Conference Abstracts

All Abstracts were presented at the Groundwater Conferences

Displaying 101 - 150 of 795 results
Title Presenter Name Presenter Surname Area Conference year Sort descending Keywords

Abstract

South Africa has an energy crisis. The country requires 53 Gigawatt of new capacity by 2030. The exploitation  of  unconventional  gas  is  a  potential  game-changer  to  meet  South  Africa’s  current energy deficit to fuel economic growth and development. Water management, both in terms of abstraction and disposal, has emerged as a critical issue in the development of unconventional gas reservoirs. This presentation focuses on a high-level, qualitative analysis of the groundwater-related institutional and governance challenges associated with unconventional gas exploration and production. The findings represent a synthesis of information sourced from regulatory and legislative documents as well as international experience. The analysis maps the current groundwater institutional and governance landscape in South Africa and lessons learned from other regimes such as the United Kingdom and United States of America. Good governance entails ensuring that there is compliance with policy and legislation, effective decision-making, appropriately allocated accountability, transparency and that stakeholder interests are considered and balanced. This forms the basis of a preliminary gap analysis.

Abstract

POSTER One of the critical elements of water resource management is the dynamic exchange between groundwater and surface water. Quantifying this exchange strongly relies on an adequate characterisation of the lithological architecture of the involved aquifer system. In the past, this characterisation often relied on lithological data obtained through invasive methods. However, given the spatial heterogeneity of the subsurface, these methods do not provide the density of sampling required for an accurate ‘‘image’’ of the large‐scale architecture of the aquifer system, leading to large uncertainties in the variations and continuities of subsurface structure. These uncertainties inevitably lead to inaccuracies in the conceptual geohydrological model, thereby diminishing the prospects of an accurate assessment of the groundwater–surface water interaction. In order to limit the uncertainties, the results of electrical resistivity tomography (ERT) surveys conducted on a  site  near  the  Krugersdrift  Dam in the Free State Province of South Africa  were used to make inferences   regarding  the   prevailing  geohydrological  conditions.  The   resistivity  models   were compared to borehole logs from existing boreholes to produce a refined model of the subsurface architecture related to groundwater–surface water interactions.

Abstract

Gold mining  activities over  the  past 60 years  in the Klerksdorp  goldfield produced  saline mine drainage that polluted water. Oxidation of sulphide material in tailings storage facilities, waste rock dumps and extraction plants is mobilised to produce saline mine drainage with sulphate, minor salts and  metals  that  seep  to  the  groundwater  and  ultimately  into  surface  water  resources.  Water regulation requires mines to prevent, minimise/reduce or eliminate pollution of water resources. The waste philosophy has matured from tolerate and transfer to treat and termination of pollution sources.  The  impact  of  the  pollution  was  determined  and  possible  technologies  to  treat  the impact   were   evaluated.   Source   controls   with   proper  water  management  by  storm  water management,  clean  dirty  water  separation,  lined  water  conveyance  structures  and  reduced deposition of water on waste facilities are crucial. The aquifer character determines the possible remediation technology. From the possible technologies phytoremediation, physical interception and  re-use  of  this  water  was  selected.  In  future  possible  treatment  of  the  water  would  be considered. This paper explain the strategy and report on the phased implementation of these plans and the expected results. The establishment of 500 ha of woodlands as phytoremediation, interception trenches of 1 000 m, 38 interception boreholes and infrastructure to re-use this water is planned. The total volume of 15 Ml/day would be abstracted for re-use from the boreholes and trenches. The woodlands can potentially attenuate and treat 5 Ml/day. The established woodlands of 150 ha prove to be successful to intercept diffused seepage over the area of establishment and reduce  the  water  level  and  base  flow.  The  two  production  interception  well- fields  that  are abstracting  50  and  30 l/s,  respectively  , indicate  a  water  level decline of between 2 to 14 m, with regional cones of depression of a few hundred meters to intercept groundwater flow up to a 20 m depth. Predictions from groundwater modelling indicate that these schemes can minimise pollution during the operational phase and protect downstream water resources. Predictions from modelling indicate that the pollution sources need to be removed to ensure long-term clean-up to return the land to safe use. The gold and uranium prize is securing the removal of the sources through  re-processing  of  the  tailings  and  waste  rock  dumps.  After  removaof  the  sources  of pollution,  the  remediation  schemes  would  have  to  boperated  for  2years  to  return  the groundwater to an acceptable standard  of  stock  watering  and  industrial  water  use.  The  water quality is observed by a monitoring network of approximately 100 observation boreholes.

Abstract

The Paleozoicage Natal Group Sandstone (NGS) that outcrops from Hlabisa (in the north) to Port Shepstone (in the south) and Greytown (west) to Stanger (east) in the Province of KwaZulu-Natal, South Africa, is investigated in terms of its hydrogeological characteristics. This sandstone group, which comprises a lower Durban and an upper Marrianhill Formations, is a secondary/fractured aquifer system that has variable but good productivity across its members. It is characterised by variable borehole blow yields ranging from 0.2 l/s to as high as 20 l/s, with more than 50% of the boreholes having blow yield > 3 l/s. Preliminary analysis of these boreholes yields indicates that higher yielding boreholes are associated with a network of intersecting fractures and faults, and are recommended targets for future water well-siting in the area. Groundwater in the NGS is of good quality in terms of major and trace element composition and it has a total dissolved solids (TDS) composition of <450 mg/l. It was observed that the specific electrical conductivity (EC), TDS and major ions composition of groundwater within the sandstone decrease from north to south, which appears to be controlled by the geochemical composition of the aquifer material and an increase in the rate of recharge. Depth to groundwater is also found to decrease southwards because of an increase in the rate of recharge. Groundwater hydrochemical facies are generally either Na-HCO3 or Na-HCO3–Cl, and environmental isotope data (2H, 18O, Tritium) indicates that the groundwater gets recharge from modern precipitation. Furthermore, the EC increases from inland to the coastal zone, indicating maritime influences and the general direction of groundwater flow is eastwards, to the Indian Ocean.

Abstract

Determining   impacts   associated   with   the   production   of   shale   gas   in   the   semi-arid   Karoo   on groundwater is vital to people living in the Karoo. On the one hand shale gas can be a game-changer for energy supply, but on the other it may have a devastating effect on the environment. Knowing the potential  impacts  of  shale  gas  mining  beforehand,  the  government  can  set  appropriate  regulatory protocols  and  tools  in  place  to mitigate  potential  risks.  This paper  describes research  done  on  the potential impact that hydraulic fracturing could have on groundwater in the Karoo. A wild card that only exists in the Karoo Basin of South Africa is the numerous dolerite intrusions. These dolerite structures are associated with relative high-yielding boreholes because of the fractured contact aureole that exist between solid dolerite and the adjacent Karoo sediments. Compromised cement annuli of gas wells are the  major  preferential  flow  paths along which  methane  and fracking fluid  can escape  into shallow, freshwater aquifers. This study focused solely on the impact of compromised cement annuli of gas wells. The Karoo Basin is under artesian conditions which imply that any pollutant will always try to migrate upwards in the Karoo. The hot-water springs in the Karoo indicate that upward velocities of water are relatively high (the spring water take only days to travel from deep down to the surface). The cubic law was  used  to  estimate  potential  upward  leakage  rates  from  gas  wells  (during  production,  but  after cessation thereof as well, when pressures will rebuild  because  of  artesian  behaviour  of  the  Karoo formations).  Potential  leakage  rates  along  faulty annuli of a well can vary between a value close to zero to two liters per second in the case of an aperture of 0,5 mm. These leakage rates were used as input to a 2D numerical groundwater flow and mass transport model. The 2D model was run for 30 years and the movement of pollution from the gas wells on the pad simulated. The model indicates that an area of 300 ha could be contaminated over a period of 30 years in a downstream groundwater flow direction.  If  an  abstraction  borehole  drilled  along  a  fault  zone  or  a  dyke,  intersecting  the  fracked reservoir, is introduced into the model, results predict that the pollutant will reach the borehole in less than two months if the borehole is situated six kilometres from the well-pad. The total impact that fracking will have on the groundwater in the Karoo, is a function of the total area that will be fracked.

The outcomes of this research clearly show that fracking in South Africa cannot be done in the same way than  it  is  currently  done  worldwide.  A  rule  that  will  force  gas  companies  to  disclose  fracking  fluid contents is non-negotiable. Companies should also be required to measure pressures in the fracked gas reservoir after closure. An additional requirement to enforce sealing of the entire fracked reservoir with a very dense material like bentonite or a mud with a very high density to capture the fracking fluids deep down in the gas reservoir should not be negotiable.

Abstract

A multi-data integration approach was used to assess groundwater potential in the Naledi Local Municipality located in the North West Province of South Africa. The geology comprised Archaean crystalline basement, carbonate rocks (dolomite and limestone) and windblown sand deposits of the Kalahari Group. The main objective of the study is to evaluate the groundwater resource potential using multi-data integration and environmental isotope approaches. Prior to data integration, weighting coefficients were computed using principal component analysis.

