Conference Abstracts

All Abstracts were presented at the Groundwater Conferences

Displaying 151 - 200 of 795 results
Title Presenter Name Presenter Surname Area Conference year Sort ascending Keywords

Abstract

Sacred wells are found across the world yet are rarely studied by hydrogeologists. This paper will present the results of a 5-year hydrogeological study of holy wells in Ireland, a country with a relatively large number of these wells (perhaps as many as 3,000). It was shown that holy wells occur in all the main lithology and aquifer types but are more numerous in areas with extreme or high groundwater vulnerability. Water samples were collected from 167 wells and tested for up to 60 chemical parameters, including a large range of trace elements. Statistical analyses were performed to see if there were any statistically significant associations between the chemical constituents and the reputed health cures for the different well waters, and the results will be presented here. One of the issues in communicating the research findings to the general public is in explaining the small concentrations involved and the likely very small doses pilgrims at holy wells receive during their performances of faith. The spiritual dimension, including the therapeutic value of the landscape where the well is located, is likely an important aspect of the healing reputation.

Abstract

Mt. Fuji is the iconic centrepiece of a large, tectonically active volcanic watershed (100 km2 ), which plays a vital role in supplying safe drinking water to millions of people through groundwater and numerous freshwater springs. Situated at the top of the sole known continental triple-trench junction, the Fuji watershed experiences significant tectonic instability and pictures complex geology. Recently, the conventional understanding of Mt. Fuji catchment being conceptually simple, laminar groundwater flow system with three isolated aquifers was challenged: the combined use of noble gases, vanadium, and microbial eDNA as measured in different waters around Fuji revealed the presence of substantial deep groundwater water upwelling along Japan’s tectonically most active fault system, the Fujikawa Kako Fault Zone [1]. These findings call for even deeper investigations of the hydrogeology and the mixing dynamics within large-scale volcanic watersheds, typically characterized by complex geologies and extensive networks of fractures and faults. In our current study, we approach these questions by integrating existing and emerging methodologies, such as continuous, high-resolution monitoring of dissolved gases (GE-MIMS [2]) and microbes [3], eDNA, trace elements, and integrated 3-D hydrogeological modelling [4]. The collected tracer time series and hydraulic and seismic observations are used to develop an integrated SW-GW flow model of the Mt. Fuji watershed. Climate change projections will further inform predictive modelling and facilitate the design of resilient and sustainable water resource management strategies in tectonically active volcanic regions

Abstract

The study focuses on the overlapping effects of low-enthalpy geothermal plants in urbanized areas, showing the importance of quantifying thermal groundwater exploitation to manage the resource adequately. Geothermal energy connects groundwater use to one of the ever-growing needs nowadays: energy. For low-temperature geothermal, the form of energy we can harness is thermal energy for building heating or cooling, one of the most polluting sectors, representing 34% of CO2 emissions in Europe. As in the main European cities, geothermal energy use is constantly growing, and understanding the status of groundwater exploitation for geothermal purposes is essential for proper resource management. To this end, the study’s first phase focused on quantifying geothermal use in the study area selected in Milan city-Italy.

Knowing the characteristics of geothermal plants in the area allows us to understand the extent of the resource exploitation and the consequences of its mismanagement at a large scale. In fact, the plant designers often focus on the local scale, not considering the presence of neighbouring plants, which risks decreasing the plant’s efficiency or amplifying its subsurface thermal effect. To minimize the thermal effects/interferences of geothermal plants in the subsoil, the study of the application of D-ATES systems (Dynamic Aquifer Thermal Energy Storage) with significant groundwater flow is promising. A numerical model of the study area is then implemented with MODFLOW-USG for thermal transport in porous media to evaluate the advantages of installing D-ATES systems instead of typical open-loop systems.

Abstract

Groundwater in flooded abandoned mines could be used for geothermal purposes using heat pumps and an open loop involving pumping and re-injection. Hydraulic conductivity values of the mined rock zones have been artificially increased. However, long-term efficiency and the possible impacts of geothermal doublets must be studied involving a series of hydrogeological challenges. Hot water would be pumped from the deep parts of the mine works, and cold water would be re-injected in a shallower gallery or shallow fractured rocks, with a seasonal flow inversion for building cooling during the hot season. Indeed, a ‘short-cut’ groundwater flow is to be avoided between the mine’s deep and shallow parts. The true geometry of the interconnected network of open galleries and shafts can be highly complex and must be conceptualized realistically to ensure that the model is feasible and reliable.

This model must involve groundwater flow and heat transport, with temperature-dependent density and viscosity, in a complex 3D heterogeneous domain of highly fractured rocks and partially collapsed exploitation zones, galleries, and shafts. Such a model is nevertheless widely recommended to design and optimize the short--, mid-, and long-term efficiency of the geothermal system and assess possible environmental impacts. An example of simulations on a synthetic case will be used for illustration and preparation work before further application in a real case study.

Abstract

South Africa is known for droughts and their effect on groundwater. Water levels decrease, and some boreholes run dry during low recharge periods. Groundwater level fluctuations result from various factors, and comparing the levels can be challenging if not well understood. Fourie developed the “Groundwater Level Status” approach in 2020 to simplify the analysis of groundwater level fluctuations. Groundwater levels of two boreholes within different hydrogeological settings can thus be compared. The “Status” can now indicate the severity of the drought and thus be used as a possible groundwater restriction level indicator. The reasons for the groundwater level or the primary stress driver can only be determined if the assessment is done on individual boreholes and the boreholes according to hydrogeological characteristics. The analysis is used to identify areas of risk and inform the authorities’ management to make timely decisions to prevent damage or loss of life or livelihoods. The applicability of this approach from a borehole to an aquifer level is showcased through practical examples of the recent droughts that hit South Africa from 2010-2018.

Abstract

Understanding the sensitivity of groundwater resources to surface pollution and changing climatic conditions is essential to ensure its quality and sustainable use. However, it can be difficult to predict the vulnerability of groundwater where no contamination has taken place or where data are limited. This is particularly true in the western Sahel of Africa, which has a rapidly growing population and increasing water demands. To investigate aquifer vulnerability in the Sahel, we have used over 1200 measurements of tritium (3H) in groundwater with random forest modelling to create an aquifer vulnerability map of the region.

In addition, more detailed vulnerability maps were made separately of the areas around Senegal (low vulnerability), Burkina Faso (high vulnerability) and Lake Chad (mixed vulnerability). Model results indicate that areas with greater aridity, precipitation seasonality, permeability, and a deeper water table are generally less vulnerable to surface pollution or near-term climate change. Although well depth could not be used to create an aquifer vulnerability map due to being point data, its inclusion improves model performance only slightly as the influence of water table depth appears to be captured by the other spatially continuous variables.

Abstract

Technological advances in recent years provide a unique opportunity to adopt new instruments for groundwater monitoring to reduce operating costs, obtain higher measuring accuracy and reliability, and accomplish comprehensive real-time monitoring. Microelectromechanical system (MEMS) technology enables small and low-cost energy-saving microsensors and integration with IOT for real-time monitoring. This presentation will discuss the findings of the performance of a newly developed instrument based on a MEMS piezoresistive pressure sensor. We demonstrate a path forward for the expansion of this research. The sensor is designed to be applicable to both open and closed systems for measuring groundwater level and pore water pressure. Tests show that MEMs (0-689 kPa range) can obtain full-scale accuracy between 0.2-0.3% in groundwater level prediction. However, the measurement result mainly depends on the appropriateness of the calibration method. Regarding pore pressure measurement under sealed conditions by gravel sand and cement-bentonite grout, a full-scale accuracy between 0.3% and 0.725% is accessible, depending on the backfill material. However, it was evident that backfill materials have considerable effects on the response time and accuracy of measurement, in which a stiff and less permeable grout can increase inaccuracy and time lag in measurement. Overall, the initial results have shown a promising future for this technology in groundwater monitoring. However, more tests and analyses are still required to improve sensor design, energy consumption for IOT applications, wireless module, installation system and its specifications such as accuracy, conformance, precision, and stability.

