Conference Abstracts

All Abstracts were presented at the Groundwater Conferences

Displaying 751 - 795 of 795 results
Title Presenter Name Presenter Surname Area Conference year Sort descending Keywords

Abstract

Groundwater arsenic (As) distribution in alluvial floodplains is complex and spatially heterogeneous. Floodplain evolution plays a crucial role in the fate and mobilization of As in the groundwater. This study presents how groundwater As enrichment is controlled by the spatial disposition of subsurface sand, silt, and clay layers along an N-S transect across the Brahmaputra river basin aquifer. Six boreholes were drilled in the shallow aquifer (up to 60 m) along this transect, and 56 groundwater samples were collected and analysed for their major and trace elements, SO4, PO4, dissolved organic carbon (DOC), and dissolved oxygen (DO). Groundwater As ranges from 0.1 to 218 μg/L on the northern bank while from 0.2 to 440 μg/L on the southern bank of the Brahmaputra. Groundwater in the southern bank is highly reduced (Eh -9.8 mV) with low DO and low SO4 (2 mg/L), while groundwater in the north is less reduced (Eh 142 mV) with low DO and higher SO4 (11 mg/L). Subsurface lithologies show that the aquifer on the southern bank has a very thick clay layer, while the aquifer on the northern bank is heterogeneous and interlayered with intermediate clay layers. Depth comparison of the groundwater arsenic concentrations with subsurface lithological variations reveals that groundwater wells overlain by thick clay layers have higher arsenic, while groundwater wells devoid of clay capping have lesser arsenic. Detailed aquifer mapping could be decisive in exploring potentially safe groundwater from geogenic contamination.

Abstract

The SADC region has vast potential to alleviate water scarcity and promote growth through the responsible development of groundwater resources. To achieve this, it is crucial to understand the resource’s value, implement sustainable abstraction programs, protect its quality, optimize its usage for regional development, and implement innovative aquifer management programs, including artificial recharge. Greenchain Group is a water treatment company that recognizes the value of water and strategically deploys its expertise to maximize the potential of each drop. As membrane technology specialists and local manufacturers of this advanced technology, we understand how to design integrated solutions to safeguard water quality and accessibility. Our wide range of filtration technologies allows us to select the technology suited to the application and regional groundwater context and to produce high-quality water from various sources, including groundwater. Additionally, by removing contaminants/unwanted constituents from groundwater, we enhance the value of each drop of water for local potable consumption, eliminate the need for overwatering in agriculture, and allow for the creation of new agriculture/industries in regions with poor groundwater quality. This same technology can also treat wastewater and remove contaminants (e.g. chemical of emerging concern, PFAS) and thus is critical to water reuse applications and responsible Managed Aquifer Recharge. Greenchain Group’s treatment systems have been used in various industries, including agriculture, mining, energy, medical, food and beverage, and remote and mobile settings.

Abstract

Slug tests are preliminary tests applied to determine the hydraulic conductivity and whether it is necessary to perform a pumping test on the borehole under investigation and should never be recommended as a substitute for a pumping test. For this reason, slug tests cannot be related to sustainable yield because slug tests cannot detect boundary conditions. The aim was to develop a methodology to relate slug tests to a potential yield estimation, investigating and reviewing the applicability and accuracy of the slug test methodology in South Africa, applied on fractured rock aquifers as established in 1995. The aim was achieved by reviewing the methodology applied for slug tests that are related to potential yield estimations, identifying the limitations of slug tests, investigating the possibility of updating the potential yield estimation method of 1995, and investigating the possibility of relating slug tests, to potential yield and transmissivity estimations through groundwater modelling. The investigation revealed that using transmissivity values determined through slug test homogenous modelling can be utilised to estimate the potential yield of a borehole under investigation by implementing correlation statistics. Note that this is not an absolute and is subject to limitations.

Abstract

Thailand has been grappling with a water scarcity problem every year, leading to insufficient water supply for consumption in many areas. To tackle this issue, groundwater is developed from large sources, making water allocation and economic analysis essential for measuring investments in water supply projects. This research study analyzes the water allocation for consumption and irrigation, including the water sent to hospitals, in two areas, Si Somdet & Roi Et Province and Nong Fai. The study uses the WUSMO program to analyze irrigation water and the EPANET program to analyze the entire water allocation system. The expected results include the appropriate allocation of water for maximum benefit, considering both delivery time and the amount of water to ensure adequate delivery. The study provides a guideline for effective and sustainable water allocation and management, including appropriate and sufficient water costs for managing the water distribution system in both areas. The results show that a water rate of 19 baht per cubic meter in Si Somdet & Roi Et Province results in a B/C value of 1.04 and an EIRR of 6.48%, while a water tariff of 15 baht per cubic meter in Nong Fai results in a B/C of 1.01 and an EIRR of 6.16%. The study highlights the importance of regular analysis of water allocation and cost-effectiveness of projects to ensure sustainable and efficient water management for the people.

Abstract

Monitoring regional groundwater levels provides crucial information for quantifying groundwater depletion and assessing environmental impacts. Temporal variation of groundwater levels is the response of the groundwater system to natural and artificial stresses in terms of groundwater recharge and discharge. The complexity and extent of the variation rest on the nature and storage properties of the aquifer system. High groundwater levels are usually found in the recharge zones and low in the discharge zones, resulting in groundwater flow from recharge areas to discharge areas. Continuous decline of groundwater levels has been observed in some of the monitoring boreholes within the National Monitoring Network. Groundwater level decline has been caused either by over-exploitation or reduction of groundwater recharge. Generally, the pattern of spatial and temporal variations of groundwater levels is the consequence of incorporating climatic, hydrological, geological, ecological, topographical, and anthropogenic factors. Therefore, understanding the pattern of spatial and temporal variations in groundwater levels requires a combined approach. A combination approach of National long-term groundwater level monitoring data, Hydrological stresses, Anthropogenic interferences, and characteristics of the groundwater system was used to understand the continuous decline of groundwater levels in selected monitoring stations across the country.

Abstract

The study focuses on the overlapping effects of low-enthalpy geothermal plants in urbanized areas, showing the importance of quantifying thermal groundwater exploitation to manage the resource adequately. Geothermal energy connects groundwater use to one of the ever-growing needs nowadays: energy. For low-temperature geothermal, the form of energy we can harness is thermal energy for building heating or cooling, one of the most polluting sectors, representing 34% of CO2 emissions in Europe. As in the main European cities, geothermal energy use is constantly growing, and understanding the status of groundwater exploitation for geothermal purposes is essential for proper resource management. To this end, the study’s first phase focused on quantifying geothermal use in the study area selected in Milan city-Italy.

Knowing the characteristics of geothermal plants in the area allows us to understand the extent of the resource exploitation and the consequences of its mismanagement at a large scale. In fact, the plant designers often focus on the local scale, not considering the presence of neighbouring plants, which risks decreasing the plant’s efficiency or amplifying its subsurface thermal effect. To minimize the thermal effects/interferences of geothermal plants in the subsoil, the study of the application of D-ATES systems (Dynamic Aquifer Thermal Energy Storage) with significant groundwater flow is promising. A numerical model of the study area is then implemented with MODFLOW-USG for thermal transport in porous media to evaluate the advantages of installing D-ATES systems instead of typical open-loop systems.