The results of integration of six layers revealed a number of groundwater potential zones. The most significant zone covers ~14% of the study area and is located within carbonate rocks in the southern part of the study area. The localisation of high groundwater potential within carbonate rocks is consistent with the results of principal component analysis that suggests that lithology significantly contributed to the total data variance corresponding to principal component 1. In other words, carbonate rocks consisting of dolomite and limestone largely account for groundwater occurrence in the southern part of the area. In addition, the relatively elevated isotopic signature of tritium (≥1.0 TU)  in  groundwater  samples  located  in  the  southern  part  of  the  area  suggests  a  groundwater recharge   zone.   Furthermore,   moderate-to-good   groundwater   potential   zones   within   the Ventersdorp lava coincide with maximum concentration of fractures, which is consistent with the results of statistical correlation between borehole yield and lineament density. The multi-data integration approach and statistical correlation used in the context of evaluating groundwater resource potential of the area provided a conceptual understanding of hydrogeological parameters that control the development of groundwater in crystalline and carbonate rocks. Such approach is crucial in light of the increasing demand for groundwater arising from municipal water supply and agricultural use. The two approaches are very effective and can be used as a sound scientific basis for understanding groundwater occurrence elsewhere in similar hydrogeological environments.

Abstract

South Africa currently ranks number nine in the world of the proved coal reserves that has been estimated to last for over 200 years. Coal constitutes about 77% of the primary energy needs in the country, with the Waterberg Coalfield estimated to host about 40% of the remaining South African coal resources. Coal deposits in the study area largely consist of shales, mudstones, siltstones and sandstones which host coal-containing clay minerals; quartz, carbonates, sulphides and the most abundant sulphide mineral is pyrite. Once mining begins, the sulphide minerals are exposed to surface which allows contact with atmospheric oxygen and water causes oxidation to take place, therefore causing acid-mine drainage (AMD). Acid-base accounting (ABA) was used to determine the balance between the acid-producing potential (AP) and acid-neutralising potential (NP). From the analysis the Net Neutralising Potential (NP-AP) was determined, which is one of the measurements used to classify a sample as potentially acid or non-acid-producing. Mineralogical analyses will be done by x-ray defraction (XRD) to define and quantify the mineralogy of the geological samples which can help in the management plan to minimise generation of acid. AMD does not only result in thgeneration of acid, but as well as in decreased pH values and increased values of specific conductance, metals, acidity, sulphate, and dissolved and suspended solids. Inductively coupled plasma analysis was done to determine the release of the heavy metals which can be detrimental to the environment. Sample analysis was done on the interburden, overburden as well as the coal samples. From results obtained, over 35% to 50% of the samples have an excess of acid potential which classifies the samples as having a higher risk for acid generation. About 30% to 40% of the samples have a higher neutralising potential; the rest of the samples have a medium acid risk generation. The water demand will increase as developments continue in the  area, with inter- catchment transfers identified as the answer to fill the gap of water scarcity. Acid mine drainage poses a big threat on water resources, both groundwater and surface water nationally, which might be less of a problem in the Waterberg because of the cycle of low rainfall in the area, but the potential of AMD cannot be neglected.

Abstract

Groundwater boreholes are a key element of many mining projects, as part of dewatering and water supply  systems,  and  must  achieve  high  levels  of  operational  efficiency  and  service  availability. Outside of the mining industry, planned borefield maintenance programmes have become a key part of professional well-field management, with proven benefits in terms of operational cost savings and continuity of pumping. However, the benefits of proactive planned maintenance of groundwater boreholes on mine sites have only recently been widely recognised. Potential operational problems are described, including water quality issues which can result in mineral contamination leading to deposits and scale build-up which can clog screens and pumps, reduce water flow and yield, and eventually cause pump breakdowns and mine stoppages. Best practice methodologies to remove or minimise the contamination are described and the benefits of implementing a planned maintenance programme are discussed. Case studies are described from two significant mines in Australia, where boreholes suffered from mineral contamination, including calcium carbonate and iron bacteria contamination. Both mines suffered  from  increased  pump  breakdowns,  groundwater  yields  consistently  below  target  and serious cost overruns. Borehole rehabilitation treatment plans were implemented to resolve the immediate contamination problems followed by an ongoing maintenance programme to prevent or minimise their reoccurrence. Treatment programmes included a downhole camera survey, use of a bespoke software program to review the results of the survey and the available water quality data, and a purpose built rehabilitation rig that included the use of specialist chemical treatments to remove and control the existing encrustation and clogging deposits.

Abstract

Groundwater is not often regarded as ecosystems and especially fractured aquifer systems are seen as organism free. Conventional tests show very little to no presence of micro-organisms in groundwater. However, these micro-organisms are ubiquitous and can be detected by using sophisticated methods. In this specific case study where petroleum hydrocarbon  contamination exists in a fractured rock aquifer, the presence of micro-organisms has been for years inferred by means of monitoring for secondary lines of evidence that prove attenuation of the contaminants, not only by means of dilution, adsorption or diffusion into the matrix, but through metabolism. The sampling evidence is clear that the preferential sequence of metabolism is taking place whereby electron acceptors are reduced as predicted for such biodegradation. Specifically sulphate is consumed and mostly manganese is reduced, with some iron reduction also being observed. Monitoring has shown that  groundwater recharge bringing in  new  nutrients effected increased biodegradation. In order to definitively identify the contribution made by micro-organisms, DNA testing was performed. The results support the secondary lines of evidence. Outside of the contaminated zone very low population numbers of organisms were detected in the groundwater. Inside the contaminated zone elevated population numbers were observed indicating that active biodegradation is taking place. Furthermore, the edges of the plume, where contaminant levels are mostly below detection, contained a more diverse population of micro-organisms than the central area. Conditions on the edge of the plume probably represent an ideal nutrient environment for the organisms as opposed to the high concentration source, which might be toxic to some organisms. Better understanding of the bio-dynamics of this fractured aquifer presents a unique opportunity to better manage and enhance the remediation of the contaminants. Possible strategies include the addition of nutrients when necessary and the cultivation of the naturally occurring organisms to augment the population. The data shows that aquifers are ecosystems even in fractured environments.

Abstract

Groundwater is the water that is found beneath the surface of the ground in a saturated zone (Bear 1979). Groundwater contamination refers to the groundwater that has been polluted commonly by human activities to the extent that it has higher concentrations of dissolved or suspended constituents. The scale of the potential supply of groundwater from the Cape Flats Aquifer Unit (CFAU) is very significant due to the increase of the population in Cape Town that leads to limited water resources (Maclear 1995). Groundwater contamination is a threat in the Cape Flats. This is because sand is more susceptible to pollution as a result of urbanisation, industrialisation, intense land use area for waste disposal and agricultural activities (Adelana 2010). The aim of this paper is to evaluate groundwater contamination and assess possible prevention and treatment measures in the CFAU. Pumping tests were done in UWC site in Borehole 5 (pumping borehole) and Borehole 4 (observation borehole) for six hours; three hours was for the pumping and the other three hours for recovery. This was done in order to see how the aquifer recovers after pumping. Water samples were also taken and analysed in the lab. This was done to find the type of contamination, whether it is degradable or non-degradable. The Borehole 5 drawdown plot is showing a straight line. This suggests a linear flow and that there is no confining bed beneath. This is because straight lines are showing the Cooper-Jacob type curve, which is for unconfined aquifers. The curve of Borehole 4 can be fitted to a Theis-type curve. This suggests a radial flow pattern indicating homogeneous characteristics in the deeply weathered zone and that there is a confining bed beneath. This is because aquifers responding in the same manner as the Theis-type curve, are confined aquifers (Hiscock 2005).The groundwater samples are showing a TDS range of 260 to 1 600 mg/l. This could be the result of the waste water treatment plant that is near UWC and the industries that are near the airport and at Bellville South. In conclusion, the geology of the CFAU is very susceptible to groundwater contamination, which is due to agricultural, industrial and human activities.

