Conference Abstracts

All Abstracts were presented at the Groundwater Conferences

Displaying 151 - 200 of 795 results
Title Presenter Name Presenter Surname Area Conference year Sort descending Keywords

Abstract

POSTER The Fountains East and Fountains West groundwater compartments (by means of the Upper and Lower Fountain springs) have been supplying the City of Pretoria with water since its founding in 1855. These adjacent compartments which are underlain by the Malmani dolomites of the Chuniespoort Group are separated by the Pretoria syenite dyke and are bounded to the north by the rocks of the Pretoria Group (Timeball Hill Formation). Swallow holes and paleosinkholes play important roles in recharge in karst environments. Available sinkhole data and geotechnical percussion borehole logs are being collated to compile a detailed conceptual geological model. Inorganic chemistry data (2007 - 2012) as well as spring discharge volumes (2011 - 2012) for the Upper and Lower Fountain springs, supplied by the City of Tshwane Municipality, is being used to characterise the two compartments. This is done by means of piper diagrams, stiff diagrams and temporal plots. Isotope data for the Upper and Lower Fountain springs are available for 1970 to 2007. ?D and ?18O data from the Upper and Lower Fountain springs are plotted against each other and the Global Meteoric Water Line. Other stable isotopes (including 14C and 3H) are also plotted as time trends and interpreted. Interpretation of the combined geotechnical, chemical and isotope data will aid in understanding the karst aquifer and the controls on groundwater system within and possibly between these compartments.

Abstract

Modelling of groundwater systems and groundwater-surface water interaction using advanced simulation software has become common practice. There are a number of approaches to simulate Lake-aquifer interactions, such as the LAK Package integrated into MODFLOW, the high conductivity and fixed stage approaches. LAK and the high conductivity approaches were applied and compared in simulating Lake- aquifer interaction in the Lake Sibayi Catchment, north-eastern, South Africa using the finite difference three-dimensional groundwater flow model, Visual MODFLOW Flex under steady state conditions. The steady state model consisted of two layers: an upper layer consisting of the Sibayi, KwaMbonambi, Kosi Bay and Port Durnford Formations which have similar characteristics, and a lower model layer representing the karst, weathered and calcareous Uloa Formation. The bottom model boundary is constrained by the impermeable Cretaceous bedrock. The model area covers the surface and groundwater catchments of Lake Sibayi which is constrained in the east by the Indian Ocean. A no-flow boundary condition is assigned to the northern, western and southern sides and a constant head boundary is assigned to the eastern side. The Mseleni River and neighbouring plantations were modelled using the River and Evapotranspiration boundary conditions respectively. Input parameters for the various boundary conditions were obtained from the previously developed high resolution conceptual model, including recharge

Abstract

Define chemical signatures from river waters collected in the Crocodile (West) and Marico Water Management Areas, South Africa. Samples were analysed for anion complexes using Ion Chromatography (IC) and major and trace element chemistry using quadrupole Inductively Coupled Plasma-Mass Spectrometry (q-ICP-MS). Results are used to define the various chemical signatures resulting from activities within the study area which include mining, agriculture, industry, residential and domestic, and recreational usage and to differentiate the 'background' that arises from the natural geological heterogeneity. The aim of this characterisation is to fingerprint the chemical signatures of various anthropogenic activities irrespective of background. Results from this investigation have been mapped using GIS to visualise the data across the study area. Based on the results, the contamination sources within the area can be identified and ranked in terms of their contribution to the total effective contamination received at Hartebeespoort Dam. {List only- not presented}

Abstract

Currently limited progress is made in South Africa (and Africa) on the protection of groundwater used for drinking water. To achieve the objective of water for growth and development and to provide socio-economic and environmental benefits of communities using groundwater, significant aquifers and well fields must be adequately protected. Groundwater protection zoning is seen as an important step in this regard. Till today, limited case studies of groundwater protection zoning exists in Africa. A case study at the Rawsonville research site is conducted in this research project. Generic protection zones can be delineated at the site using published reports and database data. However, due to the complexity of the fractured rock at the research site, these would be of limited value and would not provide adequate protection for the well field Baseline data was collected by conducting a hydro census and through aquifer tests. An inventory of the activities that can potentially impact water quality was done and aquifer characteristics such as transmissivity and hydraulic conductivity were determined through various types of aquifer testing. Fracture positions were identified using fluid logging and fracture flow rates were also measured using fluid logging data. A conceptual model and preliminary 3D numerical model were created to try to understand groundwater movement at the research site. The knowledge gained will be used to guide information gathering and monitoring that can be used to build a more detailed numerical model and implement a trustworthy groundwater protection plan at a later stage. The expected results will have applicability to groundwater management in general. The protection plan developed during this project can be used as a case study to update and improve policy implementation. {List only- not presented}

Abstract

Understanding the hydrogeology of fractured or crystalline rocks could be complicated because of its complex structure and a porosity that is almost exclusively secondary. These types of geologies are known to exhibit strong heterogeneities and irregularities contrasted in hydraulic properties, spacing and flow distribution within fractured rock aquifers. Therefore it is important to develop a conceptual model based on site specific data such as the hydraulic roles between groundwater and nearby hillslope/surface water bodies in order to understand its movement within the environment. Therefore this study intends to develop a hydrogeological conceptual model to qualitatively interpret the dominant groundwater flow processes at a 3rd order scale within southern granite supersite of the Kruger National Park (KNP). Key findings based on actual subsurface results in the form of Electrical Resistivity Tomography (ERT) surveys, borehole drilling logs, water levels and hydraulic data suggest that two aquifer types exist on the southern granite supersite namely, a weathered low resistivity of 3-75 ?m (average depth ranging 383-328 mamsl) and hard rock high resistivity of 1875-5484 ?m (average depth ranging 364-299 mamsl) granite/gneiss aquifer. The weathered aquifer flow system responds to localized processes such as piston recharge, indirect surface water recharge and groundwater water discharge via interflow. This was due to the relatively rapid response time of 2-3 weeks in groundwater levels to the major sequence of rainfall events over the hydrological year. The hard rock aquifer is part of a regional groundwater flow system. This is owed to the lengthy response time lags of 2-3 months in groundwater levels to the major sequences of rainfall events over the hydrological year. Due to the generally low transmissivity (ranging 9.50E-08 to 11.2 m2/day) values obtained during the borehole pump and slug tests and inclining trend of groundwater levels after the wet season, suggest these ephemeral hillslope landscapes are likely to act as hydraulic boundary areas. In that they contribute during the dry season to the regional hydraulic head generating baseflow to perennial streams. Therefore from a management perspective certain reaches within these ephemeral streams contribute to recharge which in turn should receive attention as many of the ephemeral stream sand are used for grading tourist gravel roads. Furthermore these granite ephemeral landscapes are characteristic of generally low transmissive aquifer properties and therefore should be given careful consideration before including it in a water supply scheme scenario.

Abstract

The quality of groundwater is influenced by the chemistry of the rocks through which it migrates. The rock types in an area, particularly their weathered products and rainfall contribute greatly to the chemistry of groundwater. The present study examines the impact of bedrock on the chemistry of groundwater from shallow granite aquifers in Northern Nigeria. Groundwater samples from northeast (Hong), northwest (Zango) and Northcentral (Ogbomosho) were collected and analyzed for relevant water quality parameters. The concentration of fluoride (0.0-3.50) and some heavy metals such as iron (0.3-4.6), nickel (0.1-0.98), copper (0.0-.85), lead (0.001-0.4.0), Manganese (0.00-1.4) and arsenic (0.0-0.76) were slightly higher than their recommended maximum permissible limit in some locations and the observed anomalies can be attributed to geogenic influence as no visible industries are domiciled in these areas. Based on these signatures, the geochemical evolutions of groundwater from the three locations were quantitatively described by the interaction with rock-forming minerals released into the groundwater system through natural processes of weathering and dissolution in the flow-path. This is a testimony to the fact that groundwater can be grossly contaminated with critical elements by natural means. Analyses of rock samples from these locations revealed the presence of nacaphite, a fluoride rich mineral as well as arsenic, nickel, copper, lead and iron. The observed concentration ranges of fluoride and heavy metals are a reflection of the natural background concentration and a landmark in geochemical characterization of groundwater system in these areas. The enrichment trend is in the order of Zango > Hong > Ogbomosho. This implies that the granites in the area are composed of mineral containing these elements. Communities living in the granite/rhyolite dominated region where cases of fluorosis and heavy metal contamination have been observed should discontinue the use of groundwater from the area for domestic and drinking purposes. The Government should provide an alternative source of drinking water for the people.

Abstract

The colliery is situated in the Mpumalanga Coalfield, north of Trichardt in the Republic of South Africa. The opencast is already rehabilitated but still acts as an entrance to the underground sections of the mine. The Life of Mine indicates active mining until 2035. We were tasked to develop a mine closure plan. Two surface drainage systems are present, namely the Trichardt Spruit and the Steenkool Spruit. Both these systems have been diverted locally around the opencast with the necessary permission, to maximize coal extraction and protect the environment. Several passive treatment options were tabled to minimise the post closure environmental contamination. After careful consideration it was decided to develop a mine flooding plan to exclude oxygen from the mine thereby minimising the sulphate generation inside the opencast and underground sections. To start flooding as early as possible, sections of the underground mine were identified as natural or artificial compartments to store water. The rehabilitated opencast is flooded using recharge water from rainfall. The capacity of the rehabilitated open pit is enlarged to evaporate all the excess water in the pit making the need for a treatment plant unnecessary.

