Conference Abstracts

All Abstracts were presented at the Groundwater Conferences

Displaying 51 - 100 of 795 results
Title Presenter Name Presenter Surname Area Sort descending Conference year Keywords

Abstract

The generation of acid mine drainage (AMD), as a result of mining activities, has led to the degradation of groundwater quality in many parts of the world. Coal mining, in particular, contributes to the production of AMD to a large extent in South Africa. Although a vast number of remediation methods exist to reduce the impacts of AMD on groundwater quality, the use of a coal fly ash monolith to act as a reactive and hydraulic barrier has not been extensively explored. This study, therefore, aims to investigate how different ways of packing ash affect the hydraulic conductivity of ash and influence leachate quality when acid-mine drainage filters through the ash. Coal ash is highly alkaline due to the existence of free lime on the surface of the ash particles. Previous studies that investigated alternative uses of coal ash, particularly in AMD treatment, suggest that coal ash has the potential to neutralise pH in acid water and remediate acidic soils. To test the effects of different packing methods of coal ash on the hydraulic conductivity and quality of acid mine leachate flowing through it, several Darcy column tests will be conducted. During the course of these experiments, the following parameters will be measured, electrical conductivity, pH discharge, lime (CaCO3) and selected elements of environmental concern.

Abstract

Slightly more out of the box idea is the use of anthropogenic aquifers as storage and chemical conditioners.  This concept was first introduce by Eland Platinum Mine(EPM) and reported on in previous papers.  At EPM water is used through a serious of natural aeration and aerobic storage facilities to reduce nitrate levels.  In 2013 another group introduced pilot studies by virtue of abstraction in support of the water conservation and demand management strategy; which has proven that it could enable the operations to overcome water shortage periods and reduce pressure on Rand Water (RW). The pilot sites would deliver water into the dirty water circuit, but within five to ten years it may further be used to overcome months with zero potable water supply. .  In platinum mines the more the aquifers are used the cleaner the water becomes, simply because introduced pollutants are not constant sources and country rock is mostly inert.  In the future these aquifers have the potential to become larger storage facilities protected from floods and limited evaporation losses. It is foreseen that some of the mines in the western belt may have more water stored in primary aquifers than water stored within major water dams. Yields from these aquifers for individual aquifers may be up to 450 m3/hour and storage of 18 Mm3.  . Why then this paper if we are already using it?  The issue is that the true value of these aquifers an only be unlocked when they are  used as recharging aquifers and thereby actively storing dirty water within a dirty water aquifer.  Once we are able to undertake this the positive environmental gains such of environmental overflows, condition dirty water, reduction of pollution and significant reduction of the use of potable water from RW. {List only- not presented}

Abstract

The most used methods for the capturing of shallow groundwater contamination are the use of abstraction wells and infiltration trenches. The use of trenches for the interception of shallow groundwater contamination has become a popular choice of remediation method due to the lower cost than a comparable pump-and-treat system. Trenches have large surface areas which limits the tendency of filter media clogging with suspended media as well as only a single pump and lower maintenance requirements. An important consideration of the use of trenches is determining the effectivity before design and construction. To date, limited information on the effectivity of trench designs are available, therefore a method to determine the effectivity of a trench was devised. This paper will discuss this evaluation method and look at some cases where planned trenches were successful and some cases where they were not.

Abstract

This study was aimed at developing an integrated groundwater-surface water interaction (GSI) model for a selected stretch of the Modder River by considering the following five different aspects of the GSI: 1) the distribution of different aquifer systems (structural connectivity) along the river 2) the hydraulic connectivity between the aquifer systems, 3) the volumes of water abstracted from the aquifers by streamside vegetation, 4) the volumes of water replenished to the groundwater system through rainfall recharge, and 5) the exchange fluxes between the various components of the groundwater-surface water system. The distribution of the aquifer systems was investigated by means of a) geo-electrical surveys, and b) in situ slug tests while their hydraulic connectivity was investigated by hydrogeochemical routing. The volumes of water abstracted by streamside vegetation were estimated by the quantification of the transpiration from individual plants and the groundwater recharge was estimated by a root zone water balance. The water exchange fluxes between the groundwater and surface water were determined from a simple riparian zone groundwater budget. The results of the geo-electrical surveys and slug tests allowed the delineation of the riparian area aquifers (RAA) and the terrestrial area aquifers (TAA) on both the south-eastern and north-western sides of the river. Based on the results of hydrochemical analyses, saturation indices and inverse mass balance modelling, the GSI involves flow of water from the TAA to the RAA, and finally to the river on the south-eastern side while it involves flow from the river into the RAA with a limited exchange with the TAA on the south-eastern side. The dominant vegetation on the study area was found to be the Acacia karroo and Diospyros lycioides. The close similarities in isotope compositions of the xylem sap and the borehole water samples suggested that the Acacia karroo sourced its water from the groundwater storage while differences in isotope compositions suggested that the Diospyros lycioides did not source water from the groundwater storage at the time of measurement. The results of groundwater recharge estimation in the study area highlighted the fact that both the antecedent moisture and the rainfall amounts determine whether recharge to the groundwater system will take place. Finally, the results of baseflow estimation indicated that the river is a gaining stream along the south-eastern reach while acting as a losing stream along the north-western reach.

Abstract

Water resources worldwide are stressed, and the number of groundwater professionals required to manage those resources is not being generated in sufficient numbers. Groundwater educational resources must be placed in schools to generate excitement and raise awareness. Additionally, people entering the workforce need training throughout their professional careers. Oklahoma State University partnered with the U.S. National Ground Water Association to develop a framework for providing education and training programs in groundwater that allow for interactive online education at all levels. The Awesome Aquifer 360 program targets grades 5-8, allowing students to conceptually explore aquifers and the people who manage them. The Drilling Basics Online program provides a 40-hour basic safety and drilling training to recruit professionals into the groundwater industry and reinforce safe operations. These programs and future plans for the technique will be discussed.

Abstract

Water scarcity is a growing issue in South Africa. The consumption of water is rising and as such, water is becoming a scarce and valuable resource. Given the circumstances that South Africa is facing, improving the use of ground water could help tackle water scarcity in South Africa. Groundwater has been an important source of water and it can bring socio-economic benefits if properly used. Studies have proved that groundwater resources play a fundamental role in the security and sustainability of livelihoods and regional economies throughout the world. However, in South Africa, groundwater still remains a poorly managed resource and this hinders socio-economic development. This paper examines the current state of ground water management in South Africa. The paper also examines how ground water in South Africa is currently allocated and used, and explores some of the consequences of current water management arrangements. {List only- not presented}

Abstract

The expectation that during yield tests, a borehole will react within the expected framework of the existing numerical models, is often not met within real-world scenarios. This is mainly due to the observation that the Theis solution for confined aquifers, Neuman solution for unconfined aquifer and Barker Generalised Radial Flow Model for hydraulic tests in fractured rocks all include idealised assumptions regarding the physical aspects of a hypothetical. In order to interpret the data from a yield test these methods, along with the Flow Characteristic method for sustainable yield estimates, are commonly used. However, as these assumptions are not always met, the analysis is usually focused on time periods within the test that approximate these solutions. In some cases, the extent to which these assumptions are not met can produce drawdown data that is not well described by the usual analytical models used to analyse this data. This study addresses some of the shortcomings experienced during testing in non-ideal aquifers, as well as briefly describing some tests where small budgets, short deadlines, a lack of information and/or unforeseen circumstances resulted in similar challenges to analyses. This study does not present new solutions to drawdown data analyses, but rather discusses how the mentioned solutions were used during testing to accommodate for the shortcomings experienced.

Abstract

This keynote paper addresses several issues central to the conference theme of “Change, Challenge and Opportunity”. For hydrogeologists to exert greater influence on groundwater management globally, proper education and training is essential. Universities play a key role in educating hydrogeologists in the fundamental principles of groundwater science through taught Masters and other degree programmes. Scientific associations such as the International Association of Hydrogeologists (IAH) also have an important part to play in education and training through short courses, conferences and mentoring schemes, and in enhancing groundwater science through journal and book publications and scientific commissions. IAH’s mission is to promote the wise use and protection of groundwater and, in this respect, a series of Strategic Overview papers have been prepared to inform professionals in other sectors of the interactions between groundwater and these sectors. Two of the Strategic Overview papers focus on the SDGs and global change, and some of the groundwater challenges in these areas are described. Whilst these challenges will provide hydrogeologists with opportunities to influence global water issues in the 21st century, hydrogeologists will need to be able to communicate effectively with all of the stakeholders, using traditional and more modern forms of communication, including social media.