Abstract

The work presented relates to the influence of regional scale dykes in groundwater flow in karst aquifers of northern Namibia’s Otavi Mountainland around the towns of Tsumeb, Otavi and Grootfontein. The aquifers are well studied and are an important water source locally and for populated central areas of the country during drought. The area has parallel, eastwest trending elongated valleys and ranges shaped by the underlying synclines and anticlines of folded carbonate units of the Damara Supergroup. The role of the regional scale dolerite dykes that cut across the dolomitic aquifers has not been fully appreciated till recently. Aeromagnetic data is effective in mapping the dykes in detail. The dykes trend in a north-easterly to northerly direction into the Otavi Platform carbonate rocks. The dykes are normally magnetised with the odd remanent dyke. They consist mainly of dolerite, although in some cases are described as tectonic with hydrothermal magnetite and no dolerite material. The dykes appear to focus southwest of the Otavi Mountainland near the Paresis Alkaline Intrusive (137Ma). Examination of existing hydrogeological data reveals different characteristics of the dykes that influence groundwater flow, forming: a) conduits that enhance flow along contact zones, b) barrier to flow with compartmentalization and c) partial barrier to flow. An advantage has been taken of the understanding gained to manage mines’ dewatering and pumped water management. Future water resources management and contaminant studies will need to recognise the compartmentalised nature of the aquifer

Abstract

PFAS and pharmaceuticals in groundwater are two of many synthetic compounds currently under the attention of many researchers and environmental administration in Europe, especially in light of the revision of the EU Groundwater Directive 2006/118/EU. The two types of substances were first included in the voluntary groundwater watch list and were first formally regulated at the EU scale. This regulation implies that they will be obligatory to be monitored within national monitoring programmes for groundwater body status assessment procedures across the EU. While there is no doubt about the need to regulate the presence of these substances in groundwater, sampling procedures and QC/QA protocols may be challenging to implement as no official guidelines exist. Although scientific literature allows us to define protocols usually based on precautionary principle, these may be too difficult and expensive to implement at the national scale monitoring. This article describes a work that the Polish Geological Institute – National Research Institute undertook to define an optimal sampling process for PFAS and pharmaceuticals in groundwater. Experimentally tested factors included cleaning pumps between sampling sites, the need for using protective suits during sampling and the influence of ambient air on sample quality. Results showed that sampling protocols for PFAS and pharmaceuticals do not need to be modified concerning current protocols as these seem to be sufficient to protect groundwater samples from unintentional cross-contamination.

Abstract

Since the end of the 1970’s, the Ministry of Agriculture, Water and Land Reform (MAWLR), through the development of the groundwater database (GROWAS II), gathered a great number of data on groundwater quality. In an ongoing study (MAWLR-MEFT-AFD-BRGM, 2023), an opportunity was presented to compile chemical data for groundwater in the two most north-western regions of Namibia, Kunene and Omusati, to elaborate and support decision-making with the available information. A selection of 3256 data presenting a good ionic balance (± 10%) was selected from a large dataset, using metadata from previous BGR projects and the Geological Survey of Namibia at a 1:250,000 scale as supporting information. During the assessment of chemical data, it was depicted that most of the good quality water for human consumption and irrigation is located in the carbonated sedimentary formations at the southeastern part of Kunene and a great part of the northern part of the Kunene region. With more detailed data treatment, it allowed for confirming a natural origin for high fluoride concentration linked to granite, gneiss, old volcanic rocks and high sulphate concentration due to evaporates (gypscrete) in the eastern part of Omusati. In contrast, high nitrate concentrations were found in various lithologies across the two regions confirming local anthropogenic contamination. These results were compared to information obtained through the few published works of local studies to evaluate the accuracy of this large-scale assessment of chemical data.

Abstract

The joint application of water supply system security, groundwater modelling, and multicriteria analysis (MCA) indicated the potential of Managed Aquifer Recharge (MAR) to increase water supply security in Eastern Botswana substantially. Botswana faces increased water stress due to decreased water availability as climate change exacerbates variability in rainfall and increases evaporation losses and water demand. The water supply for Eastern Botswana is based on the bulk water supply system of the North-South Carrier (NSC) connecting dams in the northeast to the main demand centres, including Gaborone. The potential of MAR to increase the water security of the NSC by storing water that otherwise would have been lost to spillover and evaporation and contribute to the provision of water during droughts was studied. Large-scale MAR in the Ntane sandstone aquifer at a wellfield by the NSC was evaluated in terms of hydrogeology and national water supply perspective. Comprehensive hydrogeological surveys and assessments included borehole injection tests and hydrogeological and geochemical modelling to evaluate risks of losing recharged water and clogging of boreholes. Probabilistic water supply system modelling analysed the impact of different MAR scenarios on the water supply security of the NSC, and an MCA tool assessed the sustainability of the different scenarios. The analysis showed that large-scale MAR is feasible, and a scheme with a capacity of 40,000 m3 /d is the most sustainable from technical, social, economic and environmental perspectives and could potentially reduce the number of months with water shortage by 50% in Gaborone.

Abstract

Integrated geophysical methods can be useful tools in mapping the subsurface characteristics likely to control groundwater occurrence and hence are useful in identifying potential drill targets in different aquifer formations in Southern Africa. This study applied hydrogeophysical methods (natural, electrical, and electromagnetic) to identify potential groundwater-bearing targets within the Kalahari sand aquifers in Namibia and the crystalline basement aquifer system in Namibia and South Africa. The results suggest that hydrogeophysical assessments in Kalahari sandstone aquifers could clearly show that the system exhibits a well-defined layered aquifer formation likely recharged from surface water. On the other hand, crystalline basement formations could be combined with geological observations and used to identify groundwater controls like lineaments and depths to fractured zones. The magnetic method, horizontal and vertical frequency domain electromagnetic geophysical methods presented herein managed to delineate the main dykes and lineament features associated with groundwater occurrence in typical crystalline basement aquifers, while the natural magneto telluric investigations managed to delineate the deep and shallow aquifer formation in Kalahari sandstone aquifer formation. The study also advocates for integrating geophysical methods with local and regional geology for groundwater evaluation to provide a more detailed approach to resource assessment in some of the vulnerable aquifer systems in Southern Africa. Results from this study are useful for technical groundwater management and promoting the utilization of groundwater as a climate-resilient strategy in Southern Africa.

