Conference Abstracts

All Abstracts were presented at the Groundwater Conferences

Displaying 201 - 250 of 795 results
Title Presenter Name Presenter Surname Area Sort descending Conference year Keywords

Abstract

Water balance partitioning within dryland intermittent and ephemeral streams controls water availability to riparian ecosystems, the magnitude of peak storm discharge and groundwater replenishment. Poorly understood is how superficial geology can play a role in governing the spatiotemporal complexity in flow processes. We combine a new and unusually rich set of integrated surface water and groundwater observations from a catchment in semi-arid Australia with targeted geophysical characterisation of the subsurface to elucidate how configurations of superficial geology surrounding the stream control the variability in streamflow and groundwater responses. We show how periods of stable stream stage consistently follow episodic streamflow peaks before subsequent rapid recession and channel drying. The duration of the stable phases increases in duration downstream to a maximum of 44±3 days before reducing abruptly further downstream. The remarkable consistency in the flow duration of the stable flow periods, regardless of the size of the preceding streamflow peak, suggests a geological control. By integrating the surface water, groundwater and geological investigations, we developed a conceptual model that proposes two primary controls on this behaviour which influence the partitioning of runoff: (1) variations in the permeability contrast between recent channel alluvium and surrounding deposits, (2) the longitudinal variations in the volume of the recent channel alluvial storage. We hypothesise optimal combinations of these controls can create a ‘Goldilocks zone’ that maximises riparian water availability and potential for groundwater recharge in certain landscape settings and that these controls likely exist as a continuum in many dryland catchments globally.

Abstract

Recent advances in groundwater dating provide valuable information about groundwater recharge rates and groundwater velocities that inform groundwater sustainability and management. This talk presents a range of groundwater residence time indicators (85Kr, CFCS 14C, 81Kr, 36Cl and 4 He) combined with analytical and numerical models to unravel sustainability parameters. Our study site is the southwestern Great Artesian Basin of Australia where we study an unconfined confined aquifer system that dates groundwater from modern times up to 400 kyr BP. The study area is arid with a rainfall of <200 mm/yr and evaporation in the order of 3 m/yr. Despite these arid conditions we observe modern recharge rates in the order of 400 mm/yr. This occurs via rapid ephemeral recharge beneath isolated riverbeds where the sandstone aquifer directly outcrops. Groundwater dating and stable isotopes of the water molecule indicates that this recharge comes from monsoonal activity in the north of the continent that travel some 1500 kms. Furthermore, this is restricted to recharge in the Holocene.as we move down the hydraulic gradient groundwater “ages” increase and recharge rates dramatically decrease by orders of magnitude. We conclude that there has been a significant decline in monsoonal precipitation and hence recharge in the deserts of central Australia over this time. We present a couple environmental numerical model that describes how to estimate temporal recharge rates and estimates of hydraulic conductivity from groundwater age data that can be used for groundwater management.

Abstract

The abstract presents a 2D modelling approach alternative to a 3D variable saturated groundwater model of solute or heat transport at the regional scale. We use FEFLOW to represent processes in the saturated zone, coupled with various models describing the unsaturated zone. The choice of the latter depends on modelling needs, i.e. simulation of the movement of seepage water and nitrate fate with respect to crop rotation patterns and dynamic characteristics of heat gradients, respectively. The flexibility of coupling specialized models of different subsurface compartments provides the opportunity to investigate the effects of land use changes on groundwater characteristics, considering the relevant drivers in sufficient detail, which is important in regions with intensive anthropogenic activities. The coupling can be operated either with (direct coupling) or without (sequential coupling) including the feedback between the saturated and the unsaturated zones depending on the depth of the groundwater table below the surface. Thus, the approach allows for reasonable computational times. The Westliches Leibnitzer Feld aquifer in Austria (43 km²; Klammler et al., 2013; Rock and Kupfersberger, 2018) will be presented as an example highlighting the needed input data, the modelling workflow and the validation against measurements.

Abstract

ue to public health or environmental concerns, performing tracer tests in the field by injecting pathogenic microorganisms or contaminants of emerging concern into groundwater is not permitted. Therefore, examining the effects of preferential flow processes on these contaminants under controlled saturated conditions must be done in the laboratory, but the resulting transport parameters cannot be directly applied to field-scale groundwater models. This research considers how an upscaling relationship can be found using a colloidal tracer and three different scales: small laboratory columns (0.1 m scale), a large intact core (1 m scale), and a real-world gravel aquifer (10 m scale). The small columns were filled with gravel from boreholes at the field site, an alluvial gravel aquifer close to Vienna, Austria. The mesoscale consists of an undisturbed gravel column from a gravel pit near Neuhofen an der Ybbs, Austria. Results showed that a certain pattern emerges after an initial scale-dependent threshold, regardless of differences due to the small columns being repacked with aquifer material and the large column and field site being “undisturbed”. In this way, the mesoscale column allows us to gain insight into upscaling processes by incorporating an in-between step when comparing groundwater transport at the column- to the field scale.

Abstract

Groundwater forms an important part of the water resources of South Africa, especially in Karoo region, where groundwater is an important source of fresh water. Beaufort West is a town that uses groundwater as a major source of municipal and private water supply. Groundwater samples were collected from a network of 43 boreholes, between November 2015 to December 2018 within Beaufort West town and 10km radius surrounding. The water samples were analysed for inorganics, organics, stable isotopes and radioactive isotopes. The hydrogeochemical results indicate that all the boreholes onsite are collecting water from the shallow aquifer with neutral pH. From the 228 groundwater samples analyses, the total dissolved solids (TDS) concentrations averaged 1041 mg/L. This falls within the SANS 241:2015 guideline standard of ? 1200 mg/L for TDS. The high nitrates and sulphates in the water indicate that shallow aquifer has aerobic conditions. Generally, the water type is Calcium Magnesium Bicarbonate and Magnesium Sulphate. Both the inorganic chemistry and the stable isotopes have a signature of water that is recently recharged. The carbon dating results indicate that water has been underground for no more than 3 000 years. The groundwater samples generally show no contamination of organic compounds with the exception of boreholes located in the Karoo National Park, which showed high amounts of organic compounds (xylene and ethylbenzene). The interaction of the known uraniferous deposit of the Poortjie Formation in the Beaufort West area has possibly influenced the groundwater. This has resulted in groundwater with elevated average amount 17.58 ?g/L of uranium against background values of 10 ?g/L. This is however below the SANS 241:2015 standard of 30 ?g/L.

Abstract

Maphumulo B; Mahed G

Disastrous droughts sweeping across South Africa has led to the population turning towards groundwater as their primary source of water. This groundwater movement has increased the need for proper groundwater management in terms of both quality and quantity. Groundwater sampling is a crucial, and yet often overlooked, component of water quality assessment and management. This thesis evaluated the various groundwater sampling methods used within fractured rock aquifers in the Beaufort West region. Each sampling method was evaluated in terms of their precision and accuracy according to their hydrochemical results. Historical hydrochemical data from past reports was utilised to determine how various groundwater sampling techniques influence results. This helped gained a better understanding of the requirements required to correctly and accurately sample different water sources such as boreholes and windmills. These requirements include the importance of purging in order to remove stagnant water from windmills. By understanding these sampling techniques, it is possible to create a groundwater sampling protocol which should be followed when sampling fractured rock aquifer in order to ensure best possible results.

Abstract

Drilling of five shallow (300m) boreholes was undertaken by the Council for Geoscience at Beaufort West. This was to characterise shallow aquifers and to determine the possible deeper aquifers linked to dolerite sills respectively. Furthermore, to determine the interconnectivity between shallow and deep aquifers. The five shallow boreholes B01H_BW, B02H_BW, B03H_BW, B04H_BW and B05H_BW have depths of 151m, 169m, 151m, 169m and 169m respectively. B02H_BW is currently used as a municipal production borehole and has produced volume of more than 134ML since inception February 2018, whilst the others are used for monitoring. Additionally, the two deep monitoring boreholes, R01-BW and R02-BW have depths of 1402m and 517m respectively. The seven boreholes drilled intersected the Poortjie Member, Abrahamskraal Formations (deep boreholes), Waterberg Formation and Tierberg Formation (R01_BW). An east-west striking dolerite sill that is dipping northwards was encountered during the drilling of the deep boreholes. Boreholes closer to this sill showed more brecciation and generally have a high yield, however, during drilling and pumping test there was no indication of water inflow related to the sill. Water strikes in brecciated rock were concentrated in borehole B03H-BW and reduce northward in borehole B02-BW and more rapidly southward in borehole B04H-BW. All the drilled boreholes except R01-BW that was not yielding enough were tested for aquifer parameters and sustainable yields. Interconnectivity between R02-BW and B04H-BW was confirmed when a drawdown response was observed in B04H-BW during pumping of R02-BW. The flow rate encountered in the boreholes indicates a strong yield in boreholes associated with the brecciated rock (B02H-BW, B03-BW, B04H-BW and R02-BW). Findings indicated that these boreholes are drilled in the same unconfined aquifer where the main water strikes are encountered on the contact between the Poortjie Member and the Abrahamskraal Formation.

