Conference Abstracts

All Abstracts were presented at the Groundwater Conferences

Displaying 101 - 150 of 795 results
Title Presenter Name Presenter Surname Area Conference year Sort descending Keywords

Abstract

With increasing focus on wasted expenditure within local government and recent media reports on the money spent on poor quality service, it is becoming progressively important for those in a position of engaging consultants, either for groundwater supply or environmental work, to have confidence in the company or person they have employed. This paper focuses on how to assess consultants  before   they   walk  through   the  door  based   on   qualifications,   CVs,   professional registrations and previous work experience. It goes through the project lifestyle, explaining in a non- technical fashion the different processes involved in a groundwater supply or groundwater contamination assessment and provide simple indicators of good practice that should be evident in the   consultant's   work.   Topics   covered   include   assessing   proposals,   gathering   background information, health and safety, appointing sub-contractors, data quality, the use of appropriate published procedural guidelines, the use of relevant quality guidelines and what deliverables should be provided. 

Abstract

Work is being conducted in Limpopo province following a large volume release of petroleum hydrocarbons that took place from a leaking underground pipeline, resulting in significant groundwater contamination. This is considered to be the largest petroleum hydrocarbon release recorded to date in South Africa. The leak took place for 15 years before it was discovered 13 years ago in 2000. From the pressure tests that were performed, 10-15 ML of A-1 Jet fuel is considered to havbeen  released  to  the  subsurface.  Product  bailing was  the  first method  employed  for  the recovery of the free product, and was later replaced with a P&T system which was considered to be more effective.

The village located about 6 km to the north of the spillage depends mostly on groundwater. This paper presents a progress update of works that have been conducted in support of developing a conceptual model which aims to determine the areal extent of the plume.

Abstract

Southern Africa hosts over 93% of the continent's energy, which has been conserved in coal seams deposited  in  various  Karoo  age  sedimentary  basins.  Carbon  dioxide  geological  storage  (CGS)  is proving  to  be  an  emerging  greenhouse  gas  technology  (GHGT),  that  global  governments  have elected to mitigate the projected coal use in Southern Africa. One of the major challenges of successfully introducing CGS to the public and world leaders is the significant risk the technology poses to groundwater resources. Lack of public confidence is further coupled by the poor knowledge of the subsurface behaviour of injected media, such as CO2, in South African potential lithological reservoirs. The study has utilised data from a current MSc research, in which the Springbok Flats Coal Basin (SFCB) has been used as the problem set-up. The aim of this study is to determine which FELOW™ mesh  geometry would  be  the most  suitable  to  simulate  a  CO2   ingress plume within  a regional aquifer. The study has utilised principals of dense vegetation zones (DVZ) and density- variable fluid flow (DVFF) when simulating the ingression. The specific objective is to utilise the simulation  results  to  guide  amendments  of  water  legislature,  towards  accommodating  CO2 geological  injection  and  storage operations.  Results indicate  that  a  combination  of  high-quality triangular meshes of various geometries, created with the FEFLOW compatible mesh generator, TRIANGLE, produced the best 3D model and simulation results. The basic matrice unit for the DTZ was defined as a quad mesh composed of two right-angled triangles and one equi-angualar triangle (five nodes), while the unit for modelling springs was defined as a quad mesh with four-equi-angular triangles, both used in various scales. The results were used to amend the Stream Flow Reduction Activities (SFRA) policy and thus the aquifer licensing procedure of the National Water Act, in order to accommodate the allocation of aquifer use licenses for CO2  geological storage operations. The amendments illustrate the significance of finite element simulation codes for integrated water resources management policy.

Abstract

The Heuningvlei pipeline scheme was built in the 1980s to supply water to rural communities in a low rainfall area (<300 mm/annum) – Northern Cape Province. In 2008, the Joe Morolong Local Municipality identified the need to refurbish and upgrade the pipeline scheme for socio-economic reasons. The safe yield and water quality information of existing sources supplying the scheme was unreliable. This was investigated by borehole test pumping and water quality sampling, which indicated reduced yields and deteriorating water quality since 1989.

Water demands, which includes supply to communities for domestic use, schools, clinics and stock watering in the Heuningvlei area, was estimated at 2 380 m3/day or 868 700 m3/annum. The potable groundwater  supply  recommended  from  11  existing  boreholes  is  316 937 m3/annum,  leaving  a deficit of 551 763 m3. The aquifers utilised for the existing water supply comprise fractured banded iron formations (BIF) and dolomite bedrock. Kalahari sedimentary and dolomite aquifers to the east of the pipeline scheme contain high saline water not suitable for domestic use.

No surface water sources exist in the area and the feasibility of the socio-economic development project depends on establishing local groundwater resources that would not impact on existing sources. A target area was identified which is approximately 10 km south from the pipeline. This area is covered by the thick Kalahari sediments (up to 130 m) underlain by dolomite bedrock with a potable groundwater balance of 2.3 million m3/a. Both the associated primary (Kalahari) and secondary (Dolomite) aquifers contain potable water. The target area was not investigated in the past due to perceived poor water quality (elevated salinity) conditions, very low (<10 %) borehole exploitability prospect and difficult drilling conditions.

The paper will discuss the importance of recharge estimate and understanding of flow regime at sub-catchment and local scale, use of an airborne magnetic survey in conjunction with ground geophysics, mapping of Kalahari sediment thickness, and successful drilling of exploration boreholes to exploit the deeper Kalahari sedimentary and dolomite bedrock aquifers. The successful development of localised potable water in a low rainfall area made it feasible to implement the Heuningvlei socio-economic development project.

Abstract

Most of the 14 651 km2 Hwange National Park in Zimbabwe is on monotonous Aeolian sands of the Kalahari Basin, with endorheic drainage. The large game populations of the park are sustained by seasonal accumulations of water in grassy pan depressions and year-round supply of groundwater to pans (except in the northwest where there are rivers and dams). Some of this is from natural seeps, such as at the Shakwanki, Nehimba and Ngweshla Pans, but most are supplied from boreholes. Game animals show clear preferences for some pans over others and it has long been speculated by wildlife managers that there is a nutritional or taste basis for this discrimination. In this preliminary study, the location, host geology and sub-Kalahari lithologies of the pans are compared with the frequency of use by game animals. Results show that the pans that are most frequented by game are hosted in fossil drainage channels, with limestone horizons (calcrete) developed within the Kalahari Sands. Many popular pans are also found on Kalahari Sand overlying the granitic rocks and the meta- sedimentary Malaputese Formation of the Kamativi–Dete Inlier. This can be related to sodium and potassium enrichment.

Abstract

Groundwater  is  a  reliable  freshwater  resource.  Its  location   underground  prevents  it  from evaporative  forces.  Thus  it  serves  as  storage  of  most  of  the  world’s  liquid  fresh  water.  Being enclosed in the ground it is not also easily contaminated. Since groundwater can be used wherever it exists without costly treatments, there is over-dependence on the resource. Though in the past it was mainly used by rural dwellers for domestic water supply, presently, due to effects of climate change on surface water resources, pressures of population growth leading to expansion of towns and cities, groundwater is also supplied for agriculture and industrial purposes. But, the resulting effect from these additional users is the vulnerability of groundwater resources to reduction and pollution. Its importance in sustaining livelihood and development has been highly credited and its management  is  looked  upon  as  a  prerogative.  To  enhance  groundwater  management  in  the Sandveld, a qualitative content analysis approach was used to evaluate six factors considered to be highly needed in groundwater management. This background was used to find out how institutional arrangement in South Africa facilitates or constraints groundwater management in the Sandveld, a highly groundwater dependent area in the West Coast of the Western Cape. The results showed that all  six  factors  are  present,  but  three  facilitate  groundwater  management  while  three  others constrain management. The community involvement which ranked first, is deficient. Thus, institutional weaknesses that need to be strengthened have been identified.

Abstract

Currently limited progress is made in South Africa (and Africa) on the protection of groundwater quality. To achieve the objective of water for growth and development and to provide socio- economic and environmental benefits of communities using groundwater, significant aquifers and well-fields must be adequately protected. Groundwater protection zoning is seen as an important step in this regard. Till today, only one case study of groundwater protection zoning exists in Africa. Protection zone delineation can be done using published reports and database data. However, due to the complexity of the fractured rock at the research site, more data are required. This data can be collected by conducting a hydro census and through aquifer tests. An inventory of the activities that can potentially impact water quality was done and aquifer characteristics such as transmissivity and hydraulic conductivity were determined through various types of aquifer testing. Fracture positions were identified using fluid-logging and fracture flow rates were also measured using fluid-logging data. A conceptual model and basic 3D numerical model were created to try to understand groundwater movement at the research site. The improved information will be used to build a more detailed numerical model and implement a trustworthy groundwater protection plan, using protection zoning. The expected results will have applicability to groundwater management in general. The protection plan developed during this project can be used as case study to update and improve policy implementation.