Abstract

Communities in the Lower Shire River Valley in the Chikwawa District of southern Malawi face extreme development challenges due to highly variable climate, including floods and droughts, that trap them in poverty and food insecurity. The area has been the focus of numerous studies and data collection campaigns to understand better the causes and processes associated with brackish groundwater (in alluvial aquifers) and dry boreholes. An applied groundwater assessment was performed to evaluate water supply alternatives and solutions to deliver potable water to approximately 15% of the district without water access after a multi-year campaign to reach 100%. The assessment synthesized a significant volume of water quality data collected by researchers and nongovernment organizations, larger scale geological interpretations published in segmented literature, multi-spectral satellite imagery datasets, and combined field reconnaissance to investigate areas of interest further and address pertinent data gaps. Improved understanding of geologic structure and lithology, complex aquifer recharge, and evapotranspiration processes supported identifying areas unsuitable for groundwater development and yielded recommendations for groundwater exploration and other solutions.

A high permeability zone and strong surface-groundwater connection was identified along the Gungu River. Data collected throughout the area of interest corroborated that significant freshwater recharge occurs in the alluvial aquifer, promoting an aquifer zone where freshwater and higher yields are likely. Exploratory drilling resulted in a very high-yielding freshwater well that supported the development of a piped water system serving several villages.

Abstract

Water resources worldwide are stressed, and the number of groundwater professionals required to manage those resources is not being generated in sufficient numbers. Groundwater educational resources must be placed in schools to generate excitement and raise awareness. Additionally, people entering the workforce need training throughout their professional careers. Oklahoma State University partnered with the U.S. National Ground Water Association to develop a framework for providing education and training programs in groundwater that allow for interactive online education at all levels. The Awesome Aquifer 360 program targets grades 5-8, allowing students to conceptually explore aquifers and the people who manage them. The Drilling Basics Online program provides a 40-hour basic safety and drilling training to recruit professionals into the groundwater industry and reinforce safe operations. These programs and future plans for the technique will be discussed.

Abstract

Globally, rivers, lakes and groundwater face complex anthropogenic water quality alterations posing risks to human health, food security and ecosystems. The World Water Quality Alliance (WWQA) forms an open, global consortium, pooling expertise on water quality science and technology innovation and providing a participatory platform for water quality assessments and co-designing tailored and demand-driven services. It addresses priority topics relevant to water governance, scalable water solutions and emerging issues in water management. The African Use Cases provided an initial testbed that puts the quality of surface water and groundwater into the context of the local 2030 Agenda and its multiple linkages across the Sustainable Development Goals. Central to the initial Africa Use Cases was the integration of in-situ, remote sensing-based earth observation and modelling data to derive the best possible current state of water quality (baseline). Of the three African Use Cases, “Cape Town’s Major Aquifer Systems” focused mainly on groundwater quality in an urban environment. One of the success factors for the Cape Town Aquifer Use Case was the ability of the team to integrate the three different data types of the triangle approach on a sub-catchment scale. This required understanding the complex surface and groundwater systems and their interaction (flow paths and fluxes) in the urban environment. A robust stakeholder engagement process and the introduction of transformative art also drove the success of the Cape Town Use Case. The outcomes of this process will be presented and discussed in this presentation.

Abstract

Urban karst terrains can experience geotechnical issues such as subsidence or collapse induced/accelerated by groundwater withdrawal and civil works. Sete Lagoas, Brazil, is notable for overexploiting a karst aquifer, resulting in drying lakes and geotechnical issues. This study aims to evaluate the progression of geotechnical risk areas from 1940 to 2020 and to simulate future scenarios until 2100. Historical hydraulic head data from the 1940s (when the first pumping well was installed) to the 2000s, a 3D geological model, and a karst-geotechnical risk matrix for defining risk levels were employed to develop a calibrated Feflow numerical model. The results indicate that, before the first well in 1942, the groundwater flow direction was primarily towards the northeast. In the 1980s, due to the concentration of pumping wells in the central area, a cone of depression emerged, causing the flow directions to converge towards the centre of the cone, forming a zone of influence (ZOI) of approximately 30 km². All 20 geotechnical events recorded between 1940 and 2020 have occurred in high or considerable-risk zones where limestone outcrops or is mantled in association with the ZOI. For future scenarios, if the current global well pumping rate (Q = 144,675 m³/d) from 2020 remains constant until 2100, the high and considerable geotechnical risk zones will continue to expand. A 40% decrease in the global rate (Q = 85,200 m³/d) is necessary to achieve a sustainable state, defined by reduced and stabilized risk zones.

Abstract

Groundwater is an important freshwater supply that has a significant role in the economy. However, water is increasingly becoming scarce in several regions. Huai Krachao Subdistrict in Kanchanaburi Province is an example of an area that has been experiencing a severe drought for decades due to the impacts of climate change. This study was conducted to delineate the groundwater potential zones in hard-rock terrains using geographic information system (GIS) techniques. The study aims to explore deep groundwater resources in challenging areas and propose alternative methods supporting traditional groundwater exploration. This finding revealed that the groundwater potential zones were classified into high, moderate, and low potential zones based on the groundwater potential index (GWPI), integrated using the Weighted Index Overlay Analysis. The computed weights from the Analytical Hierarchy Process were acceptable and consistent. The high potential zones mainly occur in the Silurian-Devonian metamorphic rocks. The GIS-based analytical results were later prepared for detailed field investigation, including collecting well information and conducting the 2-dimensional geophysical survey. To prove the GWPI map, 9 groundwater wells were drilled in the high potential zones. Consequently, well yields obtained from the pumping-test analysis ranged from 24-40 m3 / hr, some of which are springs rich in dissolved minerals. Accordingly, a significant amount of water could meet the water demand, supplying about 1 million m3 /year. Under these circumstances, discovering new groundwater resources can support roughly 5,000 people and agricultural lands no less than 480 hectares (4.8 km2 ).

Abstract

Natural processes (e.g., El Nio) and anthropogenic activities (e.g., land-use modification and groundwater abstraction) drive local and global hydrological changes. Consequently, these changes threaten the role of wetlands in the hydrological and ecological functioning of a catchment. Verlorenvlei is a vulnerable RAMSAR-listed estuarine lake located on the west coast of South Africa in Elands Bay. Since the 2015-2018 Western Cape drought, Verlorenvlei has experienced drier-than-normal conditions with less rainfall, negatively impacting the surrounding ecology. Seasonal and spatial changes of the water sources (e.g., rainfall, surface water, and groundwater) supporting the wetland and the interconnectivity between these reservoirs were investigated using O/H stable isotopes and hydrochemistry analysis. The study collected event-based rainfall (57 samples), surface water (18 samples), and groundwater (108 samples) in February, April, and June 2022. Stable isotope ratios and hydrochemistry indicate that groundwater outside the watershed (topographically and surface water delineated) supports the wetlands, suggesting that local and regional groundwater flow systems influence the Verlorenvlei. Furthermore, the Verlorenvlei is subjected to high evaporation compared to other surface waters and, in return, is reliant on baseflow supporting its hydrological functioning. The Krom Antonies and Hol sub-catchments exhibit overlapping groundwater isotope ratios and water types compared to the Verloren sub-catchment, suggesting a disproportionately high groundwater contribution from both sub-catchments into the wetland. Understanding Verlorenvlei’s water balance is necessary to improve ecological reserve determination studies to help ensure environmental and socio-economic sustainable water use