Abstract

On a global scale, groundwater is seen as an essential resource for freshwater used in both socioeconomic and environmental systems; therefore forming a critical buffer when droughts occur. Due to its location in a dry and semi-arid part of South Africa, Beaufort West relies on groundwater as a crucial source of fresh water. Thus, proper management of their groundwater resources is vital to ensure its protection and preservation for future generations. Although fluctuations have occurred over the years, groundwater levels in the area have progressively dropped due to abstraction in well fields. However, in 2011, an episodic flooding event resulted in extreme groundwater recharge with groundwater levels North-East of Beaufort West recovering tremendously. This led to the overall groundwater levels of Beaufort West becoming relatively higher. The general flow of groundwater in the town, which is from the Nuweveld Mountains in the North to the town dyke in the South, is dictated by dykes occurring in the area.

This study aims to expand on the understanding of episodic groundwater recharge around extreme climatic conditions of high precipitation events in a semi-arid region. This was done by analyzing historical data for the Gamka Dam spanning over 30 years; estimating recharge in the Beaufort West well fields caused by the flooding event; as well as studying the hydrogeological setting and lineaments in the area. It was found that sufficiently elevated recharge around the observed flooding event only occurred in areas where the correct climatic (precipitation, evaporation), geological and geographical conditions were met. Ultimately, gaining a better understanding of these recharge events should aid in the assessment of the groundwater development potential of Beaufort West.

Abstract

Due to its location in a dry and arid part of South Africa, Beaufort West relies on groundwater as a crucial source of freshwater for the town. Although there have been fluctuations over the years, groundwater levels in the area have progressively dropped due to unsustainable abstraction from wellfields. The general flow of groundwater in the town, which is from the North where the Nuweveld mountains are situated to the town dyke in the South, is dictated by major dykes in the area. In 2011, flooding resulted in extreme groundwater recharge with groundwater levels North East of Beaufort West recovering tremendously, from 45m below ground level to approximately 10m below ground level; and the general groundwater levels of Beaufort West becoming relatively higher. The purpose of this study was to gain a better understanding of episodic groundwater recharge around extreme climatic conditions of high precipitation events in a semi-arid region. This was done by analyzing data for surface water levels, groundwater levels, rainfall and evaporation from Beaufort West; using Sentinel 1 in InSAR (interferometric synthetic aperture radar) to utilize remote sensing as a tool to examine land surface fluctuations with regards to the changes in the groundwater levels; as well as studying the hydrogeological setting and lineaments in the area

Abstract

The purpose of this study was to determine the optimal sampling methods for the analysis of radioactive material in fractured rock aquifers. To achieve this a number of data sets were used which span a 40 year period in and around Beaufort West. Well purging requires the pumping out of stagnant water. This step is crucial as the idle well water may not be representative of the entire aquifer. This step was found to be critical in the studies analysed and had a direct impact on the results. It is necessary to pump out the entire well volume and recommended to pump out at least two well volumes before sampling commences. Samples may also be taken prior to well-purging as a means of checking the effects of purging. Another important aspect for sampling is that of multi-level sampling, particularly in the case of boreholes which feature multiple fracture or aquifer interception points. Prior to sampling, sampling containers should be well washed and cleaned using HCl and rinsed with deionised water. This is done to remove any contaminants which may hinder laboratory analysis. It was found that the multilevel sampling method yielded the best results. Furthermore, the samples stemming from windmills also had good results. The evolution of sampling as a science has improved over the past 40 years, but a fundamental understanding of sampling as a science needs to be incorporated

Abstract

Southern Africa hosts over 93% of the continent's energy, which has been conserved in coal seams deposited  in  various  Karoo  age  sedimentary  basins.  Carbon  dioxide  geological  storage  (CGS)  is proving  to  be  an  emerging  greenhouse  gas  technology  (GHGT),  that  global  governments  have elected to mitigate the projected coal use in Southern Africa. One of the major challenges of successfully introducing CGS to the public and world leaders is the significant risk the technology poses to groundwater resources. Lack of public confidence is further coupled by the poor knowledge of the subsurface behaviour of injected media, such as CO2, in South African potential lithological reservoirs. The study has utilised data from a current MSc research, in which the Springbok Flats Coal Basin (SFCB) has been used as the problem set-up. The aim of this study is to determine which FELOW™ mesh  geometry would  be  the most  suitable  to  simulate  a  CO2   ingress plume within  a regional aquifer. The study has utilised principals of dense vegetation zones (DVZ) and density- variable fluid flow (DVFF) when simulating the ingression. The specific objective is to utilise the simulation  results  to  guide  amendments  of  water  legislature,  towards  accommodating  CO2 geological  injection  and  storage operations.  Results indicate  that  a  combination  of  high-quality triangular meshes of various geometries, created with the FEFLOW compatible mesh generator, TRIANGLE, produced the best 3D model and simulation results. The basic matrice unit for the DTZ was defined as a quad mesh composed of two right-angled triangles and one equi-angualar triangle (five nodes), while the unit for modelling springs was defined as a quad mesh with four-equi-angular triangles, both used in various scales. The results were used to amend the Stream Flow Reduction Activities (SFRA) policy and thus the aquifer licensing procedure of the National Water Act, in order to accommodate the allocation of aquifer use licenses for CO2  geological storage operations. The amendments illustrate the significance of finite element simulation codes for integrated water resources management policy.

Abstract

Porosity describes the ratio between the volume of pores, cracks, and fissures and the total volume of a studied geological medium. This notion implies a volume averaging of the medium characteristics using the concept of Representative Elementary Volume (REV). Small volumes can contain only pores, while larger volumes typically contain both pores and fissures. Porosity can be highly scale-dependent, and different porosity values can be measured for the same geological formation. Furthermore, groundwater in the pores and cracks can be partly immobile or mobile. So, the porosity actively involved in groundwater flow can be discussed. A ‘mobile water porosity’ can be defined, but this remains highly dependent on the existing pressure conditions in the geological medium. In unconfined conditions, the term ‘effective porosity’ usually corresponds to the drainage porosity corresponding to the specific yield or storage coefficient. When dealing with solute transport and remediation of contaminated sites, another ‘effective porosity’ is needed to describe the advection velocity of the contaminant. This ‘mobile water porosity’ acting in solute transport processes typically takes lower values than drainage’s ‘effective porosity’. Scale issues must also be expected, as shown by field and lab tracer tests.

The term ‘Darcy velocity’ will be banished herein because it induces much confusion. For clarity, we propose to distinguish ‘drainage effective porosity’ and ‘transport effective porosity’. The physical meaning of both terms is discussed, and examples of supporting observations are presented for illustration and discussion.

Abstract

Recent findings allow a better insight into the interaction between two aquifers and their vulnerabilities at the groundwater extraction site of Velm, which produces drinking water for around 55,000 households. The shallow aquifer that is exploited is situated in the Formation of Hannut. This aquifer is vulnerable to pollution, especially from the agricultural lands close to the extraction site and is sensitive to natural recharge. In this case, the groundwater is captured in a basin via a naturally occurring spring flow. The second aquifer is situated in the Cretaceous at 50 to 100 m below the surface and is pumped by four wells. The drinking water quality is guaranteed by mixing and treating these two waters. To optimize the central decalcification and the pollution risks, the production volume in the deep aquifer was increased from 2017 to 2021 at the expense of the shallow aquifer. This led to a decrease in the available volumes of the shallow aquifer, which indicated a leakage from the shallow to the deeper aquifer, which was unexpected. Groundwater modelling and time series analysis have been used to assess the impact of the increased production volumes and the longer dry periods. Based on this data, a maximum production volume of 1,000,000 m3 /year is considered best for the cretaceous aquifer. With this extraction rate in the Cretaceous, it is possible to supply sufficient drinking water and limit the impact on the Formation of Hannut.

