Conference Abstracts

All Abstracts were presented at the Groundwater Conferences

Displaying 1 - 50 of 795 results
Title Presenter Name Presenter Surname Area Sort descending Conference year Keywords

Abstract

Hydrogeological environments are commonly determined by the type of underlying geology; these environments may have a tremendous effect on the mobility and recovery of LNAPLs.  Hydrogeological environment include intergranular sediments and bedrocks of contrasting permeability and porosity. This paper synthesizes several case studies and conceptual models of different hydrological environments and illustrates how they affect the flow characteristics and rebound of LNAPLs.

Abstract

Globally, cumulative plastic production since 1950 is estimated to have reached 2500 Mt of plastic. It is estimated up 60% of this plastic is either resting in landfills or the natural environment, including groundwater settings. Microplastics are small pieces of plastic ranging between 1μm – 5mm in size and have been found in every ecosystem and environment on the planet. Much of the available literature on microplastics is focused on marine environments with few in comparison focused on freshwater environments, and even fewer on groundwater settings.

The aim of this study is therefore to investigate the attenuation process responsible for influencing microplastic transport in saturated sands. This research will adapt colloid transport theory and experiments to better understand the movement of microplastics through sandy media. Saturated aquifer conditions will be set up and simulated using modified Darcy column experiments adapted from Freeze & Cherry (1979). Modified microplastics will be injected into the columns as tracers and the effluent concentrations measured by Fourier-transform infrared spectroscopy (FTIR). Breakthrough curves will then be plotted using the effluent concentrations to determine the attachment efficiency (α). It is expected the attachment efficiency will vary by microplastic type and size range. The Ionic strength of the solution flowing through the column and the surface charges of both microplastics and sandy surfaces are likely to influence the degree of attenuation observed. The relationship between different types of microplastics and collector surfaces from a charge perspective and their influence on the degree of attenuation will be evaluated.

Given the lack of literature, its ubiquitous presence and postulated effects on human health, this research is significant. Through this research, the transport and attenuation of microplastics through sandy aquifers can be better understood, and in the process inform future research and water resource management.

Abstract

Monitored Natural Attenuation (MNA) refers to the monitoring of naturally occurring physical, chemical and biological processes. Three lines of evidence are commonly used to evaluate if MNA is occurring, and this paper focusses on the second line of evidence: The geochemical indicators of naturally occurring degradation processes and the site-specific estimation of attenuation rates.

The MNA geochemical indicators include the microbial electron acceptors (e.g. dissolved oxygen, nitrate and sulphate) and the metabolic by-products (manganese (II), iron (II) and methane). In addition, redox and alkalinity are important groundwater indicators. So as to properly assess the geochemical trends a groundwater monitoring well network tailored to assessing and defining the contaminant plume is required.

The expressed assimilative capacity (EAC) is used to estimate the capacity of the aquifer to degrade benzene, toluene, ethylbenzene and xylene (BTEX compounds) using the concentrations of geochemical indicators. Using the EAC, the groundwater flow through a perpendicular cross-section of the source area, and the source mass, the life of the contaminant source can be made.

A practical example of the performance monitoring of MNA using geochemical parameters is described for a retail service station in KwaZulu-Natal, which has groundwater impacted by a petroleum hydrocarbon plume. This includes a description of the monitoring well network, the geochemical measurements, the calculation of the EAC, and the estimated life of the contaminant source.

Abstract

In the management of water resources especially groundwater resources, implementing existing regulations is one of the much needed aspects ensuring water security through the regulated use. However, such regulations are not regulated to ensure that they served the intended purpose in their original formulation. In South Africa, a study was carried out to assess the relevance and efficient of adhering to procedural requirements during water use licence application (WULA) process. Lived-experiences and observation methods were used to collect data. The department of water and sanitation was used as a case study. Interpretative analysis approach was used to provide the meaning on the analysed information. The WARMS database was accessed where the number of days that WULA process was extracted. The regulation No. 40713 about WULA process was analysed. The five-year-data prior and post the promulgation of regulation No. 40713 were extracted from WARMS database and evaluated in terms of the duration each application took to be processed for WULA. Data on water use for abstractions from all the regions were obtained from WARMS database and assessed. Dates when applications were submitted and when such applications were finalised were analysis per month and per years for temporal analysis. The number of entitlements received during the particular period and the number of applications recommended to be declined and issued were assessed using exploratory data analysis methods. Graphical method was adapted to increase results visualisation on water use entitlements. Key results showed that the process of WULA was generally slow and reasons were provided for such outcome. However, the temporal analysis revealed an increasing trend in the post promulgation of regulation No. 40713 suggesting that regulations when re-regulated serve its intended purpose. Although such findings are not conclusive but they inform a basis for re-regulating enforcement regulations in Southern African countries with issues similar to South Africa on water entitlement.

Abstract

The groundwater quality of the Orange Water Management Area (OWMA) was assessed to determine the current groundwater status. Groundwater is of major importance in the Orange Basin and constitutes the only source of water over large areas. Groundwater in the OWMA is mainly used for domestic supply, stock watering, irrigation, and mining activities. Increase in mining and agricultural activities place a demand for the assessment of groundwater quality. The groundwater quality was assessed by collecting groundwater samples from farm boreholes, household boreholes, and mine boreholes. Physical parameters such as pH, temperature and Electrical Conductivity (EC) were measured in-situ using an Aquameter instrument. The groundwater chemistry of samples were analysed using Inductively Coupled Plasma Mass Spectrometry, Ion Chromatography, and Spectrophotometer for cations, anions and alkalinity respectively. The analyses were done at Council for Geoscience laboratory. The results obtained indicated high concentration of Nitrate (NO3), EC, sulphate (SO4), Iron (Fe), and dissolved metals (Chromium, Nickel, Copper, Zinc, and Lead). The concentrations were higher than the South African National Standards (SANS) 241 (2006) drinking water required guideline. The OWMA is characterised by the rocks of the Karoo Supergroup, Ventersdorp Supergroup, Transvaal Supergroup, Namaqua and Natal Metamorphic Province, Gariep Supergroup, and Kalahari Group. Groundwater is found in the sandstones of the Beaufort Group. Salt Mining occurs in the Namaqua Group, hence the high concentration of EC observed. High EC was also found in the Dwyka Group. The salt obtained from the pans underlain by the Dwyka Group rocks has relatively high sodium sulphate content, this probably results from oxidation of iron sulphate to sulphate. Therefore, high concentration of SO4 is due to the geology of the area. High concentration of NO3 is due to agricultural activities, whereas high concentration of EC, Fe, SO4 and dissolved metals is due to mining activities.

Abstract

Water is integral to our economy, the health of our environment, and our survival as a species. Much of this water is accessed from surface sources, mostly rivers, which are now under increased threat due to over use and the resulting hydro-political forces. Yet, groundwater exists as a viable option in many countries facing these mounting challenges. Knowledge of our deeper groundwater systems, although increasing, is still quite limited due to our propensity to focus efforts in the lower cost, lower risk, near- surface environment. However, accessibility to shallower groundwater is tightening due to increasing use, changing regulatory requirements, and climate change.

The use of classical geophysics to explore for groundwater resources, such as seismic, gravity, magnetics, and resistivity, has been the industry standard for many decades. These technologies have proven quite effective both in the shallow and medium depth environments. However, newer remote sensing and ground-based technologies are now emerging with the ability to significantly reduce costs and time, and increase success for groundwater exploration and development programs. Quantum Direct Matter Indicator (QDMI) technologies, or applied methods of Quantum Geoelectrophysics (QGEP), are poised to enhance the hydrogeophysical industry, much like electro-magnetic (EM) and electrical resistivity tomography (ERT) did years ago. QDMI utilizes resonant frequency remote and direct sensing technologies that detect perturbations in the earth’s natural electric, magnetic and electromagnetic fields. Controlled source electromagnetic pulse methods with electromagnetic spectrum spectroscopy are used to identify aquifers, including thickness, water quality (fresh or saline) and temperature, to depths of 1000 m or more accurately. With multiple successes around the world, the deployment of this inventive and effective approach to groundwater exploration is poised to advance exploration geophysics globally.

Abstract

A large number of groundwater investigations have been carried out in the Western Cape over the last decade or so. Most of them were related to water supply options for individuals, agriculture, businesses, industries, government departments and municipalities. Some of these developments have confirmed what we already knew about the groundwater characteristics and aquifers of the Western Cape, while others provided us with surprises - surprises so significant that we may have to re-write what we thought we knew. This paper will not be able to cover all the interventions and groundwater studies that have been done. Two case studies linked to the major geological structure in the Western Cape, namely the Colenso Fault (also known as the Franschhoek-Saldanha Fault), will therefore be used as an illustration of the lessons that were learnt by comparing them with our historical understanding of the associated groundwater characteristics. It will also show that there is a need for updated groundwater maps on smaller scale and a reassessment of the aquifers status.