Abstract

Unicef is the WASH sector lead globally and is, present at the country level, the main counterpart of government, especially regarding the component of the water balance utilised for potable safe water supplies. This mandate means that Unicef then has a role in looking at water resources nationally and not just as individual projects, and in doing so, contributes to good water governance as an integral part of system strengthening. Ensure this is done in partnership with other ministries and stakeholders that support them through advocacy for humanitarian and developmental access and support in technical areas such as groundwater assessments and monitoring. The focus on groundwater is especially linked with the fact that groundwater plays a major role due to its buffering capacity to climate variations, easier access and global coverage. Since groundwater is the most significant component of accessible freshwater resources, it is in the interest of UNICEF to make this resource more visible to meet both development and humanitarian goals, strengthen national systems and ultimately build resilience in mitigating water scarcity to scale or at the National level. Therefore, examples will be presented where Unicef has engaged on this journey with nations such as Afghanistan, Yemen, Mozambique and Rwanda to understand their water resources better. The overall objective at the National level is to adapt the capacity to withstand and recover as quickly as possible from external stresses and shocks or build resilience.

Abstract

The Bauru Aquifer System (BAS) is a significant source of water supply in the urban area of Bauru city. Over the last decades, BAS has been widely affected by human activities. This study evaluates the nitrate plume in groundwater from 1999 to 2021 and how it relates to urbanization. The methods used were analysis of the data of 602 wells, survey of the sewer network and urbanization, and reassessment of nitrate concentration data. The seasonal analysis of 267 groundwater samples allowed the identification of concentrations up to 15.1 mg/L N-NO3 - mainly from the area’s central region, where the medium to high-density urban occupation dates back to 1910. Otherwise, the sewage system was installed before 1976. The reactions controlling the nitrogen species are oxidation of dissolved organic carbon, dissolution of carbonates, mineralization, and nitrification. Wells, with a nitrate-increasing trend, occur mainly in the central and northern regions, settled from 1910 to 1980-1990, when no legislation required the installation of the sewage network before urbanization. In turn, wells with stable or decreasing nitrate concentrations occupy the southwestern areas. Over the years, the concentrations of these wells have shown erratic behaviour, possibly caused by the wastewater that leaks from the sewer network. The bivariate statistical analysis confirms a high positive correlation between nitrate, sanitation age, and urban occupation density, which could serve as a basis for the solution of sustainable groundwater use in the region. Project supported by FAPESP (2020/15434-0) and IPA/SEMIL (SIMA.088890/2022-02).

Abstract

Communities in the Lower Shire River Valley in the Chikwawa District of southern Malawi face extreme development challenges due to highly variable climate, including floods and droughts, that trap them in poverty and food insecurity. The area has been the focus of numerous studies and data collection campaigns to understand better the causes and processes associated with brackish groundwater (in alluvial aquifers) and dry boreholes. An applied groundwater assessment was performed to evaluate water supply alternatives and solutions to deliver potable water to approximately 15% of the district without water access after a multi-year campaign to reach 100%. The assessment synthesized a significant volume of water quality data collected by researchers and nongovernment organizations, larger scale geological interpretations published in segmented literature, multi-spectral satellite imagery datasets, and combined field reconnaissance to investigate areas of interest further and address pertinent data gaps. Improved understanding of geologic structure and lithology, complex aquifer recharge, and evapotranspiration processes supported identifying areas unsuitable for groundwater development and yielded recommendations for groundwater exploration and other solutions.

A high permeability zone and strong surface-groundwater connection was identified along the Gungu River. Data collected throughout the area of interest corroborated that significant freshwater recharge occurs in the alluvial aquifer, promoting an aquifer zone where freshwater and higher yields are likely. Exploratory drilling resulted in a very high-yielding freshwater well that supported the development of a piped water system serving several villages.

Abstract

Coal Ash Beneficiation is a government imperative for South Africa, and Eskom generates approximately 34 million tons of coal ash annually from their 14 pulverised coal fuel plants. It is estimated that there are approximately 6,000 abandoned coal mines in South Africa, of which 2,322 are classified as high risk, contributing to subsidence and the generation of acidic mine drainage. It is envisaged that coal ash could offer a support medium for the mines and neutralise the acidic mine water due to its alkaline nature. The Department of Fisheries, Forestry and the Environment has supported the initiative but has requested a means of modelling possible contamination due to placing the coal ash in these environments. To this end, laboratory trials were completed to generate the initial model and a controlled pilot site was established to validate the model’s accuracy. This trial evaluated stabilised and unstabilised coal ash as a means of acid water management. The laboratory trials showed that the ash could neutralise the pH of the mine water from approximately 2 to 7; this was sustained for the test period. In addition, sulphate and iron were significantly reduced in the treated water. The laboratory and site work results will be detailed in this presentation.

Abstract

Huixian Karst National Wetland Park is the most typical karst wetland in the middle and low latitudes of the world and has become an internationally important wetland. The relationship between water quality and aquatic organisms in Huixian Wetland is a hot research topic in wetland ecology. This article focuses on the relationship between the current water quality situation in Guilin Huixian Karst Wetland and the growth of wetland plants. Sixteen sampling points are set up in the wetland to monitor and analyze water quality in wet, normal, and dry seasons. The Kriging index interpolation method is used to obtain a comprehensive water quality interpolation map in the survey area during normal water periods and in combination with the wetland plant survey sample data and the landscape status. A comprehensive analysis of the relationship between wetland plant growth and water quality. The results show that the centre of Huixian Wetland receives recharge from surrounding groundwater, which is greatly affected by the surrounding water quality. The comprehensive water quality is relatively good in the dry season, relatively poor in the normal season, and the worst in the wet season. Agricultural production, non-point source pollution, rural domestic sewage, and human interference affect wetland water quality, which directly affects the structure and function of plant communities and the ecological service function of wetlands.

Abstract

Groundwater is an important freshwater supply that has a significant role in the economy. However, water is increasingly becoming scarce in several regions. Huai Krachao Subdistrict in Kanchanaburi Province is an example of an area that has been experiencing a severe drought for decades due to the impacts of climate change. This study was conducted to delineate the groundwater potential zones in hard-rock terrains using geographic information system (GIS) techniques. The study aims to explore deep groundwater resources in challenging areas and propose alternative methods supporting traditional groundwater exploration. This finding revealed that the groundwater potential zones were classified into high, moderate, and low potential zones based on the groundwater potential index (GWPI), integrated using the Weighted Index Overlay Analysis. The computed weights from the Analytical Hierarchy Process were acceptable and consistent. The high potential zones mainly occur in the Silurian-Devonian metamorphic rocks. The GIS-based analytical results were later prepared for detailed field investigation, including collecting well information and conducting the 2-dimensional geophysical survey. To prove the GWPI map, 9 groundwater wells were drilled in the high potential zones. Consequently, well yields obtained from the pumping-test analysis ranged from 24-40 m3 / hr, some of which are springs rich in dissolved minerals. Accordingly, a significant amount of water could meet the water demand, supplying about 1 million m3 /year. Under these circumstances, discovering new groundwater resources can support roughly 5,000 people and agricultural lands no less than 480 hectares (4.8 km2 ).