Abstract

The national water balance is primarily based on the availability of surface water and the historic allocation thereof. The changes that are required the next 20 years to ensure sustainable development of the nation will be painful, but is unfortunately at present not part of the public discussion, it is essentially ignored in favour of more "popular water topics".This paper intends to look at a few core aspects, they include the current water allocation in the national water balance, the relative value of the utilisation, the position of groundwater resources in changing the current relative allocation and the current groundwater utilisation. The paper further intends to be a less formal presentation of these aspects with the required data, references and conclusions available for distribution afterwards.

Abstract

Coastal groundwater is a vulnerable resource, estimated to sustain the water needs of about 40% of the world’s population. The Roussillon aquifer is a regional aquifer near Perpignan (southern France). It covers over 800 km2 of land and is used for irrigation, drinking water, and industrial purposes. The aquifer has experienced significant piezometric lowering in the last decades, weakening the regional resource. An important aspect of modelling the hydrodynamic of this aquifer is the need to integrate data from agriculture and drinking water abstraction, natural and anthropogenic recharge, and account for the aquifer’s complex sedimentary arrangement. An ensemble of groundwater models has been constructed to understand the spatial evolution of the saline/freshwater interface and evaluate the impact of groundwater abstraction.

Three sets of physical parameter modelling approaches were used. The first is based on the direct interpolation of pumping tests. The second uses sequential indicator simulations to represent the geological uncertainty. The third is based on a detailed conceptual geological model and multiple-point statistics to represent the detailed geological structure. These models provide parameter fields that can be input for the transient state hydrodynamic simulations. Overall, the ensemble approach allowed us to understand the Roussillon plain’s hydrological system better and quantify the uncertainty on the possible evolution of the main groundwater fluxes and water resources over the last 20 years. These models can help to inform management decisions and support sustainable water resource development in the region.

Abstract

POSTER About 97% of the earth's freshwater fraction is groundwater, excluding the amount locked in ice caps (Turton et al 2007) and is often the only source of water in arid and semi-arid regions and plays a critical role in agriculture, this dependency results in over-exploitation, depletion and pollution (Turton et al 2007). Groundwater governance helps prevent these issues. CSIR defines governance as the process of informed decision making that enables trade between competing users of a given resource, as to balance protection and use in such a way as to mitigate conflicts, enhance security, ensure sustainability and hold government officials accountable for their actions (Turton et al 2007). Realising the issues of groundwater governance is a requirement for developing policy recommendations for both national and trans-boundary groundwater governance. Groundwater level decline has led to depletion in storage in both confined and unconfined aquifer systems (Theesfeld 2010). There are about six institutional aspects, namely voluntary compliance, traditional and mental models, administrative responsibility and bureaucratic inertia, conflict resolution mechanisms, political economy and information deficits (Theesfeld 2010). Each of these aspects represents institutional challenges for national and international policy implementation. Traditional local practices should not be disregarded when new management schemes or technological innovations are implemented. The types of policies that impact governance include regulatory instruments, economic instruments and voluntary/advisory instruments. Regulatory or command and control policy instruments such as ownership and property right assignments and regulations for water use are compulsory. Economic policy instruments make use of financial reasons such as groundwater pricing, trading water right or pollution permits, subsidies and taxes. Voluntary /advisory policy instruments are those that influence voluntary actions or behavioural change without agreement or direct financial incentives. These are ideal types though no policy option ever relies purely on one type of instrument. The aim of these policies is to have an impact on governance structures (Theesfeld 2010). The national water act (1998) of the Republic of South Africa is not widely recognized as the most comprehensive water law in the world even though it is the highlight of socio-political events; socially it is still recent in most sites although the law was implemented 15 years ago (Schreiner and Koppen 2002). Regulations for use include quantity limitations, drilling permits and licensing, use licenses, special zone of conservation and reporting and registering requirement. In general when drilling and well construction are done commercially they increasingly fall under the scope of regulatory legislation. This paper will focus mostly on traditional and mental models; procedures that a certain community is dependent on should be taken into account before replacing with technological advanced tools. Consultation of the public can cause conflicts which lead to poor groundwater management.

Keywords: Groundwater governance, policy, policy instruments.

Abstract

A large number of groundwater investigations have been carried out in the Western Cape over the last decade or so. Most of them were related to water supply options for individuals, agriculture, businesses, industries, government departments and municipalities. Some of these developments have confirmed what we already knew about the groundwater characteristics and aquifers of the Western Cape, while others provided us with surprises - surprises so significant that we may have to re-write what we thought we knew. This paper will not be able to cover all the interventions and groundwater studies that have been done. Two case studies linked to the major geological structure in the Western Cape, namely the Colenso Fault (also known as the Franschhoek-Saldanha Fault), will therefore be used as an illustration of the lessons that were learnt by comparing them with our historical understanding of the associated groundwater characteristics. It will also show that there is a need for updated groundwater maps on smaller scale and a reassessment of the aquifers status.

Abstract

POSTER As the National Water Act has evolved to provide for more effective and sustainable management of our water resources, there has been a shift in focus to more strategic management practices. With this shift come new difficulties relating to the presentation of sensitivity issues within a spatial context. To this end it is necessary to integrate existing significant spatial layers into one map that retains the context, enables simple interpretation and interrogation and facilitates decision making. This project shows the steps taken to map and identify key groundwater characteristics in the Karoo using Geographic Information Systems (GIS) techniques. Two types of GIS-based groundwater maps have been produced to assist with interpretation of existing data on Karoo Aquifer Systems in turn informing the management of groundwater risks within Shell's applications for shale gas exploration. Aquifer Attribute and Vulnerability maps were produced to assist in the decision making process. The former is an aquifer classification methodology developed by the project team, while the latter uses the well-known DRASTIC methodology. The overlay analysis tool of ESRI's ArcGIS 10.1 software was used, enabling the assessment and spatial integration of extensive volumes of data, without losing the original detail, and combining them into a single output. This process allows for optimal site selection of suitable exploration target areas. Weightings were applied to differentiate the relative importance of the input criteria. For the Attributes maps ten key attributes were agreed by the project team to be the most significant in contributing to groundwater/aquifer characteristics in the Karoo. This work culminated in the production of a series of GIS-based groundwater attributes maps to form the Karoo Groundwater Atlas which can be used to guide groundwater risk management for a number of purposes. The DRASTIC model uses seven key hydrogeological parameters to characterise the hydrogeological setting and evaluate aquifer vulnerability, defined as the tendency or likelihood for general contaminants to reach the watertable after introduction at ground surface.

Abstract

The SADC Grey Data archive http://www.bgs.ac.uk/sadc/ provides a chronology of groundwater development within the constituent countries of the SADC region. Early reports show how groundwater development progressed from obtaining water by well digging to the mechanical drilling of boreholes for provision of water for irrigation, township development, transport networks and rural settlement. During the 1930s steam driven drilling rigs were supplanted by petrol engine driven cable tool percussion drilling. Dixey (1931), in his manual on how to develop groundwater resources based on experiences in colonial geological surveys in eastern and southern Africa, describes aquifer properties, groundwater occurrence and resources as well as water quality and groundwater abstraction methods. Frommurze (1937) provides an initial assessment of aquifer properties in South Africa with Bond (1945) describing their groundwater chemistry. South African engineers transferred geophysical surveying skills to the desert campaign during World War II. Paver (1945) described the application of these methods to various geological environments in South Africa, Rhodesia and British colonial territories in eastern and central Africa. Test pumping methods using electric dippers were also developed for the assessment of groundwater resources. Enslin and others developed DC resistivity meters, replacing early Meggar systems, produced data that when analysed, using slide rules with graphs plotted by hand, identified water bearing fractures and deeply weathered zones. Tentative maps were drawn using interpretation of aerial photographs and heights generated using aneroid altimeters. The problems faced by hydrogeologists remain the same today as they were then, even though the technology has greatly improved in the computer era. Modern techniques range from a variety of geophysical surveying methods, automated rest level recorders with data loggers to GPS location systems and a whole host of remotely sensed data gathering methods. Worryingly, using such automated procedures reduces the ability of hydrogeologists to understand data limitations. The available collection of water level time series data are surprisingly small. Surrogate data need to be recognised and used to indicate effects of over abstraction as demand grows. As the numbers of boreholes drilled per year increases the number of detailed hydrogeological surveys undertaken still remains seriously small. Has our knowledge of hydrogeological systems advanced all that much from what was known in the 1980s? Case histories from Malawi, Zimbabwe and Tanzania illustrate a need for groundwater research with well-judged sustainability assessments to underpin safe long-term groundwater supply for the groundwater dependent communities in the region.