Abstract

Natural attenuation describes a set of natural processes which decrease the concentrations and/or mobility of contaminants without human intervention. In order to evaluate and demonstrate the effectiveness of natural attenuation, regular long term monitoring must be implemented. This entire process is called Monitored natural attenuation (MNA). The focus of MNA is generally placed on hydrocarbons and chlorinated solvents but according to the United States Environmental Protection Agency (USEPA) MNA can be used for various metals, radio nuclides and other inorganic contaminants. MNA was deemed the best method to reduce the concentration and mobility of contaminants impacting the groundwater environment, at a fertiliser plant in the Free State. A number of improvements in infrastructure were made in 2013which were assumed to have prevented further release of contaminants into the groundwater system, from the source areas on site. MNA was also considered to be the most effective affordable solution for the site as groundwater in the vicinity is not used for domestic purposes (low risk). Cl, NO3 and NH4 were used to monitor the movement of the contamination off site and the effectiveness of MNA. With regards to the inorganic contaminants emanating from the site, sorption, dispersion, dilution, and volatilization are the main attenuation mechanisms. These mechanisms are considered to be non-destructive attenuation mechanisms. Denitrification, nitrate reduction through microbial processes, may also facilitate in the attenuation of the in organic constituent nitrate. Denitrification is considered a destructive mechanism. Classed posts and temporal graphs of the Cl, NO3 and NH4 concentrations between 2008 and 2014 were utilised to show the movement and change in size and shape of the contamination plumes and subsequently, monitor MNA. The data indicates that the NO3, Cl and NH4 contamination plumes from the various source areas on the site have detached from the site and are currently moving down gradient along the natural drainage. Contaminant concentrations at the site have generally decreased in recent monitoring events while concentrations downstream of the site have remained stable. This indicates that MNA is currently an effective method of remediation for the site and monitoring should be continued to ensure that it remains effective.

Abstract

Numerous environmental concerns have been raised with the possible exploration and development of shale gas in the Karoo. One such concern is that deep borehole drilling and the hydraulic fracturing process may create conduits through which deep-seated groundwater could migrate to shallow aquifers.This study set out to characterise deep Karoo groundwaters and identify indicators of deep flow. It was not possible to obtain groundwater samples from the deep-seated shales that are being considered for shale gas exploration and development because no suitable deep boreholes exist. Instead, samples from thermal springs and two deep boreholes that pass through the shales were obtained as the best approximation of deep-seated groundwaters in the Karoo. Deep and shallow groundwaters were characterised and determinands were identified to differentiate these waters. A provisional guide on the limits for these determinands was developed, and at this stage, this list can be used for guidance on differentiating deep form shallow waters. The determinands that appear to be most reliable in identifying deep groundwater were grouped and prioritised for future monitoring programmes.

Abstract

A groundwater decision support system (DSS) that incorporates stakeholder participation has been developed for Siloam Village in Limpopo Province, South Africa. Residents of Siloam Village are dependent on groundwater to augment inadequate pipe borne water supply. This creates the need for a DSS that ensures efficient and sustainable management and utilization of water. Such a DSS is constituted of both quantitative and qualitative components. The study further proposes framework for implementation of the DSS which incorporates community participation. This will act as a tool for empowering and educating the communities in rural villages so that they can be able to manage their water resources. The developed DSSs will make it possible for Siloam community to operate their water supply systems efficiently taking into account environmental needs and water quality

Abstract

Groundwater provides an important buffer to climate variability in Africa. Yet, groundwater irrigation contributes only a relatively small share of cultivated land, approximately 1% (about 2 mill. ha) as compared to 14% in Asia. While groundwater is over-exploited for irrigation in many parts in Asia, previous assessments indicate an underutilized potential in parts of Africa. As opposed to previous country-based estimates, this paper derives a continent-wide, distributed (0.5 degrees spatial resolution) map of groundwater irrigation potential, indicated in terms of fractions of cropland potentially irrigable with renewable groundwater. The method builds on an annual groundwater balance approach using 41 years of hydrological data, allocating only that fraction of groundwater recharge that is in excess after satisfying other present human needs and environmental requirements, while disregarding socio-economic and physical constraints in access to the resource. Due to high uncertainty of groundwater environmental needs, three scenarios, leaving 30, 50 and 70% of recharge for the environment, were implemented. Current dominating crops and cropping rotations and associated irrigation requirements in a zonal approach were applied in order to convert recharge excess to potential irrigated cropland. Results show an inhomogeneously distributed groundwater irrigation potential across the continent, even within individual countries, mainly reflecting recharge patterns and presence or absence of cultivated cropland. Results further show that average annual renewable groundwater availability for irrigation ranges from 692 to 1644 km3 depending on scenario. The total area of cropland irrigable with renewable groundwater ranges from 44.6 to 105.3 mill. ha, corresponding to 20.5 to 48.6% of the cropland over the continent. In particular, significant potential exists in the semiarid Sahel and eastern African regions which could support poverty alleviation if developed sustainably and equitably. The map is a first assessment that needs to be complimented with assessment of other factors, e.g. hydrogeological conditions, groundwater accessibility, soils, and socio-economic factors as well as more local assessments.

Abstract

POSTER The poster presents the modified hydrogeologic conceptual model that was used to assess the dynamics of groundwater flooding in Cape Flat Aquifer (CFA). The groundwater flooding remains poorly understood in the context of urban hydrogeology of the developing countries such as South Africa. While engineering intervention are relevant to providing solution to such events, continue estimation of hydrogeologic parameters at local scale alongside field measurements remain paramount to plausible modeling the groundwater flooding scenarios that inform such engineering interventions. However, hydrogeologic conceptual model which informs numerical simulation has not been modified to include local scale variation in the CFA to reflect various groundwater units. The current study argues that modifying hydrogeologic conceptual model improves numerical simulations thereby enhancing certainty for engineering solutions. The current study developed groundwater units, set up site specific models and estimated aquifer parameters using pumping step-drawdown and constant rate pumping tests in order to produce a comprehensive modified hydrogeological conceptual model for CFA to inform groundwater modeling at catchment level for water sensitive cities.

Key Words: Aquifer parameters, Groundwater flooding, specific models, hydrogeologic conceptual model, groundwater units, numerical simulations, water sensitive cities, CFA

Abstract

As we look at the legislation set out in the driving policies and its guiding frameworks, the need for able institutions to implement strategies that promise and deliver social growth and development, are highlighted. It is only possible to define an 'able institution' through its ability to fulfil its function and enable stakeholders to be part of the decision-making process. (Goldin, 2013) It is this relationship with the collection of stakeholders, in particular strategic water resource stakeholders, their linkages as well as the identification of specific stakeholder issues, that are critically reviewed. The recent Groundwater Strategy (2010) identified key strategic issues/themes. Each chapter listed a number of well thought out recommended actions that address specific challenges in each theme. It is the need for strategic direction (to put these strategies in place "plans into action") and to articulate the specific vision in the right context to the different stakeholders, (internal as well as external) that requires thinking. It is also the uptake of this information by publics (social action and intervention) and the impact of new learning that will need to be measured. This paper will present on a study where the groundwater sector and all its stakeholders are strategically examined to understand the process of communal thinking in the current environmental conditions. It would draw from current communication practices, style, strengths, sector experiences and trends and also reference specific and unique experiences as with the recent WRC Hydrogeological Heritage Overview: Pretoria project. {List only- not presented}

Abstract

Understanding the hydrogeochemical processes that govern groundwater quality is important for sustainable management of the water resource. A study with the objective of identifying the hydrogeochemical processes and their relation with existing quality of groundwater was carried processes in the shallow aquifer of the Lubumbashi river basin. The multivariate statistical approach includes self organizing maps (SOM'S) of neural networks, hierarchical cluster (HCA) and principal component analysis of the hydrochemical data were used to define the geochemical evaluation of aquifer system based on the ionic constituents, water types, hydrochemical facies and groundwater factors quality control. Water presents a spatial variability of chemical facies (HCO3- - Ca2+ - Mg2+, Cl- - Na+ + K+, Cl- - Ca2+ - Mg2+ , HCO3- - Na+ + K+ ) which is in relation to their interaction with the geological formation of the basin. The results suggests that different natural hydrogeochemical processes like simple dissolution, mixing, weathering of carbonate minerals and of silicate weathering and ion exchange are the key factors. Added to this is the imprint of anthropogenic input (use of fertilizers, septic practice poorly designed and uncontrolled urban discharges). Limited reverse ion exchange has been noticed at few locations of the study.

Abstract

POSTER The Department of Transport and Public Works has been involved with the building and upgrading of schools in the Western Cape, as well as providing green areas for sports fields. Due to the excessive costs of using municipal water the option of using groundwater for irrigation was investigated by SRK Consulting. A number of successful boreholes have been scientifically sited, drilled and tested since 2011. The boreholes have been equipped with pumps and data loggers have been installed in several. These data loggers measure time-series water levels and temperature while the flow meters measure the discharge rate and the quantity of groundwater used. Currently groundwater is being abstracted to irrigate the sports fields. Initially some problems were encountered. Boreholes were not operating optimally due to incorrect pump sizes resulting in water levels to be at pump inlet depths and pumps were not being switched off for recovery. However, due to continuous monitoring, the pumping rates and times were adjusted accordingly. It is imperative that all boreholes are equipped with loggers and continuously monitored to ensure that the boreholes are being optimally and sustainably used. Monitoring groundwater abstraction and aquifer water levels provides critical information for proper groundwater resource management. It is envisaged that schools will become proactive and participate in the groundwater monitoring. The latter will assist with groundwater awareness and assist in the use of alternative water sources and ease the burden on already stretched conventional sources.

