Establishing An Aquifer Protection Policy For Co2 Geological Storage Utilising Hydrogeological Numerical Modelling, Bela-Bela (South Africa).

Southern Africa hosts over 93% of the continent's energy, which has been conserved in coal seams deposited  in  various  Karoo  age  sedimentary  basins.  Carbon  dioxide  geological  storage  (CGS)  is proving  to  be  an  emerging  greenhouse  gas  technology  (GHGT),  that  global  governments  have elected to mitigate the projected coal use in Southern Africa. One of the major challenges of successfully introducing CGS to the public and world leaders is the significant risk the technology poses to groundwater resources. Lack of public confidence is further coupled by the poor knowledge of the subsurface behaviour of injected media, such as CO2, in South African potential lithological reservoirs. The study has utilised data from a current MSc research, in which the Springbok Flats Coal Basin (SFCB) has been used as the problem set-up. The aim of this study is to determine which FELOW™ mesh  geometry would  be  the most  suitable  to  simulate  a  CO2   ingress plume within  a regional aquifer. The study has utilised principals of dense vegetation zones (DVZ) and density- variable fluid flow (DVFF) when simulating the ingression. The specific objective is to utilise the simulation  results  to  guide  amendments  of  water  legislature,  towards  accommodating  CO2 geological  injection  and  storage operations.  Results indicate  that  a  combination  of  high-quality triangular meshes of various geometries, created with the FEFLOW compatible mesh generator, TRIANGLE, produced the best 3D model and simulation results. The basic matrice unit for the DTZ was defined as a quad mesh composed of two right-angled triangles and one equi-angualar triangle (five nodes), while the unit for modelling springs was defined as a quad mesh with four-equi-angular triangles, both used in various scales. The results were used to amend the Stream Flow Reduction Activities (SFRA) policy and thus the aquifer licensing procedure of the National Water Act, in order to accommodate the allocation of aquifer use licenses for CO2  geological storage operations. The amendments illustrate the significance of finite element simulation codes for integrated water resources management policy.

Presenter Name
Tshegofatso
Presenter Surname
Mophatlane
Area
Bela-Bela, Limpopo
Conference year
2013