Abstract

Drywells are extremely useful for coping with excess surface water in areas where drainage and diversion of storm flows are limited, facilitating stormwater infiltration and groundwater recharge. Drywells have been used for stormwater management in locations that receive high precipitation volumes, naturally or due to climate change; however, to date, they have not been developed in urban areas overlying karst landscapes. To test the performance of karst drywells, we constructed a pilot system for collecting, filtering, and recharging urban stormwater through drywells in karst rock. The study site is in the Judaean Mountains, an urban residential area in Jerusalem, Israel. The infiltration capacity of the drywells was evaluated using continuous and graduated water injection tests, and its effective hydraulic conductivity (K) was estimated. Drywells’ infiltration capacity was up to 22 m3 /hour (the maximum discharge delivered by a nearby fire hydrant), while monitored water levels in the drywells were relatively stable. Calculated hydraulic conductivities were in the range of K=0.1-100 m/ day, and generally, K was inversely proportional to the rock quality designation (RQD) index (obtained from rock cores during the drilling of the drywells). The pilot system performance was tested in the recent winter: during 9 days with a total rainfall of 295 mm, a cumulative volume of 45 m3 was recharged through the drywell, with a maximum discharge of 13 m3 / hour. High-conductivity karst drywells and adequate pre-treatment filtration can be valuable techniques for urban flood mitigation and stormwater recharge.

Abstract

Globally, losses of excess nitrogen (N) from agriculture are affecting our air and water quality. This is a well-known environmental threat and is caused by food production for an ever-growing population. Since the 1980s, many European countries, such as Denmark, have successfully combatted N pollution in the aquatic environment by regulating and introducing national agricultural one-size-fits-all mitigation measures. However, further reduction of the N load is still required to meet the demands of, e.g., the EU water directives. Scientifically and politically, implementing additional targeted N regulation of agriculture is a way forward. A comprehensive Danish groundwater and modelling concept has been developed to produce high-resolution groundwater N retention maps showing the potential for natural denitrification in the subsurface. The concept’s implementation aims to make future targeted N regulation successful environmentally and economically. Quaternary deposits, formed by a wide range of glacial processes and abundant in many parts of the world, often have a very complex geological and geochemical architecture. The results show that the subsurface complexity of these geological settings in selected Danish catchments results in large local differences in groundwater N retention. This indicates a high potential for targeted N regulation at the field scale. A prioritization tool is presented that has been developed for cost-efficient implementation at a national level to select promising areas for targeted N regulation.

Abstract

South Africa faces serious water scarcity challenges not only because it is a semi-arid country but also due to climate change. One of the most significant effects of climate change is an increase in temperature, which inevitably increases evaporation. Increased evaporation directly reduces the availability of surface water resources. Groundwater is less susceptible than surface water resources to evaporation and thus offers resilience against the impacts of climate change. Many South African cities, communities, and farmers depend on groundwater for domestic or other socio-economic purposes. This implies that groundwater resources which are currently or potentially utilisable should be identified, and suitable legal measures should be implemented to protect these resources from potential risks of harm or damage posed by anthropogenic activity. First, This article evaluates the effectiveness of the country’s existing regulatory framework to effectively protect South Africa’s groundwater resources and finds that the framework can be improved significantly. Secondly, it explores regulatory opportunities within the existing legal framework to strengthen South Africa’s groundwater governance regime, including using land use planning instruments to facilitate the implementation of groundwater protection zones

Abstract

To explore the sources of pollution and health risk profile of heavy metal elements in groundwater,41 sets of representative groundwater samples from the southwest subbasin of the Shiqi River were examined for 10 heavy metal elements, correlation analysis and principal component analysis were used to resolve the possible sources of heavy metal contamination in groundwater. The concentration characteristics and health risk levels of the 10 heavy metals were assessed using the single factor contamination index (Pi), the Nemerow comprehensive contamination index (PN) and the health risk model. The results show that: 1) The average values of heavy metal elements of the groundwater in the study area all met the limit of class III water standard in the quality standard for groundwater; only the maximum value of Al was exceeded, followed by a large variation in the concentrations of Al, Mn and Cr. The heavy metal element with the largest average contribution was Al (65.74%). 2) The results of the single factor contamination index evaluation show that only the heavy metal element Al exceeds the level, and the results of the Nemerow comprehensive contamination index evaluation show that the study area is basically at low pollution levels and the quality of groundwater is good. 3) The results of the multivariate statistical analysis show that Zn, Co and Mn are mixed sources of geological formation and domestic waste, Al, As, and Cu are agricultural sources, Cd, Cr and Ni are industrial sources, and Hg comes from long-range atmospheric transport.

Abstract

Diverse tools exist to study the transfer of contamination from its source to groundwater and related springs. A backward approach, i.e. sampling spring water to determine the origin of contamination, is more complex and requires multiple information. Microbial source tracking (MST) using host-specific markers is one of the tools, which, however, has shown to be insufficient as a stand-alone method, particularly in karst groundwater catchments. A karst spring in the Swiss Jura Mountains was studied concerning the occurrence and correlation of a set of faecal indicators, including classical parameters and bacteroidal markers. Sporadic monitoring proved the impact on spring water quality, mainly during high water stages. Additional event-focused sampling evidenced a more detailed and divergent pattern of individual indicators. A multiple-tool approach, complementing faecal indicator monitoring with artificial tracer experiments and measuring natural tracers, could specify the origin of ruminant and human faecal contaminations. Natural tracers allowed for distinguishing between water components from the saturated zone, the soil/epikarst storage, or freshly infiltrated rainwater. Additionally, the breakthrough of injected dye tracers and their remobilization during subsequent recharge events were correlated with the occurrence of faecal markers. The findings hypothesize that human faecal contamination is related to septic tanks overflowing at moderate rainfall intensities. Linkage with vulnerability assessment and land-use information can finally better locate the potential point sources. Such a toolbox provides useful basics for groundwater protection and catchment management and insight into general processes governing the fate and transport of faecal contaminants in karst environments.

Abstract

The drinking water health issues have been considered due to improved living standards in recent years. Finding and developing high-quality groundwater with high-level minerals has become key to improving human health. The hydrochemical test data of 66 springs in Zhaojue County were analyzed using various methods, and the spatial distributions of H2 SiO3 -rich groundwater, hydrogeochemical characteristics, formation conditions and genesis were revealed. The main results including: 1) the groundwater with H2 SiO3 (≥25mg / L) was identified as the low salinity and alkaline water, which distributed in the six areas with the basement rocks of basalt,with a distribution area of about 79 square kilometers. The H2 SiO3 concentration was generally 25.74~46.04 mg/L; the low mineralization characterized the H2 SiO3 -rich groundwater of study area while the main hydrochemical types of groundwater are HCO3 - Ca·Mg, HCO3 -Ca, and HCO3 -Na; the Pearson correlation coefficient between the content of H2 SiO3 in groundwater and the content of pH is relatively high, indicating that the level of H2 SiO3 in groundwater in the study area is significantly affected by the pH value of the solution; the H2 SiO3 -rich groundwater was influenced by the water-rock interactions, the distribution range and solubility of silicate minerals ,the development of surrounding rock fissures, and water conservation and recharge conditions in the county, among which the water-rock interactions play a critical role. The results can provide a basis for the development of mineral water industry and the construction of urban and rural high-quality water sources in Zhaojue County.