Abstract

Only 40% of all the available groundwater resources are developed in South Africa and the development of surface water are becoming more costly and challenging. The Minister of Water and Environmental Affairs acknowledge this and identified the need to increase the use of groundwater as one of the interventions to address the increasing water requirement of towns and communities. Over the last seven years the Department of Water Affairs developed many reconciliation strategies for the area of water management, the big metro municipalities and for the smaller towns and villages in South Africa. The reconciliation strategies entails, among other things, sustainable ways to source additional water supplies for the selected towns/metro’s or villages. 

Groundwater played a major role in the recommended interventions. The challenges are now the implementation of the groundwater schemes and sustainable management of the groundwater resources. Or differently put: the balancing act between selling of groundwater and the prevention of over-abstraction. The bankability of regional schemes, the credibility of groundwater as a bulk scheme source, poor management of boreholes/well-fields, institutional responsibility, acceptable quality and treatment of groundwater, still challenge the use of groundwater development. Groundwater need to play its role in addressing the future water needs of South Africa, or can it?

Abstract

Work is being conducted in Limpopo province following a large volume release of petroleum hydrocarbons that took place from a leaking underground pipeline, resulting in significant groundwater contamination. This is considered to be the largest petroleum hydrocarbon release recorded to date in South Africa. The leak took place for 15 years before it was discovered 13 years ago in 2000. From the pressure tests that were performed, 10-15 ML of A-1 Jet fuel is considered to have  been  released  to  the  subsurface.  Product  bailing was  the  first method  employed  for  the recovery of the free product, and was later replaced with a P&T system which was considered to be more effective.

The village located about 6 km to the north of the spillage depends mostly on groundwater. This paper presents a progress update of works that have been conducted in support of developing a conceptual model which aims to determine the areal extent of the plume.

Abstract

POSTER Water is an invaluable resource without which life would cease to exist. Supply in South Africa has become limited due to increases in demand brought upon by population growth, urbanisation and industrialisation. In Southern Africa, water systems are considerably degraded by mining, industry, urbanisation and agricultural activity and a large amount of the fresh surface water has already been utilised. The stresses on this resource will unlikely make the current usage sustainable in years to come. In order to provide for basic needs for the future, groundwater as a resource will have to play a major role. It is for this reason that groundwater integrity needs to be preserved. 

Hydrocarbon contamination is a huge threat to groundwater as it contains toxic substances that are insoluble in water. These toxins are carcinogenic and mutagenic, and have a major impact on human health and ecosystem stability. When spilled, hydrocarbons will move downward through the unsaturated zone under the influence of gravity and capillary forces, trapping small amounts in the pore spaces. Accumulation will result in added weight along the water table, forcing the entire surface to be displaced downward. Some of the components can dissolve in the groundwater and move as a plume of contaminated water by diffusion and advection within the saturated zone. The transport of contaminants from petroleum hydrocarbon spills needs to be described in terms of a multiphase flow system in the unsaturated zone, taking into account contaminant movement in each of the three phases: air, water and free light non-aqueous phase liquid. Petroleum hydrocarbon behaviour in the subsurface is additionally complicated by the presence of multiple compounds, each with different properties. The net result is that some hydrocarbon fractions are transported faster than others and a contamination plume of varying intensity may spread over a large area.

The aim of this study is to develop a methodology to map and simulate the movement of groundwater that has been contaminated by hydrocarbons and to determine the fate of the water quality through decomposition. Associated remediation options will be determined thereafter.

Abstract

POSTER Researching a subject on the internet the slogan "Water flows upstream to money" popped up. The context was drought, and the meaning clear. If politics come into play as well, it would seem that science is relegated to a distant third place. The proclamation of the National Water Act, of 1998 (Act 36 of 1998), recognized the importance of groundwater and its role in the hydrological cycle and water supply issues. Groundwater governance has grown since then and is becoming increasingly important. One of the most important tenets on which groundwater based is the concept of sustainability. Various definitions of sustainability is used with the best know being "?development which meets the needs and aspirations of the present generation without compromising the ability of future generations to meet their own needs." Even though the basic understanding of sustainability may have been around for much longer than the term, it is the application of the theory in our current context that present us with challenges. Concepts like the precautionary principle, corporate governance and other buzz words that is being used does not always ensure good groundwater governance. One of the greatest problems is often the lack of scientific understanding and knowledge. Groundwater systems tend to be more complex and thus more difficult to manage than surface water. Understanding how groundwater and surface water interact, and that it is actually a linked water resource adds to the complexity. Add to this its importance in the functioning of groundwater dependent ecosystems that is still poorly understood. This article will look at principles for good groundwater governance and the tools that are needed to achieve it. It will finally look at real case studies where scientific considerations fall by the wayside for the requirements of the economy and political goals.

Abstract

2-D Electrical Resistivity Tomography (ERT) and hydrochemical study have been conducted at El Sadat industrial city. The study aims at investigating the area around the waste water ponds to determine the possibility of water percolation from the wastewater (oxidation) ponds to the Pleistocene aquifer and to inspect the effect of this seepage on the groundwater chemistry. Pleistocene aquifer is the main groundwater reservoir in this area, where El Sadat city and its vicinities depend totally on this aquifer for water supplies needed for drinking, agricultural and industrial activities. In this concern, 7 ERT profiles were measured around the wastewater ponds.

Besides, 10 water samples were collected from the ponds and the nearby groundwater wells. The water samples have been chemically analyzed for major cations (Ca+2, Na+, K+, Mg+2), major anions (Cl-, CO3-2, HCO3-, SO4-2), nutrients (NO2-, NO3-, PO4-3) and heavy elements (Cd, V, Cr, Zn, Ni, Cu, Fe, Mn, Pb). Also, the physical parameters (pH, Alkalinity, EC, TDS) of the water samples were measured. Inspection of the ERT sections shows that they exhibit lower resistivity values towards the water ponds and higher values in opposite sides. Also, the water table was detected at shallower depths at the same sides of lower resistivity. This could indicate a wastewater infiltration to the groundwater aquifer near the oxidation ponds. Correlation of the physical parameters and ionic concentrations of the wastewater (ponds) samples with those of the groundwater samples indicates that; the ionic levels are randomly varying and no specific trend could be obtained. Also, the wastewater samples shows some ionic levels lower than those detected in other groundwater samples. Besides, the nitrate level is higher in samples taken from the cultivated land than the wastewater samples due to the over using of nitrogen fertilizers. Then, we can say that the infiltrated water from wastewater ponds are NOT the main controller of the groundwater chemistry in this area, but rather the variable ionic concentrations could be attributed to local, natural and anthropogenic processes.

Abstract

As we look at the legislation set out in the driving policies and its guiding frameworks, the need for able institutions to implement strategies that promise and deliver social growth and development, are highlighted. It is only possible to define an 'able institution' through its ability to fulfil its function and enable stakeholders to be part of the decision-making process. (Goldin, 2013) It is this relationship with the collection of stakeholders, in particular strategic water resource stakeholders, their linkages as well as the identification of specific stakeholder issues, that are critically reviewed. The recent Groundwater Strategy (2010) identified key strategic issues/themes. Each chapter listed a number of well thought out recommended actions that address specific challenges in each theme. It is the need for strategic direction (to put these strategies in place "plans into action") and to articulate the specific vision in the right context to the different stakeholders, (internal as well as external) that requires thinking. It is also the uptake of this information by publics (social action and intervention) and the impact of new learning that will need to be measured. This paper will present on a study where the groundwater sector and all its stakeholders are strategically examined to understand the process of communal thinking in the current environmental conditions. It would draw from current communication practices, style, strengths, sector experiences and trends and also reference specific and unique experiences as with the recent WRC Hydrogeological Heritage Overview: Pretoria project. {List only- not presented}

Abstract

It is estimated that the three coal layers in the Springbok Flats contain about 5 TCF of coal bed methane (CBM). Two sedimentary basins, namely the southern Tuinplaas basin and the northern Roedtan basin, exist with coal layers with a total thickness of 7m which occurs mainly in three mayor seams. The coal layers are located between 20 m to more than 600m.
Farmers in the Flats are concerned about the environmental impact of fracking the coal beds. They are mostly worried about the risk of groundwater pollution; the drawdown of the water table and the producing of a bad quality water during the mining process. They set up an EPA for the Springbok Flats in 2010 and until now, they have stopped more than 6 companies to conducted exploration (stopped strictly on account of the different laws in SA that were not adhered too).
On average, 1000 liters of water is produced for every 2000 cubic feet coal bed methane mined in the USA. The quality of the produced water is not good (with typical Na values of more than 5 000 mg/l) and cannot be used for irrigation purposes.
It is thus expected that about 500 million m3 of bad quality water will be produced for every 1 TCF mined in the Flats. This groundwater will be removed from the system and it is expected that a drawdown of up to 30m will be evident at places in the Springbok Flats. There are also a large number of dykes and faults in the Flats which imply that the upward movement of methane and water will be very probable after abandonment of each coal methane well.

Abstract

Gold mineralization in study area is structurally controlled. The geomorphology of the local drainage system is highly controlled by the fault architecture. Surface water flowed through, and eroded open fractures in exposed damaged zones (zone of subsidiary structures surrounding a fault). Previous conceptual hydrogeological models of groundwater system suggested is a two-aquifer system, consisting of a fractured aquifer overlain by a weathered aquifer, where groundwater flow mimics surface topography.

