Investigating groundwater and surface water interactions using stable isotopes and hydrochemistry in the Notwane River Catchment, South East Botswana.

Modie LT; Stephens M

Stable isotopes and hydrochemical analysis were undertaken to investigate groundwater-surface water (GW-SW) interactions and their possible implications on the quality and quantity of water in the karstified dolomite-dominated Notwane River Catchment (NRC) in semi-arid South East (SE) Botswana. Stable isotopes (δ18O & δ2H) and other hydrochemical parameters were analyzed from water samples (groundwater, river water and rain) collected in the upstream, middle stream and downstream of the Ramotswa Wellfields to investigate the potential GW-SW relationship in the study area. In addition field observation were also undertaken to support results obtained through stable isotopes and hydrochemical methods. Similarity in isotopic signatures taken during the dry and wet seasons respectively for groundwater (δ18O -1.4‰, δ2H -10.8‰; δ18O 1.4-‰, δ2H -10.9‰) and surface water(δ18O -2.04‰, δ2H -6.2 ‰; δ18O -2.56‰, δ2H -7.1‰) suggests groundwater recharge through the streambed at a site further downstream in the study area. In upstream study sites the average groundwater isotopic signature values of (δ2H -24.1,δ18O -4.1) suggests a more direct link to the Meteoric Water Line(MWL) indicating possibility of a rapid infiltration and quick watershed response to heavier rainfall events(δ2H -51.7, δ18O -8.6) rather than recharge through the riverbed. A further assessment on the GW-SW hydrochemistry was provided using Hierarchical Cluster Analysis (HCA) to investigate the influence of groundwater on stream water. The median EC values from the clusters are in an increasing order Cluster A-B2-B1 indicating cluster A(all river samples) as the most dilute samples with the shortest resident time relative to the groundwater clusters(B2 and B1). These results therefore rules out groundwater discharge through the streambed into the river as not a dominant process for GW-SW interaction in the study area. The study has concluded that GW-SW interactions in the NRC part under study vary from connected to no connection from one site to another.

Presenter Name
Piet
Presenter Surname
Kenabatho
Area
Botswana
Conference year
2021