Conference Abstracts

All Abstracts were presented at the Groundwater Conferences

Displaying 651 - 700 of 795 results
Title Presenter Name Presenter Surname Area Conference year Keywords

Abstract

What are the key institutions, both formal and informal, that determine actual groundwater use in the Ramotswa aquifer? Are current institutions at regional, national and sub-national levels adequate to collaborate for equitable benefit-sharing for the future? These are the questions that the paper will address based on early findings of a project aimed at determining the role the Ramotswa aquifer can play in addressing multiple-level water insecurity, drought and flood proneness, and livelihood insecurity. Groundwater resources are critical in the SADC region

Abstract

The 'maintainable aquifer yield' can be defined as a yield that can be maintained indefinitely without mining an aquifer. It is a yield that can be met by a combination of reduced discharge, induced recharge and reduced storage, and results in a new dynamic equilibrium of an aquifer system. It does not directly or solely depend on natural recharge rates. Whether long-term abstraction of the 'maintainable aquifer yield' can be considered sustainable groundwater use should be based on a socio-economic-environmental decision, by relevant stakeholders and authorities, over the conditions at this new dynamic equilibrium.
This description of aquifer yields is well established scientifically and referred to as the Capture Principle, and the link to groundwater use sustainability is also well established. However, implementation of the Capture Principle remains incomplete. Water balance type calculations persist, in which sustainability is linked directly to some portion of recharge, and aquifers with high use compared to recharge are considered stressed or over-allocated. Application of the water balance type approach to sustainability may lead to groundwater being underutilised.
Implementation of the capture principle is hindered because the approach is intertwined with adaptive management: not all information can be known upfront, the future dynamic equilibrium must be estimated, and management decisions updated as more information is available. This is awkward to regulate.
This paper presents a Decision Framework designed to support implementation of the capture principle in groundwater management. The Decision framework combines a collection of various measures. At its centre, it provides an accessible description of the theory underlying the capture principle, and describes the ideal approach for the development operating rules based on a capture principle groundwater assessment. Sustainability indicators are incorporated to guide a groundwater user through the necessary cycles of adaptive management in updating initial estimations of the future dynamic equilibrium. Furthermore, the capture principle approach to sustainable groundwater use requires a socio-economic-environmental decision to be taken by wide relevant stakeholders, and recommendations for a hydrogeologists' contribution to this decision are also provided. Applying the decision framework in several settings highlights that aquifer assessment often lags far behind infrastructure development, and that abstraction often proceeds without an estimation of future impacts, and without qualification of the source of abstracted water, confirming the need for enhanced implementation of the capture principle.

Abstract

POSTER Shale gas, a form of natural gas, has only recently become an economic source of energy. In the last 20 years techniques such as horizontal drilling coupled with hydraulic fracturing, have made possible the extraction of these unconventional hydrocarbon reservoirs. America has used hydraulic fracturing to produce numerous shale gas deposits in the country. This production has satisfied America's energy needs, and essentially made them a net exporter of petroleum. In light of this success South Africa is interested in developing potential economically profitable reserves of shale gas in the Karoo. However media, as well as recent studies, have identified issues with the hydraulic fracturing. These studies have linked hydraulic fracturing to contamination of groundwater resources in active production regions in America. There are fears among experts that the same could happen in the Karoo. This would be devastating to the local ecosystem and human population, as groundwater is the main water resource in the region. However it may still be necessary to proceed with shale gas development for its economic benefits. To ensure that some of the risks of hydraulic fracturing is mitigated, this paper proposes an early warning monitoring system. This system will essentially protect the local groundwater resources by early detection of any indicators that identify hydraulic fracturing contamination. The early warning system will operate by continues monitoring of groundwater parameters, in real time, and compare this regional baselines, and there by identify any changes in the groundwater properties. If a change is linked to a contamination event, the system will warn authorities, thus allowing for rapid response and ultimately ensure conservation of groundwater resources in the region.

Abstract

POSTER The Fountains East and Fountains West groundwater compartments (by means of the Upper and Lower Fountain springs) have been supplying the City of Pretoria with water since its founding in 1855. These adjacent compartments which are underlain by the Malmani dolomites of the Chuniespoort Group are separated by the Pretoria syenite dyke and are bounded to the north by the rocks of the Pretoria Group (Timeball Hill Formation). Swallow holes and paleosinkholes play important roles in recharge in karst environments. Available sinkhole data and geotechnical percussion borehole logs are being collated to compile a detailed conceptual geological model. Inorganic chemistry data (2007 - 2012) as well as spring discharge volumes (2011 - 2012) for the Upper and Lower Fountain springs, supplied by the City of Tshwane Municipality, is being used to characterise the two compartments. This is done by means of piper diagrams, stiff diagrams and temporal plots. Isotope data for the Upper and Lower Fountain springs are available for 1970 to 2007. ?D and ?18O data from the Upper and Lower Fountain springs are plotted against each other and the Global Meteoric Water Line. Other stable isotopes (including 14C and 3H) are also plotted as time trends and interpreted. Interpretation of the combined geotechnical, chemical and isotope data will aid in understanding the karst aquifer and the controls on groundwater system within and possibly between these compartments.

Abstract

Modelling of groundwater systems and groundwater-surface water interaction using advanced simulation software has become common practice. There are a number of approaches to simulate Lake-aquifer interactions, such as the LAK Package integrated into MODFLOW, the high conductivity and fixed stage approaches. LAK and the high conductivity approaches were applied and compared in simulating Lake- aquifer interaction in the Lake Sibayi Catchment, north-eastern, South Africa using the finite difference three-dimensional groundwater flow model, Visual MODFLOW Flex under steady state conditions. The steady state model consisted of two layers: an upper layer consisting of the Sibayi, KwaMbonambi, Kosi Bay and Port Durnford Formations which have similar characteristics, and a lower model layer representing the karst, weathered and calcareous Uloa Formation. The bottom model boundary is constrained by the impermeable Cretaceous bedrock. The model area covers the surface and groundwater catchments of Lake Sibayi which is constrained in the east by the Indian Ocean. A no-flow boundary condition is assigned to the northern, western and southern sides and a constant head boundary is assigned to the eastern side. The Mseleni River and neighbouring plantations were modelled using the River and Evapotranspiration boundary conditions respectively. Input parameters for the various boundary conditions were obtained from the previously developed high resolution conceptual model, including recharge

Abstract

Slightly more out of the box idea is the use of anthropogenic aquifers as storage and chemical conditioners.  This concept was first introduce by Eland Platinum Mine(EPM) and reported on in previous papers.  At EPM water is used through a serious of natural aeration and aerobic storage facilities to reduce nitrate levels.  In 2013 another group introduced pilot studies by virtue of abstraction in support of the water conservation and demand management strategy; which has proven that it could enable the operations to overcome water shortage periods and reduce pressure on Rand Water (RW). The pilot sites would deliver water into the dirty water circuit, but within five to ten years it may further be used to overcome months with zero potable water supply. .  In platinum mines the more the aquifers are used the cleaner the water becomes, simply because introduced pollutants are not constant sources and country rock is mostly inert.  In the future these aquifers have the potential to become larger storage facilities protected from floods and limited evaporation losses. It is foreseen that some of the mines in the western belt may have more water stored in primary aquifers than water stored within major water dams. Yields from these aquifers for individual aquifers may be up to 450 m3/hour and storage of 18 Mm3.  . Why then this paper if we are already using it?  The issue is that the true value of these aquifers an only be unlocked when they are  used as recharging aquifers and thereby actively storing dirty water within a dirty water aquifer.  Once we are able to undertake this the positive environmental gains such of environmental overflows, condition dirty water, reduction of pollution and significant reduction of the use of potable water from RW. {List only- not presented}

Abstract

The International Association of Hydrogeologists and UNESCO's International Hydrological Programme have established the Internationally Shared (transboundary) Aquifer Resource Management (ISARM) Programme. This multiagency cooperative program has launched a number of global and regional initiatives designed to delineate and analyze transboundary aquifer systems and to encourage riparian states to work cooperatively toward mutually beneficial, sustainable aquifer development and management. The Stampriet Transboundary Aquifer System was selected as one of the three case studies funded by UNESCO. The Stampriet Aquifer System is located in the arid part of the countries (Botswana, Namibia and South Africa) where groundwater is a sole provider for water resource. The area is characterised by the Kalahari (local unconfined aquifer) and Nossob confined aquifer

Abstract

This study was aimed at developing an integrated groundwater-surface water interaction (GSI) model for a selected stretch of the Modder River by considering the following five different aspects of the GSI: 1) the distribution of different aquifer systems (structural connectivity) along the river 2) the hydraulic connectivity between the aquifer systems, 3) the volumes of water abstracted from the aquifers by streamside vegetation, 4) the volumes of water replenished to the groundwater system through rainfall recharge, and 5) the exchange fluxes between the various components of the groundwater-surface water system. The distribution of the aquifer systems was investigated by means of a) geo-electrical surveys, and b) in situ slug tests while their hydraulic connectivity was investigated by hydrogeochemical routing. The volumes of water abstracted by streamside vegetation were estimated by the quantification of the transpiration from individual plants and the groundwater recharge was estimated by a root zone water balance. The water exchange fluxes between the groundwater and surface water were determined from a simple riparian zone groundwater budget. The results of the geo-electrical surveys and slug tests allowed the delineation of the riparian area aquifers (RAA) and the terrestrial area aquifers (TAA) on both the south-eastern and north-western sides of the river. Based on the results of hydrochemical analyses, saturation indices and inverse mass balance modelling, the GSI involves flow of water from the TAA to the RAA, and finally to the river on the south-eastern side while it involves flow from the river into the RAA with a limited exchange with the TAA on the south-eastern side. The dominant vegetation on the study area was found to be the Acacia karroo and Diospyros lycioides. The close similarities in isotope compositions of the xylem sap and the borehole water samples suggested that the Acacia karroo sourced its water from the groundwater storage while differences in isotope compositions suggested that the Diospyros lycioides did not source water from the groundwater storage at the time of measurement. The results of groundwater recharge estimation in the study area highlighted the fact that both the antecedent moisture and the rainfall amounts determine whether recharge to the groundwater system will take place. Finally, the results of baseflow estimation indicated that the river is a gaining stream along the south-eastern reach while acting as a losing stream along the north-western reach.