Based on recent drilling and reassessment of historic geological and hydrogeological data, the groundwater system cannot only be described in terms of an elevation or stratigraphic units, as traditional aquifers are, but instead in relationship with the folds and faults. The fractured aquifer system around the mine pit is structurally compartmentalized both laterally and vertically, as depicted by the variance in static hydraulic heads and borehole yields over short distances. The un-fractured mass has very low drainable porosity. Virtually all water is contained in fractures. The main fracture zones north and west of the pit typically yield 1.3 to 2 L/s

Abstract

The Elandsfontein aquifer is currently under investigation to assist with the management of the system and to ensure the protection of the associated Langebaan lagoon RAMSAR site. The Elandfontein aquifer unit is situated adjacent to the Langebaan Road aquifer in the Lower Berg River Region and is bounded by the Langebaan Lagoon, possible boundary towards Langebaan Road aquifer, the Groen River bedrock high and the Darling batholith. The study will investigate the boundaries and hydraulic characteristics of the different aquifers and aquitards (Elandsfontein clay layer) in the Elandsfontein unit and their relationship to the Langebaan Lagoon. A literature review and baseline study has been completed to determine groundwater flow patterns and the general distribution of water quality, using historic data to characterize the different aquifers and aquitards of the system. An initial conceptual model has been formulated based on this data. Pumping tests will be used to acquire hydraulic characteristics of the Elandsfontein aquifer where data gaps exist, together with water quality and stable isotope sampling. Future plans are to construct a groundwater numerical flow model of the Elandsfontein system to assist with the management of the complex relationships between the recharge areas, flow paths through the different aquifer layers and aquitards towards the Langebaan Lagoon discharge. Results will be presented using graphical methods such as time series graphs amongst the monitoring boreholes over the years, piper diagrams to show water type characterization (Na-Cl type water) and initial results from the groundwater flow model. The expected results are envisaged to advance knowledge on groundwater availability and quality to inform the decision about water resource protection and utilization. Therefore this study is designed to provide large-scale background information that will improve the knowledge and understanding of the Elandsfontein aquifer unit and provide a basis for potential future studies of a more-detailed nature.

Abstract

The redox state of groundwater is an important variable for determining the solubility and mobility of elements which can occur in different redox states at earth surface conditions, such as Fe, Mn, Cr, As, U, N, S, V etc. Eh-pH diagrams are potentially invaluable for understanding and predicting the behaviour of these redox species yet, unlike pH, redox is seldom a routine field parameter due to the difficulties in measurement and interpretation.
This paper discusses the potential use and limitations of field measurements of the redox state of groundwater with specific reference to the geochemical behaviour of dissolved iron in the Table Mountain Group (TMG) aquifer. As part of an investigation into iron cycling within the TMG aquifer, the redox state of groundwater was estimated through three different methods, namely direct in-situ measurement of Eh, direct measurement of DO and calculation from iron speciation in groundwater. Comparison of the results from the three methods highlights the potential value of collecting redox data, but also the complexity of controls on redox potential. The redox measurements allowed the determination of the controlling reactions on iron mobility within the TMG, but only by using the iron speciation method to calibrate the in-situ values and thereby identify which redox pair was controlling redox equilibrium. As this requires measurement of redox ion pairs in solution, it is unlikely to become a routine method for redox assessment, unless the specific redox state of an element is critical in understanding its mobility. For the majority of groundwater site investigations, measurement of the dissolved oxygen content of groundwater is probably sufficient as a first pass.

Abstract

Underground mine water rebound prediction in its simplest form can be simulated linearly by comparing the volume of the mined ore with long-term average recharge rate to obtain an estimate of the time which will elapse before the workings are full to their decant elevation.

This type of linear interpolation of rising water levels can lead to an over estimation or an underestimation of the date when mine voids will flood to the critical levels. This is due to the fact that this method cannot account for the variability and interconnection between different mine voids and also does not consider the change in storage over time which is an important factor. In an abandoned underground water environment, water is stored in flooded mine stopes (tanks) and flows through a network of haulages (pipes). Due to the dip and strike of the ore body, the mined stopes are extensively interconnected on multiple levels and bounded by faults and dykes, so that water rising within any one tank will display a common level throughout that tank. At certain elevations, adjoining tanks may be connected via a discrete "overflow point", which may be a holding or permeable geological features. Water level rise during flooding is a function of head-dependent inflows from adjoining mine aquifers and/or other tanks, and the distribution of storage capacity within the tank.

The process of flooding occurs independently in two (or more) adjoining tanks until such time as the water level in one or more of the tanks reaches an overflow point. Inter-tank transfers of water will then occur until the difference in head between the two tanks either side of each overflow point is minimised. To apply the conceptual model stated above, EPANET 2 was used to predict the risk of flooding of a mine shaft, in the Free State Goldfields, if dewatering is discontinued. Considerations on stope volumetric calculations, haulage interconnections, modelling assumptions and predictions, are presented.

Abstract

Underground Coal Gasification (UCG) is an emerging, in-situ mining technology that has the advantage to access a low cost energy source that is currently classified as not technically or economically accessible by means of conventional mining methods. As such it offers significant potential to dramatically increase the world's non-recoverable coal resource.

Groundwater monitoring in the South African mining industry for conventional coal mining as an example, is well established, with specific SANS, ASTM and ISO Standards dedicated for the specific environment, location and purposes. In South Africa a major impact of the coal mining industry can be a reduction in the groundwater quantity and quality. South-Africa's groundwater is a critical resource that provides environmental benefits and contributes to the well-being of the citizens and the economic growth. Groundwater supplies the drinking water needs of a large portion of the population; in some rural areas it represents the only source of water for domestic use. Utilization and implementation of groundwater monitoring programs are thus non-negotiable.

The groundwater quality management mission, according to the Department of Water and Sanitation in South-Africa, is set in the context of the water resources mission and is as follows:

"To manage groundwater quality in an integrated
and sustainable manner within the context of the National
Water Resource Strategy and thereby to provide an
adequate level of protection to groundwater resources
and secure the supply of water of acceptable quality."

The scope of this paper is to propose an implemention strategy and a fit-for-purpose groundwater monitoring program for any Underground Coal Gasification commercial operation. It is thus important to pro-actively prevent or minimise potential impacts on groundwater through long-term protection and monitoring plans. A successful monitoring program is one that consists of
(1) an adequate number of wells, located at planned and strategic points;
(2) sufficient groundwater sampling schedules; and
(3) a dedicated monitoring program and quality control standard.

In order to have an efficient monitoring program and to prevent unnecessary analysis and costs, it is also critical to determine upfront what parameters have to be monitored for the specific process and site conditions.

Abstract

In 2009 it was announced that South Africa and Australia would be in competition for the race of the Square Kilometre Array (SKA). In 2009 the MeerKAT project was started in the Karoo near the core site of the SKA, which set out to demonstrate that South Africa was able to build the infrastructure of the SKA. The SKA required water for the building of roads, the dishes and the foundations of the dishes at the MeerKAT site. This poster explains the groundwater monitoring that is being performed at the MeerKAT site from 2011 till present in order to illustrate how good monitoring and management of groundwater can ensure sustainable groundwater use at sites like these. {List only- not presented}

Abstract

Identifying and characterising the vertical and horizontal extent of chlorinated volatile organic compound (CVOC) plumes can be a complex undertaking and subject to a high degree of uncertainty as dense non-aqueous phase liquid (DNAPL) movement in the subsurface is governed most notably by geologic heterogeneities. These heterogeneities influence hydraulic conductivity allowing for preferential flow in areas of higher conductivity and potential pooling or accumulation in areas of lower conductivity. This coupled with the density-induced sinking behaviour of DNAPL itself and the effects of groundwater recharge in the aquifer result in significant challenges in assessing the distribution and extent of CVOC plumes in the subsurface. It has been recognized that high resolution site characterization (HRSC) can provide the necessary level of information to allow for appropriate solutions to be implemented to mitigate the effects of subsurface contamination. Although the initial cost of HRSC is higher, the long-term costs can be substantially reduced and the remedial benefits far greater by obtaining a better understanding of the plume characteristics upfront. The authors will discuss a case study site in South Africa, where ERM has conducted HRSC of a CVOC plume to characterise the distribution of the source area and plume architecture in order to assess the potential risk to receptors on and off-site. The source of impact resulted from the use of a tetrachloroethene (PCE)-based solvent in an on-site workshop. The following methods of characterization were employed:
- Conducting a passive soil gas survey to identify and characterise potential source zones and groundwater impacts;
- Vertical characterisation of the hydrostratigraphy, contaminant distribution and speciation in real time using a Waterloo Advanced Profiling System (APS) with a mobile on-site laboratory;
- Using the Waterloo APS data to design and install groundwater monitoring wells to delineate the vertical and lateral extent of contamination; and
- Conducting a vapour intrusion investigation including sub-slab soil gas, indoor and outdoor air sampling to estimate current risk to on-site employees.
In less than a year, the risk at the site is now largely understood and the strategies for mitigating the effects of the contamination can be targeted and optimised based on the information gained during the HRSC assessment.

