the hydrogeological community to reduce expenses, enhance productivity and maximise efficiency.

Free software was previously associated as being inferior in quality in the corporate world. Companies often use commercial software at a hefty price, but little do they know that open source is often equal to, or superior to their commercial counterparts. The source code of open source software can freely be modified and enhanced by anybody. Open source software is a prominent example of open collaboration as it is developed by users for the user community. Companies using open source software do not need to worry about licensing and do not require anti-piracy measures such as product activation or a serial number.

However, the decision of adopting open source software should not just be taken just on the basis of the low-cost involved. It should entail a detailed analysis and understanding of the requirements at stake, before switching to open source to achieve the full benefits it offers and to understand what the down side is. There are plenty of open source products that can be used by hydrogeologists. The packages considered in this article are those that are frequently used by the author and do not necessarily mean that they are the best available. Software gets updated or abandoned with time and what is considered powerful today may be obsolete in a few years.

Some of the well-known open source packages recommended for hydrogeologists include: OpenLibre for project management, Blender 3D or Sketchup for 3D conceptual modelling, QGIS for GIS mapping and database management, SAGA GIS for interpolation and ModelMuse for numerical modelling (comprising of Modflow for finite difference, Sutra for finite element and Phast for geochemical modelling). In addition, there are a number of free software packages developed by the USGS, various universities and consultants across the globe that can be used for aquifer test interpretation, borehole logging and time-series data analysis. A saving of more than R250,000 can be made per hydrogeologist by utilising such open source packages, while maintaining high quality work that is traditionally completed using commercial software.

Abstract

Modern societies rely heavily on subsurface resources and need open access to accurate and standardized scientific digital data that describe the subsurface’s infrastructure and geology, including the distribution of local and regional aquifers up to a depth of five kilometres. These data are essential for assessing and reducing climate change’s impact and enabling the green transition. Digital maps, 3D and 4D models of the subsurface are necessary to investigate and address issues such as groundwater quality and quantity, flood and drought impacts, renewable geo-energy solutions, availability of critical raw materials, resilient city planning, carbon capture and storage, disaster risk assessment and adaptation, and protection of groundwater-dependent terrestrial and associated aquatic ecosystems and biodiversity. For over a decade, EuroGeoSurveys, the Geological Surveys of Europe, has been working on providing harmonized digital European subsurface data through the European Geological Data Infrastructure, EGDI.

These data are invaluable for informed decision-making and policy implementation regarding the green transition, Sustainable Development Goals, and future Digital Twins in earth sciences. The database is continuously developed and improved in collaboration with relevant stakeholders to meet societal needs and facilitate sustainable, secure, and integrated management of sometimes competing uses of surface and subsurface resources.

Abstract

Italian urban areas are characterized by centuries-old infrastructure: 35% of the building stock was built before 1970, and about 75% is thermally inefficient. Besides, between 60% and 80% of buildings’ energy consumption is attributed to space heating. Open-loop Groundwater Heat Pumps (GWHPs) represent one of the most suitable solutions for increasing the percentage of energy consumption from Renewable Energy Sources (RES) in cities such as Turin city (NW Italy). However, allowing the diffusion of GWHPs cannot be disregarded by the knowledge about hydrogeological urban settings. As the thermally affected zone (TAZ) development could affect energetically adjacent systems, the TAZ extension must be well-predicted to guarantee the systems’ long-term sustainable use. Different buildings of the Politecnico di Torino are cooled during the summer by 3 different GWHP systems. To investigate possible interactions with other neighbouring plants and to preserve the water resource by capturing its positive and productive aspects from an energy point of view, a complex urban-scale numerical model was set up for comprehensively analysing the impact of the geothermal plants on the shallow aquifer. Different simulation scenarios have been performed to define possible criteria for improving the energy functionality of the groundwater resource. Besides, the extent of the TAZ generated was defined as a function of the specific functioning modes of the different GWHP systems. Numerical simulations, legally required by competent authorities, represent a fundamental tool to be applied for defining hydrogeological constraints derived from the GWHPs diffusion in Italian cities.

Abstract

Israel, S; Kanyerere, T

Globally, surface waters are severely unsustainably exploited and under pressure in semi-arid coastal regions, which results in increasing demand for groundwater resources. Currently, Cape Town and its neighbouring towns along the West Coast of South Africa are facing water shortage related problems. Managed Aquifer Recharge (MAR) is a nature based solution to improve groundwater security in drought prone regions such as the West Coast. The objective of this study was to design a groundwater monitoring network using a hybrid hydrochemical, geophysical and numerical modelling approach to assess and mitigate the potential impacts of MAR for the West Coast Aquifer System (WCAS). An Analytical Hierarchy Process method was used to perform a Multi-criteria analysis employed in GIS (ArcMap 10.3).