Abstract

The Gravity Recovery and Climate Experiment satellites detect minute temporal variation in the earth’s gravitational field at an unprecedented accuracy, in order to make estimation of the total water storage (TWS). GRACE provides a unique opportunity to study and monitor real time water variation in the hydrologic stores( snow, groundwater, surface water and soil moisture) due to increase or decrease in storage. The GRACE monthly TWS data are used to estimate changes in groundwater storage in the Vaal River Basin. The Vaal River Basin has been selected because it is one of the most water stressed catchment in South Africa; it is well-renowned for its high concentration of industrial activities and urbanized zones. Therefore, in order to meet future water demands it is critical to monitor and calculate changes in groundwater dynamics as an important aspect of water management, where such a resource is a key to economic development and social development.

Previous studies in the Vaal River Basin, where mostly localized focusing largely on groundwater quality and to a lesser extent groundwater assessment. Hydrological models have been generated for the whole of South Africa, many of this models does not take into account the groundwater. Thus, there is a significant gap in our understanding of surface and ground water dynamics in the Vaal River Basin. The paucity of data and monitoring networks is often the limitation in calculating changes in water storage over a large area, particularly in Africa. In this scenario GRACE is the only approach to estimate changes in hydrological stores as it covers large areas and generate real time data. It does not require information on soil moisture, which is often difficult to measure. The preliminary results indicate that the change in TWS anomaly derived from GRACE data is - 12.85 mm of vertical column of water at 300 km smoothing radius. The change in groundwater storage is calculated by incorporating hydrologic components to the TWS (work in progress). The results obtained from this study will be compared to existing hydrological models and results generated from models applicable to the semi-arid region of South Africa. It is anticipated that this satellite observation technique, GRACE, will provide an accurate estimate of change in groundwater storage. Furthermore, it will show the usefulness of satellite based techniques for improving our understanding of groundwater dynamic, which will improve water management practices.

Abstract

Preventing the spread of seepage from tailings storage facilities (TSF's) in groundwater is necessary as it often contains toxic contaminants. Experience has shown that seepage from TSFs is inevitable and that zero seepage remains difficult even with complex liner systems. Multiple seepage control methods are often required to minimise seepage to ensure that environmental regulations are met. Control methods can be grouped into either barrier or collection systems. Barrier systems are used to hinder seepage whereas collection systems are used to intercept seepage. A blast curtain, which is the focus of this article, is a type of collection system that is still at a conceptual level but has seen little or no application worldwide. It works in principle, similarly to a curtain drain, but is typically extended to greater depths depending on the aquifer vulnerability. Numerical modeling has shown that this mitigation measure could add another line of defence for seepage control. The depth and effectiveness of the curtain can be optimized with a numerical model to ensure optimal interception of contaminated seepage around the TSF. Depths of up to 30 m in fractured aquifers have been simulated in this study. A blast curtain is constructed by drilling a set of boreholes around a TSF in close proximity to one another and then fracturing the rock using either explosives or fracking methods to create a more permeable zone. This is then combined with a series of scavenger wells or natural seepage to abstract the contaminated water. Numerical simulation has shown that blast curtains are effective especially if groundwater flow is horizontal. The effectiveness decreases if the vertical flow component is significant. A blast curtain can result in the lowering of the water table, however, local depression is a less of a concern than potential groundwater contamination. {List only- not presented}

Abstract

Natural attenuation describes a set of natural processes which decrease the concentrations and/or mobility of contaminants without human intervention. In order to evaluate and demonstrate the effectiveness of natural attenuation, regular long term monitoring must be implemented. This entire process is called Monitored natural attenuation (MNA). The focus of MNA is generally placed on hydrocarbons and chlorinated solvents but according to the United States Environmental Protection Agency (USEPA) MNA can be used for various metals, radio nuclides and other inorganic contaminants. MNA was deemed the best method to reduce the concentration and mobility of contaminants impacting the groundwater environment, at a fertiliser plant in the Free State. A number of improvements in infrastructure were made in 2013which were assumed to have prevented further release of contaminants into the groundwater system, from the source areas on site. MNA was also considered to be the most effective affordable solution for the site as groundwater in the vicinity is not used for domestic purposes (low risk). Cl, NO3 and NH4 were used to monitor the movement of the contamination off site and the effectiveness of MNA. With regards to the inorganic contaminants emanating from the site, sorption, dispersion, dilution, and volatilization are the main attenuation mechanisms. These mechanisms are considered to be non-destructive attenuation mechanisms. Denitrification, nitrate reduction through microbial processes, may also facilitate in the attenuation of the in organic constituent nitrate. Denitrification is considered a destructive mechanism. Classed posts and temporal graphs of the Cl, NO3 and NH4 concentrations between 2008 and 2014 were utilised to show the movement and change in size and shape of the contamination plumes and subsequently, monitor MNA. The data indicates that the NO3, Cl and NH4 contamination plumes from the various source areas on the site have detached from the site and are currently moving down gradient along the natural drainage. Contaminant concentrations at the site have generally decreased in recent monitoring events while concentrations downstream of the site have remained stable. This indicates that MNA is currently an effective method of remediation for the site and monitoring should be continued to ensure that it remains effective.

Abstract

The colliery is situated in the Vereeniging-Sasolburg Coalfield, immediately southwest of Sasolburg in the Republic of South Africa. The stratigraphy of this coal field is typical of the coal-bearing strata of the Karoo Sequence. The succession consists of pre-Karoo rocks (dolomites of the Chuniespoort Group of the Transvaal Sequence) overlain by the Dwyka Formation, followed by the Ecca Group sediments, of which the Vryheid Formation is the coal-bearing horizon. Mainly the lava of the Ventersdorp and Hekpoort Groups underlie the coal. The Karoo Formation is present over the whole area and consists mainly of sandstone, shale and coal of varying thickness. The underground mine was flooded after mining was ceased at the colliery in 2004. The colliery is in the fortunate position that it has a very complete and concise monitoring programme in place and over 200 boreholes were drilled in and around the mine throughout the life of the mine. To stabilise mine workings located beneath main roads in the area, an ashfilling project was undertaken by the colliery since 1999. A key issue is if the mine will eventually decant, and what the quality of the water will be. This is important for the future planning of the company, as this will determine if a water treatment plant is necessary, and what the specifications for such a plant will be, if needed. Therefore it was decided to do a down-the-hole chemical profile of each available and accessible borehole with a multi-parameter probe with the aim of observing any visible stratification. Over 90 boreholes were accessible and chemical profiles were created of them. From the data collected a three - dimensional image was created from the electrical conductivity values at different depths to see if any stratification was visible in the shallow aquifer. The ash-filling operations disturbed the normal aquifer conditions, and this created different pressures than normally expected at a deeper underground colliery. From the three-dimensional image created it was observed that no stratification was visible in the shallow aquifer, which lead to the conclusion that in the event that if decant should occur, the water quality of the decanting water will still be of very good quality unless external factors such as ash-filling activities is introduced. It is not often that it is possible to create chemical profiles of such a large number of boreholes for a single colliery and as a result a very complete and informative three-dimensional electrical conductivity image was created. This image is very helpful in aiding the decision making process in the future management of the colliery and eventually obtaining a closure certificate, and also to determine whether ash-filling is a viable option in discarding the ash.