Abstract

While traditional well and spring sampling are limited to the integration of point data and the interpolation of the data across large scales. Electrical measurements of aquifers can be extended across a range of scales and integrated to provide an improved quantitative understanding of groundwater systems. At a site in Oklahoma, USA, a karst-managed aquifer recharge research site is being used to test electrical techniques for aquifer characterization on the kilometer scale and monitoring the aquifer on the meter scale. At the kilometer scale, the data illustrate fault locations, siphons in flow paths, and previously uncharacterized conduits. At the metre scale, the monitoring data illustrate porosity structure, flow paths, and potential biological changes in the subsurface. The results indicate that electrical approaches can significantly change aquifer conceptual models and provide targeted sampling locations in karstic bedrock aquifers.

Abstract

Aquifer Thermal Energy Storage (ATES) is increasingly utilised to optimise the efficiency of Ground Source Heat Pump (GSHP) systems. However, the criteria for selecting ATES over Unidirectional GSHP is not well-defined. Inappropriate selection of AETS can adversely impact the long-term viability and the GSHP system itself, as well as regional hydraulic and thermal sustainability due to adverse groundwater levels and temperature change. This is a concern in urban aquifers, where GSHP systems are increasingly common. There is a perception that ATES is always the most efficient; however, there is no clear definition of efficiency and how it can be readily assessed at the GSHP design stage. It is proposed and demonstrated herein that GSHP efficiency can be assessed by modelling borehole pumping in lieu of complex Coefficient of Performance calculations for the whole GSHP system. Borehole pumping is a more readily definable modelling outcome for comparing options at an individual site but is also a suitable proxy for comparing efficiency at different sites when given as a flow per unit rate of pumping. Operational efficiencies for ATES versus Unidirectional systems are presented using the pumping rate criteria for modelled scenarios. Here, three model inputs are varied: 1) the balance of heating and cooling, 2) the configuration of a single borehole pair across a hydraulic gradient and 3) the hydraulic gradient itself. These were assessed using coupled groundwater flow and heat transport modelling in Feflow to refine the Goldilocks Zone, the perfect balance, for these variables.

Abstract

Since 2018, the North China Plain has started a large-scale ecological water replenishment project for rivers and lakes, with 17.5 billion cubic meters total from the South–North Water Transfer Project and other water sources. It is a key question of how much water infiltration into aquifers will affect groundwater and how to characterize and evaluate this effect quantitatively. The groundwater numerical model of the Beijing-Tianjin- Hebei region as the main part of the North China Plain was established using a numerical simulation method, and the groundwater level variation under the replenishment condition was simulated and predicted. By comparing the two scenarios, the relative rise method of groundwater level was proposed to characterize the influence of river water infiltration on groundwater level, and the unstructured grid method was used to refine cells near the river to improve simulation accuracy. Simulation results show that the groundwater level around some rivers has risen significantly in the past four years, especially in the alluvial fan regions with better infiltration properties. Accordingly, at the Piedmont alluvial fan region, there is also a large influence range on groundwater level. The maximum influence distance is more than 10km (0.1m relative rise of groundwater level was taken as the influential boundary). According to the prediction, if the water replenishment project continues, the range of influence can continue to expand, but the expansion rate will slow down due to the reduction of the hydraulic gradient.

Abstract

Monitoring deep (~100 – 200 m) fresh-saline water interface is a challenge because of the low spatial density of deep boreholes. In this project, Vertical Electrical Soundings measurements were used to evaluate changes in the depth of the interface over various decades. Water quality monitoring is a well-known application of geo-electrical measurements but generally applies to the relatively shallow subsurface. In this case study, the saline groundwater interface is around 120 -200 m deep, and the time interval between the measurements is several tens of years. Several locations showing good-quality existing VES-measurements acquired in the last century were selected to see whether repeat measurements could be performed. The number of locations where a repeat measurement could be performed was limited due to the construction of new neighbourhoods and greenhouse complexes. When interpreting the measurements for the change in the depth of the fresh-salt interface, it is assumed that the transition from fresh to saline groundwater occurs over a small depth range and that the electrical conductivity of the fresh water above this interface has not changed. However, it turned out that the ion concentration of the groundwater in the layers above the fresh-saline interface had increased sharply at almost all locations. This complicated the approach, but still, useful results could be obtained. Based on the measurements, it can be said that the fresh-saline water interface has shifted downwards at 3 locations, and hardly any change has occurred at 5 locations.

Abstract

Porosity describes the ratio between the volume of pores, cracks, and fissures and the total volume of a studied geological medium. This notion implies a volume averaging of the medium characteristics using the concept of Representative Elementary Volume (REV). Small volumes can contain only pores, while larger volumes typically contain both pores and fissures. Porosity can be highly scale-dependent, and different porosity values can be measured for the same geological formation. Furthermore, groundwater in the pores and cracks can be partly immobile or mobile. So, the porosity actively involved in groundwater flow can be discussed. A ‘mobile water porosity’ can be defined, but this remains highly dependent on the existing pressure conditions in the geological medium. In unconfined conditions, the term ‘effective porosity’ usually corresponds to the drainage porosity corresponding to the specific yield or storage coefficient. When dealing with solute transport and remediation of contaminated sites, another ‘effective porosity’ is needed to describe the advection velocity of the contaminant. This ‘mobile water porosity’ acting in solute transport processes typically takes lower values than drainage’s ‘effective porosity’. Scale issues must also be expected, as shown by field and lab tracer tests.

The term ‘Darcy velocity’ will be banished herein because it induces much confusion. For clarity, we propose to distinguish ‘drainage effective porosity’ and ‘transport effective porosity’. The physical meaning of both terms is discussed, and examples of supporting observations are presented for illustration and discussion.

Abstract

In 2021-23, northern Italy suffered a severe drought due to the absence of rainfall, which strongly affected the pre-alpine lake levels, affecting energy production, agriculture and sustainable river flows. This led to harsh consequences on agriculture, which in the Lombardy region almost completely relied on flooding irrigation methods using water from lakes through Ticino and Adda rivers. As part of the INTERREG Central- Europe project “MAURICE”, which focuses on Integrated Water Resources Management, the winter irrigation practice is proposed as a climate change adaptation strategy. The main project idea is to store surface water in aquifers in periods of exceedance (autumn/winter) using the very dense channels irrigation network as a “natural” infiltration system. The underground storage would increase the groundwater levels, bringing two main advantages during the spring/summer seasons: a good flow rate at plain springs and, in periods of water scarcity, the possibility to extract groundwater for agricultural purposes. Relying on the slow groundwater velocity (about 350 m/y), this practice keeps water stored in the subsoil just below the irrigated areas where the water is needed.