Abstract

For the Department of Water and Sanitation (DWS) to better leverage the wealth of information being collected by various “silo” operational source water information systems, a high-priority initiative was launched to establish a National Integrated Water Information System (NIWIS), which currently consists of over 40 web-accessible dashboards including groundwater related dashboards mostly accessible to the public. Dispersed and disintegrated data and information stored in different sources and formats would hinder decision support in the water sector and deter improvement in service delivery by the DWS. The DWS undertook an extensive and rigorous business requirements analysis exercise within the DWS to ensure that the proposed system does not become a white elephant and facilitate the prioritization of system deliverables. A prototype (waterfall) approach was adopted to develop the NIWIS to ensure the development was still within the suggested business requirements. NIWIS has enabled mostly DWS managers to establish one trusted source of decision-making information for timeous, effective and efficient responses to service delivery. The number of NIWIS dashboards continues to grow as improved data-related business processes are adopted. The unavailability of reliable data from DWS data sources and the exclusion of business requirements from organizations external to DWS were identified as the main challenges to NIWIS disseminating comprehensive, credible information. Therefore, this paper aims to provide some details of the geohydrological information that NIWIS provides and seek feedback from this International Hydrogeologists community for further development of NIWIS.

Abstract

For a long time, professionals regarded social media as a superficial, unprofessional platform where internet users would submerge themselves in a virtual world, detached from real-life issues. Slowly, the myths and stigmas surrounding the use of social media has faded as more and more professionals and scientists have realized that these social platforms could be positively exploited in a professional manner which could be beneficial. In a digital age where information at our fingertips is the norm, professionals should co-evolve and ensure that their work is just as accessible and appealing, without the unnecessary jargon. Currently, science is mostly restricted to a very particular audience and conveyed in one direction only. Using a social media platform such as Twitter-which limits messages to only 140 characters-challenges scientists to convey their work in a very concise manner using simpler terminology. Furthermore, it dismisses the usual one-way form of communication by opening dialogue with fellow Twitter users. At conferences, Twitter can serve as a useful tool for active engagement which will not only "break the ice" between delegates but also ensure that important information is communicated to a much wider audience than only those in attendance. This idea was tested at the 2014 Savanna Science Network Meeting held in Skukuza, Kruger National Park, where the hashtag #SSNM was used. More than 63% of the Twitter users who participated in the #SSNM hashtag were actually not present at the conference. These external "delegates" were interested individuals from five different continents and in different professions besides Science. This highlights how social media can be exploited at conferences to ensure that key messages are conveyed beyond the immediate audience at the event.

Abstract

Slightly more out of the box idea is the use of anthropogenic aquifers as storage and chemical conditioners.  This concept was first introduce by Eland Platinum Mine(EPM) and reported on in previous papers.  At EPM water is used through a serious of natural aeration and aerobic storage facilities to reduce nitrate levels.  In 2013 another group introduced pilot studies by virtue of abstraction in support of the water conservation and demand management strategy; which has proven that it could enable the operations to overcome water shortage periods and reduce pressure on Rand Water (RW). The pilot sites would deliver water into the dirty water circuit, but within five to ten years it may further be used to overcome months with zero potable water supply. .  In platinum mines the more the aquifers are used the cleaner the water becomes, simply because introduced pollutants are not constant sources and country rock is mostly inert.  In the future these aquifers have the potential to become larger storage facilities protected from floods and limited evaporation losses. It is foreseen that some of the mines in the western belt may have more water stored in primary aquifers than water stored within major water dams. Yields from these aquifers for individual aquifers may be up to 450 m3/hour and storage of 18 Mm3.  . Why then this paper if we are already using it?  The issue is that the true value of these aquifers an only be unlocked when they are  used as recharging aquifers and thereby actively storing dirty water within a dirty water aquifer.  Once we are able to undertake this the positive environmental gains such of environmental overflows, condition dirty water, reduction of pollution and significant reduction of the use of potable water from RW. {List only- not presented}

Abstract

Groundwater is an essential source of water worldwide. The increased reliance on groundwater has caused the mining of many aquifers, a situation compounded by climate change, rising surface-air temperature, declining precipitation, and reduced groundwater recharge in many regions. The global annual intensity of groundwater use rose from 128 to 155 m3 per capita between 1950 (when the world population was 2.5 billion people) and 2021 (when the population was 7.9 billion people) and is herein projected to rise to 178 m3 per capita by 2050 as the world’s population is projected to increase (to 9.7 billion people by 2050) throughout the rest of the 21st century and beyond. This study projects a global annual groundwater depletion of 1,008 km3 by 2050, representing a 256% rise from the estimated 2010 depletion. This projection is most likely a lower bound of the actual groundwater depletion that would be realized considering environmental flows, historical trends of global economic growth, and climate-change impacts, thus being a harbinger of rising environmental degradation (e.g., land subsidence, seawater intrusion, streamflow reduction, aridification). Measures to achieve groundwater sustainability are herein identified.

Abstract

The mitigation of groundwater impacts related to gold mining tailings disposal within the Orkney-Klerksdorp region was assessed and presented as a case study. The most pressing concern for the facility owners is the potential for pollution of water resources in the vicinity of the mines, especially after mine closure. The key focus of this paper is to describe how methods were applied to characterise the aquifer and keeping the source-pathway-receptor principles in mind. Characterisation also involves lessons learn by comparing pre-tailings deposition and post-tailings deposition aquifer bahviour. Ultimately the process followed in this paper has led to the development of a logical approach to estimate groundwater liability costs in a typical tailings environment. The link between hydrogeology, geotechnical engineering and civil engineering was identified as a critical foundation for the development of a successful groundwater management strategy

Abstract

Inadequate characterization of contaminated sites often leads to the development of poorly constructed conceptual site models and consequently, the design and implementation of inappropriate risk management strategies. As a result, the required remedial objectives are not achieved or are inefficient in addressing the identified risks. Unfortunately, it is all too common to find remedial intervention strategies that run for lengthy periods of time at great cost while generating little environmental benefit due to inadequate characterization of site conditions. High resolution site characterization (HRSC) can provide the necessary level of information to allow for development of rigorous conceptual site models, which can be used to develop and implement appropriate risk management solutions for environmental problems. At the outset, the HRSC approach generally has comparatively higher costs than traditional state-of-the-practice assessment methods. However, the project lifecycle costs can be substantially reduced due to development of optimal risk management strategies. In developing countries where there is a lack of legislation relating to soil and groundwater contamination or, a lack of enforcement of legislation which is present, the long-term liabilities related to contaminated sites are often not immediately apparent to the parties responsible for the sites. This often creates a reticence to employ HRSC techniques due to their increased cost, especially when much of the technology must be imported on a project specific basis from either Europe or the United States. The Authors provide information from several case studies conducted in South Africa where HRSC techniques have been employed to gain a greater understanding of subsurface conditions. Techniques employed have included surface-based geophysical techniques such as electrical resistivity tomography (ERT) and multi-channel analysis of seismic waves (MASW), passive soil gas surveys, deployment of Flexible Underground Technologies (FLUTe?) liners, diamond core drilling, fluid electrical conductivity profiling, downhole geophysical logging tools, the Waterloo Advanced Profiling System (APS), and the use of field laboratories. Several of the techniques required importing equipment and personnel from Europe or the US, and in several case studies, were a first to be employed in South Africa, or the continent of Africa for that matter. The Authors present data obtained using the HRSC techniques from the case studies and elaborate on how the information obtained was used to drive effective decision making in terms of managing long term environmental risks at the various sites, which has been positively embraced by local clients. The authors also highlight key challenges in conducting HRSC investigations in an emerging market context.