Abstract

Shale gas in South Africa can be a game changer for the Karoo and South Africa economy but it may have a devastating effect on the environment. The Karoo communities is highly reliable on groundwater for their stock, irrigation and also for domestic use. Knowing the process and the potential impacts of gas-well drilling and fracturing on shallow groundwater systems beforehand different appropriate studies can be done before any hydraulic fracturing can took place in South Africa. The biggest concerns with hydraulic fracturing is that the fracturing fluids will flow and discharge into shallow aquifers due to the high pressure used or the produced water mixed with deep saline water may discharge into the environment. This paper presents a baseline dataset that will be a reference point against which any future changes in groundwater concentrations can be measured. The Karoo basin with its numerous dolerite intrusions make it unique and different from other countries. These dolerite intrusions are associated with high yielding boreholes because of the fractured contact. The Karoo Basin may be under artesian conditions, which imply that any pollutant might migrate upwards in the Karoo. The understanding of key attributes for characterising groundwater of Karoo Aquifers is most importantly the depth to water level, the yield, and groundwater quality.. The understanding of these characteristics will help to close possible legislative loopholes regarding fracturing. This paper establish an interactive database to obtain full understanding of the hydrogeology of the Karoo to be able to quantify how much water is available in the Karoo and who is the users. Not only the quantity of the water in the Karoo, but also quality and age/origin by making use of different isotopes in conjunction with basic macro chemistry. This will allow for a broader picture before any unconventional gas mining in the Karoo takes place and it can be used to identify any future changes in groundwater quality and quantity of the Karoo aquifers.

Abstract

Groundwater in South Africa is the most important source of potable water for rural communities, farms and towns. Supplying sufficient water to communities in South Africa becomes a difficult task. This is especially true in the semi-arid and arid central regions of South Africa where surface water resources are limited or absent and the communities are only depended on groundwater resources. Due to a growing population, surface water resources are almost entirely being exploited to their limits. These factors, therefore, increases the demand for groundwater resources and a more efficient management plan for water usage. For these reasons, the relation between the geology and geohydrology of South Africa becomes an important tool in locating groundwater resources that can provide sustainable quantities of water for South Africans. It was therefore decided to compile a document that provides valuable geohydrological information on the geological formations of the whole of South Africa. The information was gathered by means of interviews with experienced South African geohydrologists and reviewing of reports and articles of geohydrological studies. After gathering the relevant information, each major geological unit of South Africa together with its geohydrological characteristics was discussed separately. These characteristics include rock/aquifer parameters and behaviour, aquifer types (primary of secondary), groundwater quality, borehole yields and expected striking depths, and geological target features and the geophysical method used to locate these targets. Due to the fact that 90 % of South Africa's aquifers are classified as secondary aquifer systems, groundwater occurrence within the rocks of South Africa is mainly controlled by secondary fractures systems; therefore, understanding the geology and geological processes (faulting, folding, intrusive dyke/sills & weathering) responsible for their development and how they relate is important. However, the primary aquifers of South Africa (Coastal Cenozoic Deposits) should not be neglected as these aquifers can produce significant amounts of groundwater, such as the aquifer units of the Sandveld Group, Western Cape Province. Drilling success rates and possibility of striking higher yielding boreholes can be improved dramatically when an evaluation of the structural geology and geohydrological conditions of an area together with a suitable geophysical method is applied. The ability to locate groundwater has been originally considered (even today) a heavenly gift and can be dated back to the Biblical story of Moses striking the rock to get water: "behold, I will stand there before thee there upon the rocks thou shalt smite the rock and there shall come water out of it" (Exodus 17:6).

Abstract

We contend that borehole drilling costs on the Zululand Coastal Plain, South Africa can be much reduced by assisting low cost drillers in drilling 6" diameter boreholes using light weight, maneuverable rigs with trained teams which are more cost-effective and provide optimal value for money invested over the lifespan of the borehole. The improved drilling package will allow local drillers to tap into the deeper more sustainable aquifer identified in the area and provide for better borehole construction. The remoteness of the rural population in the Maputaland area, northern KZN, South Africa, influences the degree of groundwater development. Rural water supply infrastructure is minimal and 40 per cent of the rural community is forced to rely on surface water as well as shallow, low cost drilling for water supply. A number of these low cost drillers were investigated to determine their expertise. Results showed that formal training in drilling technology is unavailable in the area. The inexperience of the drillers results in poor borehole construction. Currently low cost drilling is not cost effective as most of these boreholes collapse after a short time. The correct method of drilling in the area is by Direct Mud Rotary (DMR). Professional DMR drilling and borehole construction costs are in excess of US$ 125/m, unaffordable for poor households. We propose that with limited training and suitable equipment the local drillers can halve existing drilling costs, provide quality work as well as focus on good management practices. This will create jobs as well solve the pending water crisis in the area (and elsewhere in Africa).

Abstract

Two ventilation shafts were proposed to be excavated to depths of 100 and 350 m to intersect an underground mine, in the Bushveld Complex. The area is made up of fractured aquifers and the assignment was to identify the exact positions of the permeable zones within the shafts profiles as well as estimate the groundwater inflow rates at every 5 m interval along the shafts profiles. The project was budget and time constrained and therefore the preferred hydrogeological characterisation techniques, particularly the percussion drilling, aquifer testing and numerical modelling could not be conducted. The study was completed by conducting packer tests in HQ sized holes drilled at the exact positions of the proposed shafts. The packer test data was then interpreted using Thiem equation, a modification of Darcy Equation for radial flow, to estimate the steady state inflow rates into the shafts. Transient state flow is more challenging to calculate analytically, as it is time and aquifer storage dependent. However, transient state flow in shafts exists for the first 10 - 15 days only and is short lived. Thereafter, a steady state flow occurs where the rate is nearly fixed for the rest of the life of mine, unless new external stresses, such as mine dewatering, takes place within the radius of influence. Six months later the shafts were excavated and the permeable zones were encountered at the exact positions as predicted using the packer testing. In addition, the inflow rates calculated using analytical modelling was successful in estimating the inflow rates recorded after the shafts were excavated. The packer testing and analytical modelling was therefore effective in assisting the mine to plan the necessary pumps and management plans within the allocated budget and timeframe.

Abstract

Identifying and characterising the vertical and horizontal extent of chlorinated volatile organic compound (CVOC) plumes can be a complex undertaking and subject to a high degree of uncertainty as dense non-aqueous phase liquid (DNAPL) movement in the subsurface is governed most notably by geologic heterogeneities. These heterogeneities influence hydraulic conductivity allowing for preferential flow in areas of higher conductivity and potential pooling or accumulation in areas of lower conductivity. This coupled with the density-induced sinking behaviour of DNAPL itself and the effects of groundwater recharge in the aquifer result in significant challenges in assessing the distribution and extent of CVOC plumes in the subsurface. It has been recognized that high resolution site characterization (HRSC) can provide the necessary level of information to allow for appropriate solutions to be implemented to mitigate the effects of subsurface contamination. Although the initial cost of HRSC is higher, the long-term costs can be substantially reduced and the remedial benefits far greater by obtaining a better understanding of the plume characteristics upfront. The authors will discuss a case study site in South Africa, where ERM has conducted HRSC of a CVOC plume to characterise the distribution of the source area and plume architecture in order to assess the potential risk to receptors on and off-site. The source of impact resulted from the use of a tetrachloroethene (PCE)-based solvent in an on-site workshop. The following methods of characterization were employed:
- Conducting a passive soil gas survey to identify and characterise potential source zones and groundwater impacts;
- Vertical characterisation of the hydrostratigraphy, contaminant distribution and speciation in real time using a Waterloo Advanced Profiling System (APS) with a mobile on-site laboratory;
- Using the Waterloo APS data to design and install groundwater monitoring wells to delineate the vertical and lateral extent of contamination; and
- Conducting a vapour intrusion investigation including sub-slab soil gas, indoor and outdoor air sampling to estimate current risk to on-site employees.
In less than a year, the risk at the site is now largely understood and the strategies for mitigating the effects of the contamination can be targeted and optimised based on the information gained during the HRSC assessment.

Abstract

The mineral rich Northern Cape Province produces 84% of South Africa's iron ore, while the Kalahari basin holds 92% of the world's high grade manganese deposits, with diamond and lime mining operations to a lesser degree. Mining expansion programs and new mines planned in the Northern Cape drive the region's economic development and growth strategy. The planned mining expansion depend on water being available for mining water needs and related increased demands for domestic water supplies.

Current water supplies consist of local groundwater resources (boreholes and mine dewatering) and bulk water supply from the Vaal Gamagara (VGG) Pipeline Scheme. In 1992 the Kalahari East water supply pipeline was incorporated to supply domestic and stock water to an area of approximately 1.4 million ha.

The VGG scheme consists of 370 km pipes, was built in the late sixties and is nearing its useful life expectancy. Increased water supply interruptions are being experienced while operating at capacity. The pipeline has the capacity to convey and import water of approximately 15 million m3/a into the D41J and D41K quaternary catchments. Water demand projections show an increase to 40.1 million m3/a in 2030.

Various options were investigated to upgrade the VGG water supply scheme. One option considers groundwater resources to augment the water from the Vaal River from four indentified target areas (SD1 to SD4).

Major fault zones in Banded Iron Formations (BIF) are targeted for groundwater resource development in the SD4 area, located east of Hotazel. This area is largely covered by Quaternary age sand and located near the endpoint of the VGG scheme and therefore prioritized as investigation area.