Abstract

For 25 years, the UK’s Environment Agency has commissioned groundwater flow models of the main aquifers in England. These regional-scale models are regularly updated, occasionally recalibrated and used for water resources management, regulatory decisions and impact assessment of groundwater abstractions. This range of uses requires consideration of the appropriate scale of data collection and modelling and adaptation of the groundwater models, with refinement where local impacts on individual springs and seasonal streams are considered and combination and simplification for strategic national water resources planning. The Cretaceous Chalk, a soft white limestone, is the major aquifer of southern and eastern England, supplying up to 80% of the drinking water in this densely populated region. Springs and baseflow of good quality groundwater feed Chalk streams, which are a rare and valuable habitat with a high public profile, but face significant challenges in the 21st century, worsened by climate change and population growth. The modelling informs strategic planning and regulatory decisions, but the model’s scale needs to be appropriate for each issue. The presentation defines these issues and presents examples, ranging from the large-scale, strategic Water Resources East to impact assessment for individual groundwater abstractions and more bespoke local investigations, including simulation of groundwater flood risks. As the scale of investigations reduces, there is increasing importance on the accuracy of information, both temporally and spatially. Model refinement made during local investigations can be incorporated into larger-scale models to ensure that this understanding is captured.

Abstract

Darcy Velocity (Vd) is often estimated through a single-borehole Point Dilution Tracer Test (PDTT). Vd is used in the investigation of contaminant transport and distribution in aquifers. The tracer dilution rate in groundwater is controlled by horizontal groundwater flux. However, it can be affected by other artefacts, such as diffusion and density effects. Although there are studies on tracer tests, there has not been much done to gain an understanding of how these artefacts affect the correct Vd estimation. This study, therefore, aims to investigate and provide an understanding of the influence of artefacts on the PDTT through laboratory experiments conducted using a physical model representing a porous media. A total of 18 experiments were performed with different NaCl tracer concentrations under constant horizontal groundwater flow and no-flow conditions. The study results show that the density sinking effect affects an early period of tracer dilution, which can lead to overestimation of Vd; therefore, these stages should not be used to estimate Vd. The study, therefore, proposes a way in which PDTT data should be analysed to understand the effects of artefacts on Darcy velocity estimation.

Abstract

Monitoring deep (~100 – 200 m) fresh-saline water interface is a challenge because of the low spatial density of deep boreholes. In this project, Vertical Electrical Soundings measurements were used to evaluate changes in the depth of the interface over various decades. Water quality monitoring is a well-known application of geo-electrical measurements but generally applies to the relatively shallow subsurface. In this case study, the saline groundwater interface is around 120 -200 m deep, and the time interval between the measurements is several tens of years. Several locations showing good-quality existing VES-measurements acquired in the last century were selected to see whether repeat measurements could be performed. The number of locations where a repeat measurement could be performed was limited due to the construction of new neighbourhoods and greenhouse complexes. When interpreting the measurements for the change in the depth of the fresh-salt interface, it is assumed that the transition from fresh to saline groundwater occurs over a small depth range and that the electrical conductivity of the fresh water above this interface has not changed. However, it turned out that the ion concentration of the groundwater in the layers above the fresh-saline interface had increased sharply at almost all locations. This complicated the approach, but still, useful results could be obtained. Based on the measurements, it can be said that the fresh-saline water interface has shifted downwards at 3 locations, and hardly any change has occurred at 5 locations.

Abstract

The joint application of water supply system security, groundwater modelling, and multicriteria analysis (MCA) indicated the potential of Managed Aquifer Recharge (MAR) to increase water supply security in Eastern Botswana substantially. Botswana faces increased water stress due to decreased water availability as climate change exacerbates variability in rainfall and increases evaporation losses and water demand. The water supply for Eastern Botswana is based on the bulk water supply system of the North-South Carrier (NSC) connecting dams in the northeast to the main demand centres, including Gaborone. The potential of MAR to increase the water security of the NSC by storing water that otherwise would have been lost to spillover and evaporation and contribute to the provision of water during droughts was studied. Large-scale MAR in the Ntane sandstone aquifer at a wellfield by the NSC was evaluated in terms of hydrogeology and national water supply perspective. Comprehensive hydrogeological surveys and assessments included borehole injection tests and hydrogeological and geochemical modelling to evaluate risks of losing recharged water and clogging of boreholes. Probabilistic water supply system modelling analysed the impact of different MAR scenarios on the water supply security of the NSC, and an MCA tool assessed the sustainability of the different scenarios. The analysis showed that large-scale MAR is feasible, and a scheme with a capacity of 40,000 m3 /d is the most sustainable from technical, social, economic and environmental perspectives and could potentially reduce the number of months with water shortage by 50% in Gaborone.

Abstract

A hydrogeological investigation was conducted at a gold mine in the Mandiana region, northeast Guinea. The objectives of the investigation included: 1) Review the efficiency of the current dewatering system and 2) Assess potential dewatering impacts on neighbouring groundwater users. Historical and current hydrogeological information were reviewed and assessed to address the project objectives. The site geological succession contains laterites, saprolites, saprock, dolorite sill and fresh fractured bedrock below. A review of the borehole lithological logs, pump test and monitoring data confirmed that the contact zone between the saprock and the dolorite sill is the major aquifer zone with hydraulic conductivity up to 25 m/d, with a minor alluvial aquifer with hydraulic conductivity ~ 0.05 m/d. The current dewatering system is not as effective as it should be due to electrical issues causing seepage into the current pit floor. A combination of in-pit sumps and dewatering boreholes is recommended to ensure the mine pit’s dry working conditions. The neighbouring groundwater users tap into the alluvial aquifer with water levels ranging between 0-10 mbgl and are not at risk from mine dewatering impacts due to the dewatering boreholes tapping into the deeper saprock-dolorite contact zone. The shallow and deeper aquifers are hydraulically disconnected. The following is recommended: 1) Drilling of replacement dewatering boreholes and implementing continuous water level and abstraction rate monitoring, and 2) Discharge the in-pit sumps (alluvial aquifer inflow and rainfall) into the river downgradient of the mine to supplement recharge to the alluvial aquifer.

Abstract

In this study, we assess the potential of large riverbed aquifers in semi-arid Africa, known as sand rivers, to mitigate water scarcity and salinity for multiple-use water supply through a case study of the Limpopo River in Mozambique. Such sand river systems are widespread and still heavily underused at a regional scale, particularly in Mozambique, with the riparian vegetation currently being the primary user, though only consuming a minor fraction of available water. At a local scale, we performed geoelectrical surveys, water level measurements (in river and groundwater), as well as field physicochemical measurements and hydrochemical and isotopic sampling at 38 locations in the river channel, margins and up to 6 km away from the river, over five years. Results show that these shallow systems can be up to a kilometer wide and 15 m thick and, at some locations, can extend laterally beyond the river channel, below thin layers of clay and silt. Large areas of the sand river channel carry runoff yearly, providing optimal conditions for rapid recharge into the coarse sands with a high storage capacity. Connectivity between the river margin and channel is clearly shown at the local scale, even though sand pockets located further away appear isolated (revealed by geophysics), isotopically different and more brackish. Recharge, evapotranspiration and mixing processes are confirmed through hydrogeochemical modelling. The proven connectivity is highly relevant as groundwater is abstracted locally, promoting socio-economic development in water-scarce regions.