Abstract

With the revision of the European Drinking Water Directive (Directive on the quality of water intended for human consumption 2020/2184) in December 2020, the preparation of Water Safety Plans (WSP) is foreseen according to the guidelines of WHO. Within the EU Interreg Adrion MUHA project, a decision support tool (DST) has been developed to provide a holistic approach to drinking water infrastructure risk analysis. The project mainly addresses four water-related risks: accidental pollution, floods, droughts and earthquakes. The core of the DST is the inventory of hazardous events (causes, their consequences and impacts) for each component of the drinking water supply chain: (1) drinking water source - catchment area, (2) water supply system, and (3) domestic distribution system. For each identified potential hazard, the type of hazard was determined (e.g., biological, chemical, radiological, or physical hazard (including turbidity), inadequate availability of water supplied to customers, safety to personnel, external harm to third parties, including liability). The DST was tested in the partner countries (Italy, Slovenia, Croatia, Serbia, Montenegro and Greece) to verify the resilience of the measures and elaborate the WSP.

In the end, the REWAS-ADRION strategy was elaborated, aiming to increase the resilience of drinking water supplies to floods, droughts, accidental pollution, and earthquake-related failures by improving the water safety planning mechanism based on the concept of inter-agency cooperation to support water utilities, civil protection organizations, and water authorities.

Abstract

Preventing the spread of seepage from tailings storage facilities (TSF's) in groundwater is necessary as it often contains toxic contaminants. Experience has shown that seepage from TSFs is inevitable and that zero seepage remains difficult even with complex liner systems. Multiple seepage control methods are often required to minimise seepage to ensure that environmental regulations are met. Control methods can be grouped into either barrier or collection systems. Barrier systems are used to hinder seepage whereas collection systems are used to intercept seepage. A blast curtain, which is the focus of this article, is a type of collection system that is still at a conceptual level but has seen little or no application worldwide. It works in principle, similarly to a curtain drain, but is typically extended to greater depths depending on the aquifer vulnerability. Numerical modeling has shown that this mitigation measure could add another line of defence for seepage control. The depth and effectiveness of the curtain can be optimized with a numerical model to ensure optimal interception of contaminated seepage around the TSF. Depths of up to 30 m in fractured aquifers have been simulated in this study. A blast curtain is constructed by drilling a set of boreholes around a TSF in close proximity to one another and then fracturing the rock using either explosives or fracking methods to create a more permeable zone. This is then combined with a series of scavenger wells or natural seepage to abstract the contaminated water. Numerical simulation has shown that blast curtains are effective especially if groundwater flow is horizontal. The effectiveness decreases if the vertical flow component is significant. A blast curtain can result in the lowering of the water table, however, local depression is a less of a concern than potential groundwater contamination. {List only- not presented}

Abstract

Globally, cumulative plastic production since 1950 is estimated to have reached 2500 Mt of plastic. It is estimated up 60% of this plastic is either resting in landfills or the natural environment, including groundwater settings. Microplastics are small pieces of plastic ranging between 1μm – 5mm in size and have been found in every ecosystem and environment on the planet. Much of the available literature on microplastics is focused on marine environments with few in comparison focused on freshwater environments, and even fewer on groundwater settings.

The aim of this study is therefore to investigate the attenuation process responsible for influencing microplastic transport in saturated sands. This research will adapt colloid transport theory and experiments to better understand the movement of microplastics through sandy media. Saturated aquifer conditions will be set up and simulated using modified Darcy column experiments adapted from Freeze & Cherry (1979). Modified microplastics will be injected into the columns as tracers and the effluent concentrations measured by Fourier-transform infrared spectroscopy (FTIR). Breakthrough curves will then be plotted using the effluent concentrations to determine the attachment efficiency (α). It is expected the attachment efficiency will vary by microplastic type and size range. The Ionic strength of the solution flowing through the column and the surface charges of both microplastics and sandy surfaces are likely to influence the degree of attenuation observed. The relationship between different types of microplastics and collector surfaces from a charge perspective and their influence on the degree of attenuation will be evaluated.

Given the lack of literature, its ubiquitous presence and postulated effects on human health, this research is significant. Through this research, the transport and attenuation of microplastics through sandy aquifers can be better understood, and in the process inform future research and water resource management.

Abstract

Water is integral to our economy, the health of our environment, and our survival as a species. Much of this water is accessed from surface sources, mostly rivers, which are now under increased threat due to over use and the resulting hydro-political forces. Yet, groundwater exists as a viable option in many countries facing these mounting challenges. Knowledge of our deeper groundwater systems, although increasing, is still quite limited due to our propensity to focus efforts in the lower cost, lower risk, near- surface environment. However, accessibility to shallower groundwater is tightening due to increasing use, changing regulatory requirements, and climate change.

The use of classical geophysics to explore for groundwater resources, such as seismic, gravity, magnetics, and resistivity, has been the industry standard for many decades. These technologies have proven quite effective both in the shallow and medium depth environments. However, newer remote sensing and ground-based technologies are now emerging with the ability to significantly reduce costs and time, and increase success for groundwater exploration and development programs. Quantum Direct Matter Indicator (QDMI) technologies, or applied methods of Quantum Geoelectrophysics (QGEP), are poised to enhance the hydrogeophysical industry, much like electro-magnetic (EM) and electrical resistivity tomography (ERT) did years ago. QDMI utilizes resonant frequency remote and direct sensing technologies that detect perturbations in the earth’s natural electric, magnetic and electromagnetic fields. Controlled source electromagnetic pulse methods with electromagnetic spectrum spectroscopy are used to identify aquifers, including thickness, water quality (fresh or saline) and temperature, to depths of 1000 m or more accurately. With multiple successes around the world, the deployment of this inventive and effective approach to groundwater exploration is poised to advance exploration geophysics globally.

Abstract

The provision, usage and discharge of water resources are major concerns for coal mines, both underground and opencast. Water resources in a coal mining environment will often account for a significant portion of the daily operational cost. In order to cut costs, the mine will often collect as much runoff as possible to recycle for future use. This on-going recycling of site water and management of the resource demands a complete site water balance model in order to understand the dynamics of the resource within the boundaries of the mine. To improve the understanding of the dynamics of the resource on a much larger scale, and the effect it will have on recharge in an open cast coal mine environment, one must consider alternative modelling approaches which can compensate for such conditions. This amounts to describing recharge as a modelling component in a physically based distributed model. The main goal of this project is to calculate recharge into the main pit at this specific colliery by applying parameters on a quaternary catchment scale. The colliery is located just west of the town of Ogies, Mpumalanga on the peripheral region of the quaternary catchment B20G. The physiography of the quaternary catchment B20F is described as a central Highveld region gently sloping to the north. The geohydrological modeling application MIKE SHE (developed by DHI) was used to develop a fully integrated catchment model. The model was created mainly to simulate the impact of human activities on the hydrological cycle and hence on water resource development and management. Different modules of MIKE SHE that was used during the modelling stage include saturated- and unsaturated flow and a small degree of overland flow.

Key words: Mpumalanga, MIKE SHE, recharge

Abstract

Faced with a burgeoning population and property growth, and in preparation for a future drier climate regime; the coastal town of Hermanus in the Western Cape has set up two wellfields to abstract groundwater from the underlying aquifer in order to augment the constrained surface water supply from the De Bos Dam.
Water Use Licences (WUL) were issued to the Overstrand Municipality in June 2011 and December 2013. The licences authorise a maximum annual abstraction of 1 600 Ml of water from the Gateway wellfield and 800 Ml of water from the Volmoed and Camphill wellfield via several boreholes. The water abstracted from the Gateway wellfield is pumped via a booster pump station to the Preekstoel Treatment Plant. The Volmoed and Camphill wellfield are situated at a higher altitude allowing for a gravity feed pipeline.
Earth Science Company, Umvoto Africa, has the responsibility to ensure Resource Quality Objectives are met which include balancing the need to protect the resource on the one hand; and the to develop sustainable utilisation of the Hermanus groundwater resources and compliance with the WUL on the other. The consultancy provides hydrogeological support, wellfield management and technical advice in operating the boreholes, pumps, boosters and related infrastructures.
Running the operations of the wellfield relies on a high-tech, semi-automated system, incorporating a remotely controlled, telemetry based structure. Vital parameters are monitored by electronic sensors, feeding data to processors which alters pump performance to maintain specified boundary levels. Data is simultaneously communicated via telemetry to a central control which uses data acquisition software to portray information to the operators. Warning alarms both alert operators via SMS and in certain instances auto-shut down the system.
To ensure ecological sustainability of the ground water resource, the wellfield also requires hydrogeological monitoring at far field locations within the recharge areas. Some of these locations are in remote areas making data download costly. The high-tech telemetry approach is used with positive results.
Any automated telemetry system is prone to malfunction and environmental hazards. The challenge lies in managing this and providing sufficient back up and duplication of systems.
The paper gives an overview of the components and flow of data based on the experiences gained during the evolution and development over 12 years of operation. Automation produces vast data bases which are often not sufficiently analysed, the premise that "once collected, the task is done". However data is only as good as the people who drive the systems and this paper provides a critical analysis of human intervention in an automated system and the decisive role of quality-checks. Finally the paper seeks to provide a pragmatic guideline for water users to comply with the WUL and institutional regulations.

