Intraplate tectonic setting of the southwestern Cape, South Africa: Analysis of the TrigNet geodetic record

In response to the serious 2015-2018 “Day Zero” drought, the City of Cape Town implemented large-scale augmentation of the Western Cape Water Supply System from deep groundwater resources within the Table Mountain Group (TMG) fractured aquifers. Several planned TMG wellfields target the Steenbras-Brandvlei Mega-fault Zone (SBMZ), the northern segment of which hosts the Brandvlei hot spring (BHS) – the hottest (~70°C) and strongest (~4 million m3/yr) in the Western Cape. Considering its possible “neohydrotectonic” origin, the BHS may mark the site of a major palaeo-earthquake, suggesting that SBMZ structures are prone to failure in the current crustal stress regime. Despite the “stable” intraplate tectonic setting, the SW Cape has experienced historic large (magnitude >6) earthquakes. Therefore, a better hydrogeological and seismotectonic understanding of the regional “mega-fault” structures is needed.

The South African TrigNet array of continuously recording Global Navigational Satellite System (GNSS) stations can be used to measure surface deformation related to confined aquifer depressurisation and vertical compression during groundwater abstraction. Time-series data from 12 TrigNet stations were used to establish a monitoring baseline for the SW Cape. Observed vertical motions range from slow subsidence to variable slow uplift with superimposed cyclical uplift/depression patterns of seasonal and multi-year variability. Baseline deformation/strain rates were calculated using 27 station pair lengths, ranging between compressive (-0.47 nanostrains/yr) and extensive limits (+0.58 ns/yr), indicating a rigid intraplate setting.

Anomalous high strain rates (> 10 ns/yr), associated with three stations, are probably due to station mount/foundation issues, rather than neo-seismic activity. Regional results show that seismo-geodetic monitoring is an important tool for understanding fractured aquifer compressibility and hydroseismicity, the latter of which may potentially be induced by large-scale TMG groundwater abstraction and/or natural earthquakes in the Western Cape. A local seismo-geodetic monitoring system is therefore being established at Steenbras Wellfield for further observations and analysis.

Presenter Name
Presenter Surname
Cape Town
Conference year