Abstract

Given the challenging global water outlook due to climate change and urbanisation, there is a heightened necessity for greater water resilience at critical facilities to tackle water disasters or disasters that lead to water crises. In 2017, the Western Cape Province of South Africa experienced an extended drought with the risk of acute water shortages. The Western Cape Government (WCG) developed business continuity plans and implemented a programme to ensure water supply to certain critical service delivery facilities, utilising the strategy of developing localised groundwater supply systems. The case study research of the WCG program enabled the development of an evaluation framework that assessed this strategy’s effectiveness in improving water resilience levels at critical facilities. From the lessons learnt in the WCG programme, the research also crystallised the critical success factors in sustainably implementing this strategy. The research showed that this is an effective strategy for its purposes and provides both current and future disaster preparedness planners with an improved understanding of the levels of water resilience achievable through this strategy and the methodology to achieve it best.

Abstract

Since the end of the 1970’s, the Ministry of Agriculture, Water and Land Reform (MAWLR), through the development of the groundwater database (GROWAS II), gathered a great number of data on groundwater quality. In an ongoing study (MAWLR-MEFT-AFD-BRGM, 2023), an opportunity was presented to compile chemical data for groundwater in the two most north-western regions of Namibia, Kunene and Omusati, to elaborate and support decision-making with the available information. A selection of 3256 data presenting a good ionic balance (± 10%) was selected from a large dataset, using metadata from previous BGR projects and the Geological Survey of Namibia at a 1:250,000 scale as supporting information. During the assessment of chemical data, it was depicted that most of the good quality water for human consumption and irrigation is located in the carbonated sedimentary formations at the southeastern part of Kunene and a great part of the northern part of the Kunene region. With more detailed data treatment, it allowed for confirming a natural origin for high fluoride concentration linked to granite, gneiss, old volcanic rocks and high sulphate concentration due to evaporates (gypscrete) in the eastern part of Omusati. In contrast, high nitrate concentrations were found in various lithologies across the two regions confirming local anthropogenic contamination. These results were compared to information obtained through the few published works of local studies to evaluate the accuracy of this large-scale assessment of chemical data.

Abstract

The Netherlands produces about 2/3 of drinking water from groundwater. Although there is seemingly abundant groundwater, the resource needs to be carefully managed and used wisely to safeguard the resource for future generations and in case of disasters whilst also preventing negative impacts from groundwater extraction on other sectors such as nature. Provincial governments are responsible for the protection of existing groundwater abstractions for water supply against pollution. To secure groundwater resources for the future, two additional policy levels have been introduced: Provincial governments have been made responsible for mapping and protecting Additional Strategic Reserves. These allow for additional groundwater abstractions to meet growing demands in coming decades (horizon 2040/2050). The National Government is responsible for mapping and protecting the National Groundwater Reserves (NGRs) as a third level of resource protection. NGRs serve multiple goals: to protect natural groundwater capital for future generations, to provide reserves for large-scale disasters affecting water supply and to provide reserves for possible use as structural water supply in the far future (horizon 2100 and beyond). NGRs are being delineated in 3D using detailed existing geological models and the Netherlands’ national (fresh-saline) hydrological model. The dynamics of the groundwater system are analysed through scenario analyses. Reserves for potential structural use are selected such that negative impacts on nature are prevented if future abstractions are to be realised. The policies being developed must balance interests of water supply against other sectoral interests such as the green-energy transition with increased use of geothermal energy and aquifer-thermal-energy-storage.

Abstract

In Java Island, Indonesia, andesitic volcanic aquifers are the main water resource for domestic, agricultural, and industrial use. To guarantee sustainable management, a hydrogeological conceptual model is key. Electrical resistivity tomography (ERT) survey is one tool to characterize aquifer structures and extension, specifically in the medial facies of the Arjuno Welirang volcano. Fadillah et al. (2023) proposed a hydrogeological interpretation of the aquifers in the central to proximal-medial transition zone of the Arjuno Welirang volcano. This interpretation was based on geology, hydrogeology, and ERT and focused on major springs and boreholes. Nine additional ERT profiles and borehole data were collected downstream to enhance the medial facies’ understanding further. Seven ERT lines were conducted throughout the midstream part of the watershed. The results confirm the presence of two superimposed aquifers, a first unconfined aquifer made of volcanic sandstone and breccia with a vertical extension of 25 meters and a confined aquifer from 35 to 120 meters (maximum depth of investigation). This last one consists of tuffaceous breccia and volcanic sandstone and includes lava layers as well. A clayey layer with an average thickness of 10 meters constitutes the aquiclude/aquitard between those two aquifers. Furthermore, two ERT lines were conducted in the vicinity of the major spring located in the distal part of volcanic deposits, highlighting the development of a multi-layer alluvial aquifer system.

Abstract

Slug tests are preliminary tests applied to determine the hydraulic conductivity and whether it is necessary to perform a pumping test on the borehole under investigation and should never be recommended as a substitute for a pumping test. For this reason, slug tests cannot be related to sustainable yield because slug tests cannot detect boundary conditions. The aim was to develop a methodology to relate slug tests to a potential yield estimation, investigating and reviewing the applicability and accuracy of the slug test methodology in South Africa, applied on fractured rock aquifers as established in 1995. The aim was achieved by reviewing the methodology applied for slug tests that are related to potential yield estimations, identifying the limitations of slug tests, investigating the possibility of updating the potential yield estimation method of 1995, and investigating the possibility of relating slug tests, to potential yield and transmissivity estimations through groundwater modelling. The investigation revealed that using transmissivity values determined through slug test homogenous modelling can be utilised to estimate the potential yield of a borehole under investigation by implementing correlation statistics. Note that this is not an absolute and is subject to limitations.

Abstract

Source protection area delineation has evolved over the last decades from fixed radius, analytical and numerical methods which do not consider uncertainty to more complex stochastic numerical approaches where uncertainties are often considered in a Monte Carlo framework. The representation of aquifer heterogeneity in these studies is typically based on a geostatistical representation of hydraulic properties. This presentation compares results from complex stochastic flow and transport simulations, simple homogeneous models, and existing analytical expressions. As a case study, we use the existing drinking supply wells in West Melton located Canterbury’s Selwyn District in New Zealand. Monte Carlo realisations are parameterised in MODFLOW6 so that the prior knowledge of the aquifer’s effective, large scale flow characteristics is honoured. Homogenous simulations are based on the same grid, using the aquifer’s effective properties to parameterise the numerical flow model. In both cases, conservative transport of pathogens is undertaken using Modpath7, using both forward and backward particle tracking. The numerical results are compared with analytical expressions from the international literature. Our results suggest that aquifer heterogeneity needs to be explicitly addressed in all cases. Homogeneous simulations almost certainly underestimate contamination risk and produce unrealistically small source protection areas. Parameterisation of the stochastic heterogeneous realisations also affects the size and extent of the source protection area, suggesting that these need to be carefully considered for practical applications.

Abstract

The Lake Sibaya groundwater-dependent catchment in uMhlabuyalingana (KwaZulu-Natal) has been the focus of hydrological research since the 1970s. The continuous decline in lake water levels and groundwater stores has prompted recent efforts. To increase confidence in the relative attribution of known causes of declines, an existing MODFLOW groundwater model was updated based on reviewed and extended hydrological input datasets and more accurate land-use and land cover (LULC) change data. A novel approach was used in this study, which involved running the ACRU surface-water model in distributed mode to provide dynamic recharge outputs for the groundwater model. This approach considers LULC changes, improved spatial and temporal distribution of climatic data, and land-surface hydrological processes. The refined groundwater model provided satisfactory simulations of the water system in the Lake Sibaya catchment. This study reports on the advances and limitations discovered in this approach, which was used to reassess past to current status quo model simulations for the region. The model was then used, as part of a multidisciplinary project, to assess the response of the lake water system under various LULC preferences based on inputs from local communities under two future climate scenarios (warmer wetter and warmer drier) in the current ongoing WRC project. The ultimate goal is to advise water resources management in the catchment.