Abstract

Implementation of a mining project in South Africa involved dewatering of a fractured rock aquifer at considerable depth below ground level. Groundwater quality within this aquifer is not suitable for domestic use due to high levels of salinity. Numerous geological investigations in the area indicate that the target aquifer is confined, with a different piezometric head to the shallower aquifers. However, regulators and other interested and affected parties expressed concern regarding the potential mixing of more saline groundwater from the deeper aquifer to be dewatered with groundwater from shallower aquifers, which are extensively used for farming and domestic purposes.
A large database of groundwater quality monitoring data collected over 16 years was available to investigate the degree of mixing between the deeper more saline and shallower freshwater aquifers. The groundwater chemistry of selected boreholes with known geological profile, depth and construction was used to develop groundwater fingerprinting criteria for each of the aquifers in the area. These fingerprinting criteria were then applied to private and exploration boreholes in the area in order to identify the main aquifer from which groundwater was being sourced. Once the boreholes were classified in terms of groundwater origin, an attempt was made to identify indicators of mixing with deeper, more saline groundwater from the aquifer being dewatered.
Groundwater fingerprinting allowed identification of impacts related to the mining operations. The data showed that there was no upward mixing of water related to dewatering operations, but rather that surface spillages and disposal schemes may have resulted in minor changes in shallow groundwater quality. {List only- not presented}

Abstract

Gold Mining activities the past 60 years at AngloGold Ashanti polluted the groundwater underlain by 4000 ha of land at the Vaal River and West Wits operations in South Africa. Sulphide material in Tailings Storage Facilities, Waste Rock Dumps and extraction plants produce Saline Mine Drainage with Sulphate, minor salts and metals that seep to the groundwater and ultimately into surface water resources. Water regulation requires mines to prevent, minimise/ reduce or eliminate pollution of water resources. The waste philosophy has matured from tolerate and transfer to treat and termination of pollution sources. The impact of the pollution was determined and possible technologies to treat the impact were evaluated. Source controls of proper water management by storm water management, clean dirty water separation, lined water conveyance structures and reduced deposition of water on waste facilities is crucial. The aquifer character determines the possible remediation technology. From the possible technologies phytoremediation, physical interception and re-use of this water was selected. In future possible treatment of the water would be considered. This paper explain the strategy and report on the phased implementation of these plans and the expected results. The establishment of 750 ha of woodlands as phytoremediation, interception trenches of 1250 m, 38 interception boreholes and infrastructure to re-use this water in 10 water management areas is planned. The total volume of 15 Ml/day would be abstracted for re-use from the boreholes and trenches. The woodlands can potentially attenuate and treat 5 ml/day. The established woodlands of 150 ha proof successful to intercept diffused seep over the area of establishment and reduce the water level and base flow. The 2 implemented trenches of 1000 m indicate a local decline in the water level with interception of shallow groundwater within 1-2 m from surface. The 2 production interception well fields abstracting 50 and 30 l/s respectively indicate a water level decline of between 2 to 14 m with regional cones of depression of a few hundred meters to intercept groundwater flow up to 20 meter. Predictions from groundwater modelling indicate that these schemes can minimise pollution during the operational phase and protect downstream water resources. Predictions from modelling indicate that the pollution sources need to be removed to ensure long term clean-up to return the land to save use. The gold and uranium prize is securing the removal of the sources through re-processing of the tailings and waste rock dumps. After removal of the sources of pollution the remediation schemes would have to be operated for 20 years to return the groundwater to an acceptable standard of stock watering and industrial water use. The water quality is observed by a monitoring network of approximately 100 observation boreholes.

Abstract

This article present field evidence on the effect of artefacts other than the horizontal groundwater flux on the single-borehole tracer dilution test. The artefacts on the tracer dilution were observed during two single-borehole tracer dilution tests conducted in an alluvial channel aquifer in the main Karoo Basin of Southern Africa. Field evidence shows that early time of the tracer dilution plot can be affected by artefacts other than the horizontal groundwater flux. These artefacts have great potential to increase the early time gradient of tracer dilution curve leading to overestimation of the horizontal groundwater flux. A qualitative approach that can be used to isolate and remove portion of the dilution plot that has resulted from artefacts other than the groundwater flow prior to calculating the horizontal groundwater flux is proposed.

Abstract

Natural attenuation describes a set of natural processes which decrease the concentrations and/or mobility of contaminants without human intervention. In order to evaluate and demonstrate the effectiveness of natural attenuation, regular long term monitoring must be implemented. This entire process is called Monitored natural attenuation (MNA). The focus of MNA is generally placed on hydrocarbons and chlorinated solvents but according to the United States Environmental Protection Agency (USEPA) MNA can be used for various metals, radio nuclides and other inorganic contaminants. MNA was deemed the best method to reduce the concentration and mobility of contaminants impacting the groundwater environment, at a fertiliser plant in the Free State. A number of improvements in infrastructure were made in 2013which were assumed to have prevented further release of contaminants into the groundwater system, from the source areas on site. MNA was also considered to be the most effective affordable solution for the site as groundwater in the vicinity is not used for domestic purposes (low risk). Cl, NO3 and NH4 were used to monitor the movement of the contamination off site and the effectiveness of MNA. With regards to the inorganic contaminants emanating from the site, sorption, dispersion, dilution, and volatilization are the main attenuation mechanisms. These mechanisms are considered to be non-destructive attenuation mechanisms. Denitrification, nitrate reduction through microbial processes, may also facilitate in the attenuation of the in organic constituent nitrate. Denitrification is considered a destructive mechanism. Classed posts and temporal graphs of the Cl, NO3 and NH4 concentrations between 2008 and 2014 were utilised to show the movement and change in size and shape of the contamination plumes and subsequently, monitor MNA. The data indicates that the NO3, Cl and NH4 contamination plumes from the various source areas on the site have detached from the site and are currently moving down gradient along the natural drainage. Contaminant concentrations at the site have generally decreased in recent monitoring events while concentrations downstream of the site have remained stable. This indicates that MNA is currently an effective method of remediation for the site and monitoring should be continued to ensure that it remains effective.

Abstract

The colliery is situated in the Vereeniging-Sasolburg Coalfield, immediately southwest of Sasolburg in the Republic of South Africa. The stratigraphy of this coal field is typical of the coal-bearing strata of the Karoo Sequence. The succession consists of pre-Karoo rocks (dolomites of the Chuniespoort Group of the Transvaal Sequence) overlain by the Dwyka Formation, followed by the Ecca Group sediments, of which the Vryheid Formation is the coal-bearing horizon. Mainly the lava of the Ventersdorp and Hekpoort Groups underlie the coal. The Karoo Formation is present over the whole area and consists mainly of sandstone, shale and coal of varying thickness. The underground mine was flooded after mining was ceased at the colliery in 2004. The colliery is in the fortunate position that it has a very complete and concise monitoring programme in place and over 200 boreholes were drilled in and around the mine throughout the life of the mine. To stabilise mine workings located beneath main roads in the area, an ashfilling project was undertaken by the colliery since 1999. A key issue is if the mine will eventually decant, and what the quality of the water will be. This is important for the future planning of the company, as this will determine if a water treatment plant is necessary, and what the specifications for such a plant will be, if needed. Therefore it was decided to do a down-the-hole chemical profile of each available and accessible borehole with a multi-parameter probe with the aim of observing any visible stratification. Over 90 boreholes were accessible and chemical profiles were created of them. From the data collected a three - dimensional image was created from the electrical conductivity values at different depths to see if any stratification was visible in the shallow aquifer. The ash-filling operations disturbed the normal aquifer conditions, and this created different pressures than normally expected at a deeper underground colliery. From the three-dimensional image created it was observed that no stratification was visible in the shallow aquifer, which lead to the conclusion that in the event that if decant should occur, the water quality of the decanting water will still be of very good quality unless external factors such as ash-filling activities is introduced. It is not often that it is possible to create chemical profiles of such a large number of boreholes for a single colliery and as a result a very complete and informative three-dimensional electrical conductivity image was created. This image is very helpful in aiding the decision making process in the future management of the colliery and eventually obtaining a closure certificate, and also to determine whether ash-filling is a viable option in discarding the ash.

Abstract

The manner in which municipal and industrial wastes generated are disposed in the urban areas in Nigeria is worrisome. The practice of dumping solid wastes in abandoned burrow-pits or valley and the discharge of liquid wastes directly on soils or surface water without any form of treatment has resulted in soil and water pollution. The continuous release of dangerous gases into the atmosphere by industries unabated has contributed to air pollution. These inadequate waste disposal techniques have created serious environmental and health challenges. Due to increasing population growth rate, urbanization, industrialization and economic growth, there has been a phenomenal increase in the volume of wastes generated daily and handling of these wastes have constituted an environmental problem. The need to manage these wastes in an environmentally-friendly manner that will guarantee safety of the soil and water resources lead to the present study. The newly designed waste management landfill incorporates advanced features such as complex multiple liner construction to facilitate organic decomposition and maintain structural integrity. The multiple protective layers and regular monitoring ensure that the waste management landfills exist in harmony with their surrounding environments and communities. These features that enhances maximum protection of soil and water from contamination by plume by decaying waste is lacking in the un-lined open waste dumps been practiced in the country. Pollution abatement, waste reduction, energy saving, health and economic benefits are some of the advantages of the newly designed sanitary landfill system.