The primary objective of the hydrogeological investigation was to identify the existence of exploitable resources for additional source development. Secondary objectives were to assess the contribution groundwater can make to augmenting pipeline water; providing a source to an area and thus diminish reliance on the pipeline; and providing an independent source, which could prevent the need for pipeline extensions.

The paper will discuss the use of an airborne magnetic and Time Domain Electromagnetic's (TDEM) survey combined with gravity ground surveys as a key success factor in adding to the geological and structural information of the area. The paper will also present the results of exploration drilling (> 60 boreholes) over a large area and related borehole test pumping with water sampling to identify a sustainable and potable water supply of 2.5 million m3/a.

Abstract

The proposed underground copper mine is one of the first Greenfield developments in the Kalahari Copper Belt. Groundwater resources in the region are scare and saline mainly due to minimal recharge. Management and simulations of groundwater inflows formed an integral part of the new mine design to reduce production losses caused by the inflows and to ensure a safe mining environment. The mine is located is a complex hydrogeological setting characterised by folding and deep water levels. Multiple fractured aquifers are associated with the mining area. Groundwater numerical modelling was performed in Groundwater Modelling System (GMS) using MODFLOW-NWT. Results of the scenarios were used as a management tool to aid in the potential inflow predictive simulations and dewatering management. The numerical model was calibrated by using field measured aquifer parameters and piezometric heads. Numerical simulations assisted in estimating average groundwater inflows at certain stages of the proposed mine development. The simulated mine groundwater inflow volumes were used as input into the design of the dewatering measures to ensure a safe mining environment.

Abstract

The Birimian and Tarkwaian rocks of the Paleoproterozoic West African Shield host some of the most important gold reserves in the world, with Ghana the world's 10th largest gold producer and the region collectively producing more gold than all but five countries in the world. The gold was deposited during successive hydrothermal sulphide alteration events, which were channelled by shear zones and thrusts formed during the regional progressive Eburnean tectono-thermal deformation event. The hydrothermal fluids were auriferous and sulphide-rich, resulting in two distinct types of gold and sulphide mineralisation: (1) gold-bearing quartz- and quartz-ankerite veins, occurring in NNE-SSW trending shear zones or thrust folds, usually in Birimian metasediments, with associated sulphides deposited on the fragmented wall rock and (2) disseminated gold-bearing pyrite and arsenopyrite, occurring in halos within the same shear zones or thrust folds as the quartz veins. The sulphidic nature of the gold deposit leads to a high risk of acid rock drainage (ARD). During operations, inflowing groundwater may carry the ARD into underground workings and opencast pits. Post-closure, as the groundwater rebounds, there is a risk of acidic pit lakes forming or acidic decant of underground mines. However, the occurrence of ARD in such systems can be predicted by a combination of weathering profiling, mineralogical profiling and conventional acid base accounting (ABA). The weathering profile can be divided into three zones, readily distinguishable in borehole core: (i) Oxide Zone, from which both the acid-generating sulphide minerals and the acid-neutralising carbonate minerals have been largely leached, (ii) Transitional Zone, from which the carbonate minerals have been largely leached but the sulphide minerals remain, (iii) a Fresh/Primary Zone, where both sulphide and carbonate minerals occur. The Oxide Zone is generally non acid-generating, the Transitional Zone is acid-generating and the Fresh Zone is potentially acid-generating, depending upon the balance of sulphide vs carbonate minerals. Mineralogical profiles can be prepared from the relative abundance of macroscopic sulphide and carbonate minerals in the borehole core, again providing an assessment of ARD risk. Combined logs can then be prepared from these profiles with acid-generation and neutralisation data from ABAs, illustrating in space where the highest ARD risk zones are located. Using this information, groundwater and mine water management options can be developed for operations and closure, such as prioritisation of open pit backfilling or which levels of an underground mine water should be preferentially excluded from.

Abstract

The Elandsfontein aquifer is currently under investigation to assist with the management of the system and to ensure the protection of the associated Langebaan lagoon RAMSAR site. The Elandfontein aquifer unit is situated adjacent to the Langebaan Road aquifer in the Lower Berg River Region and is bounded by the Langebaan Lagoon, possible boundary towards Langebaan Road aquifer, the Groen River bedrock high and the Darling batholith. The study will investigate the boundaries and hydraulic characteristics of the different aquifers and aquitards (Elandsfontein clay layer) in the Elandsfontein unit and their relationship to the Langebaan Lagoon. A literature review and baseline study has been completed to determine groundwater flow patterns and the general distribution of water quality, using historic data to characterize the different aquifers and aquitards of the system. An initial conceptual model has been formulated based on this data. Pumping tests will be used to acquire hydraulic characteristics of the Elandsfontein aquifer where data gaps exist, together with water quality and stable isotope sampling. Future plans are to construct a groundwater numerical flow model of the Elandsfontein system to assist with the management of the complex relationships between the recharge areas, flow paths through the different aquifer layers and aquitards towards the Langebaan Lagoon discharge. Results will be presented using graphical methods such as time series graphs amongst the monitoring boreholes over the years, piper diagrams to show water type characterization (Na-Cl type water) and initial results from the groundwater flow model. The expected results are envisaged to advance knowledge on groundwater availability and quality to inform the decision about water resource protection and utilization. Therefore this study is designed to provide large-scale background information that will improve the knowledge and understanding of the Elandsfontein aquifer unit and provide a basis for potential future studies of a more-detailed nature.

Abstract

POSTER As the National Water Act has evolved to provide for more effective and sustainable management of our water resources, there has been a shift in focus to more strategic management practices. With this shift come new difficulties relating to the presentation of sensitivity issues within a spatial context. To this end it is necessary to integrate existing significant spatial layers into one map that retains the context, enables simple interpretation and interrogation and facilitates decision making. This project shows the steps taken to map and identify key groundwater characteristics in the Karoo using Geographic Information Systems (GIS) techniques. Two types of GIS-based groundwater maps have been produced to assist with interpretation of existing data on Karoo Aquifer Systems in turn informing the management of groundwater risks within Shell's applications for shale gas exploration. Aquifer Attribute and Vulnerability maps were produced to assist in the decision making process. The former is an aquifer classification methodology developed by the project team, while the latter uses the well-known DRASTIC methodology. The overlay analysis tool of ESRI's ArcGIS 10.1 software was used, enabling the assessment and spatial integration of extensive volumes of data, without losing the original detail, and combining them into a single output. This process allows for optimal site selection of suitable exploration target areas. Weightings were applied to differentiate the relative importance of the input criteria. For the Attributes maps ten key attributes were agreed by the project team to be the most significant in contributing to groundwater/aquifer characteristics in the Karoo. This work culminated in the production of a series of GIS-based groundwater attributes maps to form the Karoo Groundwater Atlas which can be used to guide groundwater risk management for a number of purposes. The DRASTIC model uses seven key hydrogeological parameters to characterise the hydrogeological setting and evaluate aquifer vulnerability, defined as the tendency or likelihood for general contaminants to reach the watertable after introduction at ground surface.

Abstract

POSTER Pine plantations require large amount of water for transpirational demand and the amount of water depend on the area of plantation and the rooting depth of plants.
The large amount of water required may result in disturbance of the natural water table equilibrium to meet the demand and insure growth.
The lake Sibayi catchment area is covered by the 65 km2 freshwater lake sibaya, 70km2 of pine and eucalypts woody plantations and crops.
The lake is recharged dominantly from groundwater and it is a water resource for local communities.
A large extraction of groundwater by plantations will decrease the water table and the lake level and that will decrease the amount of water available for local residences.
The main aquifer is composed of tertiary to quaternary age sediments which form a thin covering which blankets most of the Maputaland coastal plain and rests on a cretaceous system.
Shallow marine and beach deposits of tertiary origin overly the cretaceous aged silt, while the quaternary age sediments which constitute most of the cover are predominantly of Aeolian origin.
The Uloa formation of tertiary age is identified to be the most promising aquifer in the region consisting of coarse grained shelly sandstone with calcarenite associated with it.
The aquifer is approximately 40m in depth and it is recharged dominantly from rainfall through infiltration.
Rainfall averages 900mm per annum over the catchment but varies between 1200mm per annum in the south east and 700mm per annum in the west and evaporation equals to ? 1420 mm per annum (Pitman and Hutchinson, 1975).
Lake Sibayi is a freshwater lake of 65km2, in surface area and it is a water resource for surrounding communities and other inhabitants.
The sandy substrate surrounding Lake Sibayi limit the amount of surface runoff and consequently the water level within the lake are maintained by groundwater recharge.
The growth of plantations is influenced by the ability of trees to extract soil water from the intermediate zone below the root zone and the capillary fringe.
The water supply depends on the depth of the water table and on the structure of deposited soil layers and the water table depth is determined by the rate at which vegetation extracts water for transpiration and the recharge rate of groundwater.
The specific yield of a soil determines the amount of water that percolates to recharge groundwater and because vegetation extracts water from layers of soils above the water table they decrease the amount of recharge for groundwater.