Abstract

Environmental isotope techniques have been successfully applied in the field of hydrogeology over the last couple of decades and have proved useful for understanding groundwater systems. This paper describes a study of the environmental isotopes for Oxygen (18O) and Hydrogen (1H, 2H-Deutrium, 3H-Tritium) obtained from various points in and around the underground coal gasification (UCG) site in Majuba, South Africa. UCG is an alternative mining method, targeting deep coal seams that are regarded as uneconomical to mine. The process extracts the energy by gasifying the coal in-situ to produce a synthetic gas that can be used for various applications. The site consists of shallow, intermediate and deep aquifer systems at a depth of 70m, 180 and 300m respectively. The intermediate aquifer is further divided into the upper and lower aquifer systems.
Samples were taken from each aquifer system together with supplementary samples from the Witbankspruit and an on-site water storage dam. A total of 15 samples were submitted for isotope analyses. By investigating the various isotopic signatures from all the samples taken, it will be possible to determine if there are similar or contrasting isotopic compositions by deducing possible water source for each sample due to isotopic fractionation caused by physical, chemical and biological processes. This will also be supported by deducing the mean residence time (MRT) for each water source sampled based on the Tritium data as well as the chemistry data already available for different sources. The chemistry data established linkages between the upper and lower intermediate aquifers.{List only- not presented}
Key words: Environmental isotopes, UCG, Water source, Isotope fractionation

Abstract

The Table Mountain Group (TMG) Formation in the Uitenhage region, in the Eastern Province of South Africa, has many groundwater users, which could result in the over-exploitation of the underlying aquifer. Consequently, several investigations have been conducted to help in the planning and management of groundwater resources within the region. Traditionally, these investigations have considered groundwater and surface water as separate entities, and have been investigated separately. Environmental isotopes, hydrochemistry and feacal colifom bacteria techniques have proved to be useful in the formulation of interrelationships and for the understanding of groundwater and surface water interaction. The field survey and sampling of the springs, Swartkops River and the surrounding boreholes in the Uitenhage area have been conducted. After full analysis of the study, it is anticipated that the data from the spring, Swartkops River and the surrounding boreholes show interannual variation in the isotope values, indicating large variation in the degree of mixing, as well as to determine the origin and circulation time of different water bodies. ?D and ?18O value for the spring ranges from ?18.9? to ?7.4?, and 5.25? to 4.82?, respectively, while ?D values for borehole samples range from ?23.5? to ?20.0? and ?18O values range from ?5.67? to ?5.06?. In the river sample, ?D values ranges from ?12.1? to ?4.2?, ?18O from ?3.7? to ?1.13?, respectively. The entrobacter aerogen and E.Coli bacteria were detected in the samples. E. coli population for spring and the artesian boreholes indicated low value while the shallow boreholes had higher values are relatively closer to those of the middle ridges of the Swartkops River. The EC values for the spring samples averages at 14 mS/m, borehole samples ranges from 21 mS/m to 1402 mS/m, and surface water ranges from 19 mS/m to 195 mS/m. Swartkops River is an ephemeral, therefore it is expected that diffuse recharge occurs into the shallow aquifer.

Abstract

Modelling of groundwater systems and groundwater-surface water interaction using advanced simulation software has become common practice. There are a number of approaches to simulate Lake-aquifer interactions, such as the LAK Package integrated into MODFLOW, the high conductivity and fixed stage approaches. LAK and the high conductivity approaches were applied and compared in simulating Lake- aquifer interaction in the Lake Sibayi Catchment, north-eastern, South Africa using the finite difference three-dimensional groundwater flow model, Visual MODFLOW Flex under steady state conditions. The steady state model consisted of two layers: an upper layer consisting of the Sibayi, KwaMbonambi, Kosi Bay and Port Durnford Formations which have similar characteristics, and a lower model layer representing the karst, weathered and calcareous Uloa Formation. The bottom model boundary is constrained by the impermeable Cretaceous bedrock. The model area covers the surface and groundwater catchments of Lake Sibayi which is constrained in the east by the Indian Ocean. A no-flow boundary condition is assigned to the northern, western and southern sides and a constant head boundary is assigned to the eastern side. The Mseleni River and neighbouring plantations were modelled using the River and Evapotranspiration boundary conditions respectively. Input parameters for the various boundary conditions were obtained from the previously developed high resolution conceptual model, including recharge

Abstract

Big data analytics (BDA) is a modern and innovative platform of applications that include advanced analytical techniques such as data mining, statistical analysis, artificial intelligence, machine learning, and natural language processing. Regional data are generated through groundwater monitoring, remote sensing applications or global circulation models (GCM), however this is often too course for a local understanding. Groundwater managers rely on locally relevant information for effective operational decision making, however this is often missing. A Transboundary Aquifer (TBA) Analytic Framework was developed to match, integrate and model local hydrogeological data with regional earth-observation data using BDA. Drawing on the literature on BDA, a reference architecture for the TBA analytical framework was identified for application to various groundwater management scenarios in the Ramotswa Dolomitic Aquifer (Botswana - South Africa) and Shire Valley Alluvial Aquifer (Malawi - Mozambique). The TBA analytical framework allows for local clouds to store the local and regional structured and unstructured datasets and interconnecting these local clouds through a federated cloud infrastructure. In this regard, tools that are incorporated in the TBA analytical framework include data ingestion operators, data transformation operators, and feature extractors. Various machine learning algorithms and statistical techniques are incorporated in the TBA analytical framework to downscale the regional datasets. The downscaling involves selection of potential predictors and predictants variables based on data needs to address local groundwater management scenarios such as regulating groundwater abstraction to prevent groundwater depletion. Using the downscaled data the TBA analytical framework can be utilised to uncover patterns and statistical relationships in the datasets in order to model local groundwater processes such as cone of depression, groundwater levels forecasting, well protection zoning, amongst others.

Abstract

Two ventilation shafts were proposed to be excavated to depths of 100 and 350 m to intersect an underground mine, in the Bushveld Complex. The area is made up of fractured aquifers and the assignment was to identify the exact positions of the permeable zones within the shafts profiles as well as estimate the groundwater inflow rates at every 5 m interval along the shafts profiles. The project was budget and time constrained and therefore the preferred hydrogeological characterisation techniques, particularly the percussion drilling, aquifer testing and numerical modelling could not be conducted. The study was completed by conducting packer tests in HQ sized holes drilled at the exact positions of the proposed shafts. The packer test data was then interpreted using Thiem equation, a modification of Darcy Equation for radial flow, to estimate the steady state inflow rates into the shafts. Transient state flow is more challenging to calculate analytically, as it is time and aquifer storage dependent. However, transient state flow in shafts exists for the first 10 - 15 days only and is short lived. Thereafter, a steady state flow occurs where the rate is nearly fixed for the rest of the life of mine, unless new external stresses, such as mine dewatering, takes place within the radius of influence. Six months later the shafts were excavated and the permeable zones were encountered at the exact positions as predicted using the packer testing. In addition, the inflow rates calculated using analytical modelling was successful in estimating the inflow rates recorded after the shafts were excavated. The packer testing and analytical modelling was therefore effective in assisting the mine to plan the necessary pumps and management plans within the allocated budget and timeframe.

Abstract

This study aims to contribute to the conceptual and methodological development of units of joint management in transboundary aquifers (TBAs) to prevent and mitigate cross-border groundwater impacts (GWIs) in quantity and/or quality. Joint management units are a relatively new but growing topic in the field of TBAs, and their conceptualisation and appropriate identification are still at an early stage. By reviewing the literature on the subject and elaborating on its terminology, main features, and current methodological progress, a comparison of the existing methodologies for identifying such units is analysed. On this basis, trends and recommendations for further research and application of such methodologies to the joint management of TBAs are presented. The literature on this issue is scarce and has been published mainly in the last five years. These publications lack consistency in the use of concepts and terminology. The above has led to miscommunication and semantic issues in the concept behind such units and in comprehending the particular challenges of identifying them. Still, some directions and methodologies for identifying or directly delineating these management units have been proposed in the literature. However, no analysis from these methodological attempts has been conducted; thus, there are no lessons to be learned about this progress. This research looks forward to closing these gaps and making headway toward dealing with cross-border GWIs in TBAs, thus helping countries meet international law responsibilities and maintaining stable relationships among them.

Abstract

The intangible nature of groundwater provides challenges when trying to understand and quantify the role of groundwater in the hydrology of lakes and wetlands. This task is made even more difficult by the frequent absence of data. However, by adopting a scientific approach, it is possible to assess the hydrogeological contribution

Abstract

The groundwater quality in semi-arid aquifers can be deteriorated very rabidly due to many factors. The most important factor affecting the quality of groundwater quality in Gaza Strip aquifer is the excess pumping that resulting from the high population density in the area. The goal of this study to investigate the future potential deterioration in groundwater salinity using scenario analysis modeling by artificial neural networks (ANN). The ANN model is utilized to predict the groundwater salinity based on three future scenarios of pumping quantities and rates from the Gaza strip aquifer. The results shows that in case the pumping rate remains as the present conditions, chloride concentration will increase rapidly in most areas of the Gaza Strip and the availability of fresh water will decrease in disquieting rates by year 2030. Results proved that groundwater salinity will be improved solely if the pumping rate is reduced by half and it also will be improved considerably if the pumping rate is completely stopped. Based on the results of this study, an urgent calling for developing other drinking water resources to secure the water demand is the most effective solution to decrease the groundwater salinity.