Abstract

In South Africa, the use of stochastic inputs in surface water resources assessments has become the norm while this is rarely done for groundwater resources. Studies that have applied multi-site and multi-variate methods that incorporate stochastic generation of groundwater levels are limited. Stochastic based inputs account for uncertainties attributed to inherent temporal and spatial variability of hydrologic variables and climatic conditions. This study applied variable length block (VLB) stochastic generator for simultaneous generation of multi-site stochastic time series of rainfall, evaporation and groundwater levels. In the study, 100 stochastic sequences with record length of 34 years (1980-2013), similar to the historic one were generated. Performance of VLB was assessed by comparing single statistics of historic time series located within box plots of the 100 annual and monthly stochastically generated time series. The statistics used include mean, median, 25th and 75th percentiles, lowest and highest values, standard deviation, skewness, and serial and cross correlation coefficients. Majority (9 out of 10) of the historical statistics were mostly well preserved by VLB, except for skewness. Historic highest groundwater levels were mostly underestimated. Historic statistics below interquartile range (overestimation) is a common problem of weather generators which can be reduced by including additional covariates that influence atmospheric circulation. The generation of multi-site stochastic sequences support realistic assessment of groundwater resources and generation of groundwater operating rules.

Abstract

The groundwater quality in semi-arid aquifers can be deteriorated very rabidly due to many factors. The most important factor affecting the quality of groundwater quality in Gaza Strip aquifer is the excess pumping that resulting from the high population density in the area. The goal of this study to investigate the future potential deterioration in groundwater salinity using scenario analysis modeling by artificial neural networks (ANN). The ANN model is utilized to predict the groundwater salinity based on three future scenarios of pumping quantities and rates from the Gaza strip aquifer. The results shows that in case the pumping rate remains as the present conditions, chloride concentration will increase rapidly in most areas of the Gaza Strip and the availability of fresh water will decrease in disquieting rates by year 2030. Results proved that groundwater salinity will be improved solely if the pumping rate is reduced by half and it also will be improved considerably if the pumping rate is completely stopped. Based on the results of this study, an urgent calling for developing other drinking water resources to secure the water demand is the most effective solution to decrease the groundwater salinity.

Abstract

The advent of the 'Big Data' age has fast tracked advances in automated data analytics, with significant breakthroughs in the application of artificial intelligence (AI). Machine learning (ML), a branch of AI, brings together statistics and computer science, enabling computers to learn how to complete given tasks without the need for explicit programming. ML algorithms learn to recognize and describe complex patterns and relationships in data - making them useful tools for prediction and data-driven discovery. The fields of environmental sciences, water resources and geosciences have seen a proliferation of the use of AI and ML techniques. Yet, despite practical and commercial successes, ML remains a niche field with many under-explored research opportunities in the hydrogeological sciences. Currently physical-process based models are widely applied for groundwater research and management, being the dominant tool for describing and understanding processes governing groundwater flow and transport. However, they are limited in terms of the high data requirements, costly development and run time. By comparison, ML algorithms are data-driven models that establish relationships between an input (e.g. climate data) and an output (e.g. groundwater level) without the need to understand the underlying physical process, making them most suitable for cases in which data is plentiful but the underlying processes are poorly understood. Combining data-driven and process-based models can provide opportunities to compensate for the limitations of each of these methodologies. We present applications of ML algorithms as knowledge discovery tools and explore the potential and limitations of ML to fill in data gaps and forecast groundwater levels based on climate data and predictions. Results represent the first step in on-going work applying ML as an additional tool in the study and management of groundwater resources, alongside and enhancing conventional techniques such as numerical modelling.

Abstract

POSTER The Department of Water and Sanitation (DWS) is the custodian of South Africa's water and thus is imperative that it reports on its state as the National Water Act of 1998 requires regular reporting to Parliament by the Minister. Hence, the annual compilation of report entitled "The National State of Water in South Africa." This report aims to give an overview of the status and trends of water quality and quantity, further assisting with international water reporting obligations to SADC Region, African Continent, and Globally e.g. the United Nations Commission on Sustainable Development. This information empowers the public and provides knowledge to water managers for informed decision-making. The main purpose is to enhance quality, accessibility and relevance of data and information relating to the goal of Integrated Water Resource Management towards attaining holistic Integrated Water Management, and Integrated Water Cycle Management in future. Three distinct requirements for collecting data by DWS are: (i) assessing and comparing the status and trends for both quantity and quality; (ii) monitoring for water use and (iii) monitoring for compliance to licence conditions. Such information is further used to assess the effectiveness of policies implemented and identify the existing gaps. Various challenges to the country's water demand proper integrated water resources planning and management. The report is divided into Themes such as, Resource Management, Water Services/Delivery, Water Development and Finance, based on selected indicators. The indicators are strategically selected to provide a representative picture of the state, as well as the changes over time to the drivers, pressures, impacts and responses related to the chosen themes. These Indicators include: Climatic Conditions, Water Availability, Water Use, Water Protection, Water Quality, Water Service Delivery, Water Infrastructure, Water Finance, and Sanitation. The report for Hydrological Year 2013/2014 has been completed and it shows that the amount of water available varies greatly between different places and seasons, and from one year to another. The average total storage was around 85% of full supply capacity in September 2014. Surface water quality is generally facing a threat from eutrophication and microbial pollution emanating mainly from mismanaged water (and waste) treatment plants and related landuse activities. Groundwater quality is generally good except in some localised areas where mining and industrial activities are prevalent. With regards to infrastructure; vandalism, lack of maintenance & management skills reflect on/as non-revenue water, highlighting the need for more funding towards maintenance, especially in groundwater which is normally wrongly deemed as an unreliable resource. In the past 20 years, water services delivery to communities has improved as the Millennium Development Goals have been met and surpassed, while the sanitation access goals were likely to be met.

Abstract

POSTER Aquifer stress arising from urbanization and agricultural activities, these two factors affect aquifer properties when prolonged. Increase in urbanization especially those situated on top unconfined or semi-confined aquifer results in pressure on natural resources, this includes water resources, and changes of land use for agricultural purposes with high economic benefits has an effect on groundwater quality to due to application of Nitrogen- fertilizers during crop rotation and this is largely experienced in developing countries. The effects ranges from groundwater quality to aquifer storage as prolonged aquifer withdrawals due to irrigation, construction, manufacturing affects groundwater storage. Assessment of urbanization and agricultural effects on groundwater requires a complex analysis as integration approaches needs to be discovered for a better analysis of the two more specially when assessing groundwater pollution. The study was conducted to assess the impacts of urbanization and agricultural activities on aquifer storage and groundwater quality: by (a) determining the relationship between the occurrence of contamination due to urbanization by assessing contaminants present in the study area (b) develop groundwater protection, and if any offer recommendation for groundwater management. Multiple-well tests were conducted observing the behavior of drawdown and recovery for assessing groundwater storage. Two aquifer properties were observed to yield information about any changes in aquifer storage (transmissivity and storage coefficient) and groundwater quality lab test focusing on TDS, nitrate and pH were conducted. Historical results reflect that before industrial and urban revolution the groundwater contained small amounts of TDS compared with the present results. Increase in nitrate and pH concentrations observed in location closer to agricultural areas. Prolonged aquifer withdrawals increases expansion of cone of depression and therefore increases aquifer vulnerability and the risk of aquifer being polluted, and this increases storage coefficient. This study can be used to formulate protection zones for water resources and practice towards groundwater management.