Abstract

Water resource management and risk management rely heavily on the availability of data and information. This includes the volumes of water needed, the volumes of water available, where the available water is and where it would be needed, etc. Historical records help to determine past use and gives a way to predict future use in the case of water resource planning while it helps to predict the possibility of floods and droughts when it comes to risk management. Rainfall data can provide valuable data for both water resource planning and risk management, since it is the input to the hydrologicalcycle. It is possible to determine dry and wet cycles using the cumulative deviation from mean that is calculated from the measured rainfall data. This was done for the Gnangara Mound in Australia, with the results giving a fair representation of the dry and wet cycles in the area. Data measured over a period of about 30 years for the Zachariashoek sub-catchment analyzed in the same fashion provided wet-dry cycles of about 8 years. The rainfall measurements had been taken at various settings around the catchment, and varied from place to place and differed from that measured at the WeatherSA stations in the vicinity. This article will draw a comparison between the Zachariashoek data and the WeatherSA data to determine whether the WeatherSA data followed the same patterns for the wet-dry cycles observed in Zachriashoek. It will then analyse the longer data record available for the WeatherSA data from 1920 to 2012. It is expected that the shorter wet-dry cycles seen in Zachariashoek will become part of longer wet-dry cycles that can be used in water resource planning and risk management. Rainfall is also dependent on a number of factors

Abstract

Studies showed that the primary origin of salinity in river flows of the Sandspruit in the Berg Catchment located in the Western Cape Province of South Africa was mainly due to the weathering of the shales, while atmospheric deposition contributed a third of the total salinity. The salts are transported to rivers through surface runoff and subsurface flow (i.e. throughflow and groundwater flow). The purpose of this study was to determine the relative contributions of subsurface flow and surface flows to total flows in the Sandspruit River, Berg Catchment. Three rain events were studied. Water samples for two rain events were analyzed for environmental tracers ?18O, Silica (SiO2), Calcium (Ca2+) and Magnesium (Mg2+). Tracers used for two component hydrograph separation were ?18O and SiO2. These tracers were selected as Ca2+ and Mg2+ provided inconsistent contributions of both subsurface flow and surface flow. Two component hydrograph separations indicated that groundwater is the dominant contributor to flow, while surface runoff mainly contributes at the onset of the storm event. Groundwater response to precipitation input indicated that boreholes near the river have a greater response than boreholes further away from the rivers, which have minor response to the input of precipitation.
Keywords:
Stable Isotopes, Sandspruit River, Tracers, Hydrograph separation, Salinity

Abstract

The aquifer vulnerability of the Molototsi (B81G) and Middle Letaba (B82D) quaternary catchments of the Limpopo Province was assessed to determine the influence of the vadose zone on the groundwater regime. The aquifer vulnerability was assessed by developing a new method, RDSS, which evaluates the vadose zone as a pathway for pollutants by using the following four parameters: Recharge, Depth to water table, Soil type (saturated vertical hydraulic conductivity) and Slope. Recharge was estimated using the Chloride-mass balance method and the depth to the water table was measured in the field using dipmeter. The seepage behavior (soil type) was determined as hydraulic conductivity from in-situ infiltration and percolation testing. (SABS 0252-2:1993 and double ring infiltrometer). The slopes were determined with the digital elevation method using ArcGIS software. The four parameters were overlaid using Weighted Sum, Weighted Overlay and Raster Calculator to produce the vulnerability map. Different weightings were attributed in the methods and the best selected. The results obtained indicated high vulnerability on the lower and upper parts of both catchments. The benefits of the method described are: (a) the easy quantification of the parameters through fairly simple methods and (b) the exclusion of arbitrary index values.

Abstract

Gold mineralization in study area is structurally controlled. The geomorphology of the local drainage system is highly controlled by the fault architecture. Surface water flowed through, and eroded open fractures in exposed damaged zones (zone of subsidiary structures surrounding a fault). Previous conceptual hydrogeological models of groundwater system suggested is a two-aquifer system, consisting of a fractured aquifer overlain by a weathered aquifer, where groundwater flow mimics surface topography.

Based on recent drilling and reassessment of historic geological and hydrogeological data, the groundwater system cannot only be described in terms of an elevation or stratigraphic units, as traditional aquifers are, but instead in relationship with the folds and faults. The fractured aquifer system around the mine pit is structurally compartmentalized both laterally and vertically, as depicted by the variance in static hydraulic heads and borehole yields over short distances. The un-fractured mass has very low drainable porosity. Virtually all water is contained in fractures. The main fracture zones north and west of the pit typically yield 1.3 to 2 L/s

Abstract

POSTER The human interferences in river catchments includes impoundment construction, sediment mining, bank revetment and artificial cutoff, which eventually leads to changes in the hydrology system and channel transportation ability, and may reduce channel stability. In past 10 years the Kuils River had been upgraded between Van Riebeeck Road and the Stellenbosch Arterial route to reduce flood levels. The stretch of the river between the R300 and Van Riebeeck Road was also upgraded: reducing any possibility of flooding, by concrete-lining of some areas of the river that are within the Kuilsrivier Municipal Area. Producing a cross-section of a river channel is of great importance in river studies. To determine the discharge one should survey the profile of a feature such as a meander or riffle, it is necessary to produce a cross-section of the river. In order to focus on restoration requirements of a river, a map of the river is needed. This provides an indication of what exactly the river currently is. Habitat mapping is intended to access the stream. Woody debris, substrate, aquatic vegetation is measured continuously throughout a river, to be able to identify conservation and restoration needs. The cross section 1.3 of site 1 indicates that the channel width from January 2002 is almost similar in width of September 2012. The depth of the channel is about 0.5m deeper when compared to January 2002. The Kuils River banks are covered in grassy vegetation, with some trees with deep and large roots that provide protection against undercutting along rivers. The banks of Site 1 are covered long weeds and annual grasses with shallow root systems, which don't provide stability when the banks were saturated after high rainfall. The Kuils River area is used for various types of land uses and this also impacts the channels eg. Urban, Industrial and Agricultural use. Because of canalization occurring upstream one can see evidently the changes within the channel.

Abstract

The continuous increase in demand for water from a growing population and associated additional housing projects in the town of Steytlerville in the Eastern Cape Province has resulted in a shortage in water supply from the existing boreholes. In order to supplement the additional demand, a bulk water augmentation scheme using surface water from the Groot Rivier at a point immediately east of the Hadley crossing was implemented. This was done by drilling two large diameter production boreholes vertically into the alluvium and underlying bedrock of the river to a depth of intersecting the entire thickness of the mapped alluvium. Two boreholes were connected to a network of subsurface drains that allowed for recharge from the open channel to flow into the production boreholes. In addition to the sub-surface drain system connecting the sump boreholes, three recharge drains were constructed upstream of the abstraction boreholes. The purpose of these drains were to recharge the underlying paleo-channel to improve the water quality and yield from the paleo-channel. This was achieved by connecting the sub-surface drainage pipe to a vertical screened recharge borehole. The end result of the study was the successful implementation of a alternate borehole yield of 14l/s from the production wells to the Steytlerville town water reticulation supply.

Abstract

In 2009 it was announced that South Africa and Australia would be in competition for the race of the Square Kilometre Array (SKA). In 2009 the MeerKAT project was started in the Karoo near the core site of the SKA, which set out to demonstrate that South Africa was able to build the infrastructure of the SKA. The SKA required water for the building of roads, the dishes and the foundations of the dishes at the MeerKAT site. This poster explains the groundwater monitoring that is being performed at the MeerKAT site from 2011 till present in order to illustrate how good monitoring and management of groundwater can ensure sustainable groundwater use at sites like these. {List only- not presented}

Abstract

There is growing concern that South Africa's urban centres are becoming increasingly vulnerable to water scarcity due to stressed surface water resources, rapid urbanisation, climate change and increasing demand for water. Given South Africa's water scarcity, global trends for sustainable development, and awareness around the issues of environmental degradation and climate change, there is a need to consider alternative water management strategies. Water Sensitive Urban Design (WSUD) is an approach to sustainable urban water management that attempts to achieve the goal of a 'Water Sensitive City'. The concept of a Water Sensitive City seeks to ensure the sustainable management of water using a range of approaches such as the reuse of water (stormwater and wastewater), exploiting alternative available sources of supply, sustainable stormwater management and improving the resource value of urban water through aesthetic and recreational appeal. Therefore, WSUD attempts to assign a resource value to all forms of water in the urban context, viz. stormwater, wastewater, potable water and groundwater. However, groundwater is often the least considered because it is a hidden resource, often overlooked as a form a water supply (potable and non-potable) and it is often poorly protected. The management of urban groundwater and understanding the impacts of WSUD on groundwater in South African cities is challenging, due to complex geology, ambiguous groundwater regulations and management, data limitations, and lack of capacity. Thus, there is a need for an approach to assess the feasibility of management strategies such as WSUD, so that the potential opportunities and impacts can be quantified and used to inform the decision making process. An integrated modelling approach, incorporating both surface and subsurface hydrological processes, allows various urban water management strategies to be tested due to the complete representation of the hydrological cycle. This integration is important as WSUD is used to manage surface water, but WSUD known to utilise groundwater as a means of treatment and storage. This paper assesses the application, calibration and testing of the integrated model, MIKE SHE, and examines the complexities and value of establishing an integrated groundwater and surface water model for urban applications in South Africa. The paper serves to demonstrate the value of the application of MIKE SHE and integrated modelling for urban applications in a South African context and to test the models performance in Cape Town's unique conditions, accounting for a semi-arid climate, complex land use, variable topography and data limitations. Furthermore, this paper illustrates the value of integrated modelling as a management tool for assessing the implementation of WSUD strategies on the Cape Flats, helping identifying potential impacts of WSUD interventions on groundwater and the potential opportunities for groundwater to contribute towards ensuring to Cape Town's water security into the future.