In the early project stage, a basin-scale numerical model is presented to test the potentiality of such practice. A specified water volume was distributed on the crop fields during the winter period, and the effects of such managed recharge were evaluated, also considering the possible problems deriving from the groundwater levels increase. The model demonstrates the adaptation measure feasibility, which will be tested at a field scale in a Pilot Area.

Abstract

The Anglo-American Municipal Capability & Partnership Program (MCPP) has partnered with the Council for Scientific and Industrial Research (CSIR) to implement programs focused on Strategic Water Management and Strategic Planning within the Gamagara and Tsantsabane Local municipalities within the Northern Cape Region. The CSIR appointed GEOSS South Africa (Pty) Ltd to assist with Municipal Groundwater Capacity Development and Support for these two municipalities. This work explores multi-level groundwater governance systems between the local municipality, government, the mining industry, and the private groundwater sector. The scope of the work focused on developing a comprehensive and practical groundwater management plan detailing the standard operating procedures for each municipality. These operating procedures have been drawn up using principles of best practice guidelines for groundwater monitoring and management but have taken site-specific details of the groundwater supply to the respective Municipalities into account. Workshops were conducted where Municipal staff were trained in basic principles pertaining to groundwater and practical skills in monitoring and managing their supply. This has proved very successful in informing Municipalities about their local groundwater system and aquifer. The capacity-building development aspect will ensure that Municipalities have the resources and the knowledge to manage their groundwater resource effectively. GEOSS has undergone several training workshops and offers weekly technical support to the two Municipalities. As the confidence of the municipal staff to manage their resource grows, their independence from the mining companies should lessen.

Abstract

Per and Polyfluoroalkyl substances (PFAS) are ubiquitous on our planet and in aquifers. Understanding PFAS transport in aquifers is critical but can be highly uncertain due to unknown or variable source conditions, hydrophobic sorption to solid organic aquifer matter, ionic sorption on mineral surfaces, changing regulatory requirements, and unprecedentedly low drinking water standards. Thus, a PFAS toolkit has been developed to enable decision makers to collect the hydrogeologic data necessary to understand and better predict PFAS transport in aquifers for the purpose of managing water resources. This toolkit has been tested at a significant alluvial aquifer system in the western United States, which provides water for 50,000 people. Here, the toolkit has provided decision makers with the data necessary to optimize water pumping, treatment and distribution systems. The toolkit describes (1) the design and implementation of a sentinel well network to measure and track PFAS concentrations in the alluvial aquifer over time in response to variable pumping conditions, (2) data collection used to empirically derive input parameters for groundwater fate and transport models, which include the collection of paired aquifer matrix and groundwater samples, to measure PFAS distribution coefficients (Kds) and modified borehole dilution tests to measure groundwater flux (Darcy Velocity) and (3) the use of data collection techniques to reduce cross contamination, including PFAS-free, disposable bailers and a triple-rinse decontamination procedure for reusable equipment. The PRAS transport toolkit has the potential to assist decision makers responsible for managing PFAS contaminated aquifers.

Abstract

Managed Aquifer Recharge (MAR) provides an integrated water governance solution that improves water security for communities and farmers by storing water in aquifers and managing groundwater extractions to ensure water supplies are available during droughts. Quantitative analysis of levelised costs and benefit-cost ratios (BCRs) of 21 MAR schemes from 15 countries and qualitative assessment of additional social and environmental benefits demonstrates the benefits of MAR compared to water supply alternatives. Cost-benefit analysis provides a systematic method for comparing alternative water infrastructure options. Levelised cost is a widely accepted method of comparing MAR with alternative water infrastructure solutions when market valuations of water are unavailable.

The benefits of MAR can be estimated by the cost of the cheapest alternative source of supply or the production value using water recovered from aquifer storage. MAR schemes recharging aquifers with natural water using infiltration basins or riverbank filtration are relatively cheap with high BCRs. Schemes using recycled water and/or requiring wells with substantial drilling infrastructure and or water treatment are more expensive while offering positive BCRs. Most MAR schemes have positive or neutral effects on aquifer conditions, water levels, water quality, and environmental flows. Energy requirements are competitive with alternative sources of supply. This analysis demonstrates strong returns to investment in the reported MAR schemes. MAR provides valuable social and environmental benefits and contributes to sustaining groundwater resources where extraction is managed.

Abstract

Aquifer storage and recovery (ASR) can play a vital role in sustaining water availability to cope with increasing weather extremes. In urban areas, ASR systems may provide flooding risk mitigation and support urban greenery. However, such systems are often relatively small and therefore, their recovery performance depends more strongly on site-specific storage conditions such as dispersion and displacement by ambient groundwater flow. In this study, we evaluated the impact of these factors by adapting and developing analytical solutions and numerical modelling, with recently established Urban ASR systems as a reference for a wide range of realistic field conditions. We validated the accuracy and usefulness of the analytical solutions for performance anticipation. Results showed that a simple, analytically derived formula describing dispersion losses solely based on the dispersion coefficient (α) and the hydraulic radius of the injected volume (Rh) provided a very good match for all conditions tested where α/Rh<0.2. An expansion of the formula to include the development of recovery efficiency with subsequent cycles (i) was also derived and in keeping with simulation results. Also, displacement losses were found to be significant at groundwater flow velocities that are typically considered negligible, particularly as displacement and dispersion losses disproportionally enforced each other. For specific conditions where the displacement losses are dominant, using a downgradient abstraction well, effectively resulting in an ASTR system, might be beneficial to increase recovery efficiencies despite increased construction costs and design uncertainty.

Abstract

The 16th Lum Nam Jone reservoir is located in Chachoengsao Province, Thailand. Since 2019, water has become highly acidic with a pH of 2.5-3.5 and contaminated by heavy metals. The groundwater plume is associated with high concentrations of Iron (60 – 3,327 mg/L), Manganese (38 – 803 mg/L), Copper (5 –500 mg/L), Zinc (11 –340 mg/L), and high Total Dissolved Solids (2,600 –23,000 mg/L). The hydrogeochemical assessment confirmed that the contamination is related to the molybdenum ore processing plant located upgradient. The industrial wastewater was illegally discharged underground and flowed to the reservoir due to a hydraulic gradient. The main objective of this research is to evaluate the efficiency of different reactive materials for In-situ remediation using a permeable reactive barrier (PRB). The experiment column setup showed that marl has the highest efficiency in elevating pH by 3.6 units. The Fe, Cu, and Zn removal rates by crushed shells were 100, 98, and 60%, respectively. The Fe, Cu, and Zn removal rates by limestone were 100, 73, and 32%, respectively. The Fe, Cu, and Zn removal rates by marl were 100, 100, and 48%, respectively. Regarding the laboratory-scale experiment, the pilot PRB was installed upstream of the reservoir. The PRB was filled with marl at the bottom, overlain by limestone, and then covered with the uppermost rice straw layer. The pH increased by 2.6 units inside PRB (from pH 3.1 to 5.7). A reduction of about 50% in Fe, 85% in Cu, and 50% in Zn had been achieved.