Abstract

Decades of monitoring, characterising, and assessing nitrate concentration distribution and behaviour in the soil profile and it's pathway into groundwater have resulted in a good understanding of its distribution in the country. While the national distribution is of great importance, site specific conditions determine fate, transport, and ultimately concentration in a specific area. Field experimental work included installation of a barrier containing a cheaply available carbon source to treat groundwater. The "reactor"/ tank with dimensions- 1,37m height, 2.15m diameter used for the experiment was slotted for its entire circumference by marking and grinding through the 5mm thick plastic material. The top section was left open to allow for filling and occasional checking of filled material during the experiment. The tank was packed with Eucalyptus globulus woodchips which was freely available at the site. Concentrations of groundwater nitrate at the site were well over what could be expected in any naturally occurring groundwater systems, and would result only by major anthropogenic activities in unconfined aquifer areas of South Africa. The changes in parameter concentrations with time were measured in order to determine the efficiency and life span of the carbon source used for the experiment. This paper considers 35 months of monitoring at a site where a low technology method was implemented. Field implementation was tested at a site which previously experienced some NH4NO3 spills. Main results from the field work showed that nitrate was totally removed at the treatment zone and surrounding boreholes, and even sulphate and NH4+ were removed during the experiment. This shows that the woodchips were successful in affecting denitrification for 35 months. Data also shows that boreholes further downstream from the tank had reduced NO3-, SO42- and NH4+ levels. Using the available biodegradable carbon for the woodchips based on its composition, a barrier lifespan could be determined. The results of calculations showed that the barrier would be effective for at least another 6.9 years from the period of the last sampling date. A total lifespan of about 10 years can thus be estimated.

Abstract

Water monitoring is a key aspect in the mining industry, in terms of gathering baseline data during the pre-construction stage, identifying potential areas of concern and mitigating source pollutants during the operational stage. A proper water monitoring program assists in the monitoring of plume development and water level rebound during the closure phase. The data made available through consistent long term monitoring should not be underestimated. Monitoring the effect that coal mine operations have on the water quality and quantity of surface and groundwater resources is a complex and multidisciplinary task. Numerous methodologies exist for monitoring of this kind. This paper will supply an overview of the water- rock chemistry associated with coal mine environments and the key indicator elements that should be focused on for water monitoring as well a review of the Best Practice Guidelines requirements in terms of water monitoring. Two case studies of coal mines in KwaZulu Natal will be reviewed, the key challenges outlined and mitigation measures implemented. The impact of requirements such as those set out by the Department of Water and Sanitation in terms of strict water quality limits for water containment and waste facilities as specified by Water Use Licences has also created unrealistic non-compliance conditions. The initial approach to creating a water monitoring programme should involve first identifying gaps in previous datasets and delineating potential sources of contamination. The sampling frequency will depend primarily on the water resource being monitored and the water quality analysis will depend on the type of facility. The facilities required for a specific situation will depend on the type and amount of waste generated, potential for leachate formation, vulnerability of groundwater resources and potential for water usage or resource sensitivity.

Abstract

Edible vegetable oil (EVO) substrates have been successfully used to stimulate the in situ anaerobic biodegradation of groundwater contaminated chlorinated solvents as well as numerous other anaerobically biodegradable contaminants like nitrates and perchlorates at a many commercial, industrial and military sites throughout the United States of America and Europe. EVO substrates are classified as a slow release fluid substrate, and comprise of food grade vegetable oil such as canola or soya bean oil. The EVO substrate serves as an easily biodegradable source of carbon (energy) used to create a geochemically favorable environment for the anaerobic microbial communities to degrade specific contaminants of concern. EVO substrate's can either be introduced into the subsurface environment as pure oil, in the form of light non aqueous phase or as an oil/water emulsion. The emulsified vegetable oil substrates holds several benefits over non-emulsified vegetable oil as the fine oil droplet size of the commercially manufactured emulsified oils can more easily penetrate the heterogeneous pore and fracture spaces of the aquifer matrix. The use of this technology to stimulate in situ biodegradation of groundwater contaminants is still relatively unknown in South Africa. This paper will give an overview of the EVO technology and its application, specifically looking at the advantages of using this relatively inexpensive, innocuous substrate based technology to remediate contaminated groundwater within fractured rock environments commonly encountered in South Africa. {List only- not presented}

Abstract

An electrical resistivity geophysical study was conducted at a historically contaminated site in northern Namibia. It is well known that fracture breaks/fault features are often good conduits for water and contaminants, leading to high flow velocities and the fast spread of contaminants in these conduits. The aim of the resistivity survey was to evaluate the preferential flow paths for groundwater and the distribution of contamination in the unsaturated zone and saturated aquifer.
The 2-D electrical resistivity imaging survey comprised 12 northeast-southwest trending traverses, with a nominal separation of roughly 200 m with traverse length ranging between 1,000 and 2,000 m and five (5) northwest-southeast trending traverses, with nominal separation of roughly 600 m with traverse length ranging between 900 and 2,400 m. A Wenner and Schlumberger electrode array with a 10 m electrode spacing configuration were employed, allowing for observation depths of about 75 to 80 m below surface. The 2-D electrical resistivity method was successful in discriminating between low and high resistivity subsurface features across the project site.
Borehole yields associated with the fault zones were high and confirmed the existence of preferential flow paths. The interpretation of contaminated subsurface areas (low resistivity/high conductive) of the unsaturated zone correlated with historic site activity and infrastructure related to the old return water dam, Old Tailings, plant area and coal stockyard, whereas the spatial distribution of the saturated zone seems to be more focused to the interpreted fracture breaks/fault features associated with the latter three areas. Groundwater quality data showed a good correlation between boreholes with high electrical conductivity and the zones of low electrical resistivity signatures. Preferential flow paths correlated well with interpreted fault zones from gravity data.

Abstract

The Elandsfontein aquifer is currently under investigation to assist with the management of the system and to ensure the protection of the associated Langebaan lagoon RAMSAR site. The Elandfontein aquifer unit is situated adjacent to the Langebaan Road aquifer in the Lower Berg River Region and is bounded by the Langebaan Lagoon, possible boundary towards Langebaan Road aquifer, the Groen River bedrock high and the Darling batholith. The study will investigate the boundaries and hydraulic characteristics of the different aquifers and aquitards (Elandsfontein clay layer) in the Elandsfontein unit and their relationship to the Langebaan Lagoon. A literature review and baseline study has been completed to determine groundwater flow patterns and the general distribution of water quality, using historic data to characterize the different aquifers and aquitards of the system. An initial conceptual model has been formulated based on this data. Pumping tests will be used to acquire hydraulic characteristics of the Elandsfontein aquifer where data gaps exist, together with water quality and stable isotope sampling. Future plans are to construct a groundwater numerical flow model of the Elandsfontein system to assist with the management of the complex relationships between the recharge areas, flow paths through the different aquifer layers and aquitards towards the Langebaan Lagoon discharge. Results will be presented using graphical methods such as time series graphs amongst the monitoring boreholes over the years, piper diagrams to show water type characterization (Na-Cl type water) and initial results from the groundwater flow model. The expected results are envisaged to advance knowledge on groundwater availability and quality to inform the decision about water resource protection and utilization. Therefore this study is designed to provide large-scale background information that will improve the knowledge and understanding of the Elandsfontein aquifer unit and provide a basis for potential future studies of a more-detailed nature.

Abstract

Despite majority of the terrestrial fresh water resources being groundwater, there still exists a public perception that the only source of potable water is from surface water bodies. Due to this misperception, the general public is often ignorant about the importance of groundwater as a resource. This is evident in the lack of appreciation for the Upper and Lower Fountains in Pretoria as the main reason for various historical events in and around Pretoria, leading to it eventually becoming the capital of South Africa. This project, which introduces a broader Hydrological Heritage Overview programme, is intended to create awareness regarding the history and importance in the development of South Africa, and to improve public understanding of the important role that hydrology and hydrogeology is playing in our day to day lives. Additionally, scientific appraisal of historical data will aid the relevant managements to better manage these valuable resources, while making interesting and important archived data available to the scientific community in the form of trend analyses and conceptual models. The paper will showcase a 10-minute narrated video on the importance of groundwater in the history of Pretoria. As part of a water awareness programme to inform the general public about Pretoria's water supply from springs since its founding in 1855, the video depicts the development of the capital city around these springs from its founding to present.

Abstract

South Africa relies on coal and imported crude oil for most of its energy demands. However, the current high demand for the coal and oil and other sources of energy threat the sustainability of such energy sources, hence, the need to diversity the energy sources. However, these energy sources (coal and oil) are non-renewable sources of energy and the production of energy from renewable sources is almost non-existent. Therefore, the production of shale gas in the main Karoo Basin of South Africa provides a potential and opportunity to diversify South Africa energy mix. In pursuing such an opportunity, one has to be mindful that shale gas is neither sustainable nor a green energy system. This study aims to improve knowledge on groundwater governance arrangements regarding shale gas exploration and production in order to inform the appropriate regulatory regime and best practices to protect groundwater resources. Although there has been much effort to understand the technical implications of shale gas exploration and production on groundwater, not much attention has been given to understanding the broader groundwater governance issues. Addressing groundwater governance issues is critical to effective regulation of unconventional gas exploration and production. This is because; failure of groundwater management often results from inadequate governance arrangements, rather than lack of knowledge about sustainable yield or pollution vulnerability of aquifers. It has been argued that, there exists a perpetual tension between viewing groundwater as a common-resource and the rights of private appropriation of groundwater for use. Thus, groundwater is inherently vulnerable to the "tragedy of the commons" in which actual users and potential polluters act solely in their individual short-term interest rather than taking into account long-term communal considerations. The study provides significant insights regarding appropriate and effective institutional arrangements for groundwater governance.