Abstract

Along estuaries and coasts, tidal wetlands are increasingly restored on formerly embanked agricultural land to regain the ecosystem services provided by tidal marshes. One of these ecosystem services is the contribution to estuarine water quality improvement, mediated by tidally induced shallow groundwater dynamics from and to tidal creeks. However, in restored tidal marshes, these groundwater dynamics are often limited by compacted subsoil resulting from the former agricultural land use in these areas. Where the soil is compacted, we found a significant reduction of micro- and macroporosity and hydraulic conductivity. To quantify the effect of soil compaction on groundwater dynamics, we set up a numerical model for variably saturated groundwater flow and transport in a marsh and creek cross-section, which was parametrized with lab and field measurements. Simulated results were in good agreement with in situ measured groundwater levels. Where a compacted subsoil is present (at 60 cm depth), 6 times less groundwater and solutes seep out of the marsh soil each tide, compared to a reference situation without a compact layer. Increasing the creek density (e.g., through creek excavation) and increasing the soil porosity (e.g., by organic soil amendments) resulted in a significant increase in soil aeration depth and groundwater and solute transport. As such, these design measures are advised to optimize the contribution to water quality in future tidal marsh restoration projects.

Abstract

Groundwater in flooded abandoned mines could be used for geothermal purposes using heat pumps and an open loop involving pumping and re-injection. Hydraulic conductivity values of the mined rock zones have been artificially increased. However, long-term efficiency and the possible impacts of geothermal doublets must be studied involving a series of hydrogeological challenges. Hot water would be pumped from the deep parts of the mine works, and cold water would be re-injected in a shallower gallery or shallow fractured rocks, with a seasonal flow inversion for building cooling during the hot season. Indeed, a ‘short-cut’ groundwater flow is to be avoided between the mine’s deep and shallow parts. The true geometry of the interconnected network of open galleries and shafts can be highly complex and must be conceptualized realistically to ensure that the model is feasible and reliable.

This model must involve groundwater flow and heat transport, with temperature-dependent density and viscosity, in a complex 3D heterogeneous domain of highly fractured rocks and partially collapsed exploitation zones, galleries, and shafts. Such a model is nevertheless widely recommended to design and optimize the short--, mid-, and long-term efficiency of the geothermal system and assess possible environmental impacts. An example of simulations on a synthetic case will be used for illustration and preparation work before further application in a real case study.

Abstract

Springs are examples of groundwater discharges. This paper reports on findings from cold springs groundwater discharges that have served as important water sources for sustaining domestic and agricultural supply. This study assessed the hydrogeology of springs to inform practical measures for the protection, utilization, and governance of such discharges. The research assessed the hydrogeology of springs in terms of conditions in the subsurface responsible for occurrences of springs spatially and their flow paths to the surface. Spring locations were mapped and validated for spatiotemporal assessment. The study examined the flow dynamics and hydrogeochemistry of spring discharges. In-situ and laboratory measurements of spring discharges were carried out using standard methods. Results showed that shallow and deep circulating systems of springs existed in the study area, being controlled by lithology and faults. All springs had fresh water of Na-Cl type, and rock-water interaction was the dominant geochemical process that influenced spring water chemistry. Radon-222 analysis showed high values detected in spring waters that confirmed recent groundwater seepage on the surface. The drum-and-stopwatch technique was used to estimate yield from spring discharges because it’s only effective and reliable for yields of less than 2 l/s. Results suggest that some springs were locally recharged with some regionally recharged. Based on results from estimated yield and quality, it was concluded that spring waters had low discharges. A comprehensive assessment of spring discharges should be conducted to generate large datasets to inform practical measures for protection, utilization, and governance.

Abstract

Recharge is one of the most significant parameters in determining the sustainability volume of groundwater that can be abstracted from an aquifer system. This paper provides an updated overview and understanding of potential and actual groundwater recharge and its implications for informing decision-makers on efficiently managing groundwater resources. The paper argues that the issue of potential and actual recharge has not been adequately addressed in many groundwater recharge studies, and if not properly addressed, this may lead to erroneous interpretation and poor implementation of groundwater resource allocations. Groundwater recharge has been estimated using various methods, revised and improved over the last decade. However, despite numerous recharge methods, many studies still fail to distinguish that some assess potential recharge while others estimate actual recharge. The application of multiple recharge methods usually provides a wide range of recharge rates, which should be interpreted in relation to the type of recharge they represent; as a result, the wide range of recharge findings from different methods does not necessarily imply that any of them are erroneous. A precise distinction should, therefore, be made between the potential amount of water available for recharge from the vadose zone and the actual recharge reaching the water table. This study cautions groundwater practitioners against using “potential recharge values” to allocate groundwater resources to users. The results of this paper may be useful in developing sustainable groundwater resource management plans for water managers.

Abstract

This study assessed aquifer-river interaction using a combination of geological, hydrological, environmental stable isotope, and hydrochemical data in a non-perennial river system in the Heuningnes catchment. Results showed the depth to groundwater levels ranging from 3 to 10 m below ground level and aquifer transmissivity values of 0.17 to 1.74 m2 /day. The analytical data indicated that Na-Cl-type water dominates most groundwater and river water samples. Environmental stable isotope data of river samples in upstream areas showed depleted δ18O (-4.3 to -5.12 ‰) and δ2H (-22.9 to -19.3 ‰) signatures similar to the groundwater data, indicating a continuous influx of groundwater into the river water. Conversely, high evaporative enrichment of δ18O (1.13 to 7.08 ‰) and δ2H (38.8 to 7.5 ‰) were evident in downstream river samples.

It is evident from the local geological structures that the fault in the northeastern part of the study area passing Boskloof most likely acts as a conduit to groundwater flow in the NE-SW direction, thereby supplying water to upstream river flow. In contrast, the Bredasdorpberge fault likely impedes groundwater flow, resulting in hydraulic discontinuity between upstream and downstream areas. Relatively low conductive formation coupled with an average hydraulic gradient of 8.4 × 10−4 suggests a slow flow rate, resulting in less flushing and high groundwater salinisation in downstream areas. The results underscore the significance of using various data sets to understand groundwater-river interaction, providing a relevant water management platform for managing non-perennial river systems in water-stressed regions.

Abstract

Access to safe water is not yet universal in Burkina because 30% of Burkinabes do not yet have access to drinking water. The objective of universal access to drinking water (ODD 6.1) is difficult to achieve in the context of population growth and climate change. Basement rocks underline 80% of Burkina Faso. However, about 40% of the boreholes drilled in the Burkina Faso basement rocks do not deliver enough water (Q < 0.2l/s) and are discarded. This study focuses on determining the appropriate hydrogeological target that can be searched to improve the currently low drilling success rate.

We set up a well-documented new database of 2150 boreholes based on borehole drilling, pumping tests, geophysical measurements, and geological analysis results. Our first results show that the success rate at 0.2l/s (i.e. 700 l/h) is 63% at the end of the drilling against 54% at the end of borehole development: the yield of 8% of the boreholes lowers significantly after only a few hours of development. We also found that the yield of the water intakes encountered during the drilling process slightly decreases with depth; beyond 60m, it is rare (only 15% of cases) to find water occurrences. We found clear relationships between the productivity of the borehole (yield after drilling and transmissivity obtained from the pumping test) and the thickness of the weathering rocks, indicating that the appropriate target to obtain a productive borehole is a regolith of about 35 meters thick.

Abstract

The current understanding of groundwater within the larger Bushveld Complex (BC) is evaluated to gauge the potential for deep groundwater, specifically emphasising the lesser investigated eastern limb. From the review of publicly available literature and data, geohydrological databases and statistical analyses are presented as a collation of the current understanding of groundwater in the eastern limb of the BC. Unfortunately, information on deep groundwater (> 300 m) is scarce due to the cost associated with deep drilling, mining exploration holes often neglecting hydrogeological data collection, or lack of public access to this information. Nevertheless, the conceptual model developed from the available information highlights deep groundwater’s variable and structurally controlled nature and the uncertainty associated with groundwater characterisation of the deeper groundwater systems. This uncertainty supports the need for research-based scientific drilling of the deeper fractured lithologies in the eastern limb of the Bushveld Complex. The Bushveld Complex Drilling Project (BVDP) established an opportunity to perform such research-based drilling and was funded by the International Continental Scientific Drilling Program (ICDP). While the main focus of the BVDP is to produce a continuous vertical stratigraphic sequence of the BC, there is a sub-component to collect geohydrological information. The planned borehole, 2 500 m deep, will provide an opportunity to collect information from the deeper systems within the Bushveld Complex and the underlying Transvaal Supergroup, which will inform on the connection between shallow and deeper groundwater.