Abstract

The national water balance is primarily based on the availability of surface water and the historic allocation thereof. The changes that are required the next 20 years to ensure sustainable development of the nation will be painful, but is unfortunately at present not part of the public discussion, it is essentially ignored in favour of more "popular water topics".This paper intends to look at a few core aspects, they include the current water allocation in the national water balance, the relative value of the utilisation, the position of groundwater resources in changing the current relative allocation and the current groundwater utilisation. The paper further intends to be a less formal presentation of these aspects with the required data, references and conclusions available for distribution afterwards.

Abstract

An electrical resistivity geophysical study was conducted at a historically contaminated site in northern Namibia. It is well known that fracture breaks/fault features are often good conduits for water and contaminants, leading to high flow velocities and the fast spread of contaminants in these conduits. The aim of the resistivity survey was to evaluate the preferential flow paths for groundwater and the distribution of contamination in the unsaturated zone and saturated aquifer.
The 2-D electrical resistivity imaging survey comprised 12 northeast-southwest trending traverses, with a nominal separation of roughly 200 m with traverse length ranging between 1,000 and 2,000 m and five (5) northwest-southeast trending traverses, with nominal separation of roughly 600 m with traverse length ranging between 900 and 2,400 m. A Wenner and Schlumberger electrode array with a 10 m electrode spacing configuration were employed, allowing for observation depths of about 75 to 80 m below surface. The 2-D electrical resistivity method was successful in discriminating between low and high resistivity subsurface features across the project site.
Borehole yields associated with the fault zones were high and confirmed the existence of preferential flow paths. The interpretation of contaminated subsurface areas (low resistivity/high conductive) of the unsaturated zone correlated with historic site activity and infrastructure related to the old return water dam, Old Tailings, plant area and coal stockyard, whereas the spatial distribution of the saturated zone seems to be more focused to the interpreted fracture breaks/fault features associated with the latter three areas. Groundwater quality data showed a good correlation between boreholes with high electrical conductivity and the zones of low electrical resistivity signatures. Preferential flow paths correlated well with interpreted fault zones from gravity data.

Abstract

The colliery is situated in the Mpumalanga Coalfield, north of Trichardt in the Republic of South Africa. The opencast is already rehabilitated but still acts as an entrance to the underground sections of the mine. The Life of Mine indicates active mining until 2035. We were tasked to develop a mine closure plan. Two surface drainage systems are present, namely the Trichardt Spruit and the Steenkool Spruit. Both these systems have been diverted locally around the opencast with the necessary permission, to maximize coal extraction and protect the environment. Several passive treatment options were tabled to minimise the post closure environmental contamination. After careful consideration it was decided to develop a mine flooding plan to exclude oxygen from the mine thereby minimising the sulphate generation inside the opencast and underground sections. To start flooding as early as possible, sections of the underground mine were identified as natural or artificial compartments to store water. The rehabilitated opencast is flooded using recharge water from rainfall. The capacity of the rehabilitated open pit is enlarged to evaporate all the excess water in the pit making the need for a treatment plant unnecessary.

Abstract

Cape Town... Home to over 3 and a half million people, the second most populated city in South Africa was born in the shadow of the Table Mountain. The mountain offered all the elements vital for human settlement... most importantly WATER. The reports of the abundance of fresh water and fertile land at the foot of the mountain and surrounds inspired the VOC to set up a refreshment station at the Cape. By the late-1800s, spring water was solely used for domestic supply to the settlers of Cape Town. Until the 1930s, the Stadsfontein or Main Spring was still being used as a source of drinking water but because of on-going concerns about the safety of the water for human consumption, and sufficient water being available from the new schemes like Steenbras and Wemmershoek, a decision was taken to discontinue using the Stadsfontein for drinking water purposes. Since then most of the water joined the stormwater to the sea, until 2010 when the City recommenced using the water for irrigation at Green Point Stadium and the Commons. City of Cape Town faces a number of water supply challenges. These include managing the ever increasing demands on the current water supply. The City of Cape Town Springs Study was born from this 2001 Water Demand Management study and it aims primarily to examine the possibility of using spring water as an alternative source of water for non-potable supply. Of these, the springs which hold the most potential for use are found in two areas - the CBD area of Oranjezicht, home to the Field of Springs

Abstract

This article present field evidence on the effect of artefacts other than the horizontal groundwater flux on the single-borehole tracer dilution test. The artefacts on the tracer dilution were observed during two single-borehole tracer dilution tests conducted in an alluvial channel aquifer in the main Karoo Basin of Southern Africa. Field evidence shows that early time of the tracer dilution plot can be affected by artefacts other than the horizontal groundwater flux. These artefacts have great potential to increase the early time gradient of tracer dilution curve leading to overestimation of the horizontal groundwater flux. A qualitative approach that can be used to isolate and remove portion of the dilution plot that has resulted from artefacts other than the groundwater flow prior to calculating the horizontal groundwater flux is proposed.

Abstract

Estimating groundwater recharge response from rainfall remains a major challenge especially in arid and semi-arid areas where recharge is difficult to quantify because of uncertainties of hydraulic parameters and lack of historical data. In this study, Chloride Mass Balance (CMB) method and Extended model for Aquifer Recharge and soil moisture Transport through unsaturated Hardrock (EARTH) model were used to estimate groundwater recharge rates. Groundwater chemistry data was acquired from the Department of Water and Sanitation (DWS) and Global Project Management consultants, while groundwater samples were collected to fill-in the identified gaps. These were sent to Council for Geoscience laboratory for geochemical analysis. Rainfall samples were also collected and sent for geochemical analysis. An average value of rainfall chloride concentration, average groundwater chloride concentration and mean annual precipitation (MAP) were used to estimate recharge rate at a regional scale. Local scale recharge was also calculated using chloride concentration at each borehole. The results were integrated in ArcGIS software to develop a recharge distribution map of the entire area. For EARTH model, long term rainfall and groundwater levels data were acquired from the South Africa Weather Services and DWS, respectively. Soil samples were collected at selected sites and analysed. These were used to determine representative values of specific yield to use on EARTH model. 60% of the groundwater levels data for 5 boreholes was used for model calibration while the remaining 40% was used for model validation. The model performance was evaluated using coefficient of determination (R2), correlation coefficient (R), Root Mean Square Error (RMSE) and Mean square error (MSE). Regional recharge rates of 12.1 mm/a (equivalent to 1.84% of 656 mm/a MAP) and 30.1 mm/a (equivalent to 4.6% MAP) were calculated using rainfall chloride concentrations of 0.36 and 0.9 mg/L, respectively. The estimated local recharge rates ranged from 0.9-30.2 mm/a (0.14 - 4.6%) and 2 - 75 mm/a (0.3 - 11.4%) using chloride concentration of 0.9 and 0.36 mg/L, respectively. The average recharge rate estimated using EARTH model is 6.12% of the MAP (40.1 mm/a). CMB results were found to fall within the same range with those obtained in other studies within the vicinity of the study area. The results of EARTH model and CMB method were comparable. The computed R2, R, RMSE and MSE ranged from 0.47-0.87, 0.68-0.94, 0.04-0.34, 0.16-3.16, and 0.50-0.79, 0.68-0.89, 0.07-0.68, 0.15-8.78 for calibration and validation, respectively. This showed reasonable and acceptable model performance. The study found that there is poor response of groundwater levels during rainy season which is likely to be due to lack of preferential flows between surface water and groundwater systems. This has resulted in poor relationship between estimated and observed groundwater levels during rainfall season.

Key words: ArcGIS, CMB, EARTH, Groundwater recharge, rainfall

Abstract

Model calibration and scenario evaluations of 2D and 3D groundwater simulations are often computationally expensive due to dense meshes and the high number of iterations required before finding acceptable results. Furthermore, due to the diversity of modelling scenarios, a standardised presentation of modelling results to a general audience is complicated by different levels of technical expertise.

Reducing computational time
In this presentation we look briefly at the use of Reduced Order Models (ROM's), which is one of the recent developments in groundwater modelling. The method allows significant speed-up times in model calibration and scenario evaluation studies. In saturated flow for example, these approaches show speed-up times of >1000 when compared to full models created with Finite Element of Finite Difference methods. These methods are demonstrated to a case study in the Table Mountain Group, in which we show a simplified parameter calibration and scenario evaluation study.

Standardising presentation
In order to present the results to as wide an audience as possible, the use of a web-browser as a GUI is proposed, where the web-page is coupled to a geo-spatial database and data is presented in a spatial and numeric format. The use of the spatial database manager PostgreSQL with PostGIS is proposed. Through a browser interface, users can run modelling scenarios using the ROM, which is evaluated in near real-time. Following the evaluation of the model, we show how PostGIS can spatially present data on a base-map such as google maps. In keeping with the current trends in online map customisation, viewers can interactively choose to overlay the base-map with a data-type (such as pressure or hydraulic head contours or flow direction) that is most intuitive for their level of familiarity with the data.

Conclusion
In using advanced modelling techniques and a simplified browser based presentation of results, high-level decisions in water resource management can be significantly accelerated with the use of interactive scenario evaluations. Furthermore, by reaching a broader audience, public participation will be significantly enhanced.