Abstract

The redox state of groundwater is an important variable for determining the solubility and mobility of elements which can occur in different redox states at earth surface conditions, such as Fe, Mn, Cr, As, U, N, S, V etc. Eh-pH diagrams are potentially invaluable for understanding and predicting the behaviour of these redox species yet, unlike pH, redox is seldom a routine field parameter due to the difficulties in measurement and interpretation.
This paper discusses the potential use and limitations of field measurements of the redox state of groundwater with specific reference to the geochemical behaviour of dissolved iron in the Table Mountain Group (TMG) aquifer. As part of an investigation into iron cycling within the TMG aquifer, the redox state of groundwater was estimated through three different methods, namely direct in-situ measurement of Eh, direct measurement of DO and calculation from iron speciation in groundwater. Comparison of the results from the three methods highlights the potential value of collecting redox data, but also the complexity of controls on redox potential. The redox measurements allowed the determination of the controlling reactions on iron mobility within the TMG, but only by using the iron speciation method to calibrate the in-situ values and thereby identify which redox pair was controlling redox equilibrium. As this requires measurement of redox ion pairs in solution, it is unlikely to become a routine method for redox assessment, unless the specific redox state of an element is critical in understanding its mobility. For the majority of groundwater site investigations, measurement of the dissolved oxygen content of groundwater is probably sufficient as a first pass.

Abstract

Underground Coal Gasification (UCG) is an emerging, in-situ mining technology that has the advantage to access a low cost energy source that is currently classified as not technically or economically accessible by means of conventional mining methods. As such it offers significant potential to dramatically increase the world's non-recoverable coal resource.

Groundwater monitoring in the South African mining industry for conventional coal mining as an example, is well established, with specific SANS, ASTM and ISO Standards dedicated for the specific environment, location and purposes. In South Africa a major impact of the coal mining industry can be a reduction in the groundwater quantity and quality. South-Africa's groundwater is a critical resource that provides environmental benefits and contributes to the well-being of the citizens and the economic growth. Groundwater supplies the drinking water needs of a large portion of the population; in some rural areas it represents the only source of water for domestic use. Utilization and implementation of groundwater monitoring programs are thus non-negotiable.

The groundwater quality management mission, according to the Department of Water and Sanitation in South-Africa, is set in the context of the water resources mission and is as follows:

"To manage groundwater quality in an integrated
and sustainable manner within the context of the National
Water Resource Strategy and thereby to provide an
adequate level of protection to groundwater resources
and secure the supply of water of acceptable quality."

The scope of this paper is to propose an implemention strategy and a fit-for-purpose groundwater monitoring program for any Underground Coal Gasification commercial operation. It is thus important to pro-actively prevent or minimise potential impacts on groundwater through long-term protection and monitoring plans. A successful monitoring program is one that consists of
(1) an adequate number of wells, located at planned and strategic points;
(2) sufficient groundwater sampling schedules; and
(3) a dedicated monitoring program and quality control standard.

In order to have an efficient monitoring program and to prevent unnecessary analysis and costs, it is also critical to determine upfront what parameters have to be monitored for the specific process and site conditions.

Abstract

A multi seam open pit coal mine is planned to be developed in the Moatize Basin of Mozambique. The proposed project includes a new coal mine and coal handling facility to produce up to six million tons per annum of coking and thermal coal for the export market, which will have a life of mine of approximately 30 years. The mine will require 65 l/s for the first five years to supplement their process water make-up. Geo Pollution Technologies Ltd was appointed to investigate the feasibility of supplying groundwater to the mine. Due to the complexity of the Revuboe River during flooding and other difficulties abstracting water directly from the river, abstraction of groundwater from the alluvial aquifer next to the Revuboe River was selected as bulk water supply to the mine as it proved to be a sustainable source of water at other mining operations in the area. The benefits of the alluvial aquifer is the potential volume of water in storage and the zero losses to evaporation and seepage.

Taking into consideration the information gathered from previous groundwater and geophysical studies done in the area, a number of boreholes were sited based on geophysical results, alluvial material thickness and the energy of the river. Four of the six initial borehole positions had to be changed due to unforeseen access restrictions and concerns from the community. After the borehole positions were cleared and finalised, six boreholes were drilled up to a depth of roughly two meters below the bottom of the alluvial aquifer, which is on average 20 meters thick. The boreholes were logged in terms of geology and hydrogeology and cased to allow maximum water inflow from the aquifer. Due to one of the six boreholes being dry, five of the boreholes were subjected to 24 hour pump testing. The discharge rates varied between 4 and 20 l/s. The pump test results were interpreted using the Flow Characteristic method and final yields of between 5 and 30 l/s were achieved. The bulk water supply target of 65 l/s were exceeded by 9 l/s, with a final supply from the five holes combined of 74 l/s sustainably for the next five years.

Abstract

Identifying and characterising the vertical and horizontal extent of chlorinated volatile organic compound (CVOC) plumes can be a complex undertaking and subject to a high degree of uncertainty as dense non-aqueous phase liquid (DNAPL) movement in the subsurface is governed most notably by geologic heterogeneities. These heterogeneities influence hydraulic conductivity allowing for preferential flow in areas of higher conductivity and potential pooling or accumulation in areas of lower conductivity. This coupled with the density-induced sinking behaviour of DNAPL itself and the effects of groundwater recharge in the aquifer result in significant challenges in assessing the distribution and extent of CVOC plumes in the subsurface. It has been recognized that high resolution site characterization (HRSC) can provide the necessary level of information to allow for appropriate solutions to be implemented to mitigate the effects of subsurface contamination. Although the initial cost of HRSC is higher, the long-term costs can be substantially reduced and the remedial benefits far greater by obtaining a better understanding of the plume characteristics upfront. The authors will discuss a case study site in South Africa, where ERM has conducted HRSC of a CVOC plume to characterise the distribution of the source area and plume architecture in order to assess the potential risk to receptors on and off-site. The source of impact resulted from the use of a tetrachloroethene (PCE)-based solvent in an on-site workshop. The following methods of characterization were employed:
- Conducting a passive soil gas survey to identify and characterise potential source zones and groundwater impacts;
- Vertical characterisation of the hydrostratigraphy, contaminant distribution and speciation in real time using a Waterloo Advanced Profiling System (APS) with a mobile on-site laboratory;
- Using the Waterloo APS data to design and install groundwater monitoring wells to delineate the vertical and lateral extent of contamination; and
- Conducting a vapour intrusion investigation including sub-slab soil gas, indoor and outdoor air sampling to estimate current risk to on-site employees.
In less than a year, the risk at the site is now largely understood and the strategies for mitigating the effects of the contamination can be targeted and optimised based on the information gained during the HRSC assessment.

Abstract

The mineral rich Northern Cape Province produces 84% of South Africa's iron ore, while the Kalahari basin holds 92% of the world's high grade manganese deposits, with diamond and lime mining operations to a lesser degree. Mining expansion programs and new mines planned in the Northern Cape drive the region's economic development and growth strategy. The planned mining expansion depend on water being available for mining water needs and related increased demands for domestic water supplies.

Current water supplies consist of local groundwater resources (boreholes and mine dewatering) and bulk water supply from the Vaal Gamagara (VGG) Pipeline Scheme. In 1992 the Kalahari East water supply pipeline was incorporated to supply domestic and stock water to an area of approximately 1.4 million ha.

The VGG scheme consists of 370 km pipes, was built in the late sixties and is nearing its useful life expectancy. Increased water supply interruptions are being experienced while operating at capacity. The pipeline has the capacity to convey and import water of approximately 15 million m3/a into the D41J and D41K quaternary catchments. Water demand projections show an increase to 40.1 million m3/a in 2030.

Various options were investigated to upgrade the VGG water supply scheme. One option considers groundwater resources to augment the water from the Vaal River from four indentified target areas (SD1 to SD4).

Major fault zones in Banded Iron Formations (BIF) are targeted for groundwater resource development in the SD4 area, located east of Hotazel. This area is largely covered by Quaternary age sand and located near the endpoint of the VGG scheme and therefore prioritized as investigation area.

The primary objective of the hydrogeological investigation was to identify the existence of exploitable resources for additional source development. Secondary objectives were to assess the contribution groundwater can make to augmenting pipeline water; providing a source to an area and thus diminish reliance on the pipeline; and providing an independent source, which could prevent the need for pipeline extensions.

The paper will discuss the use of an airborne magnetic and Time Domain Electromagnetic's (TDEM) survey combined with gravity ground surveys as a key success factor in adding to the geological and structural information of the area. The paper will also present the results of exploration drilling (> 60 boreholes) over a large area and related borehole test pumping with water sampling to identify a sustainable and potable water supply of 2.5 million m3/a.