Abstract

This study intent to share the legal and institutional analysis of the UNESCO IHP project "Groundwater Resources Governance in Transboundary Aquifers" (GGRETA) project for the Stampriet Transboundary aquifer. The Intergovernmental Council (IGC) of the UNESCO International Hydrological Programme (IHP) at its 20th Session requested the UNESCO-IHP to continue the Study and Assessment of Transboundary Aquifers and Groundwater Resources and encouraged UNESCO Member States to cooperate on the study of their transboundary aquifers, with the support of the IHP. The GGRETA project includes three case studies: the Trifinio aquifer in Central America, the Pretashkent aquifer in central Asia and the Stampriet aquifer in southern Africa. This study focuses on the Stampriet Transboundary Aquifer System that straddles the border between Botswana, Namibia and South Africa. The Stampriet system is an important strategic resource for the three countries. In Namibia the aquifer is the main source of water supply for agricultural development and urban centers in the region, in Botswana the aquifer supplies settlements and livestock while in South Africa the aquifer supplies livestock ranches and a game reserve. The project methodology is based on UNESCO's Shared Aquifer Resources Management (ISARM) guidelines and their multidisciplinary approach to transboundary aquifers governance and management, addressing hydrogeological, socio-economic, legal, institutional and environmental aspects. The GGRETA builds recognition of the shared nature of the resource, and mutual trust through joint fact finding and science based analysis and diagnostics. This began with collection and processing of legal and institutional data at the national level using a standardized set of variables developed by the International Groundwater Resources Assessment Center (IGRAC). This was followed by harmonization of the national data using common classifications, reference systems, language, formats and derive indicators from the variables. The harmonized data provided the basis for an integrated assessment of the Stampriet transboundary aquifer. The data assisted the case study countries to set priorities for further collaborative work on the aquifer and to reach consensus on the scope and content of multicountry consultation mechanism aimed at improving the sustainable management of the aquifer. The project also includes training for national representatives in international law applied to transboundary aquifers and methodology for improving inter-country cooperation. This methodology has been developed in the framework of UNESCO's Potential Conflict Cooperation Potential (PCCP) program. The on-going study also includes consultation with stakeholders to provide feedback on proposals for multicountry cooperation mechanisms. It is anticipated that upon completion of the study, a joint governance model shall have been drawn amongst the three countries sharing the aquifer to ensure a mutual resource management.

Abstract

This paper was presented at the GWD Central Branch Symposium, Potchefstroom in 2012

Numerical modelling of hydrogeological systems has progressed significantly with the evolution of technology and the development of a greater understanding of hydrogeology and the underlying mathematical principles. Hydrogeological modelling software can now include complex geological layers and models as well as allow the pinching out of geological features and layers. The effects of a complex geology on the hydraulic parameters determined by numerical modelling is investigated by means of the DHI-WASY FEFLOW and Aranz Geo Leapfrog modelling software packages.

The Campus Test Site (CTS) at the University of the Free State in Bloemfontein, South Africa was selected as the locale to be modelled. Being one of the most studied aquifers in the world, the CTS has had multiple research projects performed on it and as a result ample information is available to construct a hydrogeological model with a high complexity. The CTS consists primarily of stacked fluvial channel deposits of the Lower Beaufort Group, with the main waterstrike located on a bedding-plane fracture in the main sandstone aquifer.

The investigation was performed by creating three distinct hydrogeological models of the CTS, the first consists entirely of simplified geological strata modelled in FEFLOW by means of average layer thicknessand does not include the pinching out of any geological layers. The second model was created to be acopy of the first, however the bedding-plane fracture can pinch out where it is known to not occur. The third and final model consisted of a complex geological model created in Leapfrog Geo which was subsequently exported to FEFLOW for hydrogeological modelling.

Abstract

It has become increasingly apparent that understanding fractured rock mechanics as well as the interactions and exchanges between groundwater and surface water systems are crucial considering the increase in demand of each in recent years. Especially in a time where long term sustainability is of great importance for many water management agencies, groundwater professionals and the average water users. Previous callow experience has shown that there is a misunderstanding in the correct interpretation and analyses of pumping test data. The fracture characterisation (FC) method software provides a most useful tool in the overall understanding of a fractured rock aquifer, quantification of the aquifer’s hydraulic (flow regime and flow boundary conditions) and physical properties, only if the time-drawdown relationships are correctly interpreted and when the theoretical application principles are applied. Interpretation is not simply a copy and paste of the aquifer test data into the software to get a quick answer (especially when project time constraints are considered), however, recent experiences with numerous field examples, required intricate understanding of the geological environment, intended use and abstraction schedules coupled with the academic applications on which the software was based for correct interpretation.

Through the application of correct interpretation principles, a plethora of flow information becomes available, of which examples will be provided in the presentation itself. By achieving this, flow can be conceptualised for inputs into a conservative scale three-dimensional numerical flow model and calibrated based on measurable data in a fraction of the time of a conventional regional model. Although higher confidence levels are achieved with these practical solutions, monitoring programmes are still required to provide better insight of the aquifer responses to long-term abstraction and recovery.

Abstract

Vapour intrusion (VI) is recognized to drive human health risk at numerous sites that have been contaminated by petroleum products and other volatile contaminants. The risks related to VI are typically evaluated using direct measurement (vapour sampling) or modelling methods. ERM has developed a toolbox approach using a combination of exclusion distance criteria, direct measurement and modelling methods to assess risks and achieve closure. For direct measurement, samples of vapour are taken beneath the floor slab of buildings (sub-slab sampling) or from the air inside the buildings (indoor air sampling). Modelling methods are often used to estimate the partitioning of volatile contaminants from soil or groundwater sources into the vapour phase and the subsequent transport of vapours from the subsurface environment into habitable buildings. A limitation of modelling approaches is that they are designed to be conservative to be adequately protective of sensitive receptors. VI models also do not typically take into account the degradation of hydrocarbon vapours in the presence of oxygen, which has been found to be a significant process for petroleum hydrocarbons. The authors have compiled a dataset of petroleum vapour and groundwater results from over 50 petroleum release sites in southern Africa. These data were used to develop exclusion distance criteria for vapours emitted from contaminated groundwater sources (i.e. distance from the source at which sufficient aerobic attenuation has occurred for the VI risk to be negligible). A standard "lines of evidence" approach has been applied to the assessment of VI risk by firstly applying the exclusion distance criteria to sites with groundwater contaminant plumes beneath buildings, and if these are met, the sites are considered to have no unacceptable VI risk. Where exclusion screening criteria are not met, risk is estimated using modelling, and if a potential risk is predicted, then direct sub-slab measurements are taken to more accurately assess the risk. Lastly, where sub-slab assessment predicts a potential VI risk, indoor vapour measurement are taken to evaluate actual risk, taking into account interferences from other sources and background levels of contaminants. Mitigating measures can then be applied as appropriate. Various case studies will be presented including direct measurements at industrial and residential sites overlying contaminant plumes and modelling methods at residential properties adjacent to service station sites. A risk-based approach to the assessment of contaminated land provides a sustainable and cost effective methodology, and also avoids unnecessary remediation. The results show that VI risks can be adequately addressed with a toolbox approach using multiple lines of evidence.

Abstract

One-third of the world faces water insecurity, and freshwater resources in coastal regions are under enormous stress due to population growth, pollution, climate change and political conflicts. Meanwhile, several aquifers in coastal regions extending offshore remain unexplored. Interdisciplinary researchers from 33 countries joined their effort to understand better if and how offshore freshened groundwater (OFG) can be used as a source of potable water. This scientific network intends to 1) estimate where OFG is present and in which volumes, 2) delineate the most appropriate approaches to characterise it, and 3) investigate the legal implications of sustainable exploitation of the offshore extension of transboundary aquifers. Besides identifying the environmental impact of OFG pumping, the network will review existing policies for onshore aquifers to outline recommendations for policies, action plans, protocols and legislation for OFG exploitation at the local to international levels. Experienced and early-career scientists and stakeholders from diverse disciplines carry out these activities. The Action leads activities to foster cross-disciplinary and intersectoral collaboration and provides high-quality training and funded scientific exchange missions to develop a pool of experts to address future scientific, societal, and legal challenges related to OFG. This interaction will foster new ideas and concepts that will lead to OFG characterisation and utilisation breakthroughs, translate into future market applications, and deliver recommendations to support effective water resource management. The first exchange mission explored the Gela platform carbonate reservoir (Sicily), built a preliminary 3D geometrical model, and identified the location of freshened groundwater

Abstract

Unicef is the WASH sector lead globally and is, present at the country level, the main counterpart of government, especially regarding the component of the water balance utilised for potable safe water supplies. This mandate means that Unicef then has a role in looking at water resources nationally and not just as individual projects, and in doing so, contributes to good water governance as an integral part of system strengthening. Ensure this is done in partnership with other ministries and stakeholders that support them through advocacy for humanitarian and developmental access and support in technical areas such as groundwater assessments and monitoring. The focus on groundwater is especially linked with the fact that groundwater plays a major role due to its buffering capacity to climate variations, easier access and global coverage. Since groundwater is the most significant component of accessible freshwater resources, it is in the interest of UNICEF to make this resource more visible to meet both development and humanitarian goals, strengthen national systems and ultimately build resilience in mitigating water scarcity to scale or at the National level. Therefore, examples will be presented where Unicef has engaged on this journey with nations such as Afghanistan, Yemen, Mozambique and Rwanda to understand their water resources better. The overall objective at the National level is to adapt the capacity to withstand and recover as quickly as possible from external stresses and shocks or build resilience.