Abstract

The mineral rich Northern Cape Province produces 84% of South Africa's iron ore, while the Kalahari basin holds 92% of the world's high grade manganese deposits, with diamond and lime mining operations to a lesser degree. Mining expansion programs and new mines planned in the Northern Cape drive the region's economic development and growth strategy. The planned mining expansion depend on water being available for mining water needs and related increased demands for domestic water supplies.

Current water supplies consist of local groundwater resources (boreholes and mine dewatering) and bulk water supply from the Vaal Gamagara (VGG) Pipeline Scheme. In 1992 the Kalahari East water supply pipeline was incorporated to supply domestic and stock water to an area of approximately 1.4 million ha.

The VGG scheme consists of 370 km pipes, was built in the late sixties and is nearing its useful life expectancy. Increased water supply interruptions are being experienced while operating at capacity. The pipeline has the capacity to convey and import water of approximately 15 million m3/a into the D41J and D41K quaternary catchments. Water demand projections show an increase to 40.1 million m3/a in 2030.

Various options were investigated to upgrade the VGG water supply scheme. One option considers groundwater resources to augment the water from the Vaal River from four indentified target areas (SD1 to SD4).

Major fault zones in Banded Iron Formations (BIF) are targeted for groundwater resource development in the SD4 area, located east of Hotazel. This area is largely covered by Quaternary age sand and located near the endpoint of the VGG scheme and therefore prioritized as investigation area.

The primary objective of the hydrogeological investigation was to identify the existence of exploitable resources for additional source development. Secondary objectives were to assess the contribution groundwater can make to augmenting pipeline water; providing a source to an area and thus diminish reliance on the pipeline; and providing an independent source, which could prevent the need for pipeline extensions.

The paper will discuss the use of an airborne magnetic and Time Domain Electromagnetic's (TDEM) survey combined with gravity ground surveys as a key success factor in adding to the geological and structural information of the area. The paper will also present the results of exploration drilling (> 60 boreholes) over a large area and related borehole test pumping with water sampling to identify a sustainable and potable water supply of 2.5 million m3/a.

Abstract

POSTER Since June 2010 and still ongoing today, the Lower Orange River Valley has experienced over a 1168 tremors(a) and earthquakes in the vicinity of Augrabies. Of these 1168 tremors, 71 quakes registered above 3 on the Richter scale and on 18 December 2011, the area was struck with an earthquake that registered 5 on the Richter scale. Four thermal springs are also located near this earthquake zone and the temperature of the water have a range of between 38?C -46.6?C, according to Kent LE. (1949/1969). 25?C is the division between thermal and non-thermal waters and the thermal gradient for the Riemvasmaak area(b) is 24?C, clearly indicating that the four springs are thermal when looking at the temperature difference. The Department of Water Affairs has been monitoring these springs monthly since 2011 and has been taking field measurements and chemical analyses. The aim of this study is a) to see if the tremors and earthquakes have an effect on the chemistry of the thermal springs, b) to create a data set for the thermal springs, as these springs was recorded and mentioned in Kent LE. reports of 1949 and 1969 but no samples were collected and analysed, c) to see if the water source for the groundwater in the area and the thermal springs are connected and d) to see if the recent floods may have had an influence on the earthquake zone seeing as the Orange River runs through the zone. The following sources are used to describe the earthquakes and water quality: (a) Earthquake data from the Council of Geosciene (b) ZQM data on NGA temp range between 21-28?C depending on the season with 24?C being the mean.

Abstract

POSTER The poster presents the modified hydrogeologic conceptual model that was used to assess the dynamics of groundwater flooding in Cape Flat Aquifer (CFA). The groundwater flooding remains poorly understood in the context of urban hydrogeology of the developing countries such as South Africa. While engineering intervention are relevant to providing solution to such events, continue estimation of hydrogeologic parameters at local scale alongside field measurements remain paramount to plausible modeling the groundwater flooding scenarios that inform such engineering interventions. However, hydrogeologic conceptual model which informs numerical simulation has not been modified to include local scale variation in the CFA to reflect various groundwater units. The current study argues that modifying hydrogeologic conceptual model improves numerical simulations thereby enhancing certainty for engineering solutions. The current study developed groundwater units, set up site specific models and estimated aquifer parameters using pumping step-drawdown and constant rate pumping tests in order to produce a comprehensive modified hydrogeological conceptual model for CFA to inform groundwater modeling at catchment level for water sensitive cities.

Key Words: Aquifer parameters, Groundwater flooding, specific models, hydrogeologic conceptual model, groundwater units, numerical simulations, water sensitive cities, CFA

Abstract

Edible vegetable oil (EVO) substrates have been successfully used to stimulate the in situ anaerobic biodegradation of groundwater contaminated chlorinated solvents as well as numerous other anaerobically biodegradable contaminants like nitrates and perchlorates at a many commercial, industrial and military sites throughout the United States of America and Europe. EVO substrates are classified as a slow release fluid substrate, and comprise of food grade vegetable oil such as canola or soya bean oil. The EVO substrate serves as an easily biodegradable source of carbon (energy) used to create a geochemically favorable environment for the anaerobic microbial communities to degrade specific contaminants of concern. EVO substrate's can either be introduced into the subsurface environment as pure oil, in the form of light non aqueous phase or as an oil/water emulsion. The emulsified vegetable oil substrates holds several benefits over non-emulsified vegetable oil as the fine oil droplet size of the commercially manufactured emulsified oils can more easily penetrate the heterogeneous pore and fracture spaces of the aquifer matrix. The use of this technology to stimulate in situ biodegradation of groundwater contaminants is still relatively unknown in South Africa. This paper will give an overview of the EVO technology and its application, specifically looking at the advantages of using this relatively inexpensive, innocuous substrate based technology to remediate contaminated groundwater within fractured rock environments commonly encountered in South Africa. {List only- not presented}

Abstract

Studies showed that the primary origin of salinity in river flows of the Sandspruit in the Berg Catchment located in the Western Cape Province of South Africa was mainly due to the weathering of the shales, while atmospheric deposition contributed a third of the total salinity. The salts are transported to rivers through surface runoff and subsurface flow (i.e. throughflow and groundwater flow). The purpose of this study was to determine the relative contributions of subsurface flow and surface flows to total flows in the Sandspruit River, Berg Catchment. Three rain events were studied. Water samples for two rain events were analyzed for environmental tracers ?18O, Silica (SiO2), Calcium (Ca2+) and Magnesium (Mg2+). Tracers used for two component hydrograph separation were ?18O and SiO2. These tracers were selected as Ca2+ and Mg2+ provided inconsistent contributions of both subsurface flow and surface flow. Two component hydrograph separations indicated that groundwater is the dominant contributor to flow, while surface runoff mainly contributes at the onset of the storm event. Groundwater response to precipitation input indicated that boreholes near the river have a greater response than boreholes further away from the rivers, which have minor response to the input of precipitation.
Keywords:
Stable Isotopes, Sandspruit River, Tracers, Hydrograph separation, Salinity

Abstract

The aquifer vulnerability of the Molototsi (B81G) and Middle Letaba (B82D) quaternary catchments of the Limpopo Province was assessed to determine the influence of the vadose zone on the groundwater regime. The aquifer vulnerability was assessed by developing a new method, RDSS, which evaluates the vadose zone as a pathway for pollutants by using the following four parameters: Recharge, Depth to water table, Soil type (saturated vertical hydraulic conductivity) and Slope. Recharge was estimated using the Chloride-mass balance method and the depth to the water table was measured in the field using dipmeter. The seepage behavior (soil type) was determined as hydraulic conductivity from in-situ infiltration and percolation testing. (SABS 0252-2:1993 and double ring infiltrometer). The slopes were determined with the digital elevation method using ArcGIS software. The four parameters were overlaid using Weighted Sum, Weighted Overlay and Raster Calculator to produce the vulnerability map. Different weightings were attributed in the methods and the best selected. The results obtained indicated high vulnerability on the lower and upper parts of both catchments. The benefits of the method described are: (a) the easy quantification of the parameters through fairly simple methods and (b) the exclusion of arbitrary index values.