Abstract

POSTER Aquifer stress arising from urbanization and agricultural activities, these two factors affect aquifer properties when prolonged. Increase in urbanization especially those situated on top unconfined or semi-confined aquifer results in pressure on natural resources, this includes water resources, and changes of land use for agricultural purposes with high economic benefits has an effect on groundwater quality to due to application of Nitrogen- fertilizers during crop rotation and this is largely experienced in developing countries. The effects ranges from groundwater quality to aquifer storage as prolonged aquifer withdrawals due to irrigation, construction, manufacturing affects groundwater storage. Assessment of urbanization and agricultural effects on groundwater requires a complex analysis as integration approaches needs to be discovered for a better analysis of the two more specially when assessing groundwater pollution. The study was conducted to assess the impacts of urbanization and agricultural activities on aquifer storage and groundwater quality: by (a) determining the relationship between the occurrence of contamination due to urbanization by assessing contaminants present in the study area (b) develop groundwater protection, and if any offer recommendation for groundwater management. Multiple-well tests were conducted observing the behavior of drawdown and recovery for assessing groundwater storage. Two aquifer properties were observed to yield information about any changes in aquifer storage (transmissivity and storage coefficient) and groundwater quality lab test focusing on TDS, nitrate and pH were conducted. Historical results reflect that before industrial and urban revolution the groundwater contained small amounts of TDS compared with the present results. Increase in nitrate and pH concentrations observed in location closer to agricultural areas. Prolonged aquifer withdrawals increases expansion of cone of depression and therefore increases aquifer vulnerability and the risk of aquifer being polluted, and this increases storage coefficient. This study can be used to formulate protection zones for water resources and practice towards groundwater management.

Abstract

In recent years there has been renewed interested in identifying and understanding groundwater resources. Airborne electromagnetic (AEM) surveys can provide useful, cost effective information about the geometry of aquifers and their host rocks. TEMPEST is a fixed wing AEM system which has been used extensively for groundwater applications. The system possesses many attributes which aid in groundwater exploration including: broad operational bandwidth; multifaceted software approach; and, a distinctive calibration technique. These features allow both shallow and deep subsurface features to be imaged which aid in mapping groundwater aquifers along with the broader groundwater subsystem. This paper will review TEMPEST surveys flown for the Western Australian Department of Water (DoW) for the purpose of groundwater characterisation. The surveys were focussed on the identification of geological contacts, subsurface aquifers and seawater intrusion extents. The survey data was interpreted using an integrated approach which involved reviewing the newly acquired geophysical data, identifying contacts and anomalous features in the acquired data, reviewing existing geological and geophysical data in the area and correlating features identified in acquired data to known geology. The first case study was flown over the North Gnangara area of the Perth Basin with the primary aim of defining the spatial distribution of clay and silty layers that impede recharge to the groundwater table. The survey succeeded in achieving its primary aim of identifying the distribution of clay layer targets. Through the integrated interpretation approach it was also successful in achieving its secondary aims by clearly defining the contact between superficial units and the underlying stratigraphy, identifying key structures within the basin, outlining the top of the seawater intrusion, and mapping confining strata within the deeper aquifer systems in the Perth Basin. The second case study was flown over the lower reaches of four river systems in the North Pilbara coast with the aim of understanding the aquifer geometries and groundwater salinity distribution within the region. The primary aims of the survey were achieved and provided a basement geology map, relative porosity maps, approximate weathered and unweathered bedrock surfaces as well as the approximate geometry of the seawater intrusion within all survey areas. It was also possible to map the interpreted extents of alluvial aquifers within two of the river systems as well as the contact between two sandstone aquifers present in one of the river systems. These case studies show that the TEMPEST AEM system can provide valuable information about the geometry of aquifers and their host geology. AEM surveys should be used as an initial method for determining broad aquifer geometry and the identification of priority areas prior to further less cost effective water bore drilling.

Abstract

Introduction: Verlorenvlei catchment in the renowned potato Sandveld area is shared by three main towns where agriculture is a primary economic activity. This semi-arid catchment, receives low winter rainfall, but has a dynamic groundwater system providing almost all water services in the catchment and sustaining the acclaimed Verlorenvlei RAMSAR site. There have been recurring concerns of land use as a potential threat to water resources and the sustainability of Verlorenvlei RAMSAR site. The Minister of Water and Sanitation as custodian of water resources requires that surface water use less than 18 250 m3 and ground water use less than 3 650 m3/a to be granted under general authorization. All water use above such general authorization volumes is to be registered (Government Gazette No. 20526 of 1999). Water use registration, is identified as a tool used to achieve the effective management and governance of water resources. Water use above general authorization, is associated with larger scale land use activity, which may have an impact on water resources and the environmental at large. The following study, seeks to examine and compare catchment water use for land uses, to catchment water availability using water use registration data. Comparing water allocation and catchment capacity, this study further seeks to explore the effectiveness of water use registration in achieving good governance of water resources. Purpose: The purpose of this study was to determine effectiveness of water use registration in promoting good governance in the Verlorenvlei catchment Results: Of 124 registered water users identified in the Verlorenvlei catchment, only two of these water users are within the legislative limit outlined by Government Gazette No. 20526 of 1999. Overall, permissible water use is 447 547 259.5 m3/a, over 10 times the catchment capacity of 40 000 000 m3/a. Conclusion: Overall, excessive water use for land use activity is observed within the catchment, despite provision of legislature guiding against excessive water use. Increased water use registration, does however correlate with improved land use practices for agricultural production (Potato SA, 2014) suggesting probability of good governance. Lastly, there is a need for monitoring; improved water and land use efficiency, Integrated Water Resources Management and good governance in the catchment.

Abstract

Groundwater is a vital source of water for many communities in South Africa and elsewhere. Besides the changing climate, rapidly spreading invasive alien plants with deep roots e.g. Prosopis spp, pose a serious threat to this water source. Dense impenetrable thickets of Prosopis occur in the drier parts of the country mainly along river channels in the Northern, Eastern and Western Cape Provinces. Few studies have quantified the actual water use by this species outside of the USA where it is native. Consequently the impacts of Prosopis invasions on groundwater resources are not well documented in South Africa. The aim of this study was to quantify the actual volumes of water used by Prosopis invasions and to establish the effects on groundwater. Because deep rooted indigenous trees that normally replace Prosopis once it has been cleared also use groundwater, we sought to quantify the incremental water use by Prosopis over and above that used by indigenous trees in order to determine the true impacts on groundwater. The study was conducted at a site densely invaded by Prosopis at Brandkop farm near the groundwater dependent town of Nieuwoudtville in the Northern Cape. One in seven trees at the site is the Vachellia karroo (formerly A. karroo) which is the dominant deep rooted indigenous tree species. Actual transpiration rates by five Prosopis and five V. karroo are being measured using the heat pulse velocity (HPV) sap flow technique. Additional HPV sensors were installed on the tap and lateral roots to study the water uptake dynamics of the trees. Groundwater levels are being monitored in four boreholes drilled across the site while sources of water used by the trees (i.e. whether soil or groundwater) is being determined using O/H stable isotopes. For similar size trees, V. karroo had higher transpiration rates than Prosopis because of the larger sapwood to heartwood ratio in V. karroo than in Prosopis. However, at the stand level Prosopis consumed significantly larger amounts of water than V. karroo. This is because Prosopis invasions had a much higher tree density than V. karroo. From August 2013 to July 2014, annual stand transpiration for Prosopis (~ 372 mm) was more than 4 times higher than that of V. karroo (~ 84 mm). Tree water uptake was correlated to changes in groundwater levels (R2 ~ 0.42) with groundwater abstractions of ~ 2600 m3/ha/y by Prosopis compared to ~ 610 m3/ha/y for V. karroo. In addition, Prosopis showed evidence of hydraulic redistribution of groundwater wherein groundwater was deposited in the shallow soil layers while V. karroo did not. Results of this study suggest that clearing of Prosopis to salvage groundwater should target dense stands while less dense stands should be prevented from getting dense. {List only- not presented}

Abstract

POSTER Pine plantations require large amount of water for transpirational demand and the amount of water depend on the area of plantation and the rooting depth of plants.
The large amount of water required may result in disturbance of the natural water table equilibrium to meet the demand and insure growth.
The lake Sibayi catchment area is covered by the 65 km2 freshwater lake sibaya, 70km2 of pine and eucalypts woody plantations and crops.
The lake is recharged dominantly from groundwater and it is a water resource for local communities.
A large extraction of groundwater by plantations will decrease the water table and the lake level and that will decrease the amount of water available for local residences.
The main aquifer is composed of tertiary to quaternary age sediments which form a thin covering which blankets most of the Maputaland coastal plain and rests on a cretaceous system.
Shallow marine and beach deposits of tertiary origin overly the cretaceous aged silt, while the quaternary age sediments which constitute most of the cover are predominantly of Aeolian origin.
The Uloa formation of tertiary age is identified to be the most promising aquifer in the region consisting of coarse grained shelly sandstone with calcarenite associated with it.
The aquifer is approximately 40m in depth and it is recharged dominantly from rainfall through infiltration.
Rainfall averages 900mm per annum over the catchment but varies between 1200mm per annum in the south east and 700mm per annum in the west and evaporation equals to ? 1420 mm per annum (Pitman and Hutchinson, 1975).
Lake Sibayi is a freshwater lake of 65km2, in surface area and it is a water resource for surrounding communities and other inhabitants.
The sandy substrate surrounding Lake Sibayi limit the amount of surface runoff and consequently the water level within the lake are maintained by groundwater recharge.
The growth of plantations is influenced by the ability of trees to extract soil water from the intermediate zone below the root zone and the capillary fringe.
The water supply depends on the depth of the water table and on the structure of deposited soil layers and the water table depth is determined by the rate at which vegetation extracts water for transpiration and the recharge rate of groundwater.
The specific yield of a soil determines the amount of water that percolates to recharge groundwater and because vegetation extracts water from layers of soils above the water table they decrease the amount of recharge for groundwater.