Abstract

Millions of tons of coal ash are produced across the globe, during coal combustion for power generation. South Africa relies largely on coal for electricity generation. The current disposal methods of coal ash are not sustainable, due to landfill space limitations and operational costs. One way/means of disposing of coal ash that could provide environmental and financial benefits; is to backfill opencast mines with the ash. However, a limited number of studies have been conducted to assess the feasibility of this method in South Africa. Thus the aim of the experiment is to monitor bulk ash disposal under field conditions to improve the understanding of the geochemical and hydrogeological processes occurring during the actual deposition of coal ash in opencast coal mines. To achieve the aim (1) a gravity lysimeter will be built containing both mine spoils and coal ash representing field conditions; (2) the factors (CO2, water level and moisture content) affecting acid mine drainage will be monitored in the lysimeter and (3) the change in the quantity and quality of the discharge released from the lysimeter.

Abstract

This study was aimed at developing an integrated groundwater-surface water interaction (GSI) model for a selected stretch of the Modder River by considering the following five different aspects of the GSI: 1) the distribution of different aquifer systems (structural connectivity) along the river 2) the hydraulic connectivity between the aquifer systems, 3) the volumes of water abstracted from the aquifers by streamside vegetation, 4) the volumes of water replenished to the groundwater system through rainfall recharge, and 5) the exchange fluxes between the various components of the groundwater-surface water system. The distribution of the aquifer systems was investigated by means of a) geo-electrical surveys, and b) in situ slug tests while their hydraulic connectivity was investigated by hydrogeochemical routing. The volumes of water abstracted by streamside vegetation were estimated by the quantification of the transpiration from individual plants and the groundwater recharge was estimated by a root zone water balance. The water exchange fluxes between the groundwater and surface water were determined from a simple riparian zone groundwater budget. The results of the geo-electrical surveys and slug tests allowed the delineation of the riparian area aquifers (RAA) and the terrestrial area aquifers (TAA) on both the south-eastern and north-western sides of the river. Based on the results of hydrochemical analyses, saturation indices and inverse mass balance modelling, the GSI involves flow of water from the TAA to the RAA, and finally to the river on the south-eastern side while it involves flow from the river into the RAA with a limited exchange with the TAA on the south-eastern side. The dominant vegetation on the study area was found to be the Acacia karroo and Diospyros lycioides. The close similarities in isotope compositions of the xylem sap and the borehole water samples suggested that the Acacia karroo sourced its water from the groundwater storage while differences in isotope compositions suggested that the Diospyros lycioides did not source water from the groundwater storage at the time of measurement. The results of groundwater recharge estimation in the study area highlighted the fact that both the antecedent moisture and the rainfall amounts determine whether recharge to the groundwater system will take place. Finally, the results of baseflow estimation indicated that the river is a gaining stream along the south-eastern reach while acting as a losing stream along the north-western reach.

Abstract

There are various software packages used by hydrogeologists for a variety of purposes ranging from project management, database management, data interpretation, conceptual and numerical modelling and decision making. Software is either commercial (produced for sale) or open source (freely available to anyone and for any purpose).

The objective of this paper is to promote open source software that can be used by the hydrogeological community to reduce expenses, enhance productivity and maximise efficiency.

Free software was previously associated as being inferior in quality in the corporate world. Companies often use commercial software at a hefty price, but little do they know that open source is often equal to, or superior to their commercial counterparts. The source code of open source software can freely be modified and enhanced by anybody. Open source software is a prominent example of open collaboration as it is developed by users for the user community. Companies using open source software do not need to worry about licensing and do not require anti-piracy measures such as product activation or a serial number.

However, the decision of adopting open source software should not just be taken just on the basis of the low-cost involved. It should entail a detailed analysis and understanding of the requirements at stake, before switching to open source to achieve the full benefits it offers and to understand what the down side is. There are plenty of open source products that can be used by hydrogeologists. The packages considered in this article are those that are frequently used by the author and do not necessarily mean that they are the best available. Software gets updated or abandoned with time and what is considered powerful today may be obsolete in a few years.

Some of the well-known open source packages recommended for hydrogeologists include: OpenLibre for project management, Blender 3D or Sketchup for 3D conceptual modelling, QGIS for GIS mapping and database management, SAGA GIS for interpolation and ModelMuse for numerical modelling (comprising of Modflow for finite difference, Sutra for finite element and Phast for geochemical modelling). In addition, there are a number of free software packages developed by the USGS, various universities and consultants across the globe that can be used for aquifer test interpretation, borehole logging and time-series data analysis. A saving of more than R250,000 can be made per hydrogeologist by utilising such open source packages, while maintaining high quality work that is traditionally completed using commercial software.

Abstract

A groundwater assessment was conducted to identify and predict the contamination and transport properties of a groundwater system. The motivation for the study was the rising concern of a farm owner about the deteriorating water quality of the aquifer system. An investigation of the surface and groundwater quality indicated that two fertilizer dumpsites were the sources of pollution. Water analyses revealed elevated concentrations of Ca, Mg, K, F, NO3, SO4, Mn and NH4 within boreholes near the pollution sources. The NH4 and NO3 concentrations were exceptionally high: 11 941 mg/L and 12 689 mg/L, respectively. These high concentrations were the direct result of the dumping of fertilizer. The rise in these concentrations may also have been catalysed by the nitrogen cycle and the presence of the Nitrosomonas bacterium species. Due to the high solubility of NO3, and because soils are largely unable to retain anions, NO3 may enter groundwater with ease, and could migrate over large distances from the source. Elevated NO3 in groundwater is a concern for drinking water because it can interfere with blood-oxygen levels in infants and cause methemoglobinemia (blue-baby syndrome). A geophysical study was undertaken within the area of investigation to gain insight on the underlying geological structures. The survey indicated preferential flow paths within the aquifer system along which rapid transport of contaminant is likely to occur.
Key words: aquifer system, groundwater quality analyses, fertilizer, nitrogen cycle, Nitrosomonas species, geophysics.

Abstract

Hydraulic behaviour of an aquifer is defined in terms of the volumes of water present, both producible and not (specific yield and specific retention), and the productivity of the water (hydraulic conductivity). These parameters are typically evaluated using pumping tests, which provide zonal average properties, or more rarely on core samples, which provide discrete point measurements. Both methods can be costly and time-consuming, potentially limiting the amount of characterisation that can be conducted on a given project, and a significant measurement scale difference exists between the two. Borehole magnetic resonance has been applied in the oil and gas industry for the evaluation of bound and free fluid volumes, analogous to specific retention and specific yield, and permeability, analogous to hydraulic conductivity, for over twenty years. These quantities are evaluated continuously, allowing for cost-effective characterisation, and at a measurement scale that is intermediate between that of core and pumping tests, providing a convenient framework for the integration of all measurements. The role of borehole magnetic resonance measurements in hydrogeological characterisation is illustrated as part of a larger hydrogeological study of aquifer modeling. Borehole magnetic resonance has been used for aquifer and aquitard identification, and to provide continuous estimates of hydraulic properties. These results have been compared and reconciled with pumping test and core data, considering the scale differences between measurements. Finally, an integrated hydrogeological description of the target rock units has been developed.

Abstract

The 'maintainable aquifer yield' can be defined as a yield that can be maintained indefinitely without mining an aquifer. It is a yield that can be met by a combination of reduced discharge, induced recharge and reduced storage, and results in a new dynamic equilibrium of an aquifer system. It does not directly or solely depend on natural recharge rates. Whether long-term abstraction of the 'maintainable aquifer yield' can be considered sustainable groundwater use should be based on a socio-economic-environmental decision, by relevant stakeholders and authorities, over the conditions at this new dynamic equilibrium.
This description of aquifer yields is well established scientifically and referred to as the Capture Principle, and the link to groundwater use sustainability is also well established. However, implementation of the Capture Principle remains incomplete. Water balance type calculations persist, in which sustainability is linked directly to some portion of recharge, and aquifers with high use compared to recharge are considered stressed or over-allocated. Application of the water balance type approach to sustainability may lead to groundwater being underutilised.
Implementation of the capture principle is hindered because the approach is intertwined with adaptive management: not all information can be known upfront, the future dynamic equilibrium must be estimated, and management decisions updated as more information is available. This is awkward to regulate.
This paper presents a Decision Framework designed to support implementation of the capture principle in groundwater management. The Decision framework combines a collection of various measures. At its centre, it provides an accessible description of the theory underlying the capture principle, and describes the ideal approach for the development operating rules based on a capture principle groundwater assessment. Sustainability indicators are incorporated to guide a groundwater user through the necessary cycles of adaptive management in updating initial estimations of the future dynamic equilibrium. Furthermore, the capture principle approach to sustainable groundwater use requires a socio-economic-environmental decision to be taken by wide relevant stakeholders, and recommendations for a hydrogeologists' contribution to this decision are also provided. Applying the decision framework in several settings highlights that aquifer assessment often lags far behind infrastructure development, and that abstraction often proceeds without an estimation of future impacts, and without qualification of the source of abstracted water, confirming the need for enhanced implementation of the capture principle.