Abstract

Industrial Management Facilities represent a hazard to the down gradient surface water and groundwater environment. The assessment of the risks such facilities pose to the water environment is an important issue and certain compliance standards are set by regulators, particularly when the potential for an impact on the water environment has been identified. This paper will aim to describe how the contamination was conceptualized, estimated, limitations and how it is technically not feasible to establish one limit or compliance value of known contamination in different aquifers.

Abstract

Understanding the hydrogeochemical processes that govern groundwater quality is important for sustainable management of the water resource. A study with the objective of identifying the hydrogeochemical processes and their relation with existing quality of groundwater was carried processes in the shallow aquifer of the Lubumbashi river basin. The study approach includes conventional graphical plots and multivariate analysis of the hydrochemical data to define the geochemical evaluation of aquifer system based on the ionic constituents, water types, hydrochemical facies and groundwater factors quality control. Water presents a spatial variability of chemical facies (HCO3- - Ca2+ - Mg2+, Cl- - Na+ + K+, Cl- - Ca2+ - Mg2+ , HCO3- - Na+ + K+ ) which is in relation to their interaction with the geological formation of the basin. The results suggest that different natural hydrogeochemical processes like simple dissolution, mixing, and ion exchange are the key factors. Limited reverse ion exchange has been noticed at few locations of the study. At most, factor analyses substantiate the findings of conventional graphical plots and provide greater confidence in data-interpretation. {List only- not presented}

Abstract

The anticipated exploration and exploitation of Shale Gas in the Eastern Cape Karoo through hydraulic fracturing has raised considerable debate regarding the benefits and risks associated with this process for both the Karoo, and the country as a whole. Major concerns include the potential impact of hydraulic fracturing on ecological, environmental and especially scarce water resources. The Eastern Cape Karoo region is a water stressed area and with further climate change it will become increasingly so. Thus, effective and reliable groundwater management is crucial for sustainable development in this region. This research aims to hydrochemically characterise both the shallow groundwater (<500m) and deeper saline groundwater in the vicinity of the Shale Gas bearing formations, based on major and trace elements, as well as gas isotope analyses. Sampling will include water sampling and gas measurements from shallow boreholes (<300m), SOEKOR drillholes (oil exploration holes drilled in the 60's and 70's up to 4km deep) and thermal springs (source of water >500m).

To-date, a desktop study includes the collation of information determining the areas with the highest potential for Shale Gas Exploration throughout the Eastern Cape Karoo, from which the research area has been determined. This includes the identification of the respective oil companies' exploration precincts. A Hydrocensus has been initiated across this area, which includes slug testing and electrical conductivity profiling of open, unequipped boreholes. Further borehole selection will be finalised from this acquired information. The boreholes will be sampled and analysed a minimum of three times per year, which will occur after summer (April/May) and winter (October/November), after which the hydrochemistry will be analysed. The sampling will be preceded by purging of all inactive boreholes. The possible hydraulic connectivity between the shallow and deep aquifers will be tested, particularly in those areas where dolerite intrusions as well as fault systems may enhance preferential flow of water, using the chemical forensics complemented with passive seismic profiling/imaging and deep penetrating Magneto-Telluric (MT) imaging.

The data collected will form a record against which the impact of fracking can be accurately determined. The research is a critical first step towards the successful governance of groundwater in light of the proposed Shale Gas development. In its absence, effective regulation of the sector will not be possible.

Abstract

A multi seam open pit coal mine is planned to be developed in the Moatize Basin of Mozambique. The proposed project includes a new coal mine and coal handling facility to produce up to six million tons per annum of coking and thermal coal for the export market, which will have a life of mine of approximately 30 years. The mine will require 65 l/s for the first five years to supplement their process water make-up. Geo Pollution Technologies Ltd was appointed to investigate the feasibility of supplying groundwater to the mine. Due to the complexity of the Revuboe River during flooding and other difficulties abstracting water directly from the river, abstraction of groundwater from the alluvial aquifer next to the Revuboe River was selected as bulk water supply to the mine as it proved to be a sustainable source of water at other mining operations in the area. The benefits of the alluvial aquifer is the potential volume of water in storage and the zero losses to evaporation and seepage.

Taking into consideration the information gathered from previous groundwater and geophysical studies done in the area, a number of boreholes were sited based on geophysical results, alluvial material thickness and the energy of the river. Four of the six initial borehole positions had to be changed due to unforeseen access restrictions and concerns from the community. After the borehole positions were cleared and finalised, six boreholes were drilled up to a depth of roughly two meters below the bottom of the alluvial aquifer, which is on average 20 meters thick. The boreholes were logged in terms of geology and hydrogeology and cased to allow maximum water inflow from the aquifer. Due to one of the six boreholes being dry, five of the boreholes were subjected to 24 hour pump testing. The discharge rates varied between 4 and 20 l/s. The pump test results were interpreted using the Flow Characteristic method and final yields of between 5 and 30 l/s were achieved. The bulk water supply target of 65 l/s were exceeded by 9 l/s, with a final supply from the five holes combined of 74 l/s sustainably for the next five years.

Abstract

The assessment and prediction of mine water rebound has become increasingly important for the gold mining industry in the Witwatersrand basin, South Africa. The cessation of dewatering lead to large volumes of contaminated surface discharges in the western parts of the basin. Towards the eastern extremity of the Witwatersrand basin the detached Evander Goldfield basin has been mined since the early 1950s at depths between 400 and 2000 metres below ground, while overlain by shallower coal mining operations. The hydrogeology of the Evander basin can be categorised by a shallow weathered-fractured rock aquifer comprising of the glacial and deltaic sediments of the Karoo Supergroup, while the deeper historically confined fractured bedrock aquifer consist predominantly of quartzite with subordinate lava, shale and conglomerate of the Witwatersrand Supergroup. The deep Witwatersrand aquifer has been actively been dewatered for the last 60 years with a peak rate of 60 Ml per day in the mid late 1960s. Modelling the impacts of mine dewatering and flooding on a regional scale as for the Evander basin entails challenges like the appropriate discretisation of mine voids and the accurate modelling of layered aquifer systems with different free groundwater surfaces on a regional scale. To predict the environmental impacts of both the historic and future deep mining operations, the detailed conceptual model of the aquifers systems and a 3-dimensional model of the mine voids were incorporated into a numerical groundwater model to simulate the dewatering and post-closure rebound of the water tables for the basin. The presented model could serve as an example for the successful modelling of mine dewatering and flooding scenarios for other parts of the Witwatersrand basin.

Abstract

The pollution of water resources has become a growing concern worldwide. Industrial, agricultural and domestic activities play a pivotal role in water resources pollution. The challenge faced by pollution   monitoring   networks   is   to   understand   the   spatial   and   temporal   distribution   of contaminants. In hydrology, tracers have become a critical research tool to investigate surface water and groundwater transport dynamics. Synthetic DNA (deoxyribonucleic acid) tracers are being used in hydrological research to determine source areas, where uniquely labelled DNA from each source area  is  identified.  The main  objectivof the  study  was to  determine  the mass  balance of  the synthetic DNA tracer in surface water streams. Furthermore, to gain knowledge on DNA adsorption and decay and determine whether DNA behaves as conservative tracer in the surface water streams. Understanding the adsorption and decay characteristics of synthetic DNA tracers may promote its robustness in hydrological research. In this study, field injection experiments using synthetic DNA were  carried  out,  the  DNA  tracer  was  injected  together  with  sodium  chloride  (salt)  and deuterium as conservative reference tracers. The purpose was to compute DNA mass balance calculations with reference to the two conservative tracers. In this study two different DNA markers were used, namely T22 and T23. Additionally, with each injection experiment a field batch experiment was carried out to determine DNA loss characteristics on the field. From our study, the DNA loss between the injection point and the first measurement was greater than 90%. Therefore, it was important to conduct additional laboratory batch experiments to explain DNA loss characteristics. However, the issue of the initial DNA loss remained unresolved. Laboratory batch experiments results allow us to conclude the following: the type of material used, filtering, ion concentration and water composition reduced DNA concentration. Moreover, initial DNA losses occurred and not DNA decay. From our experiments we concluded that DNA can be used for long-term tracer experiments, subsequently, limiting synthetic DNA mass balance determination of synthetic DNA as it is a reactive. Overall, we can conclude that DNA does not behave as a conservative tracer.

Abstract

The effluent at the eMalahleni water reclamation plant is being processed through reverse osmosis which improves the quality of the mine water to potable standards. Brine ponds are generally used for inland brine disposal and this option has been selected for the eMalahleni plant. Limited capacity to store the brines requires enhanced evaporation rates and increased efficiency of the ponds. This study aims to establish the physical behaviour of the brine from the eMalahleni plant in an artificial evaporation environment. This includes the actual brine and synthetic salts based on the major components.

An experimental unit was designed to accommodate and manipulate the parameters that affect the evaporation rate of brines and distilled water under certain scenarios. Two containers, the one filled with 0.5M of NaCl and the other with distilled water were subjected to the same environmental conditions in each experimental cycle. Each container had an area of a 0.25 m² and was fitted with identical sensors and datalogger to record the parameter changes. The energy input was provided by infra-red lights and wind-aided electrical fans. This equipment used in these experiments was to simulate actual physical environmental conditions. 