Abstract

An approach for evaluating the sustainability of managed aquifer recharge (MAR) has been developed and applied in Botswana. Numerical groundwater modelling, water supply security modelling (SWWM) and multi-criteria decision analysis (MCDA) are combined to thoroughly assess hydrogeological conditions, supply and demand over time and identify the most sustainable options. Botswana is experiencing water stress due to natural conditions, climate change and increasing water demand. MAR has been identified as a potential solution to increase water supply security, and the Palla Road aquifer, located 150 km northeast of the capital, Gaborone, has been identified as a potential site. To evaluate the potential of MAR and if it is suitable for improving water supply security, three full-scale MAR scenarios were evaluated based on their technical, economic, social and environmental performance relative to a scenario without MAR. The numerical groundwater model and the WSSM were used iteratively to provide necessary input data. The WSSM is a probabilistic and dynamic water balance model used to simulate the magnitude and probability of water shortages based on source water availability, dynamic storage in dams and aquifers, reliability of infrastructure components, and water demand. The modelling results were used as input to the MCDA to determine the sustainability of alternative MAR scenarios. The results provide useful decision support and show that MAR can increase water supply security. For the Palla Road aquifer, storage and recovery with a capacity of 40 000 m3 /d is the most sustainable option.

Abstract

The Palla Road well-field is located in the Central District of Botswana approximately 160 km from Gaborone and 50 km from Mahalapye. The aim of this project was to review and update the existing groundwater model developed in the late 1990s of the Palla Road well-field in order to assess the viability of long-term groundwater abstraction due to the increasing water demands in the region. The  main  hydrogeological  units  recognised  in  the  project  area  comprise  of  aquifer  systems developed in the Ntane Sandstone Formation and formations of the Middle Ecca Group with minor aquifers developed in Mosolotsane Formation and the Stormberg Basalt. The finite-difference model boundary covers an area of 3 702 km2  and was set-up as a three-dimensional semi-uniform grid comprising of four layers. Eight recharge and 14 hydraulic conductivity zones in accordance with the geological  model  were  distinguished.  Steady  state calibration  was  accomplished  by  varying the hydraulic conductivity values, while keeping the recharge rates constant in order to achieve a unique solution. Transient calibration of the model covered three larger stress periods namely: (1) initial condition (pre-1988), (2) abstraction period (1988 to 2012) and  (3) predicted model simulations (2013 to 2036).

The calibrated groundwater flow model was used to assess the impacts associated with  the  proposed  abstraction  scenarios  for  the  Palla  Road  and  Chepete  well-fields  with consideration  of  potential  cumulative  impacts  due  to  the  Kudumatse  well-field.  Three  basic scenarios comprising certain sub-scenarios based on the future water demand for the Palla Road and Kudumatse region were considered. The model simulations show that the abstraction scenario 2a, namely simultaneous abstractions from the Chepete/Palla Road and Kudumatse well-fields, poses a risk to the sustainability of downstream water resources. The maximum simulated drawdown in the central and  southern parts of the Palla Road well-field  reach 14 m after six years of  pumping. Although outflow diminishes after a six-year period, it is restored to approximately 80-90% after the simulated recovery period. The presented 3-D multi-layer model can be used as a tool to determine the optimal abstraction rates while giving cognisance to the sustainability of the resource.

Abstract

Modie LT; Stephens M

Stable isotopes and hydrochemical analysis were undertaken to investigate groundwater-surface water (GW-SW) interactions and their possible implications on the quality and quantity of water in the karstified dolomite-dominated Notwane River Catchment (NRC) in semi-arid South East (SE) Botswana. Stable isotopes (δ18O & δ2H) and other hydrochemical parameters were analyzed from water samples (groundwater, river water and rain) collected in the upstream, middle stream and downstream of the Ramotswa Wellfields to investigate the potential GW-SW relationship in the study area. In addition field observation were also undertaken to support results obtained through stable isotopes and hydrochemical methods. Similarity in isotopic signatures taken during the dry and wet seasons respectively for groundwater (δ18O -1.4‰, δ2H -10.8‰; δ18O 1.4-‰, δ2H -10.9‰) and surface water(δ18O -2.04‰, δ2H -6.2 ‰; δ18O -2.56‰, δ2H -7.1‰) suggests groundwater recharge through the streambed at a site further downstream in the study area. In upstream study sites the average groundwater isotopic signature values of (δ2H -24.1,δ18O -4.1) suggests a more direct link to the Meteoric Water Line(MWL) indicating possibility of a rapid infiltration and quick watershed response to heavier rainfall events(δ2H -51.7, δ18O -8.6) rather than recharge through the riverbed. A further assessment on the GW-SW hydrochemistry was provided using Hierarchical Cluster Analysis (HCA) to investigate the influence of groundwater on stream water. The median EC values from the clusters are in an increasing order Cluster A-B2-B1 indicating cluster A(all river samples) as the most dilute samples with the shortest resident time relative to the groundwater clusters(B2 and B1). These results therefore rules out groundwater discharge through the streambed into the river as not a dominant process for GW-SW interaction in the study area. The study has concluded that GW-SW interactions in the NRC part under study vary from connected to no connection from one site to another.

Abstract

Groundwater resources in Africa face increasing threats of over-exploitation and pollution due to urbanization, agricultural and mining activities, yet monitoring remains challenging. Conventional approaches to monitoring groundwater at the exclusion of communities have not been successful. To overcome this, it is important to fully engage and train local communities in monitoring Groundwater Levels (GWLs), Rainfall and Water Quality (RWQ), which are important for understanding groundwater dynamics in wellfields. In this way, villagers can better understand groundwater issues and convey this information to others to cooperatively manage groundwater. A pilot program to monitor GWLs and RWQ by locals was initiated in two villages each in Botswana and Uganda to learn about its effectiveness. Through continuous stakeholder engagement, the local communities in the two case studies have been facilitated, trained and supported in monitoring groundwater and using the information collected to understand groundwater trends and their sustainability. Preliminary results indicate improvement in understanding the importance of groundwater monitoring by the communities and the implications on groundwater sustainability for improved livelihoods. This has become useful to one of the communities engaged in a village-level irrigation project which depends on groundwater resources. This project builds on a successful village-level participatory approach developed in the MARVI project (www.marvi.org.in ). It seeks to contribute to the United Nation’s 2022 call on “Groundwater: making the invisible visible” to highlight the importance of better monitoring and managing this vital resource.

Abstract

The Guarani Aquifer System (SAG) is the main public water supply source in Bauru City (Brazil). It mostly consists of sandstones and is a confined unit of fossil waters (~600 thousand years); therefore, it is a non-renewable and finite resource. SAG is overlaid by the Bauru Aquifer System (SAB), predominantly consisting of sandstones, siltstones, and mudstones, and is essential for private water supply in the municipality. In recent decades, constant drops in water levels in SAG and increases in contaminant loads in SAB have been observed in production wells, generating the need to understand the geometry of those aquifer systems.

This work presents the preliminary results of the analysis and review of hydrogeological and geophysical data from 59 deep wells and 3D geological modelling using Leapfrog Works® to represent a conceptual model of the study area. SAG has a thickness of up to 356 m in the wells and is represented, from bottom to top, by Teresina, Piramboia, and Botucatu formations. In the north and northeast regions, SAG is covered by a layer of basalts from the Serra Geral Aquifer System (SASG) with a thickness of up to 190 m. The thickness of SASG is variable (or even null) due to the action of important faults with vertical displacements that created structural windows in the region. SAB covers the Araçatuba (basal portion), Adamantina (144 m), and Marília (65 m) formations. The lower contact of SAB is made with SASG or SAG (central region). Project funded by FAPESP (2020/15434-0).

Abstract

Urban karst terrains can experience geotechnical issues such as subsidence or collapse induced/accelerated by groundwater withdrawal and civil works. Sete Lagoas, Brazil, is notable for overexploiting a karst aquifer, resulting in drying lakes and geotechnical issues. This study aims to evaluate the progression of geotechnical risk areas from 1940 to 2020 and to simulate future scenarios until 2100. Historical hydraulic head data from the 1940s (when the first pumping well was installed) to the 2000s, a 3D geological model, and a karst-geotechnical risk matrix for defining risk levels were employed to develop a calibrated Feflow numerical model. The results indicate that, before the first well in 1942, the groundwater flow direction was primarily towards the northeast. In the 1980s, due to the concentration of pumping wells in the central area, a cone of depression emerged, causing the flow directions to converge towards the centre of the cone, forming a zone of influence (ZOI) of approximately 30 km². All 20 geotechnical events recorded between 1940 and 2020 have occurred in high or considerable-risk zones where limestone outcrops or is mantled in association with the ZOI. For future scenarios, if the current global well pumping rate (Q = 144,675 m³/d) from 2020 remains constant until 2100, the high and considerable geotechnical risk zones will continue to expand. A 40% decrease in the global rate (Q = 85,200 m³/d) is necessary to achieve a sustainable state, defined by reduced and stabilized risk zones.