Abstract

Cape Town... Home to over 3 and a half million people, the second most populated city in South Africa was born in the shadow of the Table Mountain. The mountain offered all the elements vital for human settlement... most importantly WATER. The reports of the abundance of fresh water and fertile land at the foot of the mountain and surrounds inspired the VOC to set up a refreshment station at the Cape. By the late-1800s, spring water was solely used for domestic supply to the settlers of Cape Town. Until the 1930s, the Stadsfontein or Main Spring was still being used as a source of drinking water but because of on-going concerns about the safety of the water for human consumption, and sufficient water being available from the new schemes like Steenbras and Wemmershoek, a decision was taken to discontinue using the Stadsfontein for drinking water purposes. Since then most of the water joined the stormwater to the sea, until 2010 when the City recommenced using the water for irrigation at Green Point Stadium and the Commons. City of Cape Town faces a number of water supply challenges. These include managing the ever increasing demands on the current water supply. The City of Cape Town Springs Study was born from this 2001 Water Demand Management study and it aims primarily to examine the possibility of using spring water as an alternative source of water for non-potable supply. Of these, the springs which hold the most potential for use are found in two areas - the CBD area of Oranjezicht, home to the Field of Springs

Abstract

POSTER High iron (Fe) content in the waters of the aquifers around Lake Sibayi is derived from the geological units in which the aquifers are situated. When drawn to the surface the water precipitates solid iron hydroxide [Fe (OH)3] causing a cloudy reddish colour, a condition which is partly caused by the exposure of the high Fe water to the atmosphere. Fe is an essential ion necessary for the growth of people, animals and plants

Abstract

The increasing water demand for the Northern Cape Province initiated the feasibility study to augment and/or upgrade the Vaal Gamagara Water Supply (VGWS) scheme. The study completed in 2011, recommended the upgrade of the total VGWS scheme to supply the water demand of users for the planning horizon to 2030. However, short term water demand and to augment the water from the Vaal River could also be sourced from groundwater and/or mine dewatering. This resulted in the detailed assessment of the exploitation potential of three groundwater development target areas namely SD1, SD2 and SD4, largely underlain by karst aquifers. The intrusive work done on the Vaal Gamagara target areas is arguably one of the largest groundwater investigations of modern time for South Africa. This paper describes the development of the 3-dimensional groundwater flow models for the three target areas as part of this investigation. The software code chosen for the modelling work was the program SPRING which uses the finite-element approximation to solve the groundwater flow equation.

Each conceptual groundwater model developed was converted into a multi-layer numerical flow model for each groundwater development area and calibrated against observed heads, spring flows and long term water level monitoring data. Once the models demonstrated to reasonably reproduce past behaviour, they were used to forecast the outcome of future groundwater behaviour (i.e. abstraction from the well fields). Three large scale transient groundwater models have been built to analyse regional flow systems, to simulate water budget component changes, and to optimize groundwater development on a ‘sustainable’ basis. Different scenarios were developed for each target area to study the impact of different recharge scenarios and variable abstraction rates on the groundwater development of the area. Several simulations were carried out iteratively to identify the necessary number, optimal pumping rates and the temporal variability of the withdrawal period. While the proposed abstraction rates for all three groundwater regions (SD1, SD2 and SD4) of 13 million m3 / annum are considered as ‘sustainable’, by definition ‘sustainability’ has so determine the balance between economic, social and environmental interest. Perhaps a more applicable term for the long-term abstractions rates for the SD well fields is the maintainable aquifer yield which simply refers to a yield (volume/ time) that can be maintained by reduced discharge or enhanced recharge, without continually mining the aquifer or depleting aquifer storage.

Abstract

When planning an experimental setup in the laboratory, it is very important and possible to control all the variables so that one can manipulate particular variables at a given time. Experimental setups under natural conditions could be a challenging task. The success of an experiment depends to a large extent on the correct understanding of the functioning of a natural system. If the conceptual understanding of the natural system is erroneous, it is likely that unexpected results could be achieved. This was the case with the artificial recharge pilot project that was done in 2008 and 2009 at the Langebaan Road wellfield just outside Hopefield in the Western Cape. Years of research gave scientists a fairly good idea of the way in which the aquifer system functioned, especially since the establishment of the well field. This provided information of the response of the aquifer unit to large scale abstraction. The Langebaan Road aquifer unit is a multilayered system with a lower aquifer composed of Elandsfontyn gravel overlaying a bedrock layer of either granite of the Vredenburg or Darling plutons of the Cape Granite Suite or Malmesbury shale. The bedrock was considered impermeable. The upper aquifer layer was composed of mostly the Varswater Formation with peat and clay of the Elandsfontyn Formation forming the confining layer between the two aquifer layers. The extent of the different layers of the aquifer unit was plotted with a fair amount of accuracy and the clay layer was considered to be continuous between the two aquifer layers. Monitoring data for the area was done since 1974 with a gap in data-set between 1991 and 2001. Despite all the data from geophysical work, boreholes drilled, and the monitoring record, the research done prior and during the artificial recharge pilot project in 2008 and 2009 the aquifer units did not respond quite as anticipated. The Artificial Recharge (AR) pilot project team concluded that the aquifer units responded in a particular manner as opposed to the expected response according to the data and conceptual model at hand. It was thus clear that there are gaps in the conceptual model of the aquifer systems in the bigger Lower Berg River Valley that include the Langebaan Road, Elandsfontein and other aquifers that needed to bridge before another pilot test is attempted. Although the artificial recharge pilot project did not yield the expected results, valuable lessons were learned. This article will look at the conclusions and recommendations of the research done on the pilot project and attempt to evaluate the monitoring data (water levels, chemistry and rainfall) from the period just before the beginning of the AR pilot project. The monitoring data would be manipulated using the following techniques

Abstract

Resources required for groundwater sampling includes but not limited to pumping equipment, trained manpower and technical resources specific to the sampling function. Bearing these expenses in mind, choosing a laboratory for testing the water samples collected should be a carefully considered purchase. Choosing a testing facility that cannot deliver an efficient, reliable and technically sound service could render the sampling futile.

Water samples submitted to a laboratory for testing are received from third party sources more than ninety percent (90%) of the time and sampling techniques and sample integrity cannot be verified by the laboratory. However, the validity, reliability and integrity of the laboratory testing are within the control of the testing facility. These aspects of a laboratory are usually controlled within a quality management system where established policies and procedures form the basis of such a system. This system maintains a foundation for technical competence and customer service at the laboratory.

There are numerous testing facilities available to Consultants requiring chemical and microbiological groundwater testing, each with varying levels of integrity and technical ability. It is imperative to maintain confidence in the validity of results of analyses from a laboratory and this assurance can be understood through an examination of a facility's management system.

An established quality management system would comprise a policy statement, associated technical methods and technical and administrative procedures. This system would be formally documented and audited as part of the on-going laboratory's management system. In some instances, laboratories formalise this into an accreditation of the laboratory to an international standard, such as ISO 17025:2005.

The assurance that the results of analyses from any laboratory are of sound technical integrity would depend on factors such as
- personnel training,
- accommodation and environmental conditions under which the tests are carried out,
- validation of the methodology applied (including the uncertainty of measurement),
- the calibration and maintenance of the equipment used,
- understanding the traceability of and measurement undertaken,
- handling and preservation of the sample on receipt and while in the laboratory.

Each of these factors plays a critical role in the integrity of results of analyses and should be interrogated when trying to understand the reliability and competence of the laboratory of choice.{List only- not presented}

Abstract

POSTER Shale gas, a form of natural gas, has only recently become an economic source of energy. In the last 20 years techniques such as horizontal drilling coupled with hydraulic fracturing, have made possible the extraction of these unconventional hydrocarbon reservoirs. America has used hydraulic fracturing to produce numerous shale gas deposits in the country. This production has satisfied America's energy needs, and essentially made them a net exporter of petroleum. In light of this success South Africa is interested in developing potential economically profitable reserves of shale gas in the Karoo. However media, as well as recent studies, have identified issues with the hydraulic fracturing. These studies have linked hydraulic fracturing to contamination of groundwater resources in active production regions in America. There are fears among experts that the same could happen in the Karoo. This would be devastating to the local ecosystem and human population, as groundwater is the main water resource in the region. However it may still be necessary to proceed with shale gas development for its economic benefits. To ensure that some of the risks of hydraulic fracturing is mitigated, this paper proposes an early warning monitoring system. This system will essentially protect the local groundwater resources by early detection of any indicators that identify hydraulic fracturing contamination. The early warning system will operate by continues monitoring of groundwater parameters, in real time, and compare this regional baselines, and there by identify any changes in the groundwater properties. If a change is linked to a contamination event, the system will warn authorities, thus allowing for rapid response and ultimately ensure conservation of groundwater resources in the region.

Abstract

Groundwater in South Africa is the most important source of potable water for rural communities, farms and towns. Supplying sufficient water to communities in South Africa becomes a difficult task. This is especially true in the semi-arid and arid central regions of South Africa where surface water resources are limited or absent and the communities are only depended on groundwater resources. Due to a growing population, surface water resources are almost entirely being exploited to their limits. These factors, therefore, increases the demand for groundwater resources and a more efficient management plan for water usage. For these reasons, the relation between the geology and geohydrology of South Africa becomes an important tool in locating groundwater resources that can provide sustainable quantities of water for South Africans. It was therefore decided to compile a document that provides valuable geohydrological information on the geological formations of the whole of South Africa. The information was gathered by means of interviews with experienced South African geohydrologists and reviewing of reports and articles of geohydrological studies. After gathering the relevant information, each major geological unit of South Africa together with its geohydrological characteristics was discussed separately. These characteristics include rock/aquifer parameters and behaviour, aquifer types (primary of secondary), groundwater quality, borehole yields and expected striking depths, and geological target features and the geophysical method used to locate these targets. Due to the fact that 90 % of South Africa's aquifers are classified as secondary aquifer systems, groundwater occurrence within the rocks of South Africa is mainly controlled by secondary fractures systems; therefore, understanding the geology and geological processes (faulting, folding, intrusive dyke/sills & weathering) responsible for their development and how they relate is important. However, the primary aquifers of South Africa (Coastal Cenozoic Deposits) should not be neglected as these aquifers can produce significant amounts of groundwater, such as the aquifer units of the Sandveld Group, Western Cape Province. Drilling success rates and possibility of striking higher yielding boreholes can be improved dramatically when an evaluation of the structural geology and geohydrological conditions of an area together with a suitable geophysical method is applied. The ability to locate groundwater has been originally considered (even today) a heavenly gift and can be dated back to the Biblical story of Moses striking the rock to get water: "behold, I will stand there before thee there upon the rocks thou shalt smite the rock and there shall come water out of it" (Exodus 17:6).