Abstract

Aurecon was appointed to conduct groundwater exploration for production well fields in the towns of Setlagole and Madibogo. These towns are located in an arid part of the North West province on the edge of the Kalahari. The landscape is flat and covered by aeolian sand underlain by basement granite of the Kraaipan Group Geology.
Historically groundwater exploration consisted of reconnaissance geophysical surveys followed by detail ground surveys. Where no potentially water bearing geological structures are shown on geological maps & aerial photos, the project area would be divided into a grid on which the ground geophysical survey would be done. This type of exploration is time consuming and expensive. In some cases the terrain or cultural noise prohibits the use of conventional geophysical methods, with only more expensive and time consuming methods being left as an option. This is where the high resolution airborne magnetic survey excels. The results obtained from this type of survey are of such nature that only a small amount of ground geophysics is necessary to locate drilling targets. This survey method is also cost effective allowing a larger area to be covered in a short amount of time as compared to conventional ground techniques.
This paper will discuss successes achieved using high resolution aeromagnetic surveys as the basis for groundwater exploration in traditionally low-yielding igneous geology.

Abstract

POSTER Investigations have shown that receiving water bodies, which mainly include rivers, streams and the more complicated geohydrological system, are part of the primary end receivers of harmful contaminants from identified coal mining waste bodies. Some of these potential dangers include acid mine drainage (AMD) and sulphur mine drainage (SMD) which have dire effects on the surroundings. The need for a cost effective methodology to assess site hydrology and geohydrology, to understand the associated legal responsibility of contaminated streams and aquifers, is recognised. In the compilation of this paper the unique nature of South African legislation and policies are implemented in the development of a logical approach towards mine closure specifically in the field of groundwater assessments. Furthermore, this paper explores co-disposal of discard and slurry material and the environmental impact of co-disposed wastes is assessed. The unique geological attributes of the KZN coal fields and the geochemical research results found indicates that on its own discard has great potential to produce long term SMD and that slurry has lower SMD potential. Co-disposed results are promising and buffering against long term chemical changes are noted. The final product of this approach constantly considered site hydrogeology, related impacts, risks and liabilities. This gave more clarity on aspects related to the principles followed to identify objectives for sustainable mine closure and to adopted a philosophy of mine closure as a hydrogeological concept. Overview of methods that could be used for mitigation of polluted aquifers and a brief site specific application is discussed with the aim to achieve the key deliverable which focuses on methods to scientifically assess sources, pathways and receivers. Ultimately this process has led to the development of a logical approach towards mine closure for groundwater assessment and remediation in the typical anthracite mine environment.

Abstract

Data acquisition and Management (DAM) is a group of activities relating to the planning, development, implementation and administration of systems for the acquisition, storage, security, retrieval, dissemination, archiving and disposal of data. Data is the life blood of an organization and the Department of Water and Sanitation (DWS) is mandated by the National Water Act (No 36 of 1998) as well as the Water Services Act (No 108 of 1997), to provide useful water related information to decision makers in a timely and efficient manner. In 2009 the DWS National Water Monitoring Committee (NWMC) established the DAM as its subcommittee. The purpose was to ensure coordination and collaboration in the acquisition and management of water related data in support of water monitoring programs. The DAM subcommittee has relatively been inactive over the years and this has led to many unresolved data issues. The data extracted from the DWS Data Acquisition and Management Systems (DAMS) is usually not stored in the same formats. As a result, most of the data is fragmented, disintegrated and not easily accessible, making it inefficient for water managers to use the data to make water related decisions. The lack of standardization of data collection, storage, archiving and dissemination methods as well as insufficient collaboration with external institutions in terms of data sharing, negatively affects the management water resources. Therefore, there is an urgent need to establish and implement a DAM Strategy for the DWS and water sector, in order to maintain and improve data quality, accuracy, availability, accessibility and security. The proposed DAM Strategy is composed of the six main implementation phases, viz. (1) Identification of stakeholders and role players as well as their roles and responsibilities in the DWS DAM. (2) Definition of the role of DAM in the data and information management value chain for the DWS. (3) Development of a strategy for communication of data needs and issues. (4) Development of a DAM life Cycle (DAMLC). (5) Review of existing DAMS in the DWS. (6) Review of current data quality standards. The proposed DAM Strategy is currently being implemented on the DWS Groundwater DAM. The purpose of this paper is to share the interesting results obtained thus far, and to seek feedback from the water sector community.

Abstract

The so-called apparent increase of transmisivity (T) or hydraulic conductivity (K) with scale is an artifact and does not exist in the field. The reason for the apparent increasing of T with scale is due to the use of the "not applicable" random log Gaussian stochastic models that are used by geohydrologists. In the petroleum field, which uses deterministic methods, the apparent increase of T with aquifer volume does not occur. Groundwater practitioners have to change their view and use models that do not show this effect.

By using intuitive inspection of geological, fracture and connectivity data as well as real pumping test data, this paper shows that up-scaling must be performed with an exponential decaying function, where T always decreases with scale
.
Two types of heterogeneities exists namely a.) horizontal and b.) vertical. Connectivity between fractures is extremely important in both cases, but it is only in semi-confined and watertable aquifers that the vertical heterogeneities are really important (typical case of fracture dewatering)
{List only- not presented}

Abstract

Modelling of groundwater systems and groundwater-surface water interaction using advanced simulation software has become common practice. There are a number of approaches to simulate Lake-aquifer interactions, such as the LAK Package integrated into MODFLOW, the high conductivity and fixed stage approaches. LAK and the high conductivity approaches were applied and compared in simulating Lake- aquifer interaction in the Lake Sibayi Catchment, north-eastern, South Africa using the finite difference three-dimensional groundwater flow model, Visual MODFLOW Flex under steady state conditions. The steady state model consisted of two layers: an upper layer consisting of the Sibayi, KwaMbonambi, Kosi Bay and Port Durnford Formations which have similar characteristics, and a lower model layer representing the karst, weathered and calcareous Uloa Formation. The bottom model boundary is constrained by the impermeable Cretaceous bedrock. The model area covers the surface and groundwater catchments of Lake Sibayi which is constrained in the east by the Indian Ocean. A no-flow boundary condition is assigned to the northern, western and southern sides and a constant head boundary is assigned to the eastern side. The Mseleni River and neighbouring plantations were modelled using the River and Evapotranspiration boundary conditions respectively. Input parameters for the various boundary conditions were obtained from the previously developed high resolution conceptual model, including recharge

Abstract

POSTER Most developing urban areas in semi-arid regions of Sub Saharan Africa are often forced to utilise groundwater as an alternate source of domestic water supplies. As such groundwater evaluations strategies often face dual challenges in terms of resource quantification and their quality evaluation. However, groundwater potential assessment and aquifer yield evaluations often present a challenge when the system is of crystalline basement nature where groundwater potential is highly spatially variable and cases of dry holes and seasonal wells have been reported. This study demonstrate the integrated combination of geophysical techniques, (namely, vertical electrical sounding, electrical resistivity tomography, magnetic mapping, and seismic refraction tomography) with both borehole monitoring and infiltration techniques in the groundwater prospecting and spatial yield analysis of the Urban Bulawayo crystalline basement aquifer. The Bulawayo Metropolitan Province of Zimbabwe is located in the semi-arid region of Zimbabwe with an average annual rainfall of below 500 mm and has had a prolonged dry spell has resulted in the dwindling of the existing surface water resources. The aquifer system consists of syenite granite and fractured basaltic greenstone crystalline basement complexes. Provisional geophysical results have shown that the thickness of the fractured zone sharply varies in terms of spatial distribution and often some sections are characterized by shallow surface fractured zone that may only be 20-30 m thick and some sections have a reported regolith of up to 60m in thickness. Borehole yield assessments and chemical analysis techniques will be done on drilled wells in order to come out with detailed spatial variation in the borehole yield and water quality variations across the aquifer system. All the technical evaluations are then integrated to produce a detailed hydro-geophysical map of the system that can be used in the technical groundwater management of the urban Bulawayo aquifer.