Abstract

Conjunctive use of surface water and groundwater plays a pivotal role in sustainably managing water resources. An increase in population, especially in the cities, increases the demand for water supply. Additional infrastructure to meet the needs and treatment techniques to remove the pollutants should be updated from time to time. Closing the urban water cycle by recycling and reusing treated sewage in the water sector can significantly reduce excessive groundwater extraction. However, this method is being implemented in only a few cities in developed countries. In the closed urban water cycle, treated sewage is discharged to rivers or other surface water bodies and used for managed aquifer recharge (MAR). Bank filtration, soil aquifer treatment and infiltration ponds are available MAR methods that augment the groundwater resources and remove pollutants during the natural infiltration process. These cost-effective natural treatment methods serve as a pre-treatment technique before public water supply to remove turbidity, algal toxins, bulk dissolved organic carbon and pathogenic microorganisms. The successful performance of these treatment methods depends on the need and feasibility for MAR, suitable hydrogeological conditions, sub-surface storage capacity of the aquifers, availability of suitable areas for MAR, type of MAR, source of recharge water, quality criteria, assessing the past, present and future climatic conditions. Case studies on groundwater resources management and water quality assessment, including for organic micropollutants from a large urban catchment in India, are presented.

Abstract

The Ordovician aquifer of the Izhora deposit is widely used for drinking by the population of St. Petersburg and its suburbs. Carbonate Ordovician rocks are intensively karstified. The water is fresh (0,5-0,8 g/l), bicarbonate-calcium on the predominant ions, pH 7.6; calcium content is 50-80 mg/l, magnesium content is 30-60 mg/l and the total hardness is 7,6-8,0 mg-equ./l. Western, northern and northeastern boundaries of the Izhora deposit go along the Baltic Klint, which is evident on the relief. Its southern boundary is along the zone of the dip of Ordovician limestone beneath the Devonian sandstone. The territory of the Izhora plateau belongs to the areas of intensive economic activity. Often, objects of human economic activity are located near drinking water intakes. Almost all sites are marked by excess sanitary norms of chemical elements. Pollution of groundwater in the Ordovician aquifer has been identified in some areas. Priority substances have been identified for assessing the quality of groundwater: total hardness, Fe, Mn, Ba, and B. According to hydrochemical modelling data, Ordovician groundwater is saturated with calcite over most territory. There are many springs of underground water along the Baltic Klint, for example, near the village of Lopukhinka, Duderhof springs and others. The springs waters have natural radioactivity (due to the contact of groundwater with dictyonema shales), which makes their use hazardous to human health.

Abstract

Kinsevere Mine is an open pit copper mine located within the Central African Copper Belt, experiencing common water challenges as mining occurs below the natural water table. The site’s conceptual model is developed and updated as one of the tools to manage and overcome the water challenges at and around the mining operations. The natural groundwater level mimics topography but is also affected by the operations. The pits act as sinks. The water table is raised below the waste dumps due to recharge in these areas, and the general groundwater flow direction is to the east. The site is drained by the Kifumashi River, located to the north of the site. Water levels from dewatering boreholes and natural surface water bodies define the site’s piezometric surface. The geological model is adopted to define the aquifers and groundwater controls. The Cherty Dolomites, a highly fractured Laminated Magnesite Unit, contribute the highest inflows into the mine workings. The Central Pit Shear Zone acts as a conduit and compartment for groundwater between Mashi and Central Pits. Hydraulic tests have been conducted over the years, and these data are used to estimate possible aquifer property values. The high-yielding aquifer on the west is dewatered using vertical wells, and the low-yielding breccia on the east is depressurized using horizontal drain holes. The site’s water management strategy is reviewed and improved through refinement of the conceptual model.

Abstract

Stable isotopes of the water are widely used in volcanic contexts to identify the recharge area, thanks to a strong orographic effect. Such data help improve the study areas’ conceptual model, especially to identify flow paths through the volcanic edifice. The most common pattern considered is a high to medium-elevation recharge area on a flank of the volcano, feeding both local perched aquifers and a deep basal aquifer. This is quite common for “shield volcanoes”, with the flank comprising a thick accumulation of lava flows. On composite volcanoes, especially in a volcanic arc context, the large diversity of lithologies (effusive/ destructive events dynamics) along the flanks may create a compartmented aquifers system. The Arjuno-Welirang-Ringgit volcanic complex (East Java) has been studied to elaborate a hydrogeological conceptual model. Stable isotopes of the water show significant results in identifying the recharge areas of several aquifers that are outflowing at a similar range of elevation. These results help to propose a water flow pattern from the recharge areas to the main springs with juxtaposed and superposed aquifers. This also leads to constraining the geometry of the aquifers and concluding that one volcanic complex with several recharge areas can feed juxtaposed aquifers. These results also highlight the need to adapt the study scale to each “point of interest” in the volcanic context, as each spring shows a different flowing pattern, preferential recharge elevation, and surface area. These are mandatory data to propose an adapted groundwater management.

Abstract

There is a transboundary groundwater reservoir on the Polish–Ukrainian borderlands, which is of key importance in shaping strategic groundwater resources. Due to the particular importance of this reservoir, the two neighbouring countries are obliged to undertake joint actions to protect it. One of the main difficulties in building a common platform for the management of TBAs in the Polish-Ukrainian border area is the differences in the approach to the identification of GWB, monitoring methodologies and assessment of the condition of GWB, and the inconsistent hydrogeological databases between the two countries. A transboundary numerical groundwater flow model was developed to support internationally integrated management. The model research helped diagnose potential problems by determining the scope of the area with cross-border flows and quantifying the flows between Poland and Ukraine. In addition, the numerical model was used to define the optimal cross-border management unit and the conditions needed to exploit the Lublin–Lviv Reservoir sustainably. Abstraction on a current level slightly increased the transboundary groundwater flow from Poland to Ukraine and minimally reduced the flow in the opposite direction but did not reverse the direction of water flow at the border. The simulated drawdowns do not have a transboundary range, but negative effects on surface water resources are noticeable. Joint management should focus on a broader legal consensus, improvement of institutional relations, and integration of monitoring and groundwater status assessment systems.

Abstract

West of the world-renowned conservation site, Kruger National Park, lies the larger extent of the Greater Kruger National Park within the Limpopo province. Boreholes have been drilled for decades to provide water to game lodges, large resorts, and watering holes for game viewing and livestock. The area contains both primary and secondary aquifers classified as having yields between 0.5 and 5.0 l/s, based on the geological setting, which consists of gneiss intruded by dolerite dyke swarms. A geohydrological assessment revealed that groundwater quality within the project area has an EC of 100 - 350 mS/m, linked to borehole proximity to surface water systems. The Makhutswi Gneiss and Doleritic Dyke swarms are the major controlling geology of the area, with higher-yielding boreholes close to dykes and major structural lineaments (faulted / weathered zones). A concern identified through geohydrological assessment observations is that boreholes frequently dry up after a few years, requiring deeper drilling/redrilling or drilling a new borehole. Aggressive calcium hardness in the water frequently damages equipment and increases maintenance costs. This project investigated the feasibility of increasing recharge to the aquifer with seasonal flooding/rainfall events by constructing artificially enhanced recharge locations overlaying doleritic dykes. This is expected to decrease the groundwater’s salinity and hardness, reducing operational costs. This pre-feasibility assessment has been completed, and the project has continued through a gradual implementation phase.