Abstract

This paper describes the results of study aimed at consolidating the available data sources on deep aquifers and deep groundwater conditions in South Africa. The study formed part of the larger WRC Project K5/2434 (Characterisation and Protection of Potential Deep Aquifers in South Africa). Since very little is known about the aquifer conditions below depths of 300 m, all groundwater information from depths greater than 300 m was considered to represent the deep aquifer systems. Various confirmed and potential sources of data on deep aquifers and groundwater conditions were identified and interrogated during this study, namely:

1. Boreholes of the International Heat Flow Commission (IHFC). The IHFC database indicates the location of 39 deep boreholes ranging in depth from 300 to 800 m, with an average depth of 535 m.
2. The Pangea database of the International Council for Science (ICSU). The Pangea database has information on 119 boreholes in South Africa, of which 116 are deeper than 300 m.
3. A database on deep boreholes at the Council for Geoscience (CGS). This database contains information on 5 221 boreholes with depths exceeding 300 m.
4. Information on the deep SOEKOR boreholes drilled during the 1960s and 1970s (at least 38 boreholes).
5. Information on deep boreholes from the database of the Petroleum Agency SA.
6. The National Groundwater Archive (NGA) of the Department of Water and Sanitation (DWS).
7. Information derived from the thermal springs in South Africa.
8. Boreholes drilled as part of the Karoo Research Initiative (KARIN).
9. Information on the locations and depths of underground mines in South Africa. Information on the occurrence of deep groundwater could potentially be obtained from these mines.

The study shows that, although information on a vast number of deep groundwater sites is listed in the various databases, the data relevant to the geohydrological conditions are scant at most sites. This paucity of geohydrological data implies that the deep aquifers of South Africa are currently poorly understood.

Abstract

Preventing the spread of seepage from tailings storage facilities (TSF's) in groundwater is necessary as it often contains toxic contaminants. Experience has shown that seepage from TSFs is inevitable and that zero seepage remains difficult even with complex liner systems. Multiple seepage control methods are often required to minimise seepage to ensure that environmental regulations are met. Control methods can be grouped into either barrier or collection systems. Barrier systems are used to hinder seepage whereas collection systems are used to intercept seepage. A blast curtain, which is the focus of this article, is a type of collection system that is still at a conceptual level but has seen little or no application worldwide. It works in principle, similarly to a curtain drain, but is typically extended to greater depths depending on the aquifer vulnerability. Numerical modeling has shown that this mitigation measure could add another line of defence for seepage control. The depth and effectiveness of the curtain can be optimized with a numerical model to ensure optimal interception of contaminated seepage around the TSF. Depths of up to 30 m in fractured aquifers have been simulated in this study. A blast curtain is constructed by drilling a set of boreholes around a TSF in close proximity to one another and then fracturing the rock using either explosives or fracking methods to create a more permeable zone. This is then combined with a series of scavenger wells or natural seepage to abstract the contaminated water. Numerical simulation has shown that blast curtains are effective especially if groundwater flow is horizontal. The effectiveness decreases if the vertical flow component is significant. A blast curtain can result in the lowering of the water table, however, local depression is a less of a concern than potential groundwater contamination. {List only- not presented}

Abstract

POSTER The Department of Water and Sanitation (DWS) is the custodian of South Africa's water and thus is imperative that it reports on its state as the National Water Act of 1998 requires regular reporting to Parliament by the Minister. Hence, the annual compilation of report entitled "The National State of Water in South Africa." This report aims to give an overview of the status and trends of water quality and quantity, further assisting with international water reporting obligations to SADC Region, African Continent, and Globally e.g. the United Nations Commission on Sustainable Development. This information empowers the public and provides knowledge to water managers for informed decision-making. The main purpose is to enhance quality, accessibility and relevance of data and information relating to the goal of Integrated Water Resource Management towards attaining holistic Integrated Water Management, and Integrated Water Cycle Management in future. Three distinct requirements for collecting data by DWS are: (i) assessing and comparing the status and trends for both quantity and quality; (ii) monitoring for water use and (iii) monitoring for compliance to licence conditions. Such information is further used to assess the effectiveness of policies implemented and identify the existing gaps. Various challenges to the country's water demand proper integrated water resources planning and management. The report is divided into Themes such as, Resource Management, Water Services/Delivery, Water Development and Finance, based on selected indicators. The indicators are strategically selected to provide a representative picture of the state, as well as the changes over time to the drivers, pressures, impacts and responses related to the chosen themes. These Indicators include: Climatic Conditions, Water Availability, Water Use, Water Protection, Water Quality, Water Service Delivery, Water Infrastructure, Water Finance, and Sanitation. The report for Hydrological Year 2013/2014 has been completed and it shows that the amount of water available varies greatly between different places and seasons, and from one year to another. The average total storage was around 85% of full supply capacity in September 2014. Surface water quality is generally facing a threat from eutrophication and microbial pollution emanating mainly from mismanaged water (and waste) treatment plants and related landuse activities. Groundwater quality is generally good except in some localised areas where mining and industrial activities are prevalent. With regards to infrastructure; vandalism, lack of maintenance & management skills reflect on/as non-revenue water, highlighting the need for more funding towards maintenance, especially in groundwater which is normally wrongly deemed as an unreliable resource. In the past 20 years, water services delivery to communities has improved as the Millennium Development Goals have been met and surpassed, while the sanitation access goals were likely to be met.

Abstract

Faced with a burgeoning population and property growth, and in preparation for a future drier climate regime; the coastal town of Hermanus in the Western Cape has set up two wellfields to abstract groundwater from the underlying aquifer in order to augment the constrained surface water supply from the De Bos Dam.
Water Use Licences (WUL) were issued to the Overstrand Municipality in June 2011 and December 2013. The licences authorise a maximum annual abstraction of 1 600 Ml of water from the Gateway wellfield and 800 Ml of water from the Volmoed and Camphill wellfield via several boreholes. The water abstracted from the Gateway wellfield is pumped via a booster pump station to the Preekstoel Treatment Plant. The Volmoed and Camphill wellfield are situated at a higher altitude allowing for a gravity feed pipeline.
Earth Science Company, Umvoto Africa, has the responsibility to ensure Resource Quality Objectives are met which include balancing the need to protect the resource on the one hand; and the to develop sustainable utilisation of the Hermanus groundwater resources and compliance with the WUL on the other. The consultancy provides hydrogeological support, wellfield management and technical advice in operating the boreholes, pumps, boosters and related infrastructures.
Running the operations of the wellfield relies on a high-tech, semi-automated system, incorporating a remotely controlled, telemetry based structure. Vital parameters are monitored by electronic sensors, feeding data to processors which alters pump performance to maintain specified boundary levels. Data is simultaneously communicated via telemetry to a central control which uses data acquisition software to portray information to the operators. Warning alarms both alert operators via SMS and in certain instances auto-shut down the system.
To ensure ecological sustainability of the ground water resource, the wellfield also requires hydrogeological monitoring at far field locations within the recharge areas. Some of these locations are in remote areas making data download costly. The high-tech telemetry approach is used with positive results.
Any automated telemetry system is prone to malfunction and environmental hazards. The challenge lies in managing this and providing sufficient back up and duplication of systems.
The paper gives an overview of the components and flow of data based on the experiences gained during the evolution and development over 12 years of operation. Automation produces vast data bases which are often not sufficiently analysed, the premise that "once collected, the task is done". However data is only as good as the people who drive the systems and this paper provides a critical analysis of human intervention in an automated system and the decisive role of quality-checks. Finally the paper seeks to provide a pragmatic guideline for water users to comply with the WUL and institutional regulations.