Abstract

The Bauru Aquifer System (BAS) is a significant source of water supply in the urban area of Bauru city. Over the last decades, BAS has been widely affected by human activities. This study evaluates the nitrate plume in groundwater from 1999 to 2021 and how it relates to urbanization. The methods used were analysis of the data of 602 wells, survey of the sewer network and urbanization, and reassessment of nitrate concentration data. The seasonal analysis of 267 groundwater samples allowed the identification of concentrations up to 15.1 mg/L N-NO3 - mainly from the area’s central region, where the medium to high-density urban occupation dates back to 1910. Otherwise, the sewage system was installed before 1976. The reactions controlling the nitrogen species are oxidation of dissolved organic carbon, dissolution of carbonates, mineralization, and nitrification. Wells, with a nitrate-increasing trend, occur mainly in the central and northern regions, settled from 1910 to 1980-1990, when no legislation required the installation of the sewage network before urbanization. In turn, wells with stable or decreasing nitrate concentrations occupy the southwestern areas. Over the years, the concentrations of these wells have shown erratic behaviour, possibly caused by the wastewater that leaks from the sewer network. The bivariate statistical analysis confirms a high positive correlation between nitrate, sanitation age, and urban occupation density, which could serve as a basis for the solution of sustainable groundwater use in the region. Project supported by FAPESP (2020/15434-0) and IPA/SEMIL (SIMA.088890/2022-02).

Abstract

Saline groundwater in semi-arid to arid areas is typically ascribed to evaporative concentration of salts on or near the surface followed by dissolution of salts during episodic rainfall events and then percolation of saline downwards. This has been previously postulated for large parts of the west coast of South Africa where groundwater electrical conductivity (EC) ranges between 804 ?S/cm and 21 300 ?S/cm. However, due to the spatial variability of groundwater salt concentrations, it is unlikely that simple evaporation is the only process leading to elevated salinity levels in this region. Palaeo-termite mounds, known as heuweltjies (meaning little hills), are common surface features along the west coast of South Africa, covering an estimated 14 to 25% of the land surface. These structures consisting of aerated and nutrient-rich sediments, containing elevated levels of micro- and macro elements, including salts, compared to the surrounding sediments. For this reason, it is postulated that heuweltjies are an important source of groundwater salts. In the Buffels River valley, exchangeable ions from sediments in the centre of the heuweltjies are up to 20 times higher than in the inter-heuweltjie material and are consistent with elevated heuweltjie salts determined via in-situ EM38 scanning. 36Cl/Cl ratios are highly variable ranging between 25.94 x10-15 and 156.19x10-15, indicating that recharge occurs inland. Groundwater 87Sr/86Sr ratios in the same area are extremely elevated, up to 0.78240, suggesting a direct link to the underlying radiogenic granitic gneisses but decrease to the west suggesting interaction or mixing between different water sources. We propose that in this case, the two water sources are older groundwaters mixing with direct recharge that contains elevated salts but lower 36Cl/Cl and 87Sr/86Sr ratios derived from preferential flow paths through the heuweltjies.

Abstract

Groundwater quality and groundwater sample representativeness depend on the integrity of the water supply and monitoring wells. Well-integrity issues can occur by improper placement of grout seals behind the protective casing and/or by improper backfilling processes between ports. Multi-level monitoring systems are becoming common in the industry, providing depth-discrete groundwater samples and hydraulic head data from a single borehole. However, isolation between the monitoring intervals can be challenging when backfilled methods are used. No independent verification method exists to confirm seal placement for isolating monitoring intervals in such multi-level wells. A new approach using a hybrid fibre optic cable for adding heat, referred to as Active Distributed Temperature Sensing (A-DTS), is deployed in the annular space of a backfilled multi-level well. This new method is used to quantify the position of bentonite used as seals and sand packs that define the monitoring interval lengths and to identify issues associated with backfilling. A-DTS data from three boreholes with back-filled multilevel systems to 85 mbgs in a dolostone aquifer in Guelph, Ontario, Canada, demonstrates clear boundaries between backfill materials. In one interval, a deviation in the thermal data suggests a bridge in the bentonite seal, and this interval coincides with challenges in the backfilling from the field notes. The proposed method verifies well completion details, is repeatable and provides an efficient and effective way to assess well integrity impacting measurement uncertainty in a range of well types.

Abstract

Case studies illustrate a conceptual framework for shallow groundwater flow systems’ temporal and spatial variability with groundwater-surface water interactions in the Boreal Plains of Canada. The framework was developed using a twenty-year hydrometric dataset (e.g., climatological and streamflow data, hydraulic heads, vertical hydraulic head gradients, geochemical and isotopic signatures). The region is characterized by low-relief glacial landscapes, with a mosaic of forestlands and peatlands, and a subhumid climate, resulting in spatially heterogeneous storage and transmission properties, variable recharge and evapotranspiration potentials, and highly complex patterns of water movement. Two primary spatiotemporal scales were examined to create a holistic, variable-scale conceptual model of groundwater movement: the large scale (e.g., glacial landforms, regional topography, decadal climate cycles) and the small scale (e.g., individual landcover, local hummocks, annual moisture deficits). Water table behaviour, evapotranspiration rates, and runoff were controlled by a hierarchy of interactions between hydrological processes occurring at different spatiotemporal scales; however, the specific order of controls depends on the hydrogeological setting. The case studies, supported by empirical and numerical modelling, demonstrate that smaller-scale heterogeneities in geology and recharge can dominate over topographic controls, particularly in areas with high conductivity or hummocky terrain, where the climate, geology, and topographic relief are similar. Many hydrogeological studies rely on surface topography as a first‐order control; however, with field observations and modelling, this conceptual framework demonstrates the need to consider the potential dominance of subsurface characteristics and processes, plus climate, especially in landscapes with low recharge and low relief.

Abstract

Assessment of aquifer vulnerability to contamination is receiving renewed attention due to recent extreme events as demand for groundwater as alternative sources of water supply intensifies. In this study, GIS-based modeling of the impact of land-based activities and climate variability is employed to quantify the risk to quality deterioration of groundwater resource, delineate potential areas and highlight degree of vulnerability in the Cape Flats aquifer. The study used Scenariorcp85 CMIP5 AR5 climate change datasets downscaled from GCM using WaterWorld model. The WaterWorld is physically based global model for water balance includes all data required for application with a spatial resolution at 1-square km (Mulligan, 2009). The modeling results suggest that water balance for the predominantly low-lying flat central portion receives recharge ranges from 44 to 376 mm/yr. This reflects the area precipitation ranges from 500 to 800 mm/yr. Actual evapotranspiration (mm/yr) ranges from 92 to 1,200. The cmip5rcp85worldclimhe20412060 simulation main results indicate water balance (mm/yr) for the area predict to a minimum of -1,100 and maximum of 1,100. Actual evapotranspiration (mm/yr) ranges from 67 to 1,200. This led to an increase in evapotranspiration for the area of 13 mm/yr (2.5 %) that lead to an overall decrease in the water balance of -44 mm/yr (22 %). The human influence on water quality was simulated based on the human footprint index. The risk of contamination is largely attributed to the change in urban areas, pastures and cover of bare ground. In order to address the significant spatial variability of groundwater recharge and potential contamination risk occurring throughout the area, a GIS-based approach is used. The result underscores that GIS-based models are powerful tools to integrate spatiotemporal data and make assessment possible to improve understanding of water security in light of climate and land use change scenarios.

Abstract

Groundwater is the water that is found beneath the surface of the ground in a saturated zone (Bear 1979). Groundwater contamination refers to the groundwater that has been polluted commonly by human activities to the extent that it has higher concentrations of dissolved or suspended constituents. The scale of the potential supply of groundwater from the Cape Flats Aquifer Unit (CFAU) is very significant due to the increase of the population in Cape Town that leads to limited water resources (Maclear 1995). Groundwater contamination is a threat in the Cape Flats. This is because sand is more susceptible to pollution as a result of urbanisation, industrialisation, intense land use area for waste disposal and agricultural activities (Adelana 2010). The aim of this paper is to evaluate groundwater contamination and assess possible prevention and treatment measures in the CFAU. Pumping tests were done in UWC site in Borehole 5 (pumping borehole) and Borehole 4 (observation borehole) for six hours; three hours was for the pumping and the other three hours for recovery. This was done in order to see how the aquifer recovers after pumping. Water samples were also taken and analysed in the lab. This was done to find the type of contamination, whether it is degradable or non-degradable. The Borehole 5 drawdown plot is showing a straight line. This suggests a linear flow and that there is no confining bed beneath. This is because straight lines are showing the Cooper-Jacob type curve, which is for unconfined aquifers. The curve of Borehole 4 can be fitted to a Theis-type curve. This suggests a radial flow pattern indicating homogeneous characteristics in the deeply weathered zone and that there is a confining bed beneath. This is because aquifers responding in the same manner as the Theis-type curve, are confined aquifers (Hiscock 2005).The groundwater samples are showing a TDS range of 260 to 1 600 mg/l. This could be the result of the waste water treatment plant that is near UWC and the industries that are near the airport and at Bellville South. In conclusion, the geology of the CFAU is very susceptible to groundwater contamination, which is due to agricultural, industrial and human activities.