Abstract

Per and Polyfluoroalkyl substances (PFAS) are ubiquitous on our planet and in aquifers. Understanding PFAS transport in aquifers is critical but can be highly uncertain due to unknown or variable source conditions, hydrophobic sorption to solid organic aquifer matter, ionic sorption on mineral surfaces, changing regulatory requirements, and unprecedentedly low drinking water standards. Thus, a PFAS toolkit has been developed to enable decision makers to collect the hydrogeologic data necessary to understand and better predict PFAS transport in aquifers for the purpose of managing water resources. This toolkit has been tested at a significant alluvial aquifer system in the western United States, which provides water for 50,000 people. Here, the toolkit has provided decision makers with the data necessary to optimize water pumping, treatment and distribution systems. The toolkit describes (1) the design and implementation of a sentinel well network to measure and track PFAS concentrations in the alluvial aquifer over time in response to variable pumping conditions, (2) data collection used to empirically derive input parameters for groundwater fate and transport models, which include the collection of paired aquifer matrix and groundwater samples, to measure PFAS distribution coefficients (Kds) and modified borehole dilution tests to measure groundwater flux (Darcy Velocity) and (3) the use of data collection techniques to reduce cross contamination, including PFAS-free, disposable bailers and a triple-rinse decontamination procedure for reusable equipment. The PRAS transport toolkit has the potential to assist decision makers responsible for managing PFAS contaminated aquifers.

Abstract

Global warming affects atmospheric and oceanic energy budgets, modifying the Earth’s water cycle with consequent changes to precipitation patterns. The effects on groundwater discharge are still uncertain at a global and local scale. The most critical step to assess future spring flow scenarios is quantifying the recharge-discharge connection. This research aims to predict the long-term effects of climate change on the discharge of seven main springs with long hydrologic series of discharge values located in different hydrogeological settings along the Apenninic chain (Italy). The investigated springs are strategic for either public water supply or mineral water bottling. The Apennines stretch along the Italian peninsula in a Northwest-Southeast direction, crossing the Mediterranean area that represents a critical zone for climate change due to a decreased recharge and increased frequency and severity of droughts over the last two to three decades. In this communication, the data of one of the chosen springs, called Ermicciolo (42°55’25.8”N, 11°38’29.5”E; 1020 m ASL), discharging out from the volcanic aquifer of Mount Amiata, are presented. Statistical and numerical tools have been applied to analyse the time series of recharge-related parameters in the spring’s contribution area and the spring discharge from 1939 to 2022. To estimate the impact of climate change on the Ermicciolo’s outflow, a regional atmospheric circulation model has been downscaled to the spring catchment area and used to derive the expected discharge at the 2040-2060 time span, according to the build-up data-driven model of the recharge-discharge relationship in the past.

Abstract

The largely groundwater-dependent Sandveld region’s water resources have been put under severe strain due to increased agricultural and town development and recent increased interest in mineral exploration within these catchments. The area known locally as the Sandveld consists of the coastal plain along the west coast of South Africa, bordered by the Olifants River to the north and east, the Berg River to the south and the Atlantic Ocean coastline to the west. Groundwater is considered an essential source of fresh water for the town and agricultural supply. It also plays a major role in maintaining the functionality of the natural environment, especially concerning the coastal wetlands, such as the Verlorenvlei Wetland, designated as a Wetland of International Importance (Ramsar Site). Monitoring boreholes displayed a general drop in water levels, and a decrease in surface water flow has been reported. This has resulted in the drying up of wetland areas within the catchments. This investigation focused on conceptualising the geohydrological setting and defining the groundwater-surface water interactions and interdependencies. The assessment entailed a complete review and analyses of available hydrogeological and hydrochemical data and reports obtained through Stellenbosch University, the Department of Water and Sanitation and the private consulting sector. The priority groundwater areas were delineated, and recommendations on the regional management of these aquifers were made. The research characterised the geohydrological setting and outlined the Sandveld surface water systems’ dependency on groundwater baseflow and spring flow.

Abstract

The 16th Lum Nam Jone reservoir is located in Chachoengsao Province, Thailand. Since 2019, water has become highly acidic with a pH of 2.5-3.5 and contaminated by heavy metals. The groundwater plume is associated with high concentrations of Iron (60 – 3,327 mg/L), Manganese (38 – 803 mg/L), Copper (5 –500 mg/L), Zinc (11 –340 mg/L), and high Total Dissolved Solids (2,600 –23,000 mg/L). The hydrogeochemical assessment confirmed that the contamination is related to the molybdenum ore processing plant located upgradient. The industrial wastewater was illegally discharged underground and flowed to the reservoir due to a hydraulic gradient. The main objective of this research is to evaluate the efficiency of different reactive materials for In-situ remediation using a permeable reactive barrier (PRB). The experiment column setup showed that marl has the highest efficiency in elevating pH by 3.6 units. The Fe, Cu, and Zn removal rates by crushed shells were 100, 98, and 60%, respectively. The Fe, Cu, and Zn removal rates by limestone were 100, 73, and 32%, respectively. The Fe, Cu, and Zn removal rates by marl were 100, 100, and 48%, respectively. Regarding the laboratory-scale experiment, the pilot PRB was installed upstream of the reservoir. The PRB was filled with marl at the bottom, overlain by limestone, and then covered with the uppermost rice straw layer. The pH increased by 2.6 units inside PRB (from pH 3.1 to 5.7). A reduction of about 50% in Fe, 85% in Cu, and 50% in Zn had been achieved.

Abstract

Underground coal gasification (UCG) is a high-temperature mining method that gasifies coal in situ to produce a synthetic gas that can be used as feedstock for industrial purposes. Coal conversion leads to mineral transformation in the gasifier, which ultimately interacts with the rebounding groundwater post-gasification. This poses a groundwater contamination risk, the biggest environmental risk from a UCG geo reactor. There is currently no model for UCG operators and regulators to assess the total risk of groundwater contamination from UCG operations. This study collates literature on groundwater contamination from UCG operations and presents a workable but comprehensive groundwater risk assessment model for a spent UCG chamber. The model follows the source-pathway-receptor arrangement where groundwater contamination sources are identified as ash, char, roof and floor. All possible pathways are assessed for hydraulic connections with the spent geo-reactor via acceptable geochemical tests, including stable isotopes, hydrochemistry and stratification analysis. Finally, the receptor aquifers (e.g. shallow aquifers) are monitored periodically to determine if contamination has occurred.

Abstract

Italian urban areas are characterized by centuries-old infrastructure: 35% of the building stock was built before 1970, and about 75% is thermally inefficient. Besides, between 60% and 80% of buildings’ energy consumption is attributed to space heating. Open-loop Groundwater Heat Pumps (GWHPs) represent one of the most suitable solutions for increasing the percentage of energy consumption from Renewable Energy Sources (RES) in cities such as Turin city (NW Italy). However, allowing the diffusion of GWHPs cannot be disregarded by the knowledge about hydrogeological urban settings. As the thermally affected zone (TAZ) development could affect energetically adjacent systems, the TAZ extension must be well-predicted to guarantee the systems’ long-term sustainable use. Different buildings of the Politecnico di Torino are cooled during the summer by 3 different GWHP systems. To investigate possible interactions with other neighbouring plants and to preserve the water resource by capturing its positive and productive aspects from an energy point of view, a complex urban-scale numerical model was set up for comprehensively analysing the impact of the geothermal plants on the shallow aquifer. Different simulation scenarios have been performed to define possible criteria for improving the energy functionality of the groundwater resource. Besides, the extent of the TAZ generated was defined as a function of the specific functioning modes of the different GWHP systems. Numerical simulations, legally required by competent authorities, represent a fundamental tool to be applied for defining hydrogeological constraints derived from the GWHPs diffusion in Italian cities.