The factors of importance for optimized groundwater monitoring network design were based on available data and consultations with hydrogeologists and environmental scientist at stakeholder workshops. The factors which were considered included: elevation (m), geology, density of existing boreholes (wells/km2), electrical conductivity (mS/m), water rise (m), water level decline (m), transmissivity (m/day), saturation indices and lithological thickness (m). Factors were weighted based on their level of importance for the design of the groundwater monitoring network using Analytical Hierarchy Process (AHP). Priorities were calculated from pairwise comparisons using the AHP with Eigen vector method. The Consistency Ratio (CR) calculated was 5.2% which deems the weighting coefficients statistically acceptable. The results show that high priority monitoring areas occurs in the areas where there are fresh groundwater, high borehole density, elevated topography, higher recharge rates and decline in water levels are found. The monitoring network will include boreholes from the low priority areas to ensure that hydrogeological conditions are monitored and impacts are not worsened. Geophysical, numerical and chemical modelling aspects of the methodological approach will be incorporated into the initial groundwater monitoring network design.

 

Abstract

Stringent drinking water standards for constituents like chromium, arsenic, and nitrates, combined with continually higher demand for groundwater resources have led to the need for more efficient and accurate well characterization. Many boreholes are screened across multiple aquifers to maximize groundwater production, and since these aquifers can have different water qualities, the water produced at the wellhead is a blend of the various water qualities. Furthermore, the water entering a well may not be distributed equally across the screened intervals, but instead be highly variable based on the transmissivity of the aquifers, the depth of the pump intake, the pumping rate, and whether any perforations are sealed off due to physical, chemical, or biological plugging. By identifying zones of high and low flows and differing water qualities, well profiling is a proven technology that helps optimize operational groundwater production from water supply boreholes or remediation systems. This frequently results in increased efficiencies and reduced treatment costs. By accurately defining groundwater quantity and quality, dynamic profiling provides the data needed to optimize well designs. Conventional exploration methods frequently rely on selecting well screen intervals based on performing and analyzing drill stem tests for one zone at a time. Using dynamic flow and water quality profiling, the transmissivity and water quality can be determined for multiple production zones in a matter of one to two days. It also allows the location and size of the test intervals to be adjusted in the field, based on real-time measurements.

In this paper we discuss dynamic well profiling techniques with project case examples of characterization different types groundwater boreholes for a variety of applications and industries resulting in significant cost saving and sustainable water abstraction.

Abstract

Faced with climate change and population growth, Dutch drinking water company Dunea is looking for additional water resources to secure the drinking water supply for the coastal city of The Hague. One of the options is to enhance the existing managed aquifer recharge (MAR) system in the coastal dunes by extracting brackish groundwater. Extracting brackish groundwater provides an additional drinking water source, can protect existing production wells from salinization, and can effectively stabilise or even grow the freshwater reserves in the coastal dunes, according to numerical groundwater modelling. To test this concept in the field, a three-year pilot commenced in January 2022 at Dunea’s primary drinking water production site, Scheveningen. Brackish groundwater is extracted at a rate of 50 m3 /h with multiple well screens placed in a single borehole within the brackish transition zone (85-105 meters below sea level). The extracted groundwater is desalinated by reverse osmosis, whilst the flow rate and quality of extracted groundwater are continuously monitored. The hydraulic effects and the dynamic interfaces between fresh, brackish and saline groundwater are monitored with a dense network of piezometers, hydraulic head loggers and geo-electrical measurement techniques. At the IAH conference, the monitoring results of the pilot will be presented. Based on the results of the field pilot and additional numerical modelling, the feasibility of upscaling and replicating the concept of brackish groundwater extraction to optimize MAR and increase the availability of fresh groundwater in coastal areas is reflected.