Abstract

Pollution of underground water is fast becoming a global problem and South Africa is not immune to this problem. The principal objective of this paper is to investigate the effectiveness of laws and policies put in place to mitigate underground water pollution. The paper also seeks to examine the causes and types of underground water pollution followed by a closer look into the laws and policies in place to mitigate the pollution levels. Finally, the paper seeks to ascertain whether the current policies are properly implemented. The paper follows content analysis (desk research) to achieve the objectives. Policy recommendations are given based on the findings. {List only- not presented}

Abstract

Mining site remnants are everlasting and impact the groundwater regime on a long term scale. An integrated approach to geoscience is necessary due to the complexity of nature and the unknown relationships that must be discovered to further the understanding of impacts on the natural environment. Furthermore, groundwater resources are negatively impacted by mining activities affecting the groundwater quality and quantity. Underground coal mining can be accompanied by roof failure events. This may change the matrix which subsequently alters the flow regime; leads to variations within the water chemistry, provided there is inter- aquifer connectivity; and alters the recharge rate. Dewatered mine voids are in direct contact with oxygen initiating oxidation reactions, depending on the geology of the specific site. A change in water chemistry was analyzed, and this coincides with a roof failure event as interpreted from water level measurements. Concentrations of Mg, Ca, and alkalinity indicate anomalous changes that are still in effect, five to six years after the majority of water levels had stabilized. The changes in the system coincides with and correlates to events of roof failure and different parameters. The latter changes are applied as extra tools when interpreting different site specific anthropogenic induced impacts on the system. Also within this study, constant rate pumping tests were conducted for the interest of the hydraulic properties, using three farming boreholes. The results put forward a range of 0.21 – 0.44L/s and 6.5 – 11.5m2 /d, for sustainable yield and transmissivity, respectively. Furthermore, it is recommended that a better understanding can be gained on system behaviors if chemistry correlations can be gathered through certain events causing specific systems to be in disequilibrium. It is also recommended that additional pumping tests will allow more insightful interpretation and delineation between the abovementioned chemical and water level changes. Finally, the combination of parameters during events can aid in deciding the most appropriate analytical models used for further analysis.

Abstract

Climate change contributes to the way in which people live. Natural resources such as groundwater, wood and surface water form a great part of livelihood in rural communities and are used extensively in rural areas where basic services have not yet been provided. The effect of climate change to all these natural resource may impact the lives of those in rural communities. Climate change is already starting to affect some of the poor and most vulnerable communities around the world. The aim of the dissertation is to develop a framework to assess the vulnerability of rural communities to climate change, with a specific focus groundwater and issues relating to gender. A questionnaire and interviews were used to collect data about rural communities' level of awareness climate change, their attitudes toward coping with climate change impact, level of education, income scale and how does this affect their security. Hyrodocensus was taken around the village to determine the rivers, dams, boreholes, abandoned boreholes and wells. Water samples were collected and analysed. The response rate was higher in females than in male's stakeholders (54% vs 46%).the results show that woman were mostly doing the hard work to complete daily basic activities. Education was found to be of high school level and incomes were low. The framework was developed with basic need showed that the area was at risk of poverty .Boreholes was found and water quality was analysed to be adequate for drinking water purpose. More information will be discussed on presentation.

Abstract

Decades of monitoring, characterising, and assessing nitrate concentration distribution and behaviour in the soil profile and it's pathway into groundwater have resulted in a good understanding of its distribution in the country. While the national distribution is of great importance, site specific conditions determine fate, transport, and ultimately concentration in a specific area. Field experimental work included installation of a barrier containing a cheaply available carbon source to treat groundwater. The "reactor"/ tank with dimensions- 1,37m height, 2.15m diameter used for the experiment was slotted for its entire circumference by marking and grinding through the 5mm thick plastic material. The top section was left open to allow for filling and occasional checking of filled material during the experiment. The tank was packed with Eucalyptus globulus woodchips which was freely available at the site. Concentrations of groundwater nitrate at the site were well over what could be expected in any naturally occurring groundwater systems, and would result only by major anthropogenic activities in unconfined aquifer areas of South Africa. The changes in parameter concentrations with time were measured in order to determine the efficiency and life span of the carbon source used for the experiment. This paper considers 35 months of monitoring at a site where a low technology method was implemented. Field implementation was tested at a site which previously experienced some NH4NO3 spills. Main results from the field work showed that nitrate was totally removed at the treatment zone and surrounding boreholes, and even sulphate and NH4+ were removed during the experiment. This shows that the woodchips were successful in affecting denitrification for 35 months. Data also shows that boreholes further downstream from the tank had reduced NO3-, SO42- and NH4+ levels. Using the available biodegradable carbon for the woodchips based on its composition, a barrier lifespan could be determined. The results of calculations showed that the barrier would be effective for at least another 6.9 years from the period of the last sampling date. A total lifespan of about 10 years can thus be estimated.

Abstract

Three dimensional numerical flow modelling has become one of the best tools to optimise and management wellfields across the world. This paper presents a case study of simulating an existing wellfield in an alluvial aquifer directly recharged by a major perennial river with fluctuating head stages. The wellfield was originally commissioned in 2010 to provide a supply of water to a nearby Mine. Ten large diameter boreholes capable of abstracting ±2 000 m3 /hour were initially installed in the wellfield. The numerical groundwater flow model was used to evaluate if an additional 500 m3 /hour could be sustainably abstract from the alluvial aquifer system. A probabilistic river flow assessment and surface water balance model was used to quantify low and average flow volumes for the river and used to determine water availability in the alluvial aquifer over time. Output generated indicated that the wellfield demand only exceeded the lowest 2% (98th percentile) of measured monthly river flow over a 59 year period, thereby proving sufficient water availability. Conceptual characterisation of the alluvial aquifer was based on previous feasibility studies and monitoring data from the existing hydrogeological system. Aquifer parameters was translated into the model discretisation grid based on the conceptual site model while the MODFLOW River package was used to represent the river. Actual river stage data was used in the calibration process in addition to water levels of monitoring boreholes and pump tests results. The input of fluctuating river water levels proved essential in obtaining a low model error (RMSE of 0.3). Scenario modelling was used to assess the assurance of supply of the alluvial aquifer for average and drought conditions with a high confidence and provided input into further engineering designs. Wellfield performance and cumulative drawdown were also assessed for the scenario with the projected additional yield demand. Scenario modelling was furthermore used to optimise the placement of new boreholes in the available wellfield concession area.

Abstract

Artesian boreholes are a common feature worldwide in confined aquifers, but the hydraulic testing of these boreholes, and estimation of aquifer properties from such tests, still poses a challenge for hydrogeologists. Common hydraulic tests, such as step-drawdown or constant-discharge rate tests require a static water level at the start of the test, and the measurement of drawdown (increasing over time) and abstraction rate (fixed for a period of time). Usually, when undertaking a pumping test in an artesian borehole, the drawdown is measured from ground level, and the drop in hydraulic head between static pressure and ground level is often ignored. This procedure also implies that the starting time of the test is not at the static water level. A constant-head test, set at ground level, is the other option. However, the decrease in flow rate is not only dependent on the hydraulic properties of the aquifer, but also masked by pipe hydraulic effects within the well. This kind of test would also limit the available drawdown to be utilized for the test. Hence, it was required to develop a method for undertaking hydraulic tests in strong artesian boreholes, allowing for the drawdown to fluctuate between levels both above and below ground and avoiding the pitfalls described above. The solution is a specially designed and constructed wellhead for the installation of the pump and monitoring equipment prior to the hydraulic test. The standard tests are slightly modified and are only undertaken after sealing the wellhead and reaching static hydraulic pressure. The recommended wellhead construction and subsequent hydraulic tests were implemented at a strong artesian borehole in the Blossoms Wellfield, south of Oudtshoorn in the Western Cape province of South Africa.

 

Abstract

Many groundwater models are commissioned and built under the premise that real world systems can be accurately simulated on a computer - especially if the simulator has been "calibrated" against historical behavior of that system. This premise ignores the fact that natural processes are complex at every level, and that the properties of systems that host them are heterogeneous at every scale. Models are, in fact, defective simulators of natural processes. Furthermore, the information content of datasets against which they are calibrated is generally low. The laws of uncertainty tell us that a model cannot tell us what will happen in the future. It can only tell us what will NOT happen in the future. The ability of a model to accomplish even this task is compromised by a myriad of imperfections that accompany all attempts to simulate natural systems, regardless of the superficial complexity with which a model is endowed. This does not preclude the use of groundwater models in decision-support. However it does require smarter use of models than that which prevails at the present time. It is argued that, as an industry, we need to lift our game as far as decision-support modeling is concerned. We must learn to consider models as receptacles for environmental information rather than as simulators of environmental systems. At the same time, we must acknowledge the defective nature of models as simulators of natural processes, and refrain from deploying them in a way that assumes simulation integrity. We must foster the development of modelling strategies that encapsulate prediction-specific complexity supported by complexity-enabling simplicity. Lastly, modelers must be educated in the mathematics and practice of inversion, uncertainty analysis, data processing, management optimization, and other numerical methodologies so that they can design and implement modeling strategies that process environmental data in the service of optimal environmental management.