Abstract

Water budget assessment and related recharge in karstified and fractured mountainous aquifers suffer a large uncertainty due to variable infiltration rates related to karst features. The KARMA project (karma-project.org), funded by the European Commission, has addressed this knowledge gap. The increase in human withdrawals and the effect of climate change can modify the recharge rate and, consequently, the spring discharge. The regional aquifer of Gran Sasso mountain, Central Italy, has been investigated by monitoring spring discharge isotope composition and calculating the inflow using a GIS approach on 100x100 m cells, considering local conditions, including karst features. The results for the 2000-2022 period highlight the preferential recharge area of the endorheic basin of Campo Imperatore (up to 75% of precipitation) and a mean infiltration of about 50% of rainfall. Different methods applied for recharge evaluation (Turc, Thornthwaite and APLIS) agree with a recharge rate close to 600 mm/year. This amount roughly corresponds to the spring discharge, evidencing: i) a “memory effect” in spring discharge, which is higher than previewed during dry years; ii) a variation in discharge due to rainy and drought year distribution, frequently recorded at springs with delay (1-2 years); iii) no significant trends of spring depletion since last 20 years; iv) the risk of lowering of snow contribution to recharge due to the temperature rise. The results provide updated information to the drinking water companies and the National Park Authority for sustainable management of the available groundwater resources.

Abstract

The City of Cape Town (CCT) initiated its “New Water Programme” in 2017 (during the major 2015-2018 “Day Zero” drought) to diversify its bulk water supply, thereby improving longterm water security and resilience against future droughts. This includes bulk groundwater abstraction from the major fractured Peninsula and Nardouw Aquifers of the Table Mountain Group (TMG) in the mountain catchments east of the CCT. The TMG aquifers are essential in sustaining groundwater-dependent ecosystems associated with the Cape Floral Kingdom – a global biodiversity (but also extinction) hotspot with exceptional endemic diversity. A strong geoethical, “no-regrets” approach is therefore required to develop TMG wellfield schemes for the CCT (and other towns/cities in the Western/Eastern Cape) to reduce the risk of any negative ecological and environmental impacts while still enhancing the drought resilience of the city, providing water for future urban growth, and meeting Sustainable Development Goals 6 and 11.

To this extent, the CCT has developed an extensive regional (and local, in terms of Steenbras Wellfield) environmental monitoring network, incorporating a range of in-situ and remote sensing-based measurements across the Earth’s “Critical Zone” – this includes current groundwater, surface water, ecological, soil and meteorological monitoring stations, and future seismo-geodetic monitoring. An ongoing ambition is to include this CCT TMG monitoring network into the “Greater Cape Town Landscape”, which is currently in development as one of six national South African landscapes under the “Expanded Freshwater and Terrestrial Environmental Observation Network” (EFTEON) platform being hosted by the South African Environmental Observation Network.

Abstract

Water stewardship is achieved through a stakeholder’s inclusive process. It aims to guarantee long-term water security for all uses, including nature. Various actions can occur in the watershed’s recharge area, such as land cover restoration and artificial recharges. To measure the effectiveness of these actions, it is crucial to quantify their impact on water and communities. The common method for assessing the benefits of water stewardship activities is the volumetric water benefit accounting (VWBA) method. It allows for comparing the positive impact on water to the extracted groundwater volume for operations. We present the validation of the Positive Water Impact of DANONE Aqua operation at the Lido Site in West Java, Indonesia, within the VWBA framework. Different methods were used to evaluate three main water impact activities: (1) land cover restoration with reforestation, (2) artificial recharge with infiltration trenches and wells, and (3) water access. The curve number of the SWAT model was used to measure the reduced runoff impact of the land conservation action. The water table fluctuation method was employed to assess artificial recharge volume. The volume of pump discharge rates was used for water access. Results highlight the water impact at the Lido site, with the volumetric accounting of the three main activities. The discrepancy in the final calculation can be related to the variation in the field’s validated activities. VWBA framework is useful to validate water stewardship activities’ impact and plan further impactful actions.

Abstract

The Atlantis Water Resource Management Scheme (AWRMS) has operated since the 1970s. It demonstrates cost-effective and wise water use and recycling through visionary town planning and Managed Aquifer Recharge (MAR), offering water security to Atlantis’s residential and industrial sectors. For the AWRMS to succeed, it required integrating its water supply, wastewater and stormwater systems. Each of these water systems is complex and requires a multidisciplinary management approach. Adding to the challenges of inter-departmental co-operation and communication within a municipal system is the complexity and vulnerability of the coastal, primary Atlantis Aquifer. A combination of operational difficulties, biofouling, vandalism and readily available surplus surface water (leading to scheme augmentation from surface water) were negative drivers to decrease the reliance on groundwater supply from the scheme’s two wellfields. In response to the 2015-2018 drought experienced in the Western Cape of South Africa, the City of Cape Town has improved assurance of supply from the scheme and successfully built resilience by upgrading knowledge and insight through improved investigative techniques, monitoring, modelling and adaptive management of the various water resources and associated infrastructure systems. An integrated and adaptive management approach is essential to ensure continued water security and resilience to the effects of on-going urban expansion, population growth and climate change. Resilience is assured by institutions, individuals and communities taking timely and appropriate decisions, while the long-term sustainability of the AWRMS depends on proper management of all actors coupled with a high level of scientific confidence.

Abstract

The aquifers in the Chao Phraya River basin region were abundant in groundwater. Lately, the groundwater level has been declining due to agricultural activities. While in the wet season, these areas frequently suffered from flooding due to lower elevation than their surroundings. The Managed Aquifer Recharge (MAR) methods were applied to ease problems by constructing artificial recharge wells which can detain stormwater runoff and let it gradually infiltrate into the aquifer directly. For decades, the Department of Groundwater Resources started the MAR project to alleviate groundwater depletion and flooding over specific areas. However, most of the projects in the past lacked follow-up results and evaluation. Thus, later projects attempted to study recharge processes to evaluate the volume of recharged water through structures and calculate the infiltration rate through filter layers within the structures.

Recently, the field experiments of artificial groundwater recharge were conducted as 8-hour and 20-day experiments with shallow recharge wells in the Chao Phraya River basin regions. These two types of experiments provided similar results. The average recharge rates of 8-hour and 20-day experiments are 2.22 m3/hr and 2.57 m3/hr, respectively. Recharge rates of each well were independently distinct depending on sedimentation characteristics, aquifer thickness, and volume of dry voids. During the test, the recharge well continuously encountered the problem of sediment clogging due to using untreated water from neighbouring streams and ponds. This clogging issue needed to be treated regularly to maintain the efficiency of the recharge well.

Abstract

atural water-rock interaction processes and anthropogenic inputs from various sources usually influence groundwater chemistry. There is a need to assess and characterise groundwater quality monitoring objectives and background values to improve groundwater resource monitoring, protection and management. This study aims to determine monitoring objectives and characterise monitoring background values for all monitoring points within the Soutpansberg region. This study used long-term groundwater quality monitoring data (1995- 2022) from 12 boreholes and 2 geothermal springs. Monitoring objectives were determined from land-use activities, allocated groundwater use, and water use sectors. Monitoring background values were determined from the physio-chemical parameters from each of the 14 monitoring points. This study determined monitoring objectives and background values of all monitoring points and all physio-chemical parameters in the Soutpansberg region. This study recommends reviewing the determined monitoring objectives and background values every 5 to 10 years to assess any change in land use, groundwater use and sector and monitoring data trends.