Abstract

The national water balance is primarily based on the availability of surface water and the historic allocation thereof. The changes that are required the next 20 years to ensure sustainable development of the nation will be painful, but is unfortunately at present not part of the public discussion, it is essentially ignored in favour of more "popular water topics".This paper intends to look at a few core aspects, they include the current water allocation in the national water balance, the relative value of the utilisation, the position of groundwater resources in changing the current relative allocation and the current groundwater utilisation. The paper further intends to be a less formal presentation of these aspects with the required data, references and conclusions available for distribution afterwards.

Abstract

Underground coal gasification (UCG) is considered a cleaner energy source as its known effect on the environment is minimal; it is cheaper and a lesser contributor to greenhouse gas emissions when compared to conventional coal mining. It has various potential impacts but the subsidence of the surface as well as the potential groundwater contamination is the biggest concerns. Subsidence caused by UCG processes will impact on the groundwater flow and levels due to potential artificial groundwater recharge. The geochemistry of the gasifier is strongly depended upon site specific conditions such as coal composition/type and groundwater chemistry. Independent of the coal rank, the most characteristic organic components of the condensates is phenols, naphthalene and benzene. In the selection of inorganic constituents, ammonia, sulphates and selected metals and metalloids such as mercury, arsenic, and selenium, are identified as the dominant environmental phases. The constituents of concern are generated during the pyrolysis and after gasification as dispersion and penetration of the pyrolysis take place, emission and dispersion of gas products, migration by leaching and penetration of groundwater. A laboratory-based predictive study was conducted using a high pressure thermimetric gasification analyser (HPTGA) to simulate UCG processes where syngas is produced. The HPTGA allows for simulation of the actual operational gasifier pressure on the coal seam and the use of the groundwater sample consumed during gasification. A gasification residue was produced by gasifying the coal sample at 800 °C temperature and by using air as the input gas. The gasification residue was leached using the high temperature experimental leaching procedure to identify the soluble phases of the gasified sample. The leachate analysis is used to determine the proportion of constituents present after gasification which will be removed by leaching as it is exposed to external forces and how it will affect the environment. The loading to groundwater for the whole gasifier is then determined by applying the leachate chemistry and rock-water ratio to the gasifier mine plan and volumes of coal consumed. 

Abstract

The Department of Water Affairs and Sanitation is the custodian of the Water Resource in South Africa. The Western Cape Regional Office, Geotechnical Service Sub Directorate, is responsible for management of groundwater resources in two Water Management Areas (WMA), Olifants Doorn-Berg and Breede-Gouritz. Twenty-nine monitoring routes comprising 800 sites in total are monitored across the Western Cape Region. The purpose of this paper is to create awareness of groundwater related databases and the type of information products used in assessing the status of data bases and groundwater resources. This is to assist and support the scientists, technicians, managers, external stakeholders and/or general public. The main question that needs to be answer is: "What is the current groundwater data management situation in the Regional office?" With the GIS as platform, geographical information was generated from existing data bases to answer questions such as, what is being monitored, where is it being monitored, who is monitoring it, why is it being monitored and when is it being monitored? These questions are applicable to the Region, Water Management Areas, the monitoring route and geosites. Graphical time-series information generated from available data, in combination with the generated geographical information, showed the gaps, hot spots and what is still needed for all the facets of groundwater management (from data acquisition to information dissemination) processes. The result showed the status of data bases, need for data in areas of possible neglect, training gaps, inadequate structure and capacity, instrumentation challenges, need for improvement of commitment and discipline, as well as many other issues. The information generated proves to be an easy tool for Scientists, Technicians and Data Administrators to assist them to be on top of the groundwater resource management in their area of responsibility. The expansion of the use of GIS as a groundwater management tool is highly recommended. This will ensure better understanding of the resource: "The Hidden Treasure".

Abstract

The groundwater governance arrangements for the development of groundwater resources were analysed. The analysis highlighted gaps and barriers to overcome before unconventional gas (shale gas and coal bed methane) development can take place at an industrial scale. The following governance challenges were identified (i) setting baseline measurements to detect groundwater pollution and to determine resource status; (ii) review of licenses and setting conditions for the development of unconventional resources; (iii) compliance monitoring and enforcement systems in place (iv) dealing punitively with non-compliant operators (v) mitigation options in place to prevent groundwater pollution; (vi) goal-based regulatory framework in place rather than a prescriptive regulatory framework; (vii) disclosure of hydraulic injection fluid; (viii) coordination with other government departments and regulatory bodies; (ix) a framework for subsidiarity and support to local water management; and (x) an incentive framework that support good groundwater management. To overcome the challenges requires a decentralized, polycentric, bottom-up approach, involving multiple institutions to deal with unconventional gas development. This provides better conditions both for cooperation to thrive and for ensuring the maintenance of such institutions.

Abstract

Climate change contributes to the way in which people live. Natural resources such as groundwater, wood and surface water form a great part of livelihood in rural communities and are used extensively in rural areas where basic services have not yet been provided. The effect of climate change to all these natural resource may impact the lives of those in rural communities. Climate change is already starting to affect some of the poor and most vulnerable communities around the world. The aim of the dissertation is to develop a framework to assess the vulnerability of rural communities to climate change, with a specific focus groundwater and issues relating to gender. A questionnaire and interviews were used to collect data about rural communities' level of awareness climate change, their attitudes toward coping with climate change impact, level of education, income scale and how does this affect their security. Hyrodocensus was taken around the village to determine the rivers, dams, boreholes, abandoned boreholes and wells. Water samples were collected and analysed. The response rate was higher in females than in male's stakeholders (54% vs 46%).the results show that woman were mostly doing the hard work to complete daily basic activities. Education was found to be of high school level and incomes were low. The framework was developed with basic need showed that the area was at risk of poverty .Boreholes was found and water quality was analysed to be adequate for drinking water purpose. More information will be discussed on presentation.

Abstract

Understanding the hydrogeochemical processes that govern groundwater quality is important for sustainable management of the water resource. A study with the objective of identifying the hydrogeochemical processes and their relation with existing quality of groundwater was carried processes in the shallow aquifer of the Lubumbashi river basin. The study approach includes conventional graphical plots and multivariate analysis of the hydrochemical data to define the geochemical evaluation of aquifer system based on the ionic constituents, water types, hydrochemical facies and groundwater factors quality control. Water presents a spatial variability of chemical facies (HCO3- - Ca2+ - Mg2+, Cl- - Na+ + K+, Cl- - Ca2+ - Mg2+ , HCO3- - Na+ + K+ ) which is in relation to their interaction with the geological formation of the basin. The results suggest that different natural hydrogeochemical processes like simple dissolution, mixing, and ion exchange are the key factors. Limited reverse ion exchange has been noticed at few locations of the study. At most, factor analyses substantiate the findings of conventional graphical plots and provide greater confidence in data-interpretation. {List only- not presented}

Abstract

The anticipated exploration and exploitation of Shale Gas in the Eastern Cape Karoo through hydraulic fracturing has raised considerable debate regarding the benefits and risks associated with this process for both the Karoo, and the country as a whole. Major concerns include the potential impact of hydraulic fracturing on ecological, environmental and especially scarce water resources. The Eastern Cape Karoo region is a water stressed area and with further climate change it will become increasingly so. Thus, effective and reliable groundwater management is crucial for sustainable development in this region. This research aims to hydrochemically characterise both the shallow groundwater (<500m) and deeper saline groundwater in the vicinity of the Shale Gas bearing formations, based on major and trace elements, as well as gas isotope analyses. Sampling will include water sampling and gas measurements from shallow boreholes (<300m), SOEKOR drillholes (oil exploration holes drilled in the 60's and 70's up to 4km deep) and thermal springs (source of water >500m).

To-date, a desktop study includes the collation of information determining the areas with the highest potential for Shale Gas Exploration throughout the Eastern Cape Karoo, from which the research area has been determined. This includes the identification of the respective oil companies' exploration precincts. A Hydrocensus has been initiated across this area, which includes slug testing and electrical conductivity profiling of open, unequipped boreholes. Further borehole selection will be finalised from this acquired information. The boreholes will be sampled and analysed a minimum of three times per year, which will occur after summer (April/May) and winter (October/November), after which the hydrochemistry will be analysed. The sampling will be preceded by purging of all inactive boreholes. The possible hydraulic connectivity between the shallow and deep aquifers will be tested, particularly in those areas where dolerite intrusions as well as fault systems may enhance preferential flow of water, using the chemical forensics complemented with passive seismic profiling/imaging and deep penetrating Magneto-Telluric (MT) imaging.

The data collected will form a record against which the impact of fracking can be accurately determined. The research is a critical first step towards the successful governance of groundwater in light of the proposed Shale Gas development. In its absence, effective regulation of the sector will not be possible.

Abstract

Water scarcity is a growing issue in South Africa. The consumption of water is rising and as such, water is becoming a scarce and valuable resource. Given the circumstances that South Africa is facing, improving the use of ground water could help tackle water scarcity in South Africa. Groundwater has been an important source of water and it can bring socio-economic benefits if properly used. Studies have proved that groundwater resources play a fundamental role in the security and sustainability of livelihoods and regional economies throughout the world. However, in South Africa, groundwater still remains a poorly managed resource and this hinders socio-economic development. This paper examines the current state of ground water management in South Africa. The paper also examines how ground water in South Africa is currently allocated and used, and explores some of the consequences of current water management arrangements. {List only- not presented}

Abstract

Industrial Management Facilities represent a hazard to the down gradient surface water and groundwater environment. The assessment of the risks such facilities pose to the water environment is an important issue and certain compliance standards are set by regulators, particularly when the potential for an impact on the water environment has been identified. This paper will aim to describe how the contamination was conceptualized, estimated, limitations and how it is technically not feasible to establish one limit or compliance value of known contamination in different aquifers.