The rate of evaporation was expected to be a function of humidity, wind, radiation, salinity and temperature. The experiments showed the type of salt and thermo-stratification of the pond to be significant contributors to the evaporation rate. The results also showed that the NaCl solution absorbed more heat than the water system. The difference in evaporation observed was ascribed to a difference in the heat transfer rate, which resulted in a higher temperature overall in the brine container than in the water container under similar applied conditions. This effect remained despite the introduction of 2 m/s wind flow over the tanks as an additional parameter. The wind factor seemed to delay evaporation due to its chilling effect upon the upper layers of the ponds, initially hindering the effective transfer of radiative heat into the ponds.

 

Abstract

To date, South Africa has mined approximately 3.2 billion tons of coal from a number of different coal reserves located in various parts of the country. A large number of the mines have reached the end of their productive life, resulting in numerous mine closures. With closures, groundwater levels have rebounded, resulting in decant of mine water into the environment. This paper describes a case study of a closed underground coal mine, the rebound of water levels, the evolution of the groundwater quality and the impact it has had on the management of the potential decant.

On closure of the Ermelo Mines in 1992, initial water quality monitoring indicated that a water treatment plant would be required to treat the mine decant. However, as the groundwater levels in the mine rebounded, the water quality in the mine void evolved from sulphate type water to sodium type water. The evolution of the water quality can be attributed to sulphate reducing bacteria, vertical recharge from the hanging aquifer and stratification. Water level and quality monitoring have shown that the water in the old mine void will not decant to surface due to the depth of the mine void, hydrogeological conditions, a "hanging aquifer"  and the recharge mechanisms. As a result, no water treatment will be required and the mine will not impact on the surface water. The main applications from this paper are:

  •  Design  of  a  correct  monitoring  procedure  to  allow  for  monitoring  of  water  quality stratification in rebounding mines.
  •  Identifying the role of sulphate reducing bacteria in the evolution of groundwater quality in a methane rich coal mine void.
  •  The role of a hanging aquifer in recharging of a coal mine void and resultant stratification. 
  • Designing of a mine taking into consideration mine closure.

The main contribution of this paper is the use of hydrogeological information in design of a coal mine so as not to decant on closure.

Abstract

Inadequate characterisation of petroleum release sites often leads to the design and implementation of inappropriate remedial systems, which do not achieve the required remedial objectives or are inefficient in addressing the identified risk drivers, running for lengthy periods of time with little benefit. It has been recognised that high resolution site characterisation can provide the necessary level of information to allow for appropriate solutions to be implemented. Although the initial cost of characterisation is higher, the long-term costs can be substantially reduced and the remedial benefits far greater. The authors will discuss a case study site in the Karoo, South Africa, where ERM has utilised their fractured rock toolbox approach to conduct high resolution characterisation of a petroleum release incident to inform the most practical and appropriate remedial approach. The incident occurred when a leak from a subsurface petrol line caused the release of approximately 9 000 litres of fuel into the fractured sedimentary bedrock formation beneath the site. Methods of characterisation included: 

Surface  geological  mapping  of  regionally  observed  geological  outcrops  to  determine  the structural orientation of the underlying bedding planes and jointing systems. 

A surface electrical resistivity geophysics assessment for interpretation of underlying geological and hydrogeological structures. 

Installation of groundwater monitoring wells to delineate the extent of contamination. 

Diamond core drilling to obtain rock cores from the formation for assessment of structural characteristics and the presence of hydrocarbons by means of black light fluorescence screening and hydrocarbon detection dyes. 

Down-borehole geophysical profiling to determine fracture location, fracture density, fracture dip and joint orientation. 

Down-borehole deployment of Flexible Underground Technologies (FLUTe®) liners to determine the precise vertical location of light non-aqueous phase liquid (LNAPL) bearing joint systems and fracture zones, and to assist in determining the vertical extent of transmissive fractures zones.

ERM used the information obtained from the characterisation to compile a remedial action plan to identify suitable remedial strategies for mitigating the effects of the contamination and to target optimal areas of the site for pilot testing of the selected remedial methods. Following successful trials of a variety of methods for LNAPL removal, ERM selected the most appropriate and efficient technique for full-scale implementation.

Abstract

Unconventional gas mining is a new and unprecedented activity in South Africa that may pose various risks to groundwater resources. According to legal experts, South Africa does not currently have the capacity to manage this activity effectively due to various lacunae that exist in the South African legislation. The possible impacts of unconventional gas mining on groundwater, as well as governance strategies that are used in countries where unconventional gas mining is performed; have been analysed and will be discussed. Based on possible impacts and strategies to manage and protect groundwater internationally, possible governance options for the management of South Africa’s groundwater resources are proposed.

Abstract

The aim of this project was to establish a detailed geohydrological database and monitoring network for  the  karst  aquifer  within  the  boundaries  of  the  Vanrhynsdorp  Water  User  Association.  An adequate monitoring network is necessary for the Vanrhynsdorp Water User Association to implement sustainable water use management as well as for the Department Water Affairs to ensure its mandate as trustee of all water resources. Hydrocensus projects were conducted in phases as the project escalated from historic town supply during 1978 towards a catchment driven water user association after implementation of the new National Water Act in October 1998 (Act 36 of 1998). With the successive hydrocensuses conducted, the monitoring network also evolved in regard to area monitored, point locations, monitoring schedules and parameters measured. Hydrocensus data were captured on the National Groundwater Archive, time series data on the Hydstra database and chemical analysis on the Water Management System. Time series graphs were compiled to analyse the monitoring data and to create a conceptual model of the karst aquifer. The study showed a general decline in groundwater levels and quality in the study area. The conclusion is that the aquifer is over exploited. It is recommended that an extensive management plan is developed and implemented to ensure sustainable use of this sensitive water resource. The installation and monitoring of flow meters on all production boreholes should be seen as urgent and stipulated as such in licensing conditions. This will ensure the effective management and regulation of this valuable groundwater resource.

Abstract

Work is being conducted in Limpopo province following a large volume release of petroleum hydrocarbons that took place from a leaking underground pipeline, resulting in significant groundwater contamination. This is considered to be the largest petroleum hydrocarbon release recorded to date in South Africa. The leak took place for 15 years before it was discovered 13 years ago in 2000. From the pressure tests that were performed, 10-15 ML of A-1 Jet fuel is considered to have  been  released  to  the  subsurface.  Product  bailing was  the  first method  employed  for  the recovery of the free product, and was later replaced with a P&T system which was considered to be more effective.

The village located about 6 km to the north of the spillage depends mostly on groundwater. This paper presents a progress update of works that have been conducted in support of developing a conceptual model which aims to determine the areal extent of the plume.

Abstract

Vapour intrusion (VI) is the term used to define the encroachment of vapour phase contaminants from subsurface sources into structures such as buildings and basements. It is widely recognised that VI often forms the principal risk of exposure to receptors at petroleum release sites. Petroleum VI (PVI) generally occurs where a release of petroleum hydrocarbon product migrates from its source (for example, from a leaking underground storage tank) to the groundwater table at which point, given favourable conditions, the hydrocarbon plume may migrate laterally beneath an adjacent building or structure. Subsequent volatilisation of the petroleum product results in the upward diffusion of vapours towards the surface where the vapours may enter into the building or structure at concentrations which may be harmful to human health. The subject of PVI with regards to its fate and transport mechanisms, as well as associated mitigation measures, is rapidly gaining attention on a global scale, although to date this exposure pathway remains largely unassessed in South Africa, with no regulatory guidance currently available. In the late 1990s and early 2000s focus was placed on the development of VI screening criteria by which sites could be screened with respect to their hydrogeological conditions and contamination status so as to determine whether VI may be a potential exposure pathway of concern, with much of the early work being completed by the United States Environmental Protection Agency. For the past decade the majority of the available screening criteria  and  guidance  has  not,  or  has  only  partially  accounted  for  biodegradation  processes associated with VI, which has led to doubt over the application of such screening criteria in many cases. Furthermore, recent research conducted abroad has highlighted the importance of the role of oxygen in the vadose zone in the natural attenuation of petroleum hydrocarbon vapours as they diffuse through the soil profile. This research is pointing towards the notion that currently applied screening criteria may be overly conservative when applied to petroleum impacted sites, leading to many  unnecessary  PVI  investigations  being  conducted  to  the  disruptioof  occupants  of  the buildings, and at great cost. Over the last two years ERM has compiled a dataset of PVI results from numerous investigations it has conducted throughout Southern Africa and in this paper the authors present data that supports the growing global trend towards recognising the role that oxygen plays in attenuating petroleum hydrocarbon vapours in the vadose zone. The data also support the notion that confirmed cases of PVI into buildings have generally been found to be the exception to the rule and not the norm.