Abstract

POSTER Researching a subject on the internet the slogan "Water flows upstream to money" popped up. The context was drought, and the meaning clear. If politics come into play as well, it would seem that science is relegated to a distant third place. The proclamation of the National Water Act, of 1998 (Act 36 of 1998), recognized the importance of groundwater and its role in the hydrological cycle and water supply issues. Groundwater governance has grown since then and is becoming increasingly important. One of the most important tenets on which groundwater based is the concept of sustainability. Various definitions of sustainability is used with the best know being "?development which meets the needs and aspirations of the present generation without compromising the ability of future generations to meet their own needs." Even though the basic understanding of sustainability may have been around for much longer than the term, it is the application of the theory in our current context that present us with challenges. Concepts like the precautionary principle, corporate governance and other buzz words that is being used does not always ensure good groundwater governance. One of the greatest problems is often the lack of scientific understanding and knowledge. Groundwater systems tend to be more complex and thus more difficult to manage than surface water. Understanding how groundwater and surface water interact, and that it is actually a linked water resource adds to the complexity. Add to this its importance in the functioning of groundwater dependent ecosystems that is still poorly understood. This article will look at principles for good groundwater governance and the tools that are needed to achieve it. It will finally look at real case studies where scientific considerations fall by the wayside for the requirements of the economy and political goals.

Abstract

Until 1998 groundwater was managed separately from surface water and was seen as a private resource. The National Water Act of 1998 (Act 36 of 1998) (NWA) was forward thinking in that it saw groundwater as an integrated part of the water resource system and as a common resource to be managed by the Department of Water and Sanitation (DWS) as custodian. Various tools had been provided to manage the water resources equitably, sustainably and efficiently. A limited understanding of groundwater and the prevalence to revert to engineering principles when managing water resources had led to an Act that is mostly written with surface water in mind. The tools and principles that had been tested for surface water was used directly for groundwater without considering the practicalities in applying and enforcing the NWA. This did not provide too many problems, as groundwater was not considered a viable, sustainable water resource, and the use of groundwater was mostly limited to private use for garden irrigation, in agriculture for irrigation and for bulk supply in a number of small towns where surface water was not available. This has changed drastically during the recent drought that affected the whole country, but especially the Western Cape. Groundwater was suddenly seen as the solution to the problem of water availability. The problem was that the understanding of groundwater has not increase sufficiently over the years, and water resources management is still skewed to hydrology principles that apply to surface water. Groundwater sustainability is at the heart of the questions of scale and measurements. The Department has been flooded by the large number of water use licence applications that have been submitted by municipalities, industries and agriculture as a result of the drought. This article will look at groundwater resource assessment and allocation methodology in a South African context.

Abstract

This article present field evidence on the effect of artefacts other than the horizontal groundwater flux on the single-borehole tracer dilution test. The artefacts on the tracer dilution were observed during two single-borehole tracer dilution tests conducted in an alluvial channel aquifer in the main Karoo Basin of Southern Africa. Field evidence shows that early time of the tracer dilution plot can be affected by artefacts other than the horizontal groundwater flux. These artefacts have great potential to increase the early time gradient of tracer dilution curve leading to overestimation of the horizontal groundwater flux. A qualitative approach that can be used to isolate and remove portion of the dilution plot that has resulted from artefacts other than the groundwater flow prior to calculating the horizontal groundwater flux is proposed.

Abstract

It is estimated that the three coal layers in the Springbok Flats contain about 5 TCF of coal bed methane (CBM). Two sedimentary basins, namely the southern Tuinplaas basin and the northern Roedtan basin, exist with coal layers with a total thickness of 7m which occurs mainly in three mayor seams. The coal layers are located between 20 m to more than 600m.
Farmers in the Flats are concerned about the environmental impact of fracking the coal beds. They are mostly worried about the risk of groundwater pollution; the drawdown of the water table and the producing of a bad quality water during the mining process. They set up an EPA for the Springbok Flats in 2010 and until now, they have stopped more than 6 companies to conducted exploration (stopped strictly on account of the different laws in SA that were not adhered too).
On average, 1000 liters of water is produced for every 2000 cubic feet coal bed methane mined in the USA. The quality of the produced water is not good (with typical Na values of more than 5 000 mg/l) and cannot be used for irrigation purposes.
It is thus expected that about 500 million m3 of bad quality water will be produced for every 1 TCF mined in the Flats. This groundwater will be removed from the system and it is expected that a drawdown of up to 30m will be evident at places in the Springbok Flats. There are also a large number of dykes and faults in the Flats which imply that the upward movement of methane and water will be very probable after abandonment of each coal methane well.

Abstract

In the following study, the soil and groundwater regime of the Rietvlei wetland near Cape Town are characterised. This has been done by means of logging the subsurface material during the construction of 8 shallow wells, complimented with field observations, and surveying the dug wells. The water stemming from these wells was sampled and analysed for Oxygen 18 and Deterium. Downhole salinity logs of the wells were also undertaken and rainfall samples were analysed for the aforementioned stable isotopes. Results indicate a distinct relationship between elevation and soil structure. Through the use of the water table method, it was found that the relationship between elevation and soil moisture had a direct impact on spatially distributed groundwater recharge on an event basis. Furthermore, higher salinities were found with depth in groundwater in the same wells which had higher recharge values. Isotopic results indicate that groundwater all stems from rainfall, with the exception of Well 8 is influenced by the river due to its proximity to the surface water body. The various water chemistries and soil profiles have a direct impact on the type of flora and its distribution throughout the study area. This study managed to conceptualize the relationship between groundwater, soil profiles and the various plant types surviving in the Rietvlei wetland. Future studies can focus on computer based approaches in order to predict how changes in groundwater characteristics caused by natural or anthropogenic factors would affect other ecohydrological processes within the wetland. These findings can be incorporated in decision making processes concerning groundwater management.

Abstract

Coastal wetlands are complex hydrogeological systems in which groundwater have a significant influence on both its water balance and hydrochemistry. Differences in groundwater flow and groundwater chemistry associated with complex hydrogeologic settings have been shown to affect the diversity and composition of plant communities in wetland systems. A number of wetlands can be found across the flat terrain of the Agulhas Plain, of which the most notable is the Soetendalsvlei and the Vo?lvlei. Despite the ecological and social importance of the Vo?lvlei, the extent to which local, intermediate and regional groundwater flow systems influences the Vo?lvlei is poorly understood. The aim of this work is to characterize the spatial and temporal variations in surface water and groundwater interactions in order to demonstrate the influence of groundwater flow systems on the hydrology of the Vo?lvlei. The specific objectives of the study are; 1) to establish a geological framework of the lake sub-surface, 2) to determine the physical hydrological characteristics of the Vo?lvlei and 3) to determine the physical-chemical and isotopic characteristics of groundwater and surface water. Data collection will be done over the period of a year. Methods to be used will include the use of geophysical (electrical resistivity) to determine high water bearing areas surrounding the wetland, a drilling investigation (the installation of piezometers at 5-10m depths and boreholes at 30m depth, sediment analysis (grain size analysis, colour and texture), hydraulic (slug testing to determine hydraulic properties; hydraulic conductivity and transmissivity), hydrological (to estimate groundwater discharge; Darcy flux and hydraulic head difference between groundwater level and lake level), physical-chemical (electrical conductivity, temperature and pH) and stable environmental isotopic (oxygen and hydrogen) analysis of surface water and groundwater, to determine flow paths and identify processes. Thus far, results obtained for the geophysical survey has revealed that the sub-surface of this wetland system is highly variable. Three traverses were done on the South-Western, South-Eastern and Northern side of the wetland (See Figure 1). In VOEL1 (South west), the upper couple of meters show areas of very low resistivity, which is associated with clays, poor water quality and water which has high dissolved salts. The changing of medium to high resistivity values on the North-eastern side is usually indicative of weathered sandstone (Table Mountain Group). VOEL2 (South eastern), indicates that the subsurface is of low resistivity. These low values are the result of noticeable salt grains in the sand. VOEL3 (Northern), indicated upper layers of low resistivity, while the lower depth indicate areas of high resistivity. It is expected that the results of this study will provide a conceptual understanding of surface water-groundwater interactions and the processes which control these interactions, in order to facilitate the effective management and conservation of this unique lacustrine wetland.

Abstract

Industrial Management Facilities represent a hazard to the down gradient surface water and groundwater environment. The assessment of the risks such facilities pose to the water environment is an important issue and certain compliance standards are set by regulators, particularly when the potential for an impact on the water environment has been identified. This paper will aim to describe how the contamination was conceptualized, estimated, limitations and how it is technically not feasible to establish one limit or compliance value of known contamination in different aquifers.