Abstract

What are the key institutions, both formal and informal, that determine actual groundwater use in the Ramotswa aquifer? Are current institutions at regional, national and sub-national levels adequate to collaborate for equitable benefit-sharing for the future? These are the questions that the paper will address based on early findings of a project aimed at determining the role the Ramotswa aquifer can play in addressing multiple-level water insecurity, drought and flood proneness, and livelihood insecurity. Groundwater resources are critical in the SADC region

Abstract

The 'maintainable aquifer yield' can be defined as a yield that can be maintained indefinitely without mining an aquifer. It is a yield that can be met by a combination of reduced discharge, induced recharge and reduced storage, and results in a new dynamic equilibrium of an aquifer system. It does not directly or solely depend on natural recharge rates. Whether long-term abstraction of the 'maintainable aquifer yield' can be considered sustainable groundwater use should be based on a socio-economic-environmental decision, by relevant stakeholders and authorities, over the conditions at this new dynamic equilibrium.
This description of aquifer yields is well established scientifically and referred to as the Capture Principle, and the link to groundwater use sustainability is also well established. However, implementation of the Capture Principle remains incomplete. Water balance type calculations persist, in which sustainability is linked directly to some portion of recharge, and aquifers with high use compared to recharge are considered stressed or over-allocated. Application of the water balance type approach to sustainability may lead to groundwater being underutilised.
Implementation of the capture principle is hindered because the approach is intertwined with adaptive management: not all information can be known upfront, the future dynamic equilibrium must be estimated, and management decisions updated as more information is available. This is awkward to regulate.
This paper presents a Decision Framework designed to support implementation of the capture principle in groundwater management. The Decision framework combines a collection of various measures. At its centre, it provides an accessible description of the theory underlying the capture principle, and describes the ideal approach for the development operating rules based on a capture principle groundwater assessment. Sustainability indicators are incorporated to guide a groundwater user through the necessary cycles of adaptive management in updating initial estimations of the future dynamic equilibrium. Furthermore, the capture principle approach to sustainable groundwater use requires a socio-economic-environmental decision to be taken by wide relevant stakeholders, and recommendations for a hydrogeologists' contribution to this decision are also provided. Applying the decision framework in several settings highlights that aquifer assessment often lags far behind infrastructure development, and that abstraction often proceeds without an estimation of future impacts, and without qualification of the source of abstracted water, confirming the need for enhanced implementation of the capture principle.

Abstract

Faced with a burgeoning population and property growth, and in preparation for a future drier climate regime; the coastal town of Hermanus in the Western Cape has set up two wellfields to abstract groundwater from the underlying aquifer in order to augment the constrained surface water supply from the De Bos Dam.
Water Use Licences (WUL) were issued to the Overstrand Municipality in June 2011 and December 2013. The licences authorise a maximum annual abstraction of 1 600 Ml of water from the Gateway wellfield and 800 Ml of water from the Volmoed and Camphill wellfield via several boreholes. The water abstracted from the Gateway wellfield is pumped via a booster pump station to the Preekstoel Treatment Plant. The Volmoed and Camphill wellfield are situated at a higher altitude allowing for a gravity feed pipeline.
Earth Science Company, Umvoto Africa, has the responsibility to ensure Resource Quality Objectives are met which include balancing the need to protect the resource on the one hand; and the to develop sustainable utilisation of the Hermanus groundwater resources and compliance with the WUL on the other. The consultancy provides hydrogeological support, wellfield management and technical advice in operating the boreholes, pumps, boosters and related infrastructures.
Running the operations of the wellfield relies on a high-tech, semi-automated system, incorporating a remotely controlled, telemetry based structure. Vital parameters are monitored by electronic sensors, feeding data to processors which alters pump performance to maintain specified boundary levels. Data is simultaneously communicated via telemetry to a central control which uses data acquisition software to portray information to the operators. Warning alarms both alert operators via SMS and in certain instances auto-shut down the system.
To ensure ecological sustainability of the ground water resource, the wellfield also requires hydrogeological monitoring at far field locations within the recharge areas. Some of these locations are in remote areas making data download costly. The high-tech telemetry approach is used with positive results.
Any automated telemetry system is prone to malfunction and environmental hazards. The challenge lies in managing this and providing sufficient back up and duplication of systems.
The paper gives an overview of the components and flow of data based on the experiences gained during the evolution and development over 12 years of operation. Automation produces vast data bases which are often not sufficiently analysed, the premise that "once collected, the task is done". However data is only as good as the people who drive the systems and this paper provides a critical analysis of human intervention in an automated system and the decisive role of quality-checks. Finally the paper seeks to provide a pragmatic guideline for water users to comply with the WUL and institutional regulations.

Abstract

The groundwater quality of the Orange Water Management Area (OWMA) was assessed to determine the current groundwater status. Groundwater is of major importance in the Orange Basin and constitutes the only source of water over large areas. Groundwater in the OWMA is mainly used for domestic supply, stock watering, irrigation, and mining activities. Increase in mining and agricultural activities place a demand for the assessment of groundwater quality. The groundwater quality was assessed by collecting groundwater samples from farm boreholes, household boreholes, and mine boreholes. Physical parameters such as pH, temperature and Electrical Conductivity (EC) were measured in-situ using an Aquameter instrument. The groundwater chemistry of samples were analysed using Inductively Coupled Plasma Mass Spectrometry, Ion Chromatography, and Spectrophotometer for cations, anions and alkalinity respectively. The analyses were done at Council for Geoscience laboratory. The results obtained indicated high concentration of Nitrate (NO3), EC, sulphate (SO4), Iron (Fe), and dissolved metals (Chromium, Nickel, Copper, Zinc, and Lead). The concentrations were higher than the South African National Standards (SANS) 241 (2006) drinking water required guideline. The OWMA is characterised by the rocks of the Karoo Supergroup, Ventersdorp Supergroup, Transvaal Supergroup, Namaqua and Natal Metamorphic Province, Gariep Supergroup, and Kalahari Group. Groundwater is found in the sandstones of the Beaufort Group. Salt Mining occurs in the Namaqua Group, hence the high concentration of EC observed. High EC was also found in the Dwyka Group. The salt obtained from the pans underlain by the Dwyka Group rocks has relatively high sodium sulphate content, this probably results from oxidation of iron sulphate to sulphate. Therefore, high concentration of SO4 is due to the geology of the area. High concentration of NO3 is due to agricultural activities, whereas high concentration of EC, Fe, SO4 and dissolved metals is due to mining activities.

Abstract

The Dahomey Basin is a transboundary sedimentary basin with its eastern half in south western Nigeria. The vulnerability assessment of the basin was carried out to ascertain the degree of the shallow unconfined aquifers sensitive to groundwater contamination through the investigations of the intrinsic properties of lithology over the unconfined aquifer systems. The basin is a multi-layered aquifer system hosting large population densities particularly in Lagos where nearly half of the population rely on the groundwater for domestics and industrial purposes. The vulnerability evaluation involves determining the protective cover and infiltration condition of the unsaturated zone in the basin. This was achieved using the PI vulnerability method of the European vulnerability approach. The PI method specifically measures the protection cover and the degree to which the protective cover is bypassed. Intrinsic parameters assessed were the subsoil, lithology, topsoil, recharge and fracturing for the protective cover. While, the saturated hydraulic conductivity of topsoil, infiltration processes and the lateral surface and subsurface flow were evaluated for the infiltration bypassed. The results were depicted in vulnerability maps. Map of the protective cover ranges from high to very high. This means a very effective cover over the groundwater resources. The I map revealed a low to very low degree of bypass. The final vulnerability map shows that the Dahomey Basin vulnerability ranges from moderate to very low vulnerability areas. Low vulnerability areas were characterised by lithology with massive sandstone and limestone, sub soils of sandy loam texture, high slopes and high depth to water table. The moderate vulnerability areas were characterised by high rainfall and high recharge, low water table, unconsolidated sandstones and alluvium lithology. The vulnerability map was validated with hydrochemical properties of the groundwater. Chloride and TDS concentration of the groundwater reveals high chloride concentration for low groundwater vulnerability areas while low chloride concentrations were observed for moderate vulnerability areas. Low to moderate groundwater vulnerability areas show low TDS concentrations according to the WHO standards except for the coastal areas with relatively higher TDS concentrations. The groundwater vulnerability maps will be a useful tool for planning land use activities which will minimise groundwater contamination and enhance the protection of the Dahomey Basin groundwater resources.
{List only- not presented}
Keywords: PI method, Dahomey Basin, aquifer vulnerability, protective cover, groundwater resources.

Abstract

Underground mine water rebound prediction in its simplest form can be simulated linearly by comparing the volume of the mined ore with long-term average recharge rate to obtain an estimate of the time which will elapse before the workings are full to their decant elevation.