Abstract

{List only- not presented}

Abstract

Two ventilation shafts were proposed to be excavated to depths of 100 and 350 m to intersect an underground mine, in the Bushveld Complex. The area is made up of fractured aquifers and the assignment was to identify the exact positions of the permeable zones within the shafts profiles as well as estimate the groundwater inflow rates at every 5 m interval along the shafts profiles. The project was budget and time constrained and therefore the preferred hydrogeological characterisation techniques, particularly the percussion drilling, aquifer testing and numerical modelling could not be conducted. The study was completed by conducting packer tests in HQ sized holes drilled at the exact positions of the proposed shafts. The packer test data was then interpreted using Thiem equation, a modification of Darcy Equation for radial flow, to estimate the steady state inflow rates into the shafts. Transient state flow is more challenging to calculate analytically, as it is time and aquifer storage dependent. However, transient state flow in shafts exists for the first 10 - 15 days only and is short lived. Thereafter, a steady state flow occurs where the rate is nearly fixed for the rest of the life of mine, unless new external stresses, such as mine dewatering, takes place within the radius of influence. Six months later the shafts were excavated and the permeable zones were encountered at the exact positions as predicted using the packer testing. In addition, the inflow rates calculated using analytical modelling was successful in estimating the inflow rates recorded after the shafts were excavated. The packer testing and analytical modelling was therefore effective in assisting the mine to plan the necessary pumps and management plans within the allocated budget and timeframe.

Abstract

The geochemical study of deep aquitard water in the southern Golan-Heights (GH), Israel, reveals the complex paleo-hydrological history affected by the intensive tectonic activity of the Dead Sea Rift (DSR). The sampled water collected from new research boreholes exhibits relatively high salinities (2,000-10,000 mg Cl/L), low Na/Cl ((HCO3 +SO4 )). δ18OV-SMOW and δDV-SMOW values are relatively depleted (~-7‰ and ~-42‰, respectively), while 87Sr/86Sr ratios are enriched compared to the host rocks. Lagoonary brines with similar characteristics (excluding the water isotopic compositions) are known to exist along the DSR. These brines formed 10-5 Ma ago from seawater that transgressed into the DSR and subsequently underwent evaporation, mineral precipitation and water-rock interactions. These hypersaline brines intruded into the rocks surrounding the DSR and based on the current study, also extended as far as the southern GH. Further, following their subsurface intrusion into the GH, the brines have been gradually diluted by isotopically depleted freshwater, leaving only traces of brines nowadays. The depleted isotopic composition suggests that the groundwater system is recharged at high elevations in the north. It is also shown that variable hydraulic conductivities in different formations controlled the dilution rates and subsequently the preservation of the entrapped brines. The paleo-hydrological reconstruction presented here shows that the flow direction has reversed over time. Brines that initially intruded from the rift have since been gradually flushed back to the rift by younger fresh groundwater.

Abstract

Accurate parameter estimation for fractured-rock aquifers is very challenging, due to the complexity of   fracture   connectivity,   particularly   when   it   comes   to   artesian   flow   systems   where   the potentiometric  is  above  the  ground  level,  such  as  semi-confined,  partially  confined  and  weak confined aquifers in Table Mountain Group (TMG) Aquifer. The parameter estimates of these types of aquifers are largely made through constant-head and recovery test methods. However, such tests are seldom carried out in the Table Mountain Group Aquifer in South Africa due to the lack of a proper testing unit made available for data capturing and an appropriate method for data interpretation. 

An artesian borehole of BH-1 drilled in TMG Peninsula Formation on the Gevonden farm in Western Cape Province was chosen as a case study. The potentiometric surface is above the ground level in the rainy season, while it drops to below ground level during the dry season. A special testing unit was designed and implemented in BH-1 to measure and record the flow rate during the free-flowing period, and the pressure changes during the recovery period. All the data were captured at a function of time for data interpretation at later stage. 

Curve-fitting software developed with VBA (Visual Basic Application) in Excel was adopted for parameter estimation based on the constant-head and recovery tests theories. The results indicate that a negative skin zone exists in the immediate vicinity of the artesian borehole in Rawsonville, and the  hydraulic  parameters  estimates  of  transmissivity  (T)  ranging  from  6.9  to  14.7 m2/d  and storativity  (S)  ranging  from  2.1×10-5   to  2.1×10-4   appear  to  be  reasonable  with  measured  data collected from early times. The effective radius is estimated to be 0.5 to 1.58 m. However, due to formation losses, the analytical method failed to interpret the data collected at later times. Consequently the analysed results by analytical solution with later stage data are less reliable for this case. Numerical modelling is proposed to address the issue in future.