Abstract

A groundwater study at Middelburg Colliery was completed with the emphasis on the investigations into water balances on a rehabilitated coal mining environment. Water balance calculations and water scheduling for collieries in Mpumalanga have become important facets of mine planning over the past years. Opencast mining involves the blasting and removal of rocks overlying the coal layer, which is removed completely. The overburden is then replaced (backfilled) and covered with soil and the terrain is rehabilitated. Rainwater penetrating through the soil into the backfill may become acidic by pyrite and sulphides in the backfill material and ultimately decants on the surface. Decanting generally commences a decade or more after mining ceases. Opencast mining impacts the natural groundwater regime and radically alters the nature of groundwater-surface water interactions. The Department of Water Affairs and Forestry in South Africa requires that mines minimise the release of their polluted water. A groundwater balance is the numerical accounting of the annual recharge to a groundwater resource. It can further be described as a quantitative assessment of the total water resources of a basin over a specific period of time. In a groundwater development program, such a budget is necessary to efficiently manage and utilize the resource. Many of the parameters that determine recharge to an aquifer are measured directly and some are computed from hydraulic characteristics and measured field data. The Middelburg Mine Services has been experiencing excess water problems in past years. Because of the lack of space and the concerns of decanting of mine water out of the rehabilitated pit, it was suggested that mine water treatment should be considered. Geohydrological models were created to determine the decant positions and water volumes for the rehabilitated area. The size of the water treatment plant can then be determined using the calculated decant volumes and positions.

Abstract

In recent years acid mine drainage (AMD) has become the focus on many mine sites throughout the world. The Witwatersrand gold mines have been the main focus of AMD in South Africa due to their extensive impact on especially groundwater resources. The Witwatersrand Basin is a regional geological feature containing the world-famous auriferous conglomerate horizons. It is divided into sub-basins and the East Rand Basin is one of them. Due to the regional scale of the East Rand Basin AMD issues, a systems approach is required to provide a useful tool to understand the pollution source term and fate and transport dynamics and to aid in environmental decision making and to evaluate the geochemical impact of mitigation measures and evaluate future scenarios.
The numeric geochemical models, using a systems perspective, show that the mine waste facilities, specifically the tailings dams are significant contamination point sources in the East Rand Basin, specifically for acidity (low pH), SO4, Fe, Mn, U, Ni, Co, Al and Zn. When the AMD solution enters the soil beneath the tailings, ferrous and SO4 concentrations remain elevated, while Mn, U, Ni and Co and perhaps other metals are adsorbed. After ~50 years the pollution plume starts to break through the base of the soil profile and the concentration of the adsorbed metals increase in the discharging solution as the adsorption capacity of the soil becomes saturated. The pollution pulse then starts to migrate to the shallow groundwater where contamination of this resource occurs.
Toe seepage from the tailings either first reacts with carbonate, where acidity is neutralised to a degree and some metals precipitated from solution, where after it reaches the surface water drainage, such as the Blesbokspruit, where it is diluted. Some evaporation can occur, but evaporation only leads to concentration of acidity and dissolved constituents, thereby effectively worsening the AMD solution quality. The mixing models have shown that the dilution factor is sufficient to mitigate much of the AMD, although seasonal variability in precipitation and evapotranspiration is expected to have some influence on the mixing ratio and some variability in the initial solution will also be reflected in variation in surface water and groundwater quality.
{List only- not presented}

Abstract

Estimating groundwater recharge response from rainfall remains a major challenge especially in arid and semi-arid areas where recharge is difficult to quantify because of uncertainties of hydraulic parameters and lack of historical data. In this study, Chloride Mass Balance (CMB) method and Extended model for Aquifer Recharge and soil moisture Transport through unsaturated Hardrock (EARTH) model were used to estimate groundwater recharge rates. Groundwater chemistry data was acquired from the Department of Water and Sanitation (DWS) and Global Project Management consultants, while groundwater samples were collected to fill-in the identified gaps. These were sent to Council for Geoscience laboratory for geochemical analysis. Rainfall samples were also collected and sent for geochemical analysis. An average value of rainfall chloride concentration, average groundwater chloride concentration and mean annual precipitation (MAP) were used to estimate recharge rate at a regional scale. Local scale recharge was also calculated using chloride concentration at each borehole. The results were integrated in ArcGIS software to develop a recharge distribution map of the entire area. For EARTH model, long term rainfall and groundwater levels data were acquired from the South Africa Weather Services and DWS, respectively. Soil samples were collected at selected sites and analysed. These were used to determine representative values of specific yield to use on EARTH model. 60% of the groundwater levels data for 5 boreholes was used for model calibration while the remaining 40% was used for model validation. The model performance was evaluated using coefficient of determination (R2), correlation coefficient (R), Root Mean Square Error (RMSE) and Mean square error (MSE). Regional recharge rates of 12.1 mm/a (equivalent to 1.84% of 656 mm/a MAP) and 30.1 mm/a (equivalent to 4.6% MAP) were calculated using rainfall chloride concentrations of 0.36 and 0.9 mg/L, respectively. The estimated local recharge rates ranged from 0.9-30.2 mm/a (0.14 - 4.6%) and 2 - 75 mm/a (0.3 - 11.4%) using chloride concentration of 0.9 and 0.36 mg/L, respectively. The average recharge rate estimated using EARTH model is 6.12% of the MAP (40.1 mm/a). CMB results were found to fall within the same range with those obtained in other studies within the vicinity of the study area. The results of EARTH model and CMB method were comparable. The computed R2, R, RMSE and MSE ranged from 0.47-0.87, 0.68-0.94, 0.04-0.34, 0.16-3.16, and 0.50-0.79, 0.68-0.89, 0.07-0.68, 0.15-8.78 for calibration and validation, respectively. This showed reasonable and acceptable model performance. The study found that there is poor response of groundwater levels during rainy season which is likely to be due to lack of preferential flows between surface water and groundwater systems. This has resulted in poor relationship between estimated and observed groundwater levels during rainfall season.

Key words: ArcGIS, CMB, EARTH, Groundwater recharge, rainfall

Abstract

Model calibration and scenario evaluations of 2D and 3D groundwater simulations are often computationally expensive due to dense meshes and the high number of iterations required before finding acceptable results. Furthermore, due to the diversity of modelling scenarios, a standardised presentation of modelling results to a general audience is complicated by different levels of technical expertise.

Reducing computational time
In this presentation we look briefly at the use of Reduced Order Models (ROM's), which is one of the recent developments in groundwater modelling. The method allows significant speed-up times in model calibration and scenario evaluation studies. In saturated flow for example, these approaches show speed-up times of >1000 when compared to full models created with Finite Element of Finite Difference methods. These methods are demonstrated to a case study in the Table Mountain Group, in which we show a simplified parameter calibration and scenario evaluation study.

Standardising presentation
In order to present the results to as wide an audience as possible, the use of a web-browser as a GUI is proposed, where the web-page is coupled to a geo-spatial database and data is presented in a spatial and numeric format. The use of the spatial database manager PostgreSQL with PostGIS is proposed. Through a browser interface, users can run modelling scenarios using the ROM, which is evaluated in near real-time. Following the evaluation of the model, we show how PostGIS can spatially present data on a base-map such as google maps. In keeping with the current trends in online map customisation, viewers can interactively choose to overlay the base-map with a data-type (such as pressure or hydraulic head contours or flow direction) that is most intuitive for their level of familiarity with the data.

Conclusion
In using advanced modelling techniques and a simplified browser based presentation of results, high-level decisions in water resource management can be significantly accelerated with the use of interactive scenario evaluations. Furthermore, by reaching a broader audience, public participation will be significantly enhanced.

Abstract

The town of Loeriesfontein, situated in the northern Cape, is entirely groundwater dependent, and is currently facing a serious water shortage. Low rainfall and the lack of storm events have resulted in groundwater levels dropping drastically. The current supply boreholes have been over abstracted and cannot meet the required demand. Water levels are close to pump depth for some of the municipal boreholes, and yields are decreasing. The town at one stage was trucking in water in order to supply its residents. Additional supplies are therefore urgently required.

A number of measures were implemented to monitor and manage the current demand and the limited supply. Thereafter GEOSS investigated the occurrence of groundwater within a 20 km radius of Loeriesfontein, and found that dolerite represents the primary target formation for groundwater exploration. Groundwater occurrence is found at the lower dolerite contact with the host rock, or in fractures in the dolerite itself. Based on an extensive hydrocensus, geophysical surveys, drilling and yield testing, the Rheeboksfontein area was identified as a suitable water source. Initially water was being trucked into Loeriesfontein from Rheeboksfontein and later an innovative arrangement of solar driven borehole pumps and reservoir pumps resulted in water being transported much closer to Loeriesfontein, reducing the transportation distances and costs.