Abstract

In response to the serious 2015-2018 “Day Zero” drought, the City of Cape Town implemented large-scale augmentation of the Western Cape Water Supply System from deep groundwater resources within the Table Mountain Group (TMG) fractured aquifers. Several planned TMG wellfields target the Steenbras-Brandvlei Mega-fault Zone (SBMZ), the northern segment of which hosts the Brandvlei hot spring (BHS) – the hottest (~70°C) and strongest (~4 million m3/yr) in the Western Cape. Considering its possible “neohydrotectonic” origin, the BHS may mark the site of a major palaeo-earthquake, suggesting that SBMZ structures are prone to failure in the current crustal stress regime. Despite the “stable” intraplate tectonic setting, the SW Cape has experienced historic large (magnitude >6) earthquakes. Therefore, a better hydrogeological and seismotectonic understanding of the regional “mega-fault” structures is needed.

The South African TrigNet array of continuously recording Global Navigational Satellite System (GNSS) stations can be used to measure surface deformation related to confined aquifer depressurisation and vertical compression during groundwater abstraction. Time-series data from 12 TrigNet stations were used to establish a monitoring baseline for the SW Cape. Observed vertical motions range from slow subsidence to variable slow uplift with superimposed cyclical uplift/depression patterns of seasonal and multi-year variability. Baseline deformation/strain rates were calculated using 27 station pair lengths, ranging between compressive (-0.47 nanostrains/yr) and extensive limits (+0.58 ns/yr), indicating a rigid intraplate setting.

Anomalous high strain rates (> 10 ns/yr), associated with three stations, are probably due to station mount/foundation issues, rather than neo-seismic activity. Regional results show that seismo-geodetic monitoring is an important tool for understanding fractured aquifer compressibility and hydroseismicity, the latter of which may potentially be induced by large-scale TMG groundwater abstraction and/or natural earthquakes in the Western Cape. A local seismo-geodetic monitoring system is therefore being established at Steenbras Wellfield for further observations and analysis.

Abstract

The original City of Cape Town (CCT) Table Mountain Group (TMG) Aquifer Feasibility Study and Pilot Project was initiated in 2002, the purpose being to evaluate the feasibility of augmenting the CCT's bulk water supply using groundwater from the TMG (specifically the fractured Peninsula and Nardouw Aquifers). CCT TMG groundwater exploration/development was fast tracked under the "New Water Programme" (NWP; from 2017-present) as a result of two interrelated water scarcity/demand factors, namely periodic drought (including the major 2015-2017 1:590-year event) and rapid urban growth. Initial NWP TMG groundwater development (including additional exploration via detailed geological mapping and heliborne geophysics) has occurred in the vicinity of the CCT-operated Steenbras Dam, in the form of a minimum 15-20 Ml/day wellfield scheme. The planned "Steenbras Wellfield" targets both TMG aquifers along the Steenbras-Brandvlei Megafault Zone on the southeastern limb of the Steenbras Syncline (which regionally occurs within the high groundwater potential Cape Fold Belt Syntaxis). Current drilling activities have included ultra-deep (up to 975 m depth, representing the deepest groundwater-specific boreholes outside of mining/resource activities in South Africa), wide diameter abstraction (using rotary air percussion, reverse circulation and hydraulic/water hammer techniques) and core exploratory boreholes into both TMG aquifers. Tested abstraction borehole yields range between 10-70 l/s, while artesian-discovery core holes into the Peninsula Aquifer from Steenbras towards Theewaterskloof Dam have surface pressures and flows of up to 800 kPa and 4 l/s respectively (from BQ-sized holes intersecting water strikes between 840-910 m). Further CCT TMG groundwater exploration and wellfield scheme development (potential total combined supply of ~50-150 hm3/a or ~140-400 Ml/day) is planned along major TMG structures within the Grabouw-Eikenhof and Theewaterskloof basins, Wemmershoek, Voelvlei, Berg River and the CCT South Peninsula region. This has, and will continue to include, monitoring of surface/groundwater-dependent ecosystems as a geo-ethical approach to minimise ecological/environmental impact.

Abstract

Large parts of the City of Cape Town overlie a significant aquifer. Urban development proceeded without acknowledgement of the importance of this aquifer causing contamination in some areas and a lack of protection of recharge areas. Use of the aquifer for private domestic and industrial purposes has also largely continued unchecked. With the recent drought in Cape Town use of the aquifer dramatically increased, as did the City's understanding that the aquifer is a strategic resource to them. This paper presents the pros and cons of decentralised groundwater use. The current status quo of decentralised groundwater use in Cape Town, from basements to garden irrigation boreholes and to large-scale industrial users is presented, along with an assessment of the impact of the drought on groundwater availability. Recommendations are provided for how best to manage the challenges of decentralised groundwater use.

Abstract

Groundwater is increasingly being exploited in South African cities as a drought crisis response, yet there is poorly coordinated regulation of increasing urban users and usage and fragmented management of aquifers. Designing interventions and innovations that ensure sustainable management of these resources requires systems thinking, where the city is understood as an integrated, interdependent set of actors and flows of water. This paper presents a study that applied and integrated an urban water metabolism (UWM) analysis with a governance network analysis for two major South African cities facing severe drought risk, Cape Town and Nelson Mandela Bay. ‘Learning Laboratories’ in each city brought together stakeholders from various groundwater-related domains to build a shared understanding of how groundwater fits into the larger system and how various actors shape urban groundwater flows and the health of local aquifers. The UWM quantified all hydrological and anthropogenic flows into and out of each city (or urban system) to conduct an integrated mass balance. How this mass balance changes under varying climate change scenarios and land use was used as a focal point of stakeholder discussions. The governance network analysis highlighted that many state and non-state actors have a stake in shaping the quantity and quality of urban groundwater, such as regulators, service providers, water users, knowledge providers, investors in infrastructure, and emergency responders.

Abstract

This paper describes the calibration and testing processes of three methods of measuring hydraulic conductivity (slug test, mini disk infiltrometer and particle size distribution (sieves)) across varying scales (field and lab). The methods used in the field are the slug test and sieves which were used in four different wells of the Rietvlei wetland in Cape town and the mini disk infiltrometer was used in a grid developed in one of the Nelson Mandela University Reserve salt pans. The mini disk infiltrometer and the slug test are used to determine the saturated hydraulic conductivity (Ks) of altered or unaltered soil samples under controlled conditions in a laboratory, and that is a key parameter to understand the movement of water through a porous medium. The mini disk infiltrometer requires a small volume of water and has a compact size which makes it convenient for laboratory soil specimens, especially when studying vertical infiltration. Infiltration shows a dependence on the compaction and saturation of soil while hydraulic conductivity increases with depth in a simulated aquifer.

Abstract

Israel, S

Thousands of pharmaceuticals, pesticides and microplastics are consumed and disposed of directly or indirectly into various waterbodies globally. They are collectively termed “contaminants of emerging concern” or CECs. Contaminants of emerging concerns are defined as micropollutants that are present in the environment that are not regulated and that can pose a risk to the health of both humans and wildlife. The spread of these CEC’s in water systems is not isolated to a specific place and is on the rise all over the world. This study aims to investigate the spatial and temporal distribution pattern of pharmaceuticals in Cape Town’s water network, in order to assess the occurrence, concentration levels and distribution of pharmaceuticals in various water bodies. The study focuses on the occurrence of eight pharmaceuticals which are most frequently used and occurs in various water bodies around the world, namely acetaminophen, diclofenac, carbamazepine, naproxen, rifampicin, tenofovir, progesterone, sulfamethoxazole. The research sites include six waste water treatment plants in Cape Town with receiving rivers and borehole sites nearby and downstream from the waste water treatment works. Liquid chromatography combined with mass spectrometry is the selected method used to analyse the analytes of interest in the collected samples. Preliminary results obtained during the summer period (January 2021) showed that pharmaceuticals had indeed spread from waste water treatment plants into receiving water bodies with concentrations ranging from 0.8 to ≤ 6400 ng/L in both surface and groundwater due to the inefficient removal of these compounds. Continued research will conclusively address the concentration levels as a function of time, and consider the spatial distribution and its seasonality. It can be concluded from the preliminary results, that pathways of contamination from waste water discharge points to surface water and groundwater do indeed exist for the 8 pharmaceuticals considered.