Abstract

Accurate parameter estimation for fractured-rock aquifer is very challenging, due to the complexity of fracture connectivity, particular when it comes to artesian flow systems where the potentiometric is above the ground level, such as semi-confined, partially confined and weak confined aquifers in Table Mountain Group (TMG) Aquifer. The parameter estimates of these types of aquifers are largely made through constant-head and recovery test method. However, such a test is seldom carried out in Table Mountain Group Aquifer in South Africa due to a lack of proper testing unit made available for data capturing and appropriate method for data interpretation. An artesian borehole of BH 1 drilled in TMG Peninsula Formation on the Gevonden farm in Western Cape Province was chosen as a case study. The potentiometric surface is above the ground level in rainy season, while it drops to/below ground level during the dry season. A special testing unit was designed and implemented in BH 1 to measure and record the flow rate during the free-flowing period, and the pressure changes during the recovery period. All the data were captured at a function of time for data interpretation at later stage. Curve-fitting software developed with VBA was adopted for parameter estimation based on the constant-head and recovery tests theories. The results indicate that a negative skin zone exists in the immediate vicinity of the artesian borehole, and the hydraulic parameters estimates of transmissivity (T) ranging from 6.9 to 14.7 m2/d and storativity (S) ranging from 2.1*10-5 to 2.1*10-4 appear to be reasonable with measured data collected from early times. However, due to formation losses, the analytical method failed to interpret the data collected at later times. Consequently the analysed results by analytical solution with later stage data are less reliable for this case. The MODFLOW-2000 (Parameter Estimation) package developed by USGS was also adopted to determine these parameters for the same aquifer. It approves that there exist formation losses, which leads to the aquifer response distinctly different at later stage of overflow and recovery tests. The aquifer parameter estimates with early time data of tests by analytical and numerical methods show that there is generally good agreement. However, significant errors could be generated by analytical method applied where there is occurrence of well or formation losses, while these restrictions could be overcome by applying a numerical method.

Abstract

The Ordovician aquifer of the Izhora deposit is widely used for drinking by the population of St. Petersburg and its suburbs. Carbonate Ordovician rocks are intensively karstified. The water is fresh (0,5-0,8 g/l), bicarbonate-calcium on the predominant ions, pH 7.6; calcium content is 50-80 mg/l, magnesium content is 30-60 mg/l and the total hardness is 7,6-8,0 mg-equ./l. Western, northern and northeastern boundaries of the Izhora deposit go along the Baltic Klint, which is evident on the relief. Its southern boundary is along the zone of the dip of Ordovician limestone beneath the Devonian sandstone. The territory of the Izhora plateau belongs to the areas of intensive economic activity. Often, objects of human economic activity are located near drinking water intakes. Almost all sites are marked by excess sanitary norms of chemical elements. Pollution of groundwater in the Ordovician aquifer has been identified in some areas. Priority substances have been identified for assessing the quality of groundwater: total hardness, Fe, Mn, Ba, and B. According to hydrochemical modelling data, Ordovician groundwater is saturated with calcite over most territory. There are many springs of underground water along the Baltic Klint, for example, near the village of Lopukhinka, Duderhof springs and others. The springs waters have natural radioactivity (due to the contact of groundwater with dictyonema shales), which makes their use hazardous to human health.

Abstract

Per and Polyfluoroalkyl substances (PFAS) are ubiquitous on our planet and in aquifers. Understanding PFAS transport in aquifers is critical but can be highly uncertain due to unknown or variable source conditions, hydrophobic sorption to solid organic aquifer matter, ionic sorption on mineral surfaces, changing regulatory requirements, and unprecedentedly low drinking water standards. Thus, a PFAS toolkit has been developed to enable decision makers to collect the hydrogeologic data necessary to understand and better predict PFAS transport in aquifers for the purpose of managing water resources. This toolkit has been tested at a significant alluvial aquifer system in the western United States, which provides water for 50,000 people. Here, the toolkit has provided decision makers with the data necessary to optimize water pumping, treatment and distribution systems. The toolkit describes (1) the design and implementation of a sentinel well network to measure and track PFAS concentrations in the alluvial aquifer over time in response to variable pumping conditions, (2) data collection used to empirically derive input parameters for groundwater fate and transport models, which include the collection of paired aquifer matrix and groundwater samples, to measure PFAS distribution coefficients (Kds) and modified borehole dilution tests to measure groundwater flux (Darcy Velocity) and (3) the use of data collection techniques to reduce cross contamination, including PFAS-free, disposable bailers and a triple-rinse decontamination procedure for reusable equipment. The PRAS transport toolkit has the potential to assist decision makers responsible for managing PFAS contaminated aquifers.

Abstract

Monitored Natural Attenuation (MNA) refers to the monitoring of naturally occurring physical, chemical and biological processes. Three lines of evidence are commonly used to evaluate if MNA is occurring, and this paper focusses on the second line of evidence: The geochemical indicators of naturally occurring degradation processes and the site-specific estimation of attenuation rates.