Abstract

A review from international literature discredits the capability of MODFLOW to simulate mine water rebound, due to the nonstandard hydrogeology of underground mine systems. The conceptual understanding is that, after cessation of dewatering, mine water inflow rates and hydraulic heads are related to the void-volume, the differences in head between the water in the mine void and head dependent source, plus natural recharge to the mine voids. The flooded mine voids in the study area are partially underlain by a dolomitic aquifer. The other head dependent source of inflow into the mine voids are the surrounding and overlying Karoo aquifers. Head independent inflow rates into the mine voids, using the long term decant rates, was estimated to be 0.2% of rainfall. During mining, dewatering occurred at approximately 3 to 6 Ml/d. The objective of the model was therefore to simulate the changes head-dependent inflow rates during the rebound period. Analysis of the water level recovery data depicted that once the mine filled up with water, the hydraulic head of the mine rose with the elastic storage coefficient value of the mine void and not the specific retention as conditions changed from unconfined to confined. A three layer model was setup, to represent the two seams mined, separated by a deep Karoo aquifer. The presence of the dolomite on the mine floor was incorporated using the general head boundary package. Head dependent influx from overlying shallow and intermediate Karoo aquifers were simulated using the river package. All model layers were simulated as confined, initially to avoid model convergence issues. The confined setup proved to be the core in simulating mine water rebound with MODFLOW. The modelling exercise showed that storage during rebound is a boundary condition. This simply means that the complexity of mine water rebound can only be achieved in MODFLOW by proper time stepping and dividing the model into different stress periods to represent the changes in storage. Rebound in the study area, modelled with 21 stress periods produced a perfect water level recovery data for the different mine compartments. This was achieved by applying storage capacities of between 0.3 to 0.006 to simulate rebound during unconfined conditions, and values of between 10-4 and 10-5 when the mine void is flooded. The results showed that the inflow from the dolomitic aquifer steadily decreased from 4121 m3/d to 0 m3/d as the mine hydraulic head increased and rose over the head in the dolomitic aquifer. During the same period, inflow from the surrounding Karoo aquifers decreased from 2422 m3/d to less than 10 m3/d. The results of the model were very important in determining the volumes of water to be abstracted from the mine voids for ash-backfilling. {List only- not presented}

Abstract

POSTER Pine plantations require large amount of water for transpirational demand and the amount of water depend on the area of plantation and the rooting depth of plants.
The large amount of water required may result in disturbance of the natural water table equilibrium to meet the demand and insure growth.
The lake Sibayi catchment area is covered by the 65 km2 freshwater lake sibaya, 70km2 of pine and eucalypts woody plantations and crops.
The lake is recharged dominantly from groundwater and it is a water resource for local communities.
A large extraction of groundwater by plantations will decrease the water table and the lake level and that will decrease the amount of water available for local residences.
The main aquifer is composed of tertiary to quaternary age sediments which form a thin covering which blankets most of the Maputaland coastal plain and rests on a cretaceous system.
Shallow marine and beach deposits of tertiary origin overly the cretaceous aged silt, while the quaternary age sediments which constitute most of the cover are predominantly of Aeolian origin.
The Uloa formation of tertiary age is identified to be the most promising aquifer in the region consisting of coarse grained shelly sandstone with calcarenite associated with it.
The aquifer is approximately 40m in depth and it is recharged dominantly from rainfall through infiltration.
Rainfall averages 900mm per annum over the catchment but varies between 1200mm per annum in the south east and 700mm per annum in the west and evaporation equals to ? 1420 mm per annum (Pitman and Hutchinson, 1975).
Lake Sibayi is a freshwater lake of 65km2, in surface area and it is a water resource for surrounding communities and other inhabitants.
The sandy substrate surrounding Lake Sibayi limit the amount of surface runoff and consequently the water level within the lake are maintained by groundwater recharge.
The growth of plantations is influenced by the ability of trees to extract soil water from the intermediate zone below the root zone and the capillary fringe.
The water supply depends on the depth of the water table and on the structure of deposited soil layers and the water table depth is determined by the rate at which vegetation extracts water for transpiration and the recharge rate of groundwater.
The specific yield of a soil determines the amount of water that percolates to recharge groundwater and because vegetation extracts water from layers of soils above the water table they decrease the amount of recharge for groundwater.

Abstract

POSTER Investigations have shown that receiving water bodies, which mainly include rivers, streams and the more complicated geohydrological system, are part of the primary end receivers of harmful contaminants from identified coal mining waste bodies. Some of these potential dangers include acid mine drainage (AMD) and sulphur mine drainage (SMD) which have dire effects on the surroundings. The need for a cost effective methodology to assess site hydrology and geohydrology, to understand the associated legal responsibility of contaminated streams and aquifers, is recognised. In the compilation of this paper the unique nature of South African legislation and policies are implemented in the development of a logical approach towards mine closure specifically in the field of groundwater assessments. Furthermore, this paper explores co-disposal of discard and slurry material and the environmental impact of co-disposed wastes is assessed. The unique geological attributes of the KZN coal fields and the geochemical research results found indicates that on its own discard has great potential to produce long term SMD and that slurry has lower SMD potential. Co-disposed results are promising and buffering against long term chemical changes are noted. The final product of this approach constantly considered site hydrogeology, related impacts, risks and liabilities. This gave more clarity on aspects related to the principles followed to identify objectives for sustainable mine closure and to adopted a philosophy of mine closure as a hydrogeological concept. Overview of methods that could be used for mitigation of polluted aquifers and a brief site specific application is discussed with the aim to achieve the key deliverable which focuses on methods to scientifically assess sources, pathways and receivers. Ultimately this process has led to the development of a logical approach towards mine closure for groundwater assessment and remediation in the typical anthracite mine environment.

Abstract

The national water balance is primarily based on the availability of surface water and the historic allocation thereof. The changes that are required the next 20 years to ensure sustainable development of the nation will be painful, but is unfortunately at present not part of the public discussion, it is essentially ignored in favour of more "popular water topics".This paper intends to look at a few core aspects, they include the current water allocation in the national water balance, the relative value of the utilisation, the position of groundwater resources in changing the current relative allocation and the current groundwater utilisation. The paper further intends to be a less formal presentation of these aspects with the required data, references and conclusions available for distribution afterwards.

Abstract

POSTER The Department of Transport and Public Works has been involved with the building and upgrading of schools in the Western Cape, as well as providing green areas for sports fields. Due to the excessive costs of using municipal water the option of using groundwater for irrigation was investigated by SRK Consulting. A number of successful boreholes have been scientifically sited, drilled and tested since 2011. The boreholes have been equipped with pumps and data loggers have been installed in several. These data loggers measure time-series water levels and temperature while the flow meters measure the discharge rate and the quantity of groundwater used. Currently groundwater is being abstracted to irrigate the sports fields. Initially some problems were encountered. Boreholes were not operating optimally due to incorrect pump sizes resulting in water levels to be at pump inlet depths and pumps were not being switched off for recovery. However, due to continuous monitoring, the pumping rates and times were adjusted accordingly. It is imperative that all boreholes are equipped with loggers and continuously monitored to ensure that the boreholes are being optimally and sustainably used. Monitoring groundwater abstraction and aquifer water levels provides critical information for proper groundwater resource management. It is envisaged that schools will become proactive and participate in the groundwater monitoring. The latter will assist with groundwater awareness and assist in the use of alternative water sources and ease the burden on already stretched conventional sources.

Abstract

The groundwater governance arrangements for the development of groundwater resources were analysed. The analysis highlighted gaps and barriers to overcome before unconventional gas (shale gas and coal bed methane) development can take place at an industrial scale. The following governance challenges were identified (i) setting baseline measurements to detect groundwater pollution and to determine resource status; (ii) review of licenses and setting conditions for the development of unconventional resources; (iii) compliance monitoring and enforcement systems in place (iv) dealing punitively with non-compliant operators (v) mitigation options in place to prevent groundwater pollution; (vi) goal-based regulatory framework in place rather than a prescriptive regulatory framework; (vii) disclosure of hydraulic injection fluid; (viii) coordination with other government departments and regulatory bodies; (ix) a framework for subsidiarity and support to local water management; and (x) an incentive framework that support good groundwater management. To overcome the challenges requires a decentralized, polycentric, bottom-up approach, involving multiple institutions to deal with unconventional gas development. This provides better conditions both for cooperation to thrive and for ensuring the maintenance of such institutions.