Abstract

A Case study done in the heterogeneous Tygerberg shales underlying the northern section of the Cape flats aquifer. A well field consisting of five boreholes within a 1.6 Ha area was test pumped to determine aquifer parameters and sustainable yields for the well field. The wellfield located in a highly heterogeneous geological setting, proved to be an interesting scenario for wellfield analysis and determination of sustainable borehole yields. A variety of analytical methods were used to analyse the test pumping data including the Advance FC analysis and the Cooper Jacob Wellfield analysis, both producing different results. Through the test pumping data analysis, the wellfield could be divided into sub wellfield clusters based on drawdown interconnectivity during testing. Sub wellfield clusters were confirmed using groundwater chemistry, providing higher confidence in limiting uncertainty in long term cluster connectivity.

Abstract

Iron biofouling in boreholes drilled into the Table Mountain Group has been documented, with groundwater abstracted for the Klein Karoo Rural Water Supply Scheme and irrigation in the Koo Valley hampered by clogged boreholes, pumps and pipes. A similar phenomenon has been experienced at some boreholes drilled and operationalised by the Western Cape Government in response to the onset of the crippling drought in 2017. Monitoring of groundwater levels and pumping rates has yielded data showing a gradual decrease in groundwater level as the pumping rate reduced in response to the pump becoming biofouled, with possibly the same negative impact on the borehole itself. Methods are available to rehabilitate the boreholes (mechanical scrubbing, chemical treatment and jetting), but it seems difficult to destroy the bacteria and re-occurrence of biofouling appears inevitable. In the absence of better solutions, current experience suggests an annual borehole maintenance and rehabilitation budget of R 100 000 per borehole is required. This paper presents three case studies of boreholes drilled into the Malmesbury Group and Table Mountain Group and explores possible triggers of biofouling and its manifestation in the monitoring data.

Abstract

The Western Cape region in South Africa is currently experiencing its worst drought since 1904. As a result, the City of Cape Town (CoCT) implemented emergency response projects to augment water supply through desalination, re-use of treated effluent and groundwater abstraction from several groundwater systems. Amongst the targeted aquifers, the Cape Flats Aquifer (CFA) presents unique challenges and opportunities for abstraction and managed aquifer recharge (MAR). The CFA is a coastal unconfined primary aquifer within the urban and peri-urban environment. As such it is well situated to take advantage of enhanced recharge from treated effluent and urban stormwater. MAR is currently being tested and implemented with a three-fold purpose: (1) create hydraulic barriers against seawater intrusion and other contamination sources, (2) protect groundwater dependent wetlands and RAMSAR sites and (3) increase storage to enhance resilience to drought. Due to local hydrogeological characteristics and a high demand for open land, in the short term, high quality treated effluent will be injected directly through boreholes. Numerical modelling has supported siting and quantifying necessary injection rates. Current estimates indicate that available treated effluent will increase sustainable yields from the aquifer two-fold, as well as providing an additional storage volume equivalent to 2 to 3 years abstraction. In the future this is expected to be complemented with the re-design of urban water drainage to further enhance the recharge of stormwater. Given the time-constraints of an emergency response project, long-term testing and study of the system to support design and implementation have been significantly reduced and had to be replaced by a 'learn by doing' approach. We aim to present the on-going challenges of implementing MAR to complement an emergency response, as well as an overview of the scheme, new data and insights gained through the process.

Abstract

The Rietvlei Wetland, located in the Western Cape of South Africa is well recognised for harbouring numerous bird species, and is ranked the 6th most important coastal wetland in the South-western Cape. Researchers perceive that the wetland could be threatened by the growing drought hazards, and increased water demand in Cape Town. The extent of the effects is however unquantified and unknown. This therefore calls for extensive research and novel approaches to understand and quantify wetland hydrodynamics, to shape wetland management frameworks. Conducting thorough field work to understand wetland processes, and the use of numerical models for future prediction of black swan events are well recommended. Thus, the study aims to develop a conceptual hydrogeological model for Rietvlei Wetland, and to develop a numerical model to quantify the wetland’s groundwater budget. To achieve this, historical data was gathered, and field work which included groundwater monitoring, collection of sediment profiles and water quality analysis was undertaken. Preliminary results show that the wetland is underlain by an unconsolidated aquifer, largely overlain by different types of sand, mixed with clay and silt, and precipitation is the main source of groundwater into the wetland. A distinct relationship is seen between elevation, soil type and soil structure, such that during the peak rainy season, groundwater tends to be above the ground surface in the low-lying salt pans, dominated by clayey layers on their surfaces. These surfaces tend to crack during the dry season, facilitating preferential flow pathways at onset of rain. This information, and other historical data will be used to develop a numerical model using MODFLOW-NWT and ModelMuse. The numerical model is perceived to be the basis of groundwater modeling using open-source software for Rietvlei Wetland, and may be used for predicting the impacts of drought and increased groundwater abstraction on the wetland’s hydrodynamics.

Abstract

A review of groundwater levels in the greater Cape Town area toward the end of the 2017 summer revealed that groundwater levels had not yet been impacted by the below average rainfall over the past two to three years. This is in contrast to the dam levels which reached record lows, necessitating the implementation of strict water restrictions in the city. This buffer between drought and impact to aquifers is well known, and is a characteristic of many groundwater systems. Consequently groundwater can play an important role in managing the effects of drought on urban water supplies. From experiences in implementing groundwater-based drought relief schemes in the southern Cape in 2009 / 2010 and bolstering the water supply to Ladismith in 2013, lessons were learnt in implementing such schemes. This paper identifies ten key issues that require consideration, including the selection of drilling sites, the time it takes to implement emergency groundwater schemes and the need to avoid over-promising at a time when those responsible for water supplies are under increasing pressure from all around them. It is worrying that current planning around managing the drought appears to include little hydrogeological expertise at a decision-making level.

Abstract

The City of Cape Town (CoCT) and surrounding areas in the Western Cape is experiencing one of the worst droughts recorded in over a century and has been declared a disaster area. The need to develop the underlying, shallow Cape Flats Aquifer (CFA) has become of utmost importance to increase the resilience of the CoCT during times of drought. Since early 2018, over 180 boreholes have been drilled into the CFA and undergone test pumping and hydrochemical sampling. Hydrochemical analyses include macrochemical, dissolved metal and microbiological analytes to investigate the hydrochemical character of the CFA, identify potential contamination sources and better understand rock and groundwater interactions. In recent times, Contaminants of Emerging Concern (CEC) have become an important role player in groundwater hydrochemistry. Limited CEC data in South Africa prompted detailed investigations and analyses of CEC within the CFA. Groundwater within the CFA can be characterised into 3 types, predominantly linked to aquifer heterogeneity: Ca-HCO3 type (Mitchells Plain WWTW-Strandfontein), Na-Cl type (Philippi-Hanover Park) and Ca-Na-HCO3 (Bishop Lavis-Swartklip). Water quality varies across the aquifer with some areas being poor and highly contaminated, not meeting SANS 241:2015 drinking water standard. Exceedances include EC, TDS, sodium, chloride, sulphate, ammonia and TOC. Dissolved metals which exceed the standards are aluminium, iron, manganese, chromium and arsenic. These pose considerable risks to ecological functioning of the CFA and to human health if not properly treated, managed and monitored. Poor water quality within the CFA is predominantly a result of anthropogenic contamination, such as industrial pollution, unlined WWTW, leaking canals and sewage lines, agricultural fertilizers and irrigation return flow. Further sampling of surrounding surface water bodies and groundwater from boreholes will lead to the identification of contamination sources and an understanding of temporal changes in water quality to inform treatment options and costs when considering bulk supply

Abstract

It has been shown over many years that the efficient management of water resources is almost impossible without a database containing historical and up-to-date information and data of high integrity. When it comes to groundwater the situation is even worse as groundwater was often not seen as a viable resource, and if it was used, then in many cases, it was poorly managed due to the lack of monitoring and poor data collection. This has changed in recent years as groundwater now forms a large part of the used water resources in several communities, towns and metros. Therefore, the need for properly managed groundwater data has increased tremendously, leading to urgent requirements for a water database in whatever form. Unfortunately off-the-shelf groundwater databases relevant to the South African market did not really exist for many years, while international packages are expensive and need a lot of adaptation to work for South African conditions. Therefore, most groundwater practitioners used various forms of database software and/or spreadsheets without much integrity leading to data hosted on various computers around South Africa, but not one central system available to be accessed by groundwater managers, scientists or even the public. The Water Research Commission therefore Initiated a research project for the "Development of an integrated Groundwater Database and visualisation tools for the City of Cape Town and Environs", a system that should be so versatile that it could also be applied in other metros, provincial or national offices. This research project will have a huge impact on water resources decision making for the City of Cape Town, as the recent drought has put the City water managers under immense pressure, which was increased by the need to start using more and more groundwater resources, especially for critical City and province institutions like hospitals, clinics and care centres around the Western Cape. The outcome of the project is a "complete" groundwater resources database with links to surface water and meteorological stations and a number of visualisation tools, including an online web-based mapping tool, which is fed by live data from the database and may be used even by the public for groundwater education purposes.