The MNA geochemical indicators include the microbial electron acceptors (e.g. dissolved oxygen, nitrate and sulphate) and the metabolic by-products (manganese (II), iron (II) and methane). In addition, redox and alkalinity are important groundwater indicators. So as to properly assess the geochemical trends a groundwater monitoring well network tailored to assessing and defining the contaminant plume is required.

The expressed assimilative capacity (EAC) is used to estimate the capacity of the aquifer to degrade benzene, toluene, ethylbenzene and xylene (BTEX compounds) using the concentrations of geochemical indicators. Using the EAC, the groundwater flow through a perpendicular cross-section of the source area, and the source mass, the life of the contaminant source can be made.

A practical example of the performance monitoring of MNA using geochemical parameters is described for a retail service station in KwaZulu-Natal, which has groundwater impacted by a petroleum hydrocarbon plume. This includes a description of the monitoring well network, the geochemical measurements, the calculation of the EAC, and the estimated life of the contaminant source.

Abstract

In this study, a petroleum hydrocarbon contamination assessment was conducted at a cluster of petroleum products storage and handling facilities located on the Southern African Indian Ocean coastal zone. The Port Development Company identified the need for the assessment of the soil and groundwater pollution status at the tank farms in order to develop a remediation and management plan to address hydrocarbon related soil and groundwater contamination. Previous work conducted at the site consisted of the drilling and sampling of a limited number of boreholes. The current investigation was triggered by the presence of a free-phase product in the coal-grading tippler pit located ~350 m down gradient and south-east and east of the tank farms, rendering the operation thereof  unsafe.  The  assessment  intended  identifying  the  source  of  product,  distribution  and mobility, the extent of the contamination, and the human health risks associated with the contamination. To achieve these, the investigation comprised site walkover and interviews, drilling of 76 hand auger and 101 direct push holes to facilitate vertical soil profile VOC screening and sampling  (soil  and  groundwater),  as  well  as  granulomeric  analysis  to  understand   grain   size distribution  within  the  soil  profile.  The  highest  concentrations  were  associated with the coarse sand layers with the highest permeability. Free-phase hydrocarbons product was found in holes adjacent to the pipeline responsible for the distribution of the product from the jetty to the different tanks farms. Of the 57 soil samples, 21 had high values of GRO and DRO, with 22 below Detection Limit and 14 can be described having traces of hydrocarbon. Both TAME and MTBE were detected in most of the water samples, including from wells located far down gradient. The groundwater sink, adjacent to the pipeline running from west to east, resulted in the limited lateral spread of MBTE in this area, with limited movement towards the sea. The depth of the soil contamination varies over the sites. Based on the site  assessment  results  it  was  concluded  that  most  of  the groundwater contamination, which is a mixture of different product types, is associated with the pipeline responsible for transporting product from the jetty to the different petroleum companies.

Abstract

In this study, petroleum hydrocarbon contamination assessment was conducted at a cluster of petroleum products storage and handling facilities located on the Southern African Indian ocean coastal zone. The Port Development Company identified the need for the assessment of the soil and groundwater pollution status at the tank farms in order to develop a remediation and management plan to address hydrocarbon related soil and groundwater contamination. Previous work conducted at the site before consisted out of the drilling and sampling of a limited number of boreholes. The current investigation was triggered by the presence of free phase product in the coal grading tippler pit located ~350 m down gradient and south-east and east of the tank farms, rendering the operation thereof unsafe. The assessment intended identifying the source of product, distribution and mobility, the extent of the contamination, and the human health risks associated with the contamination. To achieve these, the investigation comprised site walkover and interviews, drilling of 76 hand auger and 101 direct push holes to facilitate vertical soil profile VOC screening and sampling (soil and groundwater) as well as granulomeric analysis to understand grain size distribution within the soil profile. The highest concentrations were associated with the coarse sand layers with the highest permeability. Free phase hydrocarbons product was found in holes adjacent to the pipeline responsible for the distribution of the product form the jetty to the different tanks farms. Of the 57 soil samples, 21 had high values of GRO and DRO, with 22 below Detection Limit and 14 can be described having traces of hydrocarbon. Both TAME and MTBE were detected in most of the water samples taken, including from wells located far down gradient. The groundwater sink, adjacent to the pipeline running from west to east, resulted in the limited lateral spread of MBTE in this area, with limited movement towards the sea. The depth of the soil contamination varies over the sites. Based on the site assessment results it was concluded that most of the groundwater contamination, which is a mixture of different product types, is associated with the pipeline responsible for transporting product from the jetty to the different petroleum companies. {List only- not presented}