Abstract

LNAPL present in a monitoring well forms part of the broader groundwater system and is effectively influenced by hydrogeological conditions, which are always changing. Monitoring of LNAPL is therefore of utmost importance to identify and assess the LNAPL hydrogeological conditions. Both groundwater and LNAPL can exist as unconfined and confined. Groundwater is unconfined when the upper boundary is the water table and is confined as a result of the presence of a confining layer with a relatively low vertical hydraulic conductivity that inhibits the flow of all liquids. LNAPL becomes unconfined when the apparent free product thickness increases with a decreasing groundwater elevation and confined when apparent free product thickness increases with an increasing groundwater elevation. The LNAPL is confined as a result of the difference between the capillary properties of the mobile LNAPL zone and its confining layer. Specifically, LNAPL is confined when it cannot overcome the pore entry pressure of the confining unit. Consequently, LNAPL may be confined when groundwater is not. The paper attempts to describe the hydrogeological conditions in case histories of both primary and fractured aquifers and illustrate how to identify and assess the conditions. Data such as free phase and groundwater level monitoring, well logs, sieving of soil and LNAPL bail tests are used as assessment tools. The additional required data is gathered and integrated in the conceptual site model, followed by a revision of the CSM and a refinement of decision goals over time. Thus the CSM matures and enables an improved understanding of the site characteristics and the re-adjustment of decision criteria. {List only- not presented}

Abstract

Tailings storage facilities are significant contributors of dissolved solids to underlying aquifers and adjacent watercourses. Salt balances indicate estimated seepage loads of the order of 1 500 tonnes of chloride per year. Actual seepage loads will be determined by the hydraulic conductivity of the tailings and mechanisms of flow within the tailings. Field observations and sample analytical results from several platinum tailings facilities are presented. These indicate the development of lenses of clay sized material within coarser silty material and suggest a tortuous seepage flow path, perhaps characterised by zones of preferential flow. The implications of seepage modelling and geochemical data on the salt loads mobilised from tailings are discussed. Results suggest that tailings facilities are effective at retaining salts and that release of accumulated salts after closure may take place at long time scales. {List only- not presented}

Abstract

Water management is a difficult and complex business requiring appropriate institutional arrangements as well as guidance and support from government, which is often unable to act effectively to address day-to-day water resource management (WRM) issues. Theoretically, water as a 'common pool resource' is best managed by users self-organised at a local level and within a basin framework. Water users and other stakeholders have detailed and up-to-date local knowledge as well as an interest in ensuring effective management to share water equitably between different users and to control pollution. This approach is supported by South Africa's National Water Act (NWA), which provides for the establishment of Catchment Management Agencies (CMAs) to perform a range of WRM activities within the framework of a National Water Resource Strategy (NWRS).
Hence, water resource management in general and conjunctive use in particular requires cross sector and cross level cooperative governance. Relevant institutions include the DWA at national and regional level, the CMA, if established, provincial departments that might impact on the water resources, water user associations, water services authorities, water services providers, water boards, and individual water users. These institutions are responsible for various activities and often require some level of inter- and intra-institutional cooperation. Ideally, multiple organisations, policies, legislation, plans, strategies and perspectives should be involved in water-related decision-making, which in turns creates complex leadership challenges. Globally, the lack of sustainable groundwater management can be ascribed to poor governance provisions. These include, but are not limited to, institutional arrangements and political will, including fragmented and overlapping jurisdictions and responsibilities, competing priorities, traditional approaches, rights and water pricing systems, diverging opinions, incomplete knowledge, data as well as uncoordinated information systems. Adding the poor operational and maintenance issues, decision-makers often view groundwater as an unreliable resource and are hesitant to make significant investments in groundwater infrastructure and capacity.
The recent Worldbank and WRC report on groundwater governance in South Africa revealed that the technical, legal, institutional and operational governance provisions were found to be reasonable at the national level but weak concerning cross-sector policy coordination. At the local level, basic technical provisions such as hydrogeological maps and aquifer delineation with classified typology are in place but other governance provisions such as institutional capacity, provisions to control groundwater abstraction and pollution, cross-sector policy coordination and the existence and implementation of groundwater management action plans are weak or non-existent.
It appears from this review that the major hindrances for sustainable groundwater governance and more so for integrated water resource management and conjunctive use scenarios are the discrepancy between groundwater and surface water provisions in the relevant legislation, associated guidelines and their implementation at regional and local, and the lack of skills and clear responsibilities for implementing water resource management actions at municipal level. This is demonstrated with several case studies.

Abstract

The Department of Water Affairs and Sanitation is the custodian of the Water Resource in South Africa. The Western Cape Regional Office, Geotechnical Service Sub Directorate, is responsible for management of groundwater resources in two Water Management Areas (WMA), Olifants Doorn-Berg and Breede-Gouritz. Twenty-nine monitoring routes comprising 800 sites in total are monitored across the Western Cape Region. The purpose of this paper is to create awareness of groundwater related databases and the type of information products used in assessing the status of data bases and groundwater resources. This is to assist and support the scientists, technicians, managers, external stakeholders and/or general public. The main question that needs to be answer is: "What is the current groundwater data management situation in the Regional office?" With the GIS as platform, geographical information was generated from existing data bases to answer questions such as, what is being monitored, where is it being monitored, who is monitoring it, why is it being monitored and when is it being monitored? These questions are applicable to the Region, Water Management Areas, the monitoring route and geosites. Graphical time-series information generated from available data, in combination with the generated geographical information, showed the gaps, hot spots and what is still needed for all the facets of groundwater management (from data acquisition to information dissemination) processes. The result showed the status of data bases, need for data in areas of possible neglect, training gaps, inadequate structure and capacity, instrumentation challenges, need for improvement of commitment and discipline, as well as many other issues. The information generated proves to be an easy tool for Scientists, Technicians and Data Administrators to assist them to be on top of the groundwater resource management in their area of responsibility. The expansion of the use of GIS as a groundwater management tool is highly recommended. This will ensure better understanding of the resource: "The Hidden Treasure".

Abstract

The University of the Free State investigated the possible dewatering of boreholes situated on the farm properties in the vicinity of an underground coal mine. The investigation consisted of three phases.
Phase one was a hydrocensus on the farm properties.
Phase two consisted of borehole yield determination by conducting pumping tests on the boreholes (where possible) identified in the hydrocensus phase.
Phase three included a visit to the underground mine workings, where water samples were collected at different groundwater inflow locations (especially water flowing in at the ventilation shaft). The monthly groundwater monitoring data of the underground coal mine was also incorporated for interpretation purposes. It appears that the water levels of the boreholes outside the mining boundaries are not affected. The water levels of the monthly monitored boreholes stabilized or even started recovering over the last few years. It also seems as though the larger streams in the area drains the groundwater as most of the deeper water level areas coincides with the presence of the streams. Most of the boreholes have typical borehole yields that is to be expected from Karoo formations i.e. between 0.5 and 1.5 L/s. An interesting observation is that a number of the boreholes with deep water levels are situated along dolerite contact zones at the western side of the mine. This may also be a geological structure resulting from the impact of a meteorite? From the available data it appears that the boreholes along this structure have the same chemical character as the water flowing down the ventilation shaft, strengthening the belief that the water from the shaft originates from this structure (or structures).

To determine the origin of the water flowing down the ventilation shaft, a detailed study of the structure to the west of the shaft is recommended. The farmers in the area should carefully monitor their water use in the boreholes, as over-abstraction can result in total failure of some of the boreholes.

Abstract

Currently limited progress is made in South Africa (and Africa) on the protection of groundwater used for drinking water. To achieve the objective of water for growth and development and to provide socio-economic and environmental benefits of communities using groundwater, significant aquifers and well fields must be adequately protected. Groundwater protection zoning is seen as an important step in this regard. Till today, limited case studies of groundwater protection zoning exists in Africa. A case study at the Rawsonville research site is conducted in this research project. Generic protection zones can be delineated at the site using published reports and database data. However, due to the complexity of the fractured rock at the research site, these would be of limited value and would not provide adequate protection for the well field Baseline data was collected by conducting a hydro census and through aquifer tests. An inventory of the activities that can potentially impact water quality was done and aquifer characteristics such as transmissivity and hydraulic conductivity were determined through various types of aquifer testing. Fracture positions were identified using fluid logging and fracture flow rates were also measured using fluid logging data. A conceptual model and preliminary 3D numerical model were created to try to understand groundwater movement at the research site. The knowledge gained will be used to guide information gathering and monitoring that can be used to build a more detailed numerical model and implement a trustworthy groundwater protection plan at a later stage. The expected results will have applicability to groundwater management in general. The protection plan developed during this project can be used as a case study to update and improve policy implementation. {List only- not presented}