Abstract

POSTER The human interferences in river catchments includes impoundment construction, sediment mining, bank revetment and artificial cutoff, which eventually leads to changes in the hydrology system and channel transportation ability, and may reduce channel stability. In past 10 years the Kuils River had been upgraded between Van Riebeeck Road and the Stellenbosch Arterial route to reduce flood levels. The stretch of the river between the R300 and Van Riebeeck Road was also upgraded: reducing any possibility of flooding, by concrete-lining of some areas of the river that are within the Kuilsrivier Municipal Area. Producing a cross-section of a river channel is of great importance in river studies. To determine the discharge one should survey the profile of a feature such as a meander or riffle, it is necessary to produce a cross-section of the river. In order to focus on restoration requirements of a river, a map of the river is needed. This provides an indication of what exactly the river currently is. Habitat mapping is intended to access the stream. Woody debris, substrate, aquatic vegetation is measured continuously throughout a river, to be able to identify conservation and restoration needs. The cross section 1.3 of site 1 indicates that the channel width from January 2002 is almost similar in width of September 2012. The depth of the channel is about 0.5m deeper when compared to January 2002. The Kuils River banks are covered in grassy vegetation, with some trees with deep and large roots that provide protection against undercutting along rivers. The banks of Site 1 are covered long weeds and annual grasses with shallow root systems, which don't provide stability when the banks were saturated after high rainfall. The Kuils River area is used for various types of land uses and this also impacts the channels eg. Urban, Industrial and Agricultural use. Because of canalization occurring upstream one can see evidently the changes within the channel.

Abstract

The groundwater quality of the Orange Water Management Area (OWMA) was assessed to determine the current groundwater status. Groundwater is of major importance in the Orange Basin and constitutes the only source of water over large areas. Groundwater in the OWMA is mainly used for domestic supply, stock watering, irrigation, and mining activities. Increase in mining and agricultural activities place a demand for the assessment of groundwater quality. The groundwater quality was assessed by collecting groundwater samples from farm boreholes, household boreholes, and mine boreholes. Physical parameters such as pH, temperature and Electrical Conductivity (EC) were measured in-situ using an Aquameter instrument. The groundwater chemistry of samples were analysed using Inductively Coupled Plasma Mass Spectrometry, Ion Chromatography, and Spectrophotometer for cations, anions and alkalinity respectively. The analyses were done at Council for Geoscience laboratory. The results obtained indicated high concentration of Nitrate (NO3), EC, sulphate (SO4), Iron (Fe), and dissolved metals (Chromium, Nickel, Copper, Zinc, and Lead). The concentrations were higher than the South African National Standards (SANS) 241 (2006) drinking water required guideline. The OWMA is characterised by the rocks of the Karoo Supergroup, Ventersdorp Supergroup, Transvaal Supergroup, Namaqua and Natal Metamorphic Province, Gariep Supergroup, and Kalahari Group. Groundwater is found in the sandstones of the Beaufort Group. Salt Mining occurs in the Namaqua Group, hence the high concentration of EC observed. High EC was also found in the Dwyka Group. The salt obtained from the pans underlain by the Dwyka Group rocks has relatively high sodium sulphate content, this probably results from oxidation of iron sulphate to sulphate. Therefore, high concentration of SO4 is due to the geology of the area. High concentration of NO3 is due to agricultural activities, whereas high concentration of EC, Fe, SO4 and dissolved metals is due to mining activities.

Abstract

The anticipated exploration and exploitation of Shale Gas in the Eastern Cape Karoo through hydraulic fracturing has raised considerable debate regarding the benefits and risks associated with this process for both the Karoo, and the country as a whole. Major concerns include the potential impact of hydraulic fracturing on ecological, environmental and especially scarce water resources. The Eastern Cape Karoo region is a water stressed area and with further climate change it will become increasingly so. Thus, effective and reliable groundwater management is crucial for sustainable development in this region. This research aims to hydrochemically characterise both the shallow groundwater (<500m) and deeper saline groundwater in the vicinity of the Shale Gas bearing formations, based on major and trace elements, as well as gas isotope analyses. Sampling will include water sampling and gas measurements from shallow boreholes (<300m), SOEKOR drillholes (oil exploration holes drilled in the 60's and 70's up to 4km deep) and thermal springs (source of water >500m).

To-date, a desktop study includes the collation of information determining the areas with the highest potential for Shale Gas Exploration throughout the Eastern Cape Karoo, from which the research area has been determined. This includes the identification of the respective oil companies' exploration precincts. A Hydrocensus has been initiated across this area, which includes slug testing and electrical conductivity profiling of open, unequipped boreholes. Further borehole selection will be finalised from this acquired information. The boreholes will be sampled and analysed a minimum of three times per year, which will occur after summer (April/May) and winter (October/November), after which the hydrochemistry will be analysed. The sampling will be preceded by purging of all inactive boreholes. The possible hydraulic connectivity between the shallow and deep aquifers will be tested, particularly in those areas where dolerite intrusions as well as fault systems may enhance preferential flow of water, using the chemical forensics complemented with passive seismic profiling/imaging and deep penetrating Magneto-Telluric (MT) imaging.

The data collected will form a record against which the impact of fracking can be accurately determined. The research is a critical first step towards the successful governance of groundwater in light of the proposed Shale Gas development. In its absence, effective regulation of the sector will not be possible.

Abstract

A groundwater study at Middelburg Colliery was completed with the emphasis on the investigations into water balances on a rehabilitated coal mining environment. Water balance calculations and water scheduling for collieries in Mpumalanga have become important facets of mine planning over the past years. Opencast mining involves the blasting and removal of rocks overlying the coal layer, which is removed completely. The overburden is then replaced (backfilled) and covered with soil and the terrain is rehabilitated. Rainwater penetrating through the soil into the backfill may become acidic by pyrite and sulphides in the backfill material and ultimately decants on the surface. Decanting generally commences a decade or more after mining ceases. Opencast mining impacts the natural groundwater regime and radically alters the nature of groundwater-surface water interactions. The Department of Water Affairs and Forestry in South Africa requires that mines minimise the release of their polluted water. A groundwater balance is the numerical accounting of the annual recharge to a groundwater resource. It can further be described as a quantitative assessment of the total water resources of a basin over a specific period of time. In a groundwater development program, such a budget is necessary to efficiently manage and utilize the resource. Many of the parameters that determine recharge to an aquifer are measured directly and some are computed from hydraulic characteristics and measured field data. The Middelburg Mine Services has been experiencing excess water problems in past years. Because of the lack of space and the concerns of decanting of mine water out of the rehabilitated pit, it was suggested that mine water treatment should be considered. Geohydrological models were created to determine the decant positions and water volumes for the rehabilitated area. The size of the water treatment plant can then be determined using the calculated decant volumes and positions.

Abstract

The National Water Act (NWA) 36 of 1998 is regarded as providing a platform for an innovative way of managing the country's water resources. However, demands on the nation's water resources are intensifying as more and more catchments are coming under increasing stress. This may be attributed to significant changes in land-use and poor water resource governance which negatively affects the Environmental Water Requirement (EWR) flows of rivers in many catchments in South Africa. EWR refers to the flow needed by a river to sustain a healthy ecosystem. It is vital that the determined EWR flows are met and to ensure that all water-users receive their allocated water supplies. To ensure effective water management and water provision, it is critical to understand transmission losses considering that it is a key component of the water balance or hydrological budget. Quantitative investigations of transmission losses are necessary in order to calculate flows in a river and appropriately allocate water for different users. The Groot Letaba River situated in the north-eastern region of South Africa is a prime example of a river system where uncertainties in channel losses and gains are complicating effective water management. The Groot Letaba River is a model river where Strategic Adaptive Management (SAM) is currently being implemented to ensure adaptive and sustainable water resource management. This unique approach is facilitated by the institutional interaction between dam operators (from the upstream Tzaneen Dam) and stakeholders including Kruger National Park. However, there are huge uncertainties surrounding natural water losses (e.g. evapotranspiration) or gains (e.g. groundwater discharge) in the real-time model currently being used by dam operators. This study aims at attempting to narrow down the uncertainty by understanding and quantifying the natural hydrological processes between the two dominant land-uses along this river, i.e. agriculture and protected areas. In particular, the project will investigate the hydrological connectivity between groundwater and surface water along the Letaba River. This project will contribute significantly to management strategies by using a precise hydrological approach which will aid in improving estimates of water supply in the Groot Letaba River. Furthermore, this project could contribute to the development of appropriate water management strategies not only in the Letaba catchment but other similar Lowveld catchments as well.