This type of linear interpolation of rising water levels can lead to an over estimation or an underestimation of the date when mine voids will flood to the critical levels. This is due to the fact that this method cannot account for the variability and interconnection between different mine voids and also does not consider the change in storage over time which is an important factor. In an abandoned underground water environment, water is stored in flooded mine stopes (tanks) and flows through a network of haulages (pipes). Due to the dip and strike of the ore body, the mined stopes are extensively interconnected on multiple levels and bounded by faults and dykes, so that water rising within any one tank will display a common level throughout that tank. At certain elevations, adjoining tanks may be connected via a discrete "overflow point", which may be a holding or permeable geological features. Water level rise during flooding is a function of head-dependent inflows from adjoining mine aquifers and/or other tanks, and the distribution of storage capacity within the tank.

The process of flooding occurs independently in two (or more) adjoining tanks until such time as the water level in one or more of the tanks reaches an overflow point. Inter-tank transfers of water will then occur until the difference in head between the two tanks either side of each overflow point is minimised. To apply the conceptual model stated above, EPANET 2 was used to predict the risk of flooding of a mine shaft, in the Free State Goldfields, if dewatering is discontinued. Considerations on stope volumetric calculations, haulage interconnections, modelling assumptions and predictions, are presented.

Abstract

Studies have shown that the use of natural water (drinking and bathing) with high level of 222Rn concentration may contribute to negative health effect in human beings. Thermal springs located in Limpopo province were sampled for the determination of 222Rn concentration by gamma ray spectrometry. The spring water has been used for domestic purposes: drinking and bathing, and for recreation bathing mainly. 19 samples were collected between thermal springs emanation points and swimming facilities (out and in doors). Radon-222 concentration found in these water ranges from 0.2 to 624 Bq/l. These results indicate that 7 thermal springs may represent increasing risk on bathing or inhalation of radon gas, leading to an increased risk of healthy.

Abstract

POSTER Since June 2010 and still ongoing today, the Lower Orange River Valley has experienced over a 1168 tremors(a) and earthquakes in the vicinity of Augrabies. Of these 1168 tremors, 71 quakes registered above 3 on the Richter scale and on 18 December 2011, the area was struck with an earthquake that registered 5 on the Richter scale. Four thermal springs are also located near this earthquake zone and the temperature of the water have a range of between 38?C -46.6?C, according to Kent LE. (1949/1969). 25?C is the division between thermal and non-thermal waters and the thermal gradient for the Riemvasmaak area(b) is 24?C, clearly indicating that the four springs are thermal when looking at the temperature difference. The Department of Water Affairs has been monitoring these springs monthly since 2011 and has been taking field measurements and chemical analyses. The aim of this study is a) to see if the tremors and earthquakes have an effect on the chemistry of the thermal springs, b) to create a data set for the thermal springs, as these springs was recorded and mentioned in Kent LE. reports of 1949 and 1969 but no samples were collected and analysed, c) to see if the water source for the groundwater in the area and the thermal springs are connected and d) to see if the recent floods may have had an influence on the earthquake zone seeing as the Orange River runs through the zone. The following sources are used to describe the earthquakes and water quality: (a) Earthquake data from the Council of Geosciene (b) ZQM data on NGA temp range between 21-28?C depending on the season with 24?C being the mean.

Abstract

The understanding of groundwater and surface water interaction is important for the planning of water resources in particular for farming areas. The interactions between groundwater and surface water are complex. To understand the relationship of groundwater and surface water interactions it is important to have a good understanding of the relation of climate, landform, geology, and biotic factors, a sound hydrogeoecological framework. Surface-water and groundwater ecosystems are viewed as linked components of a hydrologic continuum leading to related sustainability issues. In this study the Gevonden farm in Rawsonville will be used as the study site. This study site forms part of the Table Mountain Group (TMG). The methods to establish the relationship of groundwater and surface water interaction are collection of rainfall data monthly, river channel parameters at the farm such as the discharge on a monthly bases, chemistry of the water in the stream and groundwater were also be analyzed and pumping tests will be conducted twice to get the hydraulic parameters of the aquifer. The aquifer parameters will be analyzed using the Theis and Cooper-Jacob methods. The river has lower water levels in the summer months and this is also the case in the water levels in the boreholes on the farm, however in winter the opposite is true. The chemical analyses which are identical indicate that there is groundwater and surface water interaction in the farm. The degree of the interaction differs throughout the year. The results show that the interaction is influenced by the rainfall. The results clearly suggests that the farmers need to construct dams and drill pumping borehole in order to have enough water to water their crops in the summer season as by that time the river is almost dry.
{List only- not presented}

Abstract

The Bedford Dam is the upper storage dam for the Ingula Pumped Storage Scheme and is situated in the Ingula/Bedford Wetland. This wetland has a high structural diversity which supports a unique assemblage of plants and invertebrates. The flow regulation and water purification value is of particular importance as the wetland falls within the Greater Vaal River catchment. Concern was raised with respect to the potential negative impact of the newly constructed dam on the dynamic water balance within the wetland. An assessment of the extent to which groundwater drives / sustains the wetland systems and the water requirements needed to sustain the wetland processes was determined. This includes establishing the impact of the Bedford Dam on the groundwater and wetland systems as well as providing recommendations on management and monitoring requirements. The hydropedological interpretations of the soils within the study area indicate that baseflow to the wetland is maintained through perennial groundwater, mainly recharged from infiltration on the plateau, and was confirmed through isotope sampling and hydrometric measurements. It is apparent that the surface flows in the main wetland are fed by recent sources, while the subsurface layers in the wetland are sustained by the slower moving near-surface and bedrock groundwater. The movement of groundwater towards the wetland is hindered by the numerous dykes creating a barrier to flow. Nevertheless, there seems to be a good connection between the groundwater sources in the upland and the surface drainage features that conduct this water to the contributing hillslopes adjacent to the main wetland. The surface flows of the main wetland are sustained by contributions from tributary fingers. The discharge out of the wetland is highly seasonal

Abstract

This paper outlines and presents out-of-the-box theories as examples to highlight some of the challenging restraints within the current legislative environment preventing scientists, engineers and other operational personnel to take theory into action and implementation. Key to this is the very static nature of the water use license (WUL)and associated process. The first example shows how integrated dynamic water modelling can be utilized to create an integrated water and waste management plan within the mining sector. The models developed using principles from Government Notice 704, the Best Practice Guidelines (BPGs) and the principles of water conservation and demand management. Ultimately it keeps clean and dirty water flows separate and optimises the use of dirty water in order to reduce raw/potable water off-takes through this process. The objective of these models are to optimise the water use and develop strategies to ultimately enable mines to optimize it's internal non-potable water resources therefor relieving pressure on the limited potable systems, as well as aiding surrounding communities, in which they operate, with potable water. Results from the model provides for 1 or 20 years simulation data that differs year-on-year based on numerous factors, i.e. rainfall, run of mine (ROM) feed and growing/declining surface run-off areas. The variability of the results makes it almost impossible to utilize within application documentation as it is too complex and it does not align with the application figures as required in the WUL process. This resulting in a fairly simplistic and sometimes unrealistic static model that is submitted as part of the application.

Abstract

The mountain catchments of the Western Cape winter rainfall area were identified as areas needing more study in the early 1960s and so the Mountain Catchment studies were born. A number of study areas were suggested for these studies, but it was finally narrowed down to three sites. The studies in Jonkershoek had already started in 1935, with Zachariashoek and Jakkalsrivier added on in the 1960s. The Zachariashoek site was the only one that included groundwater as part of the experimental setup. A number of publications had been written about the work done in Zachariashoek. Most of the publications focused on changes in runoff after deforestation and fires, as well as the recovery patterns of the vegetation. The studies in Zachariashoek were done from 1964 till its termination in 1991 because of a lack of funding. The groundwater component consisted of 14 boreholes, with recorders on the five boreholes near the five weirs. The Zachariashoek area is made up of three catchments, Zachariashoek, Bakkerskloof and Kasteelkloof. It is adjacent to the Wemmershoek catchment. Bakkerskloof was the control catchment, while different burn cycles were part of the experimental setup of the two other catchments. The vegetation of Kasteelkloof was burned every 6 years with a 12 year cycle for Zachariashoek. Monitoring of the 5 weirs, 14 boreholes and the 9 rain gauges was done every week, with recorders on all five weirs, five of the 14 boreholes and at least 4 of the rain gauges. This data was entered into the data bases of the Department of Water and Sanitation, stretching from 1964 to 1986, with a complete record contained in 10 small field books. In this publication, we will look at the experiments done in Zachariashoek to see how this long term monitoring data can assist in managing the water resources within a catchment, taking into account the effects of deforestation and fires on surface water, groundwater and recharge to groundwater, the interaction between groundwater and surface water, as well as climate change.