Abstract

Burning of coal for electricity production has resulted in vast amounts of ash being deposited in ash dumps. Rain water and ash water conditioning results in the wetting of ash dumps and if the water retention capacity is exceeded there is a possibility of leaching to soil and underlying aquifers. In this study two different coal ash are used to determine the water retention as excess amount of process water at power stations ash dumps can lead to impeding the desired water balance, which can be critical for maintain various plant processes. The nonlinear relationship between soil water content and matrix suction of a porous material under unsaturated conditions is described by the soil water characteristic curve (SWCC). The SWCC for a given material represents the water storage capability enabling the determination of varying matric suction such as prediction of important unsaturated hydraulic processes including soil permeability, shear strength, volume change with respect to the water content changes. This paper presents an alternative, cost effective and rapid method for measuring and subsequent estimating of the soil-water characteristics of any soil type. Several methods are available to obtain the measurements required for defining soil-water characteristics. However, obtaining the required measurements for a SWCC is generally difficult since there is no laboratory or field instrument, capable of measuring a typical complete plant available water suction range accurately. Due to high methodological effort and associated costs of other methods, a simplified evaporation method which was implemented in the HYPROP (Hydraulic Property analyzer, UMS, 2012) becomes a possible alternative. It relies on the evaporation method initially proposed Schindler (1980). A typical work range for a HYPROP system is 0 to 100 KPa as read out from the two high capacity tensiometers installed at different heights within a saturated sample column. For a dry coal ash dump to be optimally used as sinks, input water applications should be matched with evaporation rates and capillary storage. This will ensure the moisture storage of the ash dump is not exceeded and consequently avert leachate generation at the base of the ash dump. The field capacity of waste materials is of critical importance in determining the formation of leachate in landfills which in this case is the coal ash dump facility. It is the field capacity limit when exceeded which give rise to leachate generation consequently promoting a downward movement of generated leachate.he study found that it is possible to use the Hyprop together with an empirical based fitting model to define a complete SWCC along a dewatering path. The study found the Brooks-Corey model as the suitable representative of the Hyprop measured data, confirmed by AICc and RMSE analysis. The Brooks-Corey estimated retention function parameters within +/- 1% error. A mean value of 35.3% was determined as the water retention or field capacity value for Matimba Coal ash. If the ash dump is operated in excess of this value, chances of groundwater pollution are high.

Abstract

A coal mine in South Africa had reached decant levels after mine flooding, where suspected mine water was discharging on the ground surface. Initial investigations had indicted a low-risk of decant, but when ash-backfilling was performed in the defunct underground mine, decant occurred. Ash-backfilling was immediately suspended as it was thought to have over-pressurised the system and caused decant. Contrariwise, a number of years later decant was still occurring even though ash-backfilling had been terminated. An investigation was launched to determine whether it was the ash-backfilling which had solely caused decant, or if additional contributing factors existed. Understanding the mine water decant is further complicated by the presence of underlying dolomites which when intersected during mining produced significant inflows into the underground mine workings. Furthermore, substantial subsidence has taken place over the underground mine area. These factors combined with the inherent difficulty of understanding unseen groundwater, produced a proverbial 1000-piece puzzle. Numerical groundwater modelling was a natural choice for evaluating the complex system of inter-related processes. A pre-mining model simulated the water table at the ground surface near the currently decanting area, suggesting this area was naturally susceptible for seepage conditions. The formation of a pathway from the mine to the ground surface combined with the natural susceptibility of the system may have resulted in the mine water decant. This hypothesis advocates that mine water was going to decant in this area, regardless of ash backfilling. The numerical groundwater flow model builds a case for this hypothesis from 1) the simulated upward flow in the pre-mining model and 2) the groundwater level is simulated above the surface near the currently decanting area. A mining model was then utilised to run four scenarios, investigating the flux from the dolomites, subsidence, ash-backfilling and a fault within the opencast mine. The ash-backfilling scenario model results led to the formation of the hypothesis that completing the ash-backfilling could potentially reduce the current decant volumes, which is seemingly counterintuitive. The numerical model suggested that the current ash-backfill areas reduce the groundwater velocity and could potentially reduce the decant volumes; in spite of its initial contribution to the mine water decant which is attributed to incorrect water abstraction methods. In conclusion, the application of numerical models to improve the understanding of complex systems is essential, because the result of interactions within a complex system are not intuitive and in many cases require mathematical simulation to be fully understood.

Abstract

Underground coal gasification (UCG) is considered a cleaner energy source as its known effect on the environment is minimal; it is cheaper and a lesser contributor to greenhouse gas emissions when compared to conventional coal mining. It has various potential impacts but the subsidence of the surface as well as the potential groundwater contamination is the biggest concerns. Subsidence caused by UCG processes will impact on the groundwater flow and levels due to potential artificial groundwater recharge. The geochemistry of the gasifier is strongly depended upon site specific conditions such as coal composition/type and groundwater chemistry. Independent of the coal rank, the most characteristic organic components of the condensates is phenols, naphthalene and benzene. In the selection of inorganic constituents, ammonia, sulphates and selected metals and metalloids such as mercury, arsenic, and selenium, are identified as the dominant environmental phases. The constituents of concern are generated during the pyrolysis and after gasification as dispersion and penetration of the pyrolysis take place, emission and dispersion of gas products, migration by leaching and penetration of groundwater. A laboratory-based predictive study was conducted using a high pressure thermimetric gasification analyser (HPTGA) to simulate UCG processes where syngas is produced. The HPTGA allows for simulation of the actual operational gasifier pressure on the coal seam and the use of the groundwater sample consumed during gasification. A gasification residue was produced by gasifying the coal sample at 800 °C temperature and by using air as the input gas. The gasification residue was leached using the high temperature experimental leaching procedure to identify the soluble phases of the gasified sample. The leachate analysis is used to determine the proportion of constituents present after gasification which will be removed by leaching as it is exposed to external forces and how it will affect the environment. The loading to groundwater for the whole gasifier is then determined by applying the leachate chemistry and rock-water ratio to the gasifier mine plan and volumes of coal consumed. 

Abstract

The Table Mountain Group (TMG) Formation in the Uitenhage region, in the Eastern Province of South Africa, has many groundwater users, which could result in the over-exploitation of the underlying aquifer. Consequently, several investigations have been conducted to help in the planning and management of groundwater resources within the region. Traditionally, these investigations have considered groundwater and surface water as separate entities, and have been investigated separately. Environmental isotopes, hydrochemistry and feacal colifom bacteria techniques have proved to be useful in the formulation of interrelationships and for the understanding of groundwater and surface water interaction. The field survey and sampling of the springs, Swartkops River and the surrounding boreholes in the Uitenhage area have been conducted. After full analysis of the study, it is anticipated that the data from the spring, Swartkops River and the surrounding boreholes show interannual variation in the isotope values, indicating large variation in the degree of mixing, as well as to determine the origin and circulation time of different water bodies. ?D and ?18O value for the spring ranges from ?18.9? to ?7.4?, and 5.25? to 4.82?, respectively, while ?D values for borehole samples range from ?23.5? to ?20.0? and ?18O values range from ?5.67? to ?5.06?. In the river sample, ?D values ranges from ?12.1? to ?4.2?, ?18O from ?3.7? to ?1.13?, respectively. The entrobacter aerogen and E.Coli bacteria were detected in the samples. E. coli population for spring and the artesian boreholes indicated low value while the shallow boreholes had higher values are relatively closer to those of the middle ridges of the Swartkops River. The EC values for the spring samples averages at 14 mS/m, borehole samples ranges from 21 mS/m to 1402 mS/m, and surface water ranges from 19 mS/m to 195 mS/m. Swartkops River is an ephemeral, therefore it is expected that diffuse recharge occurs into the shallow aquifer.

Abstract

In the wake of the ongoing water restrictions in South Africa, the issue of groundwater potential for drought relief has been debated on many environmental and socio-economic platforms, nationally. Consequently, the development of groundwater and its related vulnerabilities has become a key topic to the decision makers and stakeholders. Currently, the recruitment of water professionals into government and private water sectors adds substantial value to understanding the importance of protecting this precious resource. This has allowed the monitoring of groundwater to gain ever increasing momentum. Groundwater monitoring has become an essential scientific tool for role-players to achieve robust and verifiable data used for modelling aquifer potential and vulnerability to pollution and over-abstraction. The data is generally sourced from various hydrogeological and environmental investigations which include groundwater development, vulnerability assessment and remediation projects. Groundwater and environmental consulting firms are tasked with imperative roles for implementing groundwater monitoring programmes to the ever growing industrial, commercial, agricultural and public sectors in South Africa. However, groundwater monitoring data, especially in the private sector, are reliable but remains mostly inaccessible due to confidentiality clauses. This does limit our accuracy and comprehensive understanding for determining aquifer potential and vulnerability risks at large. The conceptualisation and modelling of vast monitoring datasets has been recognised as an important contributing factor to enhance groundwater sustainability. This research emphasises the significance of groundwater monitoring for development, protection and remediation of aquifers. Comparing monitoring results from typical sites and methods, provides scientific validation to support good governance of water. Deterioration of groundwater potability in the sight of an existing drought can have irreversible environmental and economic implications for South Africa.