Abstract

Estimating groundwater recharge response from rainfall remains a major challenge especially in arid and semi-arid areas where recharge is difficult to quantify because of uncertainties of hydraulic parameters and lack of historical data. In this study, Chloride Mass Balance (CMB) method and Extended model for Aquifer Recharge and soil moisture Transport through unsaturated Hardrock (EARTH) model were used to estimate groundwater recharge rates. Groundwater chemistry data was acquired from the Department of Water and Sanitation (DWS) and Global Project Management consultants, while groundwater samples were collected to fill-in the identified gaps. These were sent to Council for Geoscience laboratory for geochemical analysis. Rainfall samples were also collected and sent for geochemical analysis. An average value of rainfall chloride concentration, average groundwater chloride concentration and mean annual precipitation (MAP) were used to estimate recharge rate at a regional scale. Local scale recharge was also calculated using chloride concentration at each borehole. The results were integrated in ArcGIS software to develop a recharge distribution map of the entire area. For EARTH model, long term rainfall and groundwater levels data were acquired from the South Africa Weather Services and DWS, respectively. Soil samples were collected at selected sites and analysed. These were used to determine representative values of specific yield to use on EARTH model. 60% of the groundwater levels data for 5 boreholes was used for model calibration while the remaining 40% was used for model validation. The model performance was evaluated using coefficient of determination (R2), correlation coefficient (R), Root Mean Square Error (RMSE) and Mean square error (MSE). Regional recharge rates of 12.1 mm/a (equivalent to 1.84% of 656 mm/a MAP) and 30.1 mm/a (equivalent to 4.6% MAP) were calculated using rainfall chloride concentrations of 0.36 and 0.9 mg/L, respectively. The estimated local recharge rates ranged from 0.9-30.2 mm/a (0.14 - 4.6%) and 2 - 75 mm/a (0.3 - 11.4%) using chloride concentration of 0.9 and 0.36 mg/L, respectively. The average recharge rate estimated using EARTH model is 6.12% of the MAP (40.1 mm/a). CMB results were found to fall within the same range with those obtained in other studies within the vicinity of the study area. The results of EARTH model and CMB method were comparable. The computed R2, R, RMSE and MSE ranged from 0.47-0.87, 0.68-0.94, 0.04-0.34, 0.16-3.16, and 0.50-0.79, 0.68-0.89, 0.07-0.68, 0.15-8.78 for calibration and validation, respectively. This showed reasonable and acceptable model performance. The study found that there is poor response of groundwater levels during rainy season which is likely to be due to lack of preferential flows between surface water and groundwater systems. This has resulted in poor relationship between estimated and observed groundwater levels during rainfall season.

Key words: ArcGIS, CMB, EARTH, Groundwater recharge, rainfall

Abstract

Model calibration and scenario evaluations of 2D and 3D groundwater simulations are often computationally expensive due to dense meshes and the high number of iterations required before finding acceptable results. Furthermore, due to the diversity of modelling scenarios, a standardised presentation of modelling results to a general audience is complicated by different levels of technical expertise.

Reducing computational time
In this presentation we look briefly at the use of Reduced Order Models (ROM's), which is one of the recent developments in groundwater modelling. The method allows significant speed-up times in model calibration and scenario evaluation studies. In saturated flow for example, these approaches show speed-up times of >1000 when compared to full models created with Finite Element of Finite Difference methods. These methods are demonstrated to a case study in the Table Mountain Group, in which we show a simplified parameter calibration and scenario evaluation study.

Standardising presentation
In order to present the results to as wide an audience as possible, the use of a web-browser as a GUI is proposed, where the web-page is coupled to a geo-spatial database and data is presented in a spatial and numeric format. The use of the spatial database manager PostgreSQL with PostGIS is proposed. Through a browser interface, users can run modelling scenarios using the ROM, which is evaluated in near real-time. Following the evaluation of the model, we show how PostGIS can spatially present data on a base-map such as google maps. In keeping with the current trends in online map customisation, viewers can interactively choose to overlay the base-map with a data-type (such as pressure or hydraulic head contours or flow direction) that is most intuitive for their level of familiarity with the data.

Conclusion
In using advanced modelling techniques and a simplified browser based presentation of results, high-level decisions in water resource management can be significantly accelerated with the use of interactive scenario evaluations. Furthermore, by reaching a broader audience, public participation will be significantly enhanced.

Abstract

This paper describes the characteristics of the deep aquifer systems in South Africa as derived from the available data. The study formed part of the larger WRC project K5/2434 (Characterisation and Protection of Potential Deep Aquifers in South Africa). A review of the available literature relevant to potential deep aquifers in South Africa was done to allow characterisation of these aquifer systems. In addition, data obtained from the geological logs of the SOEKOR and KARIN boreholes were considered.

This paper focuses on deep aquifers in 1) the Karoo Supergroup, 2) the basement and crystalline bedrock aquifers, 3) the Table Mountain Group, 4) the Bushveld Igneous Complex and 5) the dolomites of the Transvaal Supergroup. From the available data the deep aquifer systems are described in terms of the following characteristics: lithology, occurrence, physical dimensions, aquifer type, saturation level, heterogeneity and degree of isotropy, formation properties, hydraulic parameters, pressurisation, yield, groundwater quality, and aquifer vulnerability.

The results of the study show that the deep aquifer systems of South Africa are generally fractured hard-rock aquifers in which secondary porosity was developed through processes such as fracturing and dissolution. The primary porosity of most of the rocks forming the aquifers is very low. Apart from the dolomite aquifers, most of the water storage occurs in the rock matrices. Groundwater flow predominantly takes place along the fractures and dissolution cavities which act as preferential pathways for groundwater migration. The aquifers are generally highly heterogeneous and anisotropic.

The deep aquifers are generally confined and associated with positive hydraulic pressures. The groundwater quality generally decreases with depth as the salinity increases. However, deep dolomite aquifers may contain groundwater of good quality. Due to the large depths of occurrence, the deep aquifer systems are generally not vulnerable to contamination from activities at surface or in the shallow subsurface. The deep dolomite aquifers are a notable exception since they may be hydraulically linked to the shallower systems through complex networks of dissolution cavities. The deep aquifers are, however, very vulnerable to over-exploitation since low recharge rates are expected.

Abstract

In South Africa, the use of stochastic inputs in surface water resources assessments has become the norm while this is rarely done for groundwater resources. Studies that have applied multi-site and multi-variate methods that incorporate stochastic generation of groundwater levels are limited. Stochastic based inputs account for uncertainties attributed to inherent temporal and spatial variability of hydrologic variables and climatic conditions. This study applied variable length block (VLB) stochastic generator for simultaneous generation of multi-site stochastic time series of rainfall, evaporation and groundwater levels. In the study, 100 stochastic sequences with record length of 34 years (1980-2013), similar to the historic one were generated. Performance of VLB was assessed by comparing single statistics of historic time series located within box plots of the 100 annual and monthly stochastically generated time series. The statistics used include mean, median, 25th and 75th percentiles, lowest and highest values, standard deviation, skewness, and serial and cross correlation coefficients. Majority (9 out of 10) of the historical statistics were mostly well preserved by VLB, except for skewness. Historic highest groundwater levels were mostly underestimated. Historic statistics below interquartile range (overestimation) is a common problem of weather generators which can be reduced by including additional covariates that influence atmospheric circulation. The generation of multi-site stochastic sequences support realistic assessment of groundwater resources and generation of groundwater operating rules.

Abstract

It is estimated that the three coal layers in the Springbok Flats contain about 5 TCF of coal bed methane (CBM). Two sedimentary basins, namely the southern Tuinplaas basin and the northern Roedtan basin, exist with coal layers with a total thickness of 7m which occurs mainly in three mayor seams. The coal layers are located between 20 m to more than 600m.
Farmers in the Flats are concerned about the environmental impact of fracking the coal beds. They are mostly worried about the risk of groundwater pollution; the drawdown of the water table and the producing of a bad quality water during the mining process. They set up an EPA for the Springbok Flats in 2010 and until now, they have stopped more than 6 companies to conducted exploration (stopped strictly on account of the different laws in SA that were not adhered too).
On average, 1000 liters of water is produced for every 2000 cubic feet coal bed methane mined in the USA. The quality of the produced water is not good (with typical Na values of more than 5 000 mg/l) and cannot be used for irrigation purposes.
It is thus expected that about 500 million m3 of bad quality water will be produced for every 1 TCF mined in the Flats. This groundwater will be removed from the system and it is expected that a drawdown of up to 30m will be evident at places in the Springbok Flats. There are also a large number of dykes and faults in the Flats which imply that the upward movement of methane and water will be very probable after abandonment of each coal methane well.

Abstract

The most used methods for the capturing of shallow groundwater contamination are the use of abstraction wells and infiltration trenches. The use of trenches for the interception of shallow groundwater contamination has become a popular choice of remediation method due to the lower cost than a comparable pump-and-treat system. Trenches have large surface areas which limits the tendency of filter media clogging with suspended media as well as only a single pump and lower maintenance requirements. An important consideration of the use of trenches is determining the effectivity before design and construction. To date, limited information on the effectivity of trench designs are available, therefore a method to determine the effectivity of a trench was devised. This paper will discuss this evaluation method and look at some cases where planned trenches were successful and some cases where they were not.