Abstract

Mining is becoming a problem in the Western Cape - different kinds of mining and other resources, different problems than in other parts of the country. The West Coast had been declared a development corridor and a mining priority area. It is an arid to semi-arid area, where surface water is scarce, and rainfall relatively low and decreasing as one moves north. Some areas have significant volumes of good quality groundwater available, with potential impacts by the mining activities. This would play the importance of different resources off against the other. Most see resources as minerals, such as gold, silver, phosphate, and others where the value of these resources is measurable. Resources are also human capital, time, water, air, a healthy environment. It is more difficult to measure the value of the second group, as some of them have more than just a Rand and cent value. The value of resources is mostly done by measuring its monetary value, i.e. how much you will get when you sell the resource to a customer, providing the way the value of most resources is measured, i.e. resource economics. Economics is an area that most scientists are not familiar with as it contains a way thinking, of rules and laws unrelated to the way they have been taught. Supply and demand determines the value of a commodity, with scarce resources normally fetching higher prices. The value of the second group of resources is more difficult to determine. When does a resource become a strategic resource? This would be a resource that has a limited supply, does not get regenerated through natural processes and that is needed for defence, energy supply and others important for the stability of a country. There are also a category of resources we cannot live without such as water, and air - pure, fresh air and water. Without it life on this planet will cease to exist. This could be termed critical resources. What do you do if the occurrence of two very important critical resources overlaps, where the extraction of the one will lead to irreparable damage to the other? This article will look at one site where a strategic resource occurs at the same site as an important water resource. It will compare the potential value of the mineral resource with the value of the water resource in the aquifer measured at the current value of water as available to the public. It will also take into account the value of the water resource from the perspective of a healthy functioning ecosystem and a RAMSAR site. This analysis becomes more valuable when considering the potential effects of climate change in the area and the cost of desalination.

Abstract

The SADC Grey Data archive http://www.bgs.ac.uk/sadc/ provides a chronology of groundwater development within the constituent countries of the SADC region. Early reports show how groundwater development progressed from obtaining water by well digging to the mechanical drilling of boreholes for provision of water for irrigation, township development, transport networks and rural settlement. During the 1930s steam driven drilling rigs were supplanted by petrol engine driven cable tool percussion drilling. Dixey (1931), in his manual on how to develop groundwater resources based on experiences in colonial geological surveys in eastern and southern Africa, describes aquifer properties, groundwater occurrence and resources as well as water quality and groundwater abstraction methods. Frommurze (1937) provides an initial assessment of aquifer properties in South Africa with Bond (1945) describing their groundwater chemistry. South African engineers transferred geophysical surveying skills to the desert campaign during World War II. Paver (1945) described the application of these methods to various geological environments in South Africa, Rhodesia and British colonial territories in eastern and central Africa. Test pumping methods using electric dippers were also developed for the assessment of groundwater resources. Enslin and others developed DC resistivity meters, replacing early Meggar systems, produced data that when analysed, using slide rules with graphs plotted by hand, identified water bearing fractures and deeply weathered zones. Tentative maps were drawn using interpretation of aerial photographs and heights generated using aneroid altimeters. The problems faced by hydrogeologists remain the same today as they were then, even though the technology has greatly improved in the computer era. Modern techniques range from a variety of geophysical surveying methods, automated rest level recorders with data loggers to GPS location systems and a whole host of remotely sensed data gathering methods. Worryingly, using such automated procedures reduces the ability of hydrogeologists to understand data limitations. The available collection of water level time series data are surprisingly small. Surrogate data need to be recognised and used to indicate effects of over abstraction as demand grows. As the numbers of boreholes drilled per year increases the number of detailed hydrogeological surveys undertaken still remains seriously small. Has our knowledge of hydrogeological systems advanced all that much from what was known in the 1980s? Case histories from Malawi, Zimbabwe and Tanzania illustrate a need for groundwater research with well-judged sustainability assessments to underpin safe long-term groundwater supply for the groundwater dependent communities in the region.

Abstract

The current study investigated the subsurface of aquifers in Heuningnes Catchment focusing on aquifer characteristics for groundwater resource assessments. Surface geophysical resistivity method was adapted for mapping the shallow subsurface layers and hydrogeologic units at selected sites within the catchment. The aim was to provide a preliminary overview of the subsurface nature of aquifers within the study area, by establishing features such as geological layers, position of weathered zones, faults and water bearing layers. The multi-electrode ABEM SAS 1000 resistivity meter system, using the Wenner array, was used to obtain 2D resistivity data of the subsurface. The acquired data was processed and interpreted using Res2DINV software to produce the 2D resistivity models. The analysis of the resistivity models of the subsurface reveals maximum of four layers; sandstone, shale, poor clayed and brackish water saturated layer. On comparing the model results with the surficial geological formation of the catchment geological map, the identified layers were found to correspond with the geology of the area. The findings i) provide insights on sites that can be drilled for groundwater exploration, ii) show possible water-type variations in the subsurface. Although the results are not conclusive but they provide basis for further research work on quality and flow dynamics of groundwater.

{List only- not presented}
Key words: aquifer properties, hydrogeologic units, geo-electric model, electrical-resistivity method

Abstract

Globally, a growing concern have been that the heavy metal contents of soil are increasing as the result of industrial, mining, agricultural and domestic activities. While certain heavy metals are essential for plant growth as micronutrients, it may become toxic at higher concentrations. Additionally, as the toxic metals load of the soil increases, the risk of non-localized pollution due to the metals leaching into groundwater increases. The total soil metal content alone is not a good measure of risk, and thus not a very useful tool to determine potential risks to soil and water contamination. The tendency of a contaminant to seep into the groundwater is determined by its solubility and by the ratio between the concentration of the contaminant sorbed by the soil and the concentration remaining in solution. This ratio is commonly known as the soil partitioning or distribution coefficient (Kd). A higher Kd value indicate stronger attraction to the soil solids and lower susceptibility to leaching. Studies indicate that the Kd for a given constituent may vary widely depending on the nature of the soil in which the constituent occurs. The Kd of a soil represents the net effect of several soil sorption processes acting upon the contaminant under a certain set of conditions. Soil properties such as the pH, clay content, organic carbon content and the amount of Mn and Fe oxides, have an immense influence on the Kd value of a soil. Kds for Cu, Pb and V for various typical South African soil horizons were calculated from sorption graphs. In most cases there were contrasting Kd values especially when the cations, Cu and Pb, had high contamination levels, the value for V was low. There is large variation between the Kds stipulated in the Framework for the Management of Contaminated land (as drafted by the Department of Environmental Affairs) and the values obtained experimentally in this study. The results further indicate that a single Kd for an element/metal cannot be used for all soil types/horizons due to the effect of soil properties on the Kd. The results for Cu and Pb indicated that the Kds can range in the order of 10 to 10 000 L/kg for Cu and 10 to 100 000 L/kg for Pb. The variation in V Kd was not as extensive ranging from approximately 10 to 1 000 L/kg. {List only- not presented}

Abstract

A review from international literature discredits the capability of MODFLOW to simulate mine water rebound, due to the nonstandard hydrogeology of underground mine systems. The conceptual understanding is that, after cessation of dewatering, mine water inflow rates and hydraulic heads are related to the void-volume, the differences in head between the water in the mine void and head dependent source, plus natural recharge to the mine voids. The flooded mine voids in the study area are partially underlain by a dolomitic aquifer. The other head dependent source of inflow into the mine voids are the surrounding and overlying Karoo aquifers. Head independent inflow rates into the mine voids, using the long term decant rates, was estimated to be 0.2% of rainfall. During mining, dewatering occurred at approximately 3 to 6 Ml/d. The objective of the model was therefore to simulate the changes head-dependent inflow rates during the rebound period. Analysis of the water level recovery data depicted that once the mine filled up with water, the hydraulic head of the mine rose with the elastic storage coefficient value of the mine void and not the specific retention as conditions changed from unconfined to confined. A three layer model was setup, to represent the two seams mined, separated by a deep Karoo aquifer. The presence of the dolomite on the mine floor was incorporated using the general head boundary package. Head dependent influx from overlying shallow and intermediate Karoo aquifers were simulated using the river package. All model layers were simulated as confined, initially to avoid model convergence issues. The confined setup proved to be the core in simulating mine water rebound with MODFLOW. The modelling exercise showed that storage during rebound is a boundary condition. This simply means that the complexity of mine water rebound can only be achieved in MODFLOW by proper time stepping and dividing the model into different stress periods to represent the changes in storage. Rebound in the study area, modelled with 21 stress periods produced a perfect water level recovery data for the different mine compartments. This was achieved by applying storage capacities of between 0.3 to 0.006 to simulate rebound during unconfined conditions, and values of between 10-4 and 10-5 when the mine void is flooded. The results showed that the inflow from the dolomitic aquifer steadily decreased from 4121 m3/d to 0 m3/d as the mine hydraulic head increased and rose over the head in the dolomitic aquifer. During the same period, inflow from the surrounding Karoo aquifers decreased from 2422 m3/d to less than 10 m3/d. The results of the model were very important in determining the volumes of water to be abstracted from the mine voids for ash-backfilling. {List only- not presented}