Abstract

Groundwater is an essential source of water worldwide. The increased reliance on groundwater has caused the mining of many aquifers, a situation compounded by climate change, rising surface-air temperature, declining precipitation, and reduced groundwater recharge in many regions. The global annual intensity of groundwater use rose from 128 to 155 m3 per capita between 1950 (when the world population was 2.5 billion people) and 2021 (when the population was 7.9 billion people) and is herein projected to rise to 178 m3 per capita by 2050 as the world’s population is projected to increase (to 9.7 billion people by 2050) throughout the rest of the 21st century and beyond. This study projects a global annual groundwater depletion of 1,008 km3 by 2050, representing a 256% rise from the estimated 2010 depletion. This projection is most likely a lower bound of the actual groundwater depletion that would be realized considering environmental flows, historical trends of global economic growth, and climate-change impacts, thus being a harbinger of rising environmental degradation (e.g., land subsidence, seawater intrusion, streamflow reduction, aridification). Measures to achieve groundwater sustainability are herein identified.

Abstract

Floods result in significant human and economic losses worldwide every year. Urbanization leads to the conversion of natural or agricultural land covers to low-permeability surfaces, reducing the infiltration capacity of the land surface. This amplifies the severity and frequency of floods, increasing the vulnerability of communities. Drywells are subsurface structures built in the unsaturated zone that act as managed aquifer recharge facilities to capture stormwater runoff. They are particularly well-suited for the urban environment because of their low land occupancy. In this study, we utilized an integrated surface-subsurface flow modelling approach to evaluate the effectiveness of dry wells in reducing urban runoff at a catchment scale. We developed a 3D model with HydroGeoSphere, characterizing a synthetic unconfined aquifer covered by a layer of low-permeability materials. Sensitivity analyses of land surface conditions, aquifer properties, dry well designs, and rainfall conditions were performed. Model results indicated that dry wells are more effective in reducing runoff when the land surface has a higher Manning roughness coefficient or the aquifer material has a higher hydraulic conductivity. Dry wells should be situated beneath drainage routes with high runoff flux to achieve optimal performance. Increases in dry well radius or depth enhance the infiltration capacity, but deeper dry wells can contaminate groundwater through infiltrating stormwater. Dry well performance declines with higher rainfall intensity, emphasizing the need for local rainfall intensity–duration–frequency (IDF) data to inform the design level of dry wells in specific catchments.

Abstract

Aquifer Thermal Energy Storage (ATES) is increasingly utilised to optimise the efficiency of Ground Source Heat Pump (GSHP) systems. However, the criteria for selecting ATES over Unidirectional GSHP is not well-defined. Inappropriate selection of AETS can adversely impact the long-term viability and the GSHP system itself, as well as regional hydraulic and thermal sustainability due to adverse groundwater levels and temperature change. This is a concern in urban aquifers, where GSHP systems are increasingly common. There is a perception that ATES is always the most efficient; however, there is no clear definition of efficiency and how it can be readily assessed at the GSHP design stage. It is proposed and demonstrated herein that GSHP efficiency can be assessed by modelling borehole pumping in lieu of complex Coefficient of Performance calculations for the whole GSHP system. Borehole pumping is a more readily definable modelling outcome for comparing options at an individual site but is also a suitable proxy for comparing efficiency at different sites when given as a flow per unit rate of pumping. Operational efficiencies for ATES versus Unidirectional systems are presented using the pumping rate criteria for modelled scenarios. Here, three model inputs are varied: 1) the balance of heating and cooling, 2) the configuration of a single borehole pair across a hydraulic gradient and 3) the hydraulic gradient itself. These were assessed using coupled groundwater flow and heat transport modelling in Feflow to refine the Goldilocks Zone, the perfect balance, for these variables.

Abstract

Access to safe water is not yet universal in Burkina because 30% of Burkinabes do not yet have access to drinking water. The objective of universal access to drinking water (ODD 6.1) is difficult to achieve in the context of population growth and climate change. Basement rocks underline 80% of Burkina Faso. However, about 40% of the boreholes drilled in the Burkina Faso basement rocks do not deliver enough water (Q < 0.2l/s) and are discarded. This study focuses on determining the appropriate hydrogeological target that can be searched to improve the currently low drilling success rate.

We set up a well-documented new database of 2150 boreholes based on borehole drilling, pumping tests, geophysical measurements, and geological analysis results. Our first results show that the success rate at 0.2l/s (i.e. 700 l/h) is 63% at the end of the drilling against 54% at the end of borehole development: the yield of 8% of the boreholes lowers significantly after only a few hours of development. We also found that the yield of the water intakes encountered during the drilling process slightly decreases with depth; beyond 60m, it is rare (only 15% of cases) to find water occurrences. We found clear relationships between the productivity of the borehole (yield after drilling and transmissivity obtained from the pumping test) and the thickness of the weathering rocks, indicating that the appropriate target to obtain a productive borehole is a regolith of about 35 meters thick.

Abstract

Across Africa, given the pressing challenges of climate change and widespread water, food and livelihood insecurity and poverty, there is an ever-increasing expanding role for groundwater in resilience building, especially in borderland communities. This situation is being investigated in several projects and geographies. This paper’s groundwater management analysis was based on literature reviews, key informant interviews (KIIs), and focus group discussions (FGDs) in selected case study areas throughout sub-Saharan Africa. The KIIs included representatives of water management institutions, community leaders, international development partners, the private sector and non-governmental organisations (NGOs) involved in the use or management of groundwater. The FGDs occurred in borderland communities in Ethiopia, Kenya, and Somalia (with these three countries sharing borders) and Mozambique, South Africa and Zimbabwe (with these three also sharing borders). The findings show that informal institutions such as clan, tribal or ethnic affiliations dictate access to natural resources such as groundwater in borderlands. These same Institutions also play a significant role in conflict resolution in the borderland areas. In addition, informal institutions play an essential role in groundwater management and should also be recognised – in engagements and formal water policies and legislation. Formal organisations, institutions and government structures should strengthen their focus on ensuring that discussions and decisions include informal role players. Further developing and enforcing conventions, land-use plans, and bylaws governing access to and use of groundwater should ensure engagement and co-creation of solutions towards effective water resource management.

Abstract

The devastating socioeconomic impacts of recent droughts have intensified the need for improved drought monitoring in South Africa (SA). This study has shown that not all indices can be universally applicable to all regions worldwide, and no single index can represent all aspects of droughts. This study aimed to review the performance and applicability of the Palmer drought severity index (PDSI), surface water supply index (SWSI), vegetation condition index (VCI), standardised precipitation index (SPI), standardised precipitation evapotranspiration index (SPEI), standardised streamflow index (SSI), standardised groundwater index (SGI), and GRACE (Gravity Recovery and Climate Experiment)-based drought indices in SA and provide guidelines for selecting feasible candidates for integrated drought monitoring. The review is based on the 2016 World Meteorological Organization (WMO) Handbook of Drought Indicators and Indices guidelines. The PDSI and SWSI are not feasible in SA, mainly because they are relatively complex to compute and interpret and cannot use readily available and accessible data. Combining the SPI, SPEI, VCI, SSI, and SGI using multi-index or hybrid methods is recommended. Hence, with best fitting probability distribution functions (PDFs) used and an informed choice between parametric and non-parametric approaches, this combination has the potential for integrated drought monitoring. Due to the scarcity of groundwater data, investigations using GRACE-based groundwater drought indices must be carried out. These findings may contribute to improved drought early warning and monitoring in SA.