Abstract

Water scarcity is a growing issue in South Africa. The consumption of water is rising and as such, water is becoming a scarce and valuable resource. Given the circumstances that South Africa is facing, improving the use of ground water could help tackle water scarcity in South Africa. Groundwater has been an important source of water and it can bring socio-economic benefits if properly used. Studies have proved that groundwater resources play a fundamental role in the security and sustainability of livelihoods and regional economies throughout the world. However, in South Africa, groundwater still remains a poorly managed resource and this hinders socio-economic development. This paper examines the current state of ground water management in South Africa. The paper also examines how ground water in South Africa is currently allocated and used, and explores some of the consequences of current water management arrangements. {List only- not presented}

Abstract

The SADC Grey Data archive http://www.bgs.ac.uk/sadc/ provides a chronology of groundwater development within the constituent countries of the SADC region. Early reports show how groundwater development progressed from obtaining water by well digging to the mechanical drilling of boreholes for provision of water for irrigation, township development, transport networks and rural settlement. During the 1930s steam driven drilling rigs were supplanted by petrol engine driven cable tool percussion drilling. Dixey (1931), in his manual on how to develop groundwater resources based on experiences in colonial geological surveys in eastern and southern Africa, describes aquifer properties, groundwater occurrence and resources as well as water quality and groundwater abstraction methods. Frommurze (1937) provides an initial assessment of aquifer properties in South Africa with Bond (1945) describing their groundwater chemistry. South African engineers transferred geophysical surveying skills to the desert campaign during World War II. Paver (1945) described the application of these methods to various geological environments in South Africa, Rhodesia and British colonial territories in eastern and central Africa. Test pumping methods using electric dippers were also developed for the assessment of groundwater resources. Enslin and others developed DC resistivity meters, replacing early Meggar systems, produced data that when analysed, using slide rules with graphs plotted by hand, identified water bearing fractures and deeply weathered zones. Tentative maps were drawn using interpretation of aerial photographs and heights generated using aneroid altimeters. The problems faced by hydrogeologists remain the same today as they were then, even though the technology has greatly improved in the computer era. Modern techniques range from a variety of geophysical surveying methods, automated rest level recorders with data loggers to GPS location systems and a whole host of remotely sensed data gathering methods. Worryingly, using such automated procedures reduces the ability of hydrogeologists to understand data limitations. The available collection of water level time series data are surprisingly small. Surrogate data need to be recognised and used to indicate effects of over abstraction as demand grows. As the numbers of boreholes drilled per year increases the number of detailed hydrogeological surveys undertaken still remains seriously small. Has our knowledge of hydrogeological systems advanced all that much from what was known in the 1980s? Case histories from Malawi, Zimbabwe and Tanzania illustrate a need for groundwater research with well-judged sustainability assessments to underpin safe long-term groundwater supply for the groundwater dependent communities in the region.

Abstract

The so-called apparent increase of transmisivity (T) or hydraulic conductivity (K) with scale is an artifact and does not exist in the field. The reason for the apparent increasing of T with scale is due to the use of the "not applicable" random log Gaussian stochastic models that are used by geohydrologists. In the petroleum field, which uses deterministic methods, the apparent increase of T with aquifer volume does not occur. Groundwater practitioners have to change their view and use models that do not show this effect.

By using intuitive inspection of geological, fracture and connectivity data as well as real pumping test data, this paper shows that up-scaling must be performed with an exponential decaying function, where T always decreases with scale
.
Two types of heterogeneities exists namely a.) horizontal and b.) vertical. Connectivity between fractures is extremely important in both cases, but it is only in semi-confined and watertable aquifers that the vertical heterogeneities are really important (typical case of fracture dewatering)
{List only- not presented}

Abstract

The Gravity Recovery and Climate Experiment (GRACE) satellites detect minute temporal variation in the earth's gravitational field at an extraordinary accuracy, in order to make estimation of the total water storage (TWS). GRACE provides a unique opportunity to study and monitor real time water variation in the hydrologic stores (snow, groundwater, surface water and soil moisture) due to increases or decreases in storage. The GRACE monthly TWS data are being used to estimate changes in groundwater storage in the Vaal River Basin for a period (2002 to 2014). The Vaal River Basin has been selected, because it is one of the most water stressed catchments in South Africa; it is well-renowned for its high concentration of industrial activities and urbanized zones. Therefore, in order to meet future water demands, it is critical to monitor and calculate changes in groundwater storages as an important aspect of water management, where such a resource is a key to economic development and social development. Previous studies in the Vaal River Basin were mostly localised focusing mainly on groundwater quality and to a lesser extent groundwater assessment. Hydrological models have been generated for the whole of South Africa, but many of these models do not take into account the groundwater component. Thus, there is a significant gap in the understanding of surface and ground water dynamics in the Vaal River Basin. The paucity of data and monitoring networks are often the limitation in calculating changes in water storage over a large area, particularly in Africa. In this scenario GRACE is a good approach to estimate changes in hydrological storages as it covers large areas and generates real time data. It does not require information on soil moisture, which is often difficult to measure. The accuracy of calculating change in groundwater storage lies in the processing of GRACE data and smoothing radii. For this study, smoothing radii of 1500, 900, 500, 300, 150 and 1 km are used. Currently the associated error with different smoothing radii is unknown. The preliminary results indicate that the study area experienced a loss in TWS of -31.58 mm equivalent water height over a period of 144 months in TWS at 300 km smoothing radius. The change in groundwater storage is calculated by incorporating hydrologic components to the TWS (work in progress). The results obtained from this study will be compared to existing hydrological models and results generated from models applicable to the semi-arid region of South Africa. It is anticipated that this satellite observation technique, GRACE, will provide an accurate estimate of change in groundwater storage. Furthermore, it will show the usefulness of satellite based techniques for improving our understanding of groundwater dynamics, which will improve water management practices.

Abstract

The generation of acid mine drainage (AMD), as a result of mining activities, has led to the degradation of groundwater quality in many parts of the world. Coal mining, in particular, contributes to the production of AMD to a large extent in South Africa. Although a vast number of remediation methods exist to reduce the impacts of AMD on groundwater quality, the use of a coal fly ash monolith to act as a reactive and hydraulic barrier has not been extensively explored. This study, therefore, aims to investigate how different ways of packing ash affect the hydraulic conductivity of ash and influence leachate quality when acid-mine drainage filters through the ash. Coal ash is highly alkaline due to the existence of free lime on the surface of the ash particles. Previous studies that investigated alternative uses of coal ash, particularly in AMD treatment, suggest that coal ash has the potential to neutralise pH in acid water and remediate acidic soils. To test the effects of different packing methods of coal ash on the hydraulic conductivity and quality of acid mine leachate flowing through it, several Darcy column tests will be conducted. During the course of these experiments, the following parameters will be measured, electrical conductivity, pH discharge, lime (CaCO3) and selected elements of environmental concern.

Abstract

Coastal wetlands are complex hydrogeological systems in which groundwater have a significant influence on both its water balance and hydrochemistry. Differences in groundwater flow and groundwater chemistry associated with complex hydrogeologic settings have been shown to affect the diversity and composition of plant communities in wetland systems. A number of wetlands can be found across the flat terrain of the Agulhas Plain, of which the most notable is the Soetendalsvlei and the Vo?lvlei. Despite the ecological and social importance of the Vo?lvlei, the extent to which local, intermediate and regional groundwater flow systems influences the Vo?lvlei is poorly understood. The aim of this work is to characterize the spatial and temporal variations in surface water and groundwater interactions in order to demonstrate the influence of groundwater flow systems on the hydrology of the Vo?lvlei. The specific objectives of the study are; 1) to establish a geological framework of the lake sub-surface, 2) to determine the physical hydrological characteristics of the Vo?lvlei and 3) to determine the physical-chemical and isotopic characteristics of groundwater and surface water. Data collection will be done over the period of a year. Methods to be used will include the use of geophysical (electrical resistivity) to determine high water bearing areas surrounding the wetland, a drilling investigation (the installation of piezometers at 5-10m depths and boreholes at 30m depth, sediment analysis (grain size analysis, colour and texture), hydraulic (slug testing to determine hydraulic properties; hydraulic conductivity and transmissivity), hydrological (to estimate groundwater discharge; Darcy flux and hydraulic head difference between groundwater level and lake level), physical-chemical (electrical conductivity, temperature and pH) and stable environmental isotopic (oxygen and hydrogen) analysis of surface water and groundwater, to determine flow paths and identify processes. Thus far, results obtained for the geophysical survey has revealed that the sub-surface of this wetland system is highly variable. Three traverses were done on the South-Western, South-Eastern and Northern side of the wetland (See Figure 1). In VOEL1 (South west), the upper couple of meters show areas of very low resistivity, which is associated with clays, poor water quality and water which has high dissolved salts. The changing of medium to high resistivity values on the North-eastern side is usually indicative of weathered sandstone (Table Mountain Group). VOEL2 (South eastern), indicates that the subsurface is of low resistivity. These low values are the result of noticeable salt grains in the sand. VOEL3 (Northern), indicated upper layers of low resistivity, while the lower depth indicate areas of high resistivity. It is expected that the results of this study will provide a conceptual understanding of surface water-groundwater interactions and the processes which control these interactions, in order to facilitate the effective management and conservation of this unique lacustrine wetland.