Aquifer Storage and Recovery

Planning for increased water security and preventing salinisation in coastal areas of the Netherlands: A study on the suitability for managed aquifer recharge and extraction of brackish water, including quantification of potential extractable volumes

Year-round water security is at risk as socio-economic developments lead to increasing water demands, while climate change affects water availability through higher-intensity rainfall and prolonged periods of drought. Coastal zones and deltas with often high population densities experience additional risks of salinisation and land subsidence. These developments ask for creative solutions to secure sustainable and year-round access to fresh water. The subsurface provides storage capacity to actively infiltrate freshwater, bridging the time-gap between demand and supply.

The impact of storage and hydrogeological conditions on the design and recovery performance of small-scale urban ASR systems

Aquifer storage and recovery (ASR) can play a vital role in sustaining water availability to cope with increasing weather extremes. In urban areas, ASR systems may provide flooding risk mitigation and support urban greenery. However, such systems are often relatively small and therefore, their recovery performance depends more strongly on site-specific storage conditions such as dispersion and displacement by ambient groundwater flow.

Aquifer storage and recovery (ASR) applications to enhance drinking water supply security in the Sultanate of Oman

Water scarcity has driven many countries in arid regions, such as Oman, to desalinate seawater for freshwater supply. Episodic problems with seawater quality (e.g., harmful algae), extreme weather events that affect energy supply and hence the desalination process have nurtured the urgent need to store desalinated seawater (DSW) in the aquifers for use during emergency and peak demand time.