Abstract

POSTER The Evander Goldfield basin has been mined since the early 1950s at depths between 400 and 2 000 m below ground and is detached from the larger Witwatersrand basin. The assessment and prediction of mine water rebound has become increasingly important for the gold mining industry in the Witwatersrand basin as more mine shafts mothballs and dewatering ceases. The development of a  3-D  mine  void  model  is  crucial  in  predicting  the  rate  of  flooding  as  the  prediction  of  the groundwater rebound is primarily driven by the volumes of mine voids along with the amount of recharge. All available mine plan data for the Evander Gold Mine (EGM) were obtained digitally from Harmony Gold. However, the majority of the old mine workings (e.g. Leslie and Winkelhaak) were available  as  2-D  data  and  elevations  of  the  mine  developments  (stopes  and  drives)  had  to  be captured from hardcopy plans. Data from the more recent mining operations (e.g. Shaft 6), including updated survey and mine plan data, were directly used for the development of the 3-D void model. The calculated mine void volume, based on the EGM operations mine plan data, is approximately 80 518 045 m3. The mine void calculations were checked against the total tons of rock milled by the EGM operations since the late 1950s and was considered valid estimations of the EGM mine void volume. The validated EGM 3-D mine workings plan was subsequently used to determine the stage- volume relationships. The 3-D mine void model established, will then be incorporated into a regional numerical groundwater flow model to be calibrated against observed abstractions and water levels and utilised to predict future dewatering rates.

Abstract

Gold mining  activities over  the  past 60 years  in the Klerksdorp  goldfield produced  saline mine drainage that polluted water. Oxidation of sulphide material in tailings storage facilities, waste rock dumps and extraction plants is mobilised to produce saline mine drainage with sulphate, minor salts and  metals  that  seep  to  the  groundwater  and  ultimately  into  surface  water  resources.  Water regulation requires mines to prevent, minimise/reduce or eliminate pollution of water resources. The waste philosophy has matured from tolerate and transfer to treat and termination of pollution sources.  The  impact  of  the  pollution  was  determined  and  possible  technologies  to  treat  the impact   were   evaluated.   Source   controls   with   proper  water  management  by  storm  water management,  clean  dirty  water  separation,  lined  water  conveyance  structures  and  reduced deposition of water on waste facilities are crucial. The aquifer character determines the possible remediation technology. From the possible technologies phytoremediation, physical interception and  re-use  of  this  water  was  selected.  In  future  possible  treatment  of  the  water  would  be considered. This paper explain the strategy and report on the phased implementation of these plans and the expected results. The establishment of 500 ha of woodlands as phytoremediation, interception trenches of 1 000 m, 38 interception boreholes and infrastructure to re-use this water is planned. The total volume of 15 Ml/day would be abstracted for re-use from the boreholes and trenches. The woodlands can potentially attenuate and treat 5 Ml/day. The established woodlands of 150 ha prove to be successful to intercept diffused seepage over the area of establishment and reduce  the  water  level  and  base  flow.  The  two  production  interception  well- fields  that  are abstracting  50  and  30 l/s,  respectively  , indicate  a  water  level decline of between 2 to 14 m, with regional cones of depression of a few hundred meters to intercept groundwater flow up to a 20 m depth. Predictions from groundwater modelling indicate that these schemes can minimise pollution during the operational phase and protect downstream water resources. Predictions from modelling indicate that the pollution sources need to be removed to ensure long-term clean-up to return the land to safe use. The gold and uranium prize is securing the removal of the sources through  re-processing  of  the  tailings  and  waste  rock  dumps.  After  removaof  the  sources  of pollution,  the  remediation  schemes  would  have  to  boperated  for  2years  to  return  the groundwater to an acceptable standard  of  stock  watering  and  industrial  water  use.  The  water quality is observed by a monitoring network of approximately 100 observation boreholes.

Abstract

The Paleozoicage Natal Group Sandstone (NGS) that outcrops from Hlabisa (in the north) to Port Shepstone (in the south) and Greytown (west) to Stanger (east) in the Province of KwaZulu-Natal, South Africa, is investigated in terms of its hydrogeological characteristics. This sandstone group, which comprises a lower Durban and an upper Marrianhill Formations, is a secondary/fractured aquifer system that has variable but good productivity across its members. It is characterised by variable borehole blow yields ranging from 0.2 l/s to as high as 20 l/s, with more than 50% of the boreholes having blow yield > 3 l/s. Preliminary analysis of these boreholes yields indicates that higher yielding boreholes are associated with a network of intersecting fractures and faults, and are recommended targets for future water well-siting in the area. Groundwater in the NGS is of good quality in terms of major and trace element composition and it has a total dissolved solids (TDS) composition of <450 mg/l. It was observed that the specific electrical conductivity (EC), TDS and major ions composition of groundwater within the sandstone decrease from north to south, which appears to be controlled by the geochemical composition of the aquifer material and an increase in the rate of recharge. Depth to groundwater is also found to decrease southwards because of an increase in the rate of recharge. Groundwater hydrochemical facies are generally either Na-HCO3 or Na-HCO3–Cl, and environmental isotope data (2H, 18O, Tritium) indicates that the groundwater gets recharge from modern precipitation. Furthermore, the EC increases from inland to the coastal zone, indicating maritime influences and the general direction of groundwater flow is eastwards, to the Indian Ocean.

Abstract

The increase in awareness of environmental issues and the desire for a cleaner environment by the public has caused mining companies to place greater emphasis on the continuous rehabilitation of harmful effects caused by mining operations. Ongoing rehabilitation is also a requirement of the government departments involved in mining in South Africa. The biggest concern for the relevant government departments is the possible uncontrolled pollution of water resources in the vicinity of mines, after they have closed.

In  the  compilation  of  this  paper,  the  unique  nature  of  the  South  African  situation  has  been considered – this refers to a legally acceptable approach towards current legislation and policies. This study leads to the construction of a logical approach towards mine closure, specifically to understand issues around costs and financial liability. The final product of this approach should ultimately give more clarity on:

the principles followed to identify objectives for mine closure and groundwater assessment;

key steps to follow when assessing site hydrogeology and to determine related impacts, risks, closure costs and liabilities; and

an overview of methods that could be used for the mitigation of polluted aquifers and a brief site-specific application.

Abstract

Many aquifer systems worldwide are subject to hydrochemical and biogeochemical reactions involving iron, which limit the sustainability of groundwater schemes. This mainly manifests itself in clogging of the screen and immediate aquifer with iron oxyhydroxides resulting in loss of production capacity. Clogging is caused by chemical precipitation and biofouling processes which also manifests in South African well-fields such as in Atlantis and the Klein Karoo. Both well-fields have the potential to provide a sufficient, good quality water supply to rural communities; however, clogging of the production boreholes has threatened the sustainability of the schemes as quality and quantity of water is affected. Rehabilitation of the affected boreholes using techniques such as the Blended Chemical Heat Treatment method does not provide a long-term solution. Such treatments are costly with varying restoration of original yields achieved and clogging recurs with time. Currently the research,  management  and  treatment  options  in  South  Africa  have  focused  on  the  clogging processes which are complex and site-specific, making it extremely difficult to treat and rectify. This project attempts to eliminate elevated concentrations of dissolved iron, the cause of the clogging. High iron concentrations in groundwater are associated with reducing conditions in the aquifer allowing for the dissolution of iron from the aquifer matrix. These conditions can be natural or human-induced. Attempts to circumvent iron clogging of boreholes have focussed on increasing the redox potential in the aquifer, by injection of oxygen-rich water into the system, to prevent dissolution and to facilitate fixation of iron in the aquifer matrix. Various in situ treatment systems have  been  implemented  successfully  overseas  for  some  time.  In  South  Africa  thus  far  in  situ treatment of iron has only been proposed as a solution for production borehole clogging. Based on experience from abroad the most viable option to research the elimination of ferrous iron in South African aquifer systems would be through the in situ iron removal treatment. Different techniques of increasing the dissolved oxygen concentration in the injected water to intensifying the redox change in the aquifer can be applied; however, the use of ozone as the oxidant is a new approach. Its effectiveness is evaluated by the results in iron removal in surface water treatment for drinking water supply.

Abstract

This study examined the effective use of the hydrogeologic conceptual model (HCM) to implement the integrated water resource management (IWRM) approach. While research focuses on using hydrogeologic models  in  groundwater  for  planning,  few  studies  show  how  to  use  HCM  for  a successful IWRM approach, especially in  resource  poor  catchments.  This  is  largely  due  to  t he lack of adequate data to showcase such models. Despite the lack of numerical groundwater data, the HCM was used in this study and it provided the scientific and visual presentation of key issues for practical understanding by stakeholders. For the first time, HCM provided a  practical understanding of t he  groundwater system in the Limphasa River catchment. By using HCM and physical factors qualitatively, the study revealed that, apart from storage, abstraction mechanisms significantly contributes to regional initiatives of groundwater supply whose central objective is to utilise and manage such water sustainably. The model is based on the relationship between groundwater availability  and  its  related  hydrogeologic factors.  Findings suggest improvement  in quantifying the studied parameters through field experiments to provide a better estimation on storage and abstraction of groundwater in relation to impacts of a future changing climate. Since using HCM has shown practical usage, replicating it in catchments with similar physical and socioeconomic environments, would be desirable as refining the model progresses.