Abstract

Groundwater is increasingly being exploited in South African cities as a drought crisis response, yet there is poorly coordinated regulation of increasing urban users and usage and fragmented management of aquifers. Designing interventions and innovations that ensure sustainable management of these resources requires systems thinking, where the city is understood as an integrated, interdependent set of actors and flows of water. This paper presents a study that applied and integrated an urban water metabolism (UWM) analysis with a governance network analysis for two major South African cities facing severe drought risk, Cape Town and Nelson Mandela Bay. ‘Learning Laboratories’ in each city brought together stakeholders from various groundwater-related domains to build a shared understanding of how groundwater fits into the larger system and how various actors shape urban groundwater flows and the health of local aquifers. The UWM quantified all hydrological and anthropogenic flows into and out of each city (or urban system) to conduct an integrated mass balance. How this mass balance changes under varying climate change scenarios and land use was used as a focal point of stakeholder discussions. The governance network analysis highlighted that many state and non-state actors have a stake in shaping the quantity and quality of urban groundwater, such as regulators, service providers, water users, knowledge providers, investors in infrastructure, and emergency responders.

Abstract

The Ordovician aquifer of the Izhora deposit is widely used for drinking by the population of St. Petersburg and its suburbs. Carbonate Ordovician rocks are intensively karstified. The water is fresh (0,5-0,8 g/l), bicarbonate-calcium on the predominant ions, pH 7.6; calcium content is 50-80 mg/l, magnesium content is 30-60 mg/l and the total hardness is 7,6-8,0 mg-equ./l. Western, northern and northeastern boundaries of the Izhora deposit go along the Baltic Klint, which is evident on the relief. Its southern boundary is along the zone of the dip of Ordovician limestone beneath the Devonian sandstone. The territory of the Izhora plateau belongs to the areas of intensive economic activity. Often, objects of human economic activity are located near drinking water intakes. Almost all sites are marked by excess sanitary norms of chemical elements. Pollution of groundwater in the Ordovician aquifer has been identified in some areas. Priority substances have been identified for assessing the quality of groundwater: total hardness, Fe, Mn, Ba, and B. According to hydrochemical modelling data, Ordovician groundwater is saturated with calcite over most territory. There are many springs of underground water along the Baltic Klint, for example, near the village of Lopukhinka, Duderhof springs and others. The springs waters have natural radioactivity (due to the contact of groundwater with dictyonema shales), which makes their use hazardous to human health.

Abstract

Electromagnetic (EM) techniques were used to map groundwater salinity and clay layers in the Netherlands. The EM method used the so-called time domain system, is towed behind an ATV and is therefore called towed TEM. The results revealed a detailed 3-dimensional insight into the subsurface’s sequence of clay and sandy layers. Also, shallow saline groundwater, far from the coast, has been detected related to a subsurface salt dome. The rapid, non-destructive data acquisition makes the tTEM a unique tool. Electromagnetic (EM) techniques detect electrical conductivity contrasts in the subsurface with depth. EM data can often be interpolated into a 3D model of electrical conductivity. Expert knowledge of the regional geohydrologist, together with existing (borehole) data, is paramount for the interpretation. The towed Transient Electro-Magnetic system (tTEM) is developed to acquire data up to 60-80m depth by driving a transmitter and a receiver behind an ATV. With a speed of 10-15 km/h, measurements are collected every 5m. On fields, the distance between lines is typically 20m, resulting in a dense network of data that is inverted into 1D resistivity models, showing the variation of conductivity with depth. Interpolating 1D resistivity models into a 3D model allows for further interpretation in terms of geology, lithology, and groundwater quality. The tTEM technique bridges the gap between point measurements and more expensive and lower-resolution airborne EM data collection. The technique is sensitive to disturbance by man-made conducting infrastructure.

Abstract

South Africa is known for droughts and their effect on groundwater. Water levels decrease, and some boreholes run dry during low recharge periods. Groundwater level fluctuations result from various factors, and comparing the levels can be challenging if not well understood. Fourie developed the “Groundwater Level Status” approach in 2020 to simplify the analysis of groundwater level fluctuations. Groundwater levels of two boreholes within different hydrogeological settings can thus be compared. The “Status” can now indicate the severity of the drought and thus be used as a possible groundwater restriction level indicator. The reasons for the groundwater level or the primary stress driver can only be determined if the assessment is done on individual boreholes and the boreholes according to hydrogeological characteristics. The analysis is used to identify areas of risk and inform the authorities’ management to make timely decisions to prevent damage or loss of life or livelihoods. The applicability of this approach from a borehole to an aquifer level is showcased through practical examples of the recent droughts that hit South Africa from 2010-2018.

Abstract

The Guarani Aquifer System (SAG) is the main public water supply source in Bauru City (Brazil). It mostly consists of sandstones and is a confined unit of fossil waters (~600 thousand years); therefore, it is a non-renewable and finite resource. SAG is overlaid by the Bauru Aquifer System (SAB), predominantly consisting of sandstones, siltstones, and mudstones, and is essential for private water supply in the municipality. In recent decades, constant drops in water levels in SAG and increases in contaminant loads in SAB have been observed in production wells, generating the need to understand the geometry of those aquifer systems.

This work presents the preliminary results of the analysis and review of hydrogeological and geophysical data from 59 deep wells and 3D geological modelling using Leapfrog Works® to represent a conceptual model of the study area. SAG has a thickness of up to 356 m in the wells and is represented, from bottom to top, by Teresina, Piramboia, and Botucatu formations. In the north and northeast regions, SAG is covered by a layer of basalts from the Serra Geral Aquifer System (SASG) with a thickness of up to 190 m. The thickness of SASG is variable (or even null) due to the action of important faults with vertical displacements that created structural windows in the region. SAB covers the Araçatuba (basal portion), Adamantina (144 m), and Marília (65 m) formations. The lower contact of SAB is made with SASG or SAG (central region). Project funded by FAPESP (2020/15434-0).

Abstract

The Kalahari iron manganese field (KIMF) in the Northern Cape, South Africa, was historically exploited by only three mines, with Hotazel the only town and the rest of the area being largely rural, with agricultural stock/ game farming the major activity. Since 2010, mining activities have increased to more than 10 operational mines with increased water demand and environmental impacts on groundwater. The area is within catchments of the Matlhwaring, Moshaweng, Kuruman and Gamogara rivers that drain to the Molopo River in the Northern Cape. All the rivers are non-perennial, with annual flow occurrence in the upstream areas that reach this downstream area once every 10 years. The area is semi-arid, with annual evaporation nearly five times the annual precipitation. The precipitation is less than 300mm, with summer precipitation in the form of thunderstorms. Vegetation is sparse, consisting mainly of grasslands, shrubs and some thorn trees, notably the majestic camel thorns. The Vaal Gamagara Government Water Supply Scheme imports 11 Ml/d or 4Mm3 /a water for mining and domestic purposes in the KIMF section. The area is covered with Kalahari Group formation of 30 to 150 m thick with primary aquifers developed in the basal Wessels gravels and Eden sandstones for local use. The middle Boudin clay forms an aquitard that isolates and reduces recharge. Water levels range from 25 to 70m, and monitoring indicates local dewatering sinks and pollution. This study will report on the water uses, monitoring and observed groundwater impacts within the current climatic conditions.