Abstract

Understanding the hydrogeology of fractured or crystalline rocks could be complicated because of its complex structure and a porosity that is almost exclusively secondary. These types of geologies are known to exhibit strong heterogeneities and irregularities contrasted in hydraulic properties, spacing and flow distribution within fractured rock aquifers. Therefore it is important to develop a conceptual model based on site specific data such as the hydraulic roles between groundwater and nearby hillslope/surface water bodies in order to understand its movement within the environment. Therefore this study intends to develop a hydrogeological conceptual model to qualitatively interpret the dominant groundwater flow processes at a 3rd order scale within southern granite supersite of the Kruger National Park (KNP). Key findings based on actual subsurface results in the form of Electrical Resistivity Tomography (ERT) surveys, borehole drilling logs, water levels and hydraulic data suggest that two aquifer types exist on the southern granite supersite namely, a weathered low resistivity of 3-75 ?m (average depth ranging 383-328 mamsl) and hard rock high resistivity of 1875-5484 ?m (average depth ranging 364-299 mamsl) granite/gneiss aquifer. The weathered aquifer flow system responds to localized processes such as piston recharge, indirect surface water recharge and groundwater water discharge via interflow. This was due to the relatively rapid response time of 2-3 weeks in groundwater levels to the major sequence of rainfall events over the hydrological year. The hard rock aquifer is part of a regional groundwater flow system. This is owed to the lengthy response time lags of 2-3 months in groundwater levels to the major sequences of rainfall events over the hydrological year. Due to the generally low transmissivity (ranging 9.50E-08 to 11.2 m2/day) values obtained during the borehole pump and slug tests and inclining trend of groundwater levels after the wet season, suggest these ephemeral hillslope landscapes are likely to act as hydraulic boundary areas. In that they contribute during the dry season to the regional hydraulic head generating baseflow to perennial streams. Therefore from a management perspective certain reaches within these ephemeral streams contribute to recharge which in turn should receive attention as many of the ephemeral stream sand are used for grading tourist gravel roads. Furthermore these granite ephemeral landscapes are characteristic of generally low transmissive aquifer properties and therefore should be given careful consideration before including it in a water supply scheme scenario.

Abstract

Estimating groundwater recharge response from rainfall remains a major challenge especially in arid and semi-arid areas where recharge is difficult to quantify because of uncertainties of hydraulic parameters and lack of historical data. In this study, Chloride Mass Balance (CMB) method and Extended model for Aquifer Recharge and soil moisture Transport through unsaturated Hardrock (EARTH) model were used to estimate groundwater recharge rates. Groundwater chemistry data was acquired from the Department of Water and Sanitation (DWS) and Global Project Management consultants, while groundwater samples were collected to fill-in the identified gaps. These were sent to Council for Geoscience laboratory for geochemical analysis. Rainfall samples were also collected and sent for geochemical analysis. An average value of rainfall chloride concentration, average groundwater chloride concentration and mean annual precipitation (MAP) were used to estimate recharge rate at a regional scale. Local scale recharge was also calculated using chloride concentration at each borehole. The results were integrated in ArcGIS software to develop a recharge distribution map of the entire area. For EARTH model, long term rainfall and groundwater levels data were acquired from the South Africa Weather Services and DWS, respectively. Soil samples were collected at selected sites and analysed. These were used to determine representative values of specific yield to use on EARTH model. 60% of the groundwater levels data for 5 boreholes was used for model calibration while the remaining 40% was used for model validation. The model performance was evaluated using coefficient of determination (R2), correlation coefficient (R), Root Mean Square Error (RMSE) and Mean square error (MSE). Regional recharge rates of 12.1 mm/a (equivalent to 1.84% of 656 mm/a MAP) and 30.1 mm/a (equivalent to 4.6% MAP) were calculated using rainfall chloride concentrations of 0.36 and 0.9 mg/L, respectively. The estimated local recharge rates ranged from 0.9-30.2 mm/a (0.14 - 4.6%) and 2 - 75 mm/a (0.3 - 11.4%) using chloride concentration of 0.9 and 0.36 mg/L, respectively. The average recharge rate estimated using EARTH model is 6.12% of the MAP (40.1 mm/a). CMB results were found to fall within the same range with those obtained in other studies within the vicinity of the study area. The results of EARTH model and CMB method were comparable. The computed R2, R, RMSE and MSE ranged from 0.47-0.87, 0.68-0.94, 0.04-0.34, 0.16-3.16, and 0.50-0.79, 0.68-0.89, 0.07-0.68, 0.15-8.78 for calibration and validation, respectively. This showed reasonable and acceptable model performance. The study found that there is poor response of groundwater levels during rainy season which is likely to be due to lack of preferential flows between surface water and groundwater systems. This has resulted in poor relationship between estimated and observed groundwater levels during rainfall season.

Key words: ArcGIS, CMB, EARTH, Groundwater recharge, rainfall

Abstract

This paper outlines and presents out-of-the-box theories as examples to highlight some of the challenging restraints within the current legislative environment preventing scientists, engineers and other operational personnel to take theory into action and implementation. Key to this is the very static nature of the water use license (WUL)and associated process. The first example shows how integrated dynamic water modelling can be utilized to create an integrated water and waste management plan within the mining sector. The models developed using principles from Government Notice 704, the Best Practice Guidelines (BPGs) and the principles of water conservation and demand management. Ultimately it keeps clean and dirty water flows separate and optimises the use of dirty water in order to reduce raw/potable water off-takes through this process. The objective of these models are to optimise the water use and develop strategies to ultimately enable mines to optimize it's internal non-potable water resources therefor relieving pressure on the limited potable systems, as well as aiding surrounding communities, in which they operate, with potable water. Results from the model provides for 1 or 20 years simulation data that differs year-on-year based on numerous factors, i.e. rainfall, run of mine (ROM) feed and growing/declining surface run-off areas. The variability of the results makes it almost impossible to utilize within application documentation as it is too complex and it does not align with the application figures as required in the WUL process. This resulting in a fairly simplistic and sometimes unrealistic static model that is submitted as part of the application.

Abstract

Model calibration and scenario evaluations of 2D and 3D groundwater simulations are often computationally expensive due to dense meshes and the high number of iterations required before finding acceptable results. Furthermore, due to the diversity of modelling scenarios, a standardised presentation of modelling results to a general audience is complicated by different levels of technical expertise.

Reducing computational time
In this presentation we look briefly at the use of Reduced Order Models (ROM's), which is one of the recent developments in groundwater modelling. The method allows significant speed-up times in model calibration and scenario evaluation studies. In saturated flow for example, these approaches show speed-up times of >1000 when compared to full models created with Finite Element of Finite Difference methods. These methods are demonstrated to a case study in the Table Mountain Group, in which we show a simplified parameter calibration and scenario evaluation study.

Standardising presentation
In order to present the results to as wide an audience as possible, the use of a web-browser as a GUI is proposed, where the web-page is coupled to a geo-spatial database and data is presented in a spatial and numeric format. The use of the spatial database manager PostgreSQL with PostGIS is proposed. Through a browser interface, users can run modelling scenarios using the ROM, which is evaluated in near real-time. Following the evaluation of the model, we show how PostGIS can spatially present data on a base-map such as google maps. In keeping with the current trends in online map customisation, viewers can interactively choose to overlay the base-map with a data-type (such as pressure or hydraulic head contours or flow direction) that is most intuitive for their level of familiarity with the data.

Conclusion
In using advanced modelling techniques and a simplified browser based presentation of results, high-level decisions in water resource management can be significantly accelerated with the use of interactive scenario evaluations. Furthermore, by reaching a broader audience, public participation will be significantly enhanced.

Abstract

Faced with a burgeoning population and property growth, and in preparation for a future drier climate regime; the coastal town of Hermanus in the Western Cape has set up two wellfields to abstract groundwater from the underlying aquifer in order to augment the constrained surface water supply from the De Bos Dam.
Water Use Licences (WUL) were issued to the Overstrand Municipality in June 2011 and December 2013. The licences authorise a maximum annual abstraction of 1 600 Ml of water from the Gateway wellfield and 800 Ml of water from the Volmoed and Camphill wellfield via several boreholes. The water abstracted from the Gateway wellfield is pumped via a booster pump station to the Preekstoel Treatment Plant. The Volmoed and Camphill wellfield are situated at a higher altitude allowing for a gravity feed pipeline.
Earth Science Company, Umvoto Africa, has the responsibility to ensure Resource Quality Objectives are met which include balancing the need to protect the resource on the one hand; and the to develop sustainable utilisation of the Hermanus groundwater resources and compliance with the WUL on the other. The consultancy provides hydrogeological support, wellfield management and technical advice in operating the boreholes, pumps, boosters and related infrastructures.
Running the operations of the wellfield relies on a high-tech, semi-automated system, incorporating a remotely controlled, telemetry based structure. Vital parameters are monitored by electronic sensors, feeding data to processors which alters pump performance to maintain specified boundary levels. Data is simultaneously communicated via telemetry to a central control which uses data acquisition software to portray information to the operators. Warning alarms both alert operators via SMS and in certain instances auto-shut down the system.
To ensure ecological sustainability of the ground water resource, the wellfield also requires hydrogeological monitoring at far field locations within the recharge areas. Some of these locations are in remote areas making data download costly. The high-tech telemetry approach is used with positive results.
Any automated telemetry system is prone to malfunction and environmental hazards. The challenge lies in managing this and providing sufficient back up and duplication of systems.
The paper gives an overview of the components and flow of data based on the experiences gained during the evolution and development over 12 years of operation. Automation produces vast data bases which are often not sufficiently analysed, the premise that "once collected, the task is done". However data is only as good as the people who drive the systems and this paper provides a critical analysis of human intervention in an automated system and the decisive role of quality-checks. Finally the paper seeks to provide a pragmatic guideline for water users to comply with the WUL and institutional regulations.