Abstract

The demand on fresh water has increased to such an extend that supply cannot keep up with demand, especially in areas where desalination of seawater is not an option. There is a large gap between the water user, the water supplier and the capacity of the resource/s. The water user sees it as his/her right to be provided with clean water in sufficient volumes to sustain their most basic needs.At the same time people want higher levels of service, especially where sanitation is concerned. The recent droughts in Cape Town and in Port Elizabeth have put significant focus on groundwater and we've seen uncontrolled drilling for groundwater reaching new heights, which is a problem on its own. We can no longer afford not to bring the groundwater user into the water planning cycle, so that the users, on all levels of society, can be educated to understand that the quantity and quality of fresh water (ground -and surface water) is limited and dependent on recharge from rainfall, size of the catchment, topography and all that takes place on the surface. This education must be specific to a target audience and must take into account the existing knowledge and understanding of the user profile. As an example, a case study will be discussed where there are large groundwater users operating within the upper parts of a catchment, followed by municipal abstractions and private abstractions within the central parts of the same catchment. Four profiles of users are therefore present: (1) large-scale irrigation by farmers, (2) large-scale municipal abstractions, (3) private residents and (4) formal / informal settlements, with the latter probably competing for top pot in terms of water use, with the irrigation. They key deliverable of the presentation / paper will be to (1) make people aware of the problem/challenge, and (2) suggest ways to bridge gaps and get all users and service providers to work together to save water and to understand that there are limits to the quantities available.

Abstract

POSTER The study focuses on the primary aquifer in the Cedarville flats. Groundwater extracted from the aquifer is the primary source for domestic and agricultural purposes for farmers and the community in the Cedarville area. The aim of the study is to develop a conceptual hydrogeological model of the primary aquifer in Cedarville flats which may be used as an input to a groundwater flow model that will predict the behaviour of the aquifer. The main objectives of the research are:

Characterise  the  aquifer  based  on  borehole  log  information,  depth  to  water,  hydraulic properties of the aquifer and recharge.

Examine the hydrochemistry and environmental isotope composition of groundwater.

Develop a conceptual hydrogeological model for the Cedarville primary aquifer.

The study area boundary covers a large area including towns like New Amalfi and it goes to Lehlohonolo, but the main focus is in the primary aquifer in the Cedarville flats. The topography varies from predominantly hilly around the escarpment with numerous rivers draining deep valleys to a less mountainous undulating central area like Cedarville flats. Cedarville flats found in the midst of extremely broken ground forming the only considerable extent of plane country in the Eastern Cape territories. They cover about roughly 90 square miles and are hemmed in by ranges of mountains on the south and east and by small hills on the west and north. The aquifer is recharged by Mzimvubu River, which is the largest river in the Mzimvubu river basin; it extends from the Lesotho highlands to the Indian Ocean. It has four main tributaries: the Tsitsa, Tina, Kinira and Mzintlava, all having their headwater in the Drakensberg Mountains. The study area only shows the Tswerika, Riet, Mvenyane, Droewing and non-perennial streams. These streams all flow into the Mzimvubu River and their headwater is from the smaller mountains around the area.

The local geology of the area is formed by the Beaufort Group rocks and alluvium rocks which are quaternary in age. The geology that is specifically found in the Cedarville flats aquifer is made of alluvial deposits consisting of clay, sand and gravel. Surrounding the aquifer are Tarkastad subgroup rocks which are predominantly argillaceous rocks, including shale, carbonaceous shale, clay stone, mudstone and siltstone. The primary aquifer in the Cedarville flats is capable of sustaining long-term, large-scale production, and these kinds of aquifers are rarely found in the southern Karoo Basin.

Existing boreholes will be used to examine the bore log information, like lithology and thickness of the rocks that form the aquifer. Groundwater hydrographs will be drawn to determine the groundwater level variation. Pumping tests will be conducted to help with hydraulic conductivity, storativity and transmissivity of the aquifer. Water samples will be collected to test the water chemistry and environmental isotopes of the groundwater. Secondary data will be requested from National Groundwater Archives (NGA), Weather SA and the Department of Water Affairs. When all the data is collected, then a conceptual hydrogeological model will be produced.

 

 

Abstract

The UNESCO-IHP initiated a project on “Governance of Groundwater Resources in Transboundary Aquifers” in 2013. Three aquifers were selected for case studies: Trifinio (Central America), Pretashkent (Central Asia), and the Stampriet Transboundary Aquifer System (STAS) in southern Africa shared between Botswana, Namibia and South Africa. The project aimed to conduct a detailed assessment of the characteristics, current state and management of transboundary aquifers and to lay the foundations for a multi-country consultation body. It is expected that this will lead to enhanced water security, transboundary cooperation in groundwater management, and improved environmental sustainability in the aquifer region. Phase 1 of the project focused on desktop activities to acquire existing data and information with respect to three components: Hydrogeological, Socio-economic & Environmental, and Legal & Institutional. The integrated assessment determined that the recharge is taking place in Namibia during heavy rain periods, and that is where the resource is mostly used - Namibia (91.2%), Botswana (8.6%), South Africa (0.2%). Lack of time-series data made it difficult to determine aquifer properties. Groundwater quality is mainly impacted by agricultural activities and geological properties. The STAS area depends mainly on groundwater since the rivers are ephemeral. The Information Management System was developed in order to encourage information sharing among countries and to store interpreted and processed data from the assessment of the groundwater resources for use as a tool to support decision makers and relevant stakeholders’ actions. Water Diplomacy training offered involves hydro-politics of water to support cooperative agreements and increasing institutional capacity of sharing countries to reduce conflict and enhance cooperation over shared resources. This formed basis for the development of a Multi-Country Consultation Mechanism, a body that will provide the vision and direction towards governance and sustainable management of the STAS. The project is on-going with Phase 2 expected outcomes including numerical model, among other outcomes, using FREEWAT which is openly available. It is anticipated that ultimately, a joint governance model shall have been drawn amongst the three countries to ensure a mutually sustainable resource management.

Abstract

The Smuts House in Centurion is under threat of subsidence due to sinkholes. These sinkholes are linked to the Malmani Dolomite Formation, a Proterozoic carbonate sequence within the Chuniespoort Group of the Transvaal Supergroup, and is subject to sinkhole development (Clay, 1981). In addition to Smuts House, the areas are populated by thousands of people meaning risk of financial damage and, in some cases, loss of property and lives (Trollip, 2006).

The Jan Smuts House Museum is located in a natural park of indigenous trees and shrubs. The area is generally flat-lying; however, various ridges bisect the site in a north-south trend. A koppie (Cornwall Hill) is situated in the north. Outcrops of dolomite and chert characterise most of the study area. The two major streams in the area are that of the Sesmylspruit and Olifantspruit.

This study was undertaken to examine the relationship between subsidence of the Smuts House Museum, subsurface features (geological and anthropogenic) and the local geology. Magnetic and resistivity, active seismic and ground-penetrating radar (GPR) geophysical data were collected, along with x-ray fluorescence (XRF) geochemical data and hydrogeological data.

Abstract

The 16th Lum Nam Jone reservoir is located in Chachoengsao Province, Thailand. Since 2019, water has become highly acidic with a pH of 2.5-3.5 and contaminated by heavy metals. The groundwater plume is associated with high concentrations of Iron (60 – 3,327 mg/L), Manganese (38 – 803 mg/L), Copper (5 –500 mg/L), Zinc (11 –340 mg/L), and high Total Dissolved Solids (2,600 –23,000 mg/L). The hydrogeochemical assessment confirmed that the contamination is related to the molybdenum ore processing plant located upgradient. The industrial wastewater was illegally discharged underground and flowed to the reservoir due to a hydraulic gradient. The main objective of this research is to evaluate the efficiency of different reactive materials for In-situ remediation using a permeable reactive barrier (PRB). The experiment column setup showed that marl has the highest efficiency in elevating pH by 3.6 units. The Fe, Cu, and Zn removal rates by crushed shells were 100, 98, and 60%, respectively. The Fe, Cu, and Zn removal rates by limestone were 100, 73, and 32%, respectively. The Fe, Cu, and Zn removal rates by marl were 100, 100, and 48%, respectively. Regarding the laboratory-scale experiment, the pilot PRB was installed upstream of the reservoir. The PRB was filled with marl at the bottom, overlain by limestone, and then covered with the uppermost rice straw layer. The pH increased by 2.6 units inside PRB (from pH 3.1 to 5.7). A reduction of about 50% in Fe, 85% in Cu, and 50% in Zn had been achieved.