Abstract

In response to the Western Cape’s worst drought experienced during 2015-2018, the City of Cape Town implemented various projects to augment its water supply, including desalination, re-use and groundwater. The Cape Flats Aquifer Management Scheme (CFAMS) forms one of the groundwater projects that includes groundwater abstraction and managed aquifer recharge (MAR). The Cape Flats Aquifer (CFA) is a coastal, unconfined, primary aquifer within an urban and peri-urban environment. As such, it is well situated to take advantage of enhanced recharge using high-quality advanced treated effluent but also has challenges related to seawater intrusion (SWI) and risk of contamination. MAR is currently being tested and implemented with a three-fold purpose: (1) to create hydraulic barriers against seawater intrusion and other contamination sources, (2) to protect groundwater-dependent ecosystems harbouring biodiversity, and (3) to increase storage and improve water quality to enhance resilience to effects of drought. As no legislation for MAR exists in South Africa, international guidelines are used to determine water quality requirements related to clogging environmental and health concerns. Further consideration includes aquifer-scale design, the interaction of multiple abstraction and injection wellfields within an area, and the design of individual boreholes to enhance yield and limit clogging. We aim to present progress made to date that includes exploration, wellfield development, monitoring, numerical modelling, aquifer protection, and the lessons learnt.

Abstract

This study assessed aquifer-river interaction using a combination of geological, hydrological, environmental stable isotope, and hydrochemical data in a non-perennial river system in the Heuningnes catchment. Results showed the depth to groundwater levels ranging from 3 to 10 m below ground level and aquifer transmissivity values of 0.17 to 1.74 m2 /day. The analytical data indicated that Na-Cl-type water dominates most groundwater and river water samples. Environmental stable isotope data of river samples in upstream areas showed depleted δ18O (-4.3 to -5.12 ‰) and δ2H (-22.9 to -19.3 ‰) signatures similar to the groundwater data, indicating a continuous influx of groundwater into the river water. Conversely, high evaporative enrichment of δ18O (1.13 to 7.08 ‰) and δ2H (38.8 to 7.5 ‰) were evident in downstream river samples.

It is evident from the local geological structures that the fault in the northeastern part of the study area passing Boskloof most likely acts as a conduit to groundwater flow in the NE-SW direction, thereby supplying water to upstream river flow. In contrast, the Bredasdorpberge fault likely impedes groundwater flow, resulting in hydraulic discontinuity between upstream and downstream areas. Relatively low conductive formation coupled with an average hydraulic gradient of 8.4 × 10−4 suggests a slow flow rate, resulting in less flushing and high groundwater salinisation in downstream areas. The results underscore the significance of using various data sets to understand groundwater-river interaction, providing a relevant water management platform for managing non-perennial river systems in water-stressed regions.

Abstract

Top-down governance systems are not well designed to secure the protection, use and management of groundwater at the local level and, on the contrary, perpetuate ‘wicked’ problems of poor groundwater management and protection. Citizen science promises solutions to these ‘wicked’ problems. We present findings from a project in the Hout Catchment, Limpopo, where citizen scientists monitor water in wells in remote rural settings. We redress the bias towards the natural sciences and pay attention to human systems as it is through engaging with people’s ‘ordinary’ citizens that they will protect their environment for better planetary health. To better understand these human systems that impact groundwater, we emphasise diversity and difference and argue for a HOPE model (heralding optimal participatory equity). HOPE has intrinsic and extrinsic value (equity) (addressing a hydrological void and understanding groundwater features). To achieve this, we open up a toolkit providing very practical methods. Using these tools, we propose that citizen science - taking science away from remote institutions, out of libraries and laboratories - and bringing it close to people is emancipatory and addresses new ways of understanding polycentric governance. Citizen science is transformative; citizens move from a passive state of non-engagement with science to acting as scientists. Disempowered people now have a sense of being part of the betterment of their world and improved water resources management. Narrowing the natural and social sciences divide is crucial for improved polycentric governance.

Abstract

Micro-electro-mechanical system (MEMs) technologies coupled with Python data analysis can provide in-situ, multiple-point monitoring of pore pressure at discrete and local scales for engineering projects. MEMs sensors are tiny, robust, inexpensive, and can provide wireless sensing measurements in many electrical and geomechanical engineering applications. We demonstrate the development of MEMs pressure sensors for pore pressure monitoring in open boreholes and grouted in piezometers. MEMs sensors with a 60 m hydraulic head range and centimetre vertical resolution were subject to stability and drawdown tests in open boreholes and in various sand and grouts (permeability 10-8 to 10-2 m/s). The resulting accuracy and precision of the MEMs sensors, with optimal calibration models, were similar to conventional pore pressure sensors. We also demonstrate a framework for estimating in-situ hydrogeological properties for analysis from vented pore pressure sensors. This framework method included Python code analysis of hourly pore pressure data at the millimetre vertical resolution, which was combined with barometric data and modelled earth tides for each borehole. Results for pore pressure analysis in confined boreholes (>50 m depth) included specific storage, horizontal hydraulic conductivity and geomechanical properties. Future improvements in the vertical resolution of MEMs pore pressure sensors and combined these two technologies will enable groundwater monitoring at multiple scales. This could include the deployment of numerous MEMs, at sub-meter discrete scale in boreholes and evaluating local site scale variations in pore pressure responses to recharge, groundwater pumping and excavations in complex sub-surface geological conditions.

Abstract

Groundwater governance and risk management in the Murray-Darling Basin in Australia (MDB) are being challenged by the increasing demand for water and the growing scarcity and variability of water supply owing to climate change. Over the past 20 years, consideration of risk related to groundwater in the MDB has evolved from concerns about the impact of groundwater extraction on surface water resources to an integrated assessment of risks to connected water resources and ecosystems. The Basin Plan includes a comprehensive framework for assessing risks to Basin water resources and ecosystems, but further scientific and policy developments are required to implement the plan. Consistent definition and improved assessment of groundwater-surface water connectivity are required, together with longer planning timeframes. Multi-year planning rules and policies must be developed to exploit opportunities for integrated management of groundwater and surface water resources and storage to manage droughts and floods. Risks to groundwater quality and groundwater-dependent ecosystems must be adequately assessed and monitored to avoid adverse impacts on communities and long-term loss of ecosystem services. Further improvements can be made in assessing cumulative risks from coal seam gas and coal mining. Additional research can be targeted towards knowledge gaps and uncertainties that pose the greatest risk to connected groundwater and surface water resources and ecosystem viability. Most importantly, further training and capacity building in water management agencies is critical to enable effective and transparent monitoring and management of Basin water resources.