During this first Phase of exploration the projected supply still did not meet the water demand and water quality targets. A number of high yielding boreholes were drilled, however the water quality was such that it would have required treatment and disposal of brine in that area is problematic. The extent of the exploration was then increased to a distance of 40 km from Loeriesfontein. A detailed hydrocensus was completed, followed up with further geophysical surveys, drilling and yield testing. Successful boreholes were drilled and the required demand and water quality standards could just be met. This finding is being verified with numerical modelling.

A process is underway to develop a mini-wellfield and then the environmental processes are being followed so that a pipeline can be built delivering water directly into the reservoirs at Loeriesfontein. On-going monitoring and maintenance is crucial to the long-term success of the groundwater supply.

Abstract

POSTER The poster presents the spatial-temporal assessment of groundwater-surfacewater (GW-SW) aspects in Skoonspruit River catchment, North West of South Africa. Despite the common use of quantitative methods to assess various aspects of GW-SW interaction, the use of qualitative methods remains poorly understood in assessing aspects of GW-SW interaction especially in the context of developing countries such as South Africa. While quantitative methods are envisaged to provide reliable and valid results,the use of qualitative methods are exploratory, site specific and more revealing to provide insights for more robust confirmatory methods. Such approach remains fundamental to comprehensive assessments that facilitate relevant generation of information to decision makers to enable them develop and improve interventions for the desired water utilization and management practice. However, the use of such qualitative methods in GW-SW interaction studies has not been applied, a situation which limit the basis for applying quantitative methods and that make quantitative methods not yield the desired results in most studies. The current study argues that the use of quantitative methods should be informed by the results from the qualitative methods and that the poor results from the GW-SW interaction studies is partly due to lack of implementing the qualitative methods prior to using the quantitative methods, especially in the context of developing countries such as South Africa. The current study established spatial variation in the water-type of the upper and lower catchment for both groundwater and surface water. Characterized water-type for several site specific reaches and determined the temporal trends for GW-SW interaction process in order to produce a comprehensive scenario for spatial-temporal pattern for GW-SW interaction in the Skoonspruit River catchment of North West to inform desired interventions for water use and management.
Key Words: Qualitative methods, Quantitative methods, Spatial-temporal assessment, GW-SW interaction, Water use and management, Skoonspruit River catchment, North West

Abstract

Vacuum Enhanced Recovery (VER) has widely been applied in many hydrocarbon contaminated site to recover liquid hydrocarbon from the subsurface Hydrocarbon contamination to groundwater and soil is usually as results of leak or release. Different technologies and method exist to treat contaminated groundwater and soil through hydrocarbon. This paper focuses on the efficiency of VER as alternative method to the site where over 6 000 litres of petrol leaked to the subsurface over a period of time. The application of VER involves creating a capture zone in a particular monitoring well by increasing the hydraulic gradient towards that particular well or set of wells affected by hydrocarbon.

Abstract

Cape Town... Home to over 3 and a half million people, the second most populated city in South Africa was born in the shadow of the Table Mountain. The mountain offered all the elements vital for human settlement... most importantly WATER. The reports of the abundance of fresh water and fertile land at the foot of the mountain and surrounds inspired the VOC to set up a refreshment station at the Cape. By the late-1800s, spring water was solely used for domestic supply to the settlers of Cape Town. Until the 1930s, the Stadsfontein or Main Spring was still being used as a source of drinking water but because of on-going concerns about the safety of the water for human consumption, and sufficient water being available from the new schemes like Steenbras and Wemmershoek, a decision was taken to discontinue using the Stadsfontein for drinking water purposes. Since then most of the water joined the stormwater to the sea, until 2010 when the City recommenced using the water for irrigation at Green Point Stadium and the Commons. City of Cape Town faces a number of water supply challenges. These include managing the ever increasing demands on the current water supply. The City of Cape Town Springs Study was born from this 2001 Water Demand Management study and it aims primarily to examine the possibility of using spring water as an alternative source of water for non-potable supply. Of these, the springs which hold the most potential for use are found in two areas - the CBD area of Oranjezicht, home to the Field of Springs

Abstract

Acid mine drainage (AMD) has lately received considerable media coverage in South Africa. This has caused considerable increase in researchers most of them with emphasis on decantation of contaminated water from the old gold mines in Witwatersrand basins and fewer on mine residue contamination from Coal and Gold mines in Mpumalanga and Limpopo provinces. The paper outlines results of ground geophysical surveys that were carried out along the perimeter of two mine dumps in the Barberton Greenstone belt in the Mpumalanga Province, South Africa. The aim of the study was to generate a 3D geo-electric model of the subsurface showing possible acid mine drainage contaminant pathways. Two geophysical methods namely Frequency Domain Electromagnetic profiling (FDEM) and electrical resistivity tomography (ERT) were applied in order to investigate the variation of electrical conductivity in the subsurface. ERT method was done over frequency domain electromagnetics anomalies to further investigate depth extent of the anomalies.
{List only- not presented}

On the resistivity section ERT1 of Dump 1, a discontinuity in the bedrock was identified. The FDEM survey identified an area with high conductivity values to the north of Dump 1. The ERT results show a shallow plume at 20m depth, which is consistent on two parallel sections on Dump 1. The area could be a possible pathway of mine dump residue (AMD) to a stream in the north. The bedrock is generally characterized by high resistivity values; a break in the bedrock exists on this high resistivity zone on ERT 6. The identified breaks in the bedrock in terms of resistivity could be a fault zone which can act as possible pathway of mine dump residue (AMD) to a shallow aquifer.

Potential contaminant recharge pathways were delineated using geophysical electrical and electromagnetic methods. Potential groundwater recharge pathways and sub-vertical low resistivity zones with values <100 Ohm.m were delineated using the ERT method. Investigation of contaminant plume migration is recommended over the anomalies that were generated from geophysics data in the Barberton areas.

KEYWORDS
Acid mine drainage, Frequency Domain Electromagnetic profiling and electrical resistivity tomography

Abstract

Table Mountain reaches 1086m elevation, the upper half of which comprises Table Mountain Group (TMG) quartzite with extensive fracture porosity. The lower half of the mountain comprises a mixture of Cape Granite intruded into Malmesbury Group metapelites, both of which are poor aquifers, but are in places overlain by scree slopes predominantly composed of TMG quartzite boulders. The region experiences a Mediterranean climate with warm, dry summers and cold, wet winters, with rainfall ranging from 600-1600mm/a depending largely on proximity to the mountain. Several springs issue from the slopes of the mountain, ranging in elevation from 15-410masl and in flow from non-perennial to 30L/s. Water chemistry reveals very little about spring water flow, as the waters have very low dissolved solids. Samples of 10 of these springs were taken twice per year for 3 years while rainwater was sampled at 120masl at the University of Cape Town (UCT) and at 1074masl at the Upper Cableway Station. These samples were analysed for oxygen and hydrogen stable isotope composition, mostly by mass spectrometer, but also by laser spectroscopy. The isotope results reveal an altitude gradient between the two rainfall stations of -0.075?/100m for ?D and -0.48?/100m for ?18O. Employing this isotope gradient, the average recharge altitude for the springs is 304masl, compared to an average discharge altitude of 156masl. Using this difference in altitude and the average slope of the terrain, a typical flow path of 1km from recharge to discharge point can be derived. Additionally, there are shifts in the weighted annual mean isotope composition of rainfall at UCT. For the years 2010-2012, the shifts are paralleled by similar shifts in the mean isotope composition at the springs for each of those years. This suggests rainfall discharges in the same winter season it has been recharged. In combination with the evidence for long term reliability of some of the springs over the dry season and during droughts, this suggests a layered flow of groundwater in the scree aquifer, allowing both long term steady discharge of deeper groundwater, as well as short term discharge of recently recharged rain. In combination with the flow path derived above, hydraulic conductivities in the realm of 10-20m/d can be calculated for the scree aquifers.

Abstract

The National Water Act (NWA) 36 of 1998 is regarded as providing a platform for an innovative way of managing the country's water resources. However, demands on the nation's water resources are intensifying as more and more catchments are coming under increasing stress. This may be attributed to significant changes in land-use and poor water resource governance which negatively affects the Environmental Water Requirement (EWR) flows of rivers in many catchments in South Africa. EWR refers to the flow needed by a river to sustain a healthy ecosystem. It is vital that the determined EWR flows are met and to ensure that all water-users receive their allocated water supplies. To ensure effective water management and water provision, it is critical to understand transmission losses considering that it is a key component of the water balance or hydrological budget. Quantitative investigations of transmission losses are necessary in order to calculate flows in a river and appropriately allocate water for different users. The Groot Letaba River situated in the north-eastern region of South Africa is a prime example of a river system where uncertainties in channel losses and gains are complicating effective water management. The Groot Letaba River is a model river where Strategic Adaptive Management (SAM) is currently being implemented to ensure adaptive and sustainable water resource management. This unique approach is facilitated by the institutional interaction between dam operators (from the upstream Tzaneen Dam) and stakeholders including Kruger National Park. However, there are huge uncertainties surrounding natural water losses (e.g. evapotranspiration) or gains (e.g. groundwater discharge) in the real-time model currently being used by dam operators. This study aims at attempting to narrow down the uncertainty by understanding and quantifying the natural hydrological processes between the two dominant land-uses along this river, i.e. agriculture and protected areas. In particular, the project will investigate the hydrological connectivity between groundwater and surface water along the Letaba River. This project will contribute significantly to management strategies by using a precise hydrological approach which will aid in improving estimates of water supply in the Groot Letaba River. Furthermore, this project could contribute to the development of appropriate water management strategies not only in the Letaba catchment but other similar Lowveld catchments as well.