Conference Abstracts

All Abstracts were presented at the Groundwater Conferences

Displaying 51 - 100 of 795 results
Title Presenter Name Presenter Surname Area Sort descending Conference year Keywords

Abstract

Slightly more out of the box idea is the use of anthropogenic aquifers as storage and chemical conditioners.  This concept was first introduce by Eland Platinum Mine(EPM) and reported on in previous papers.  At EPM water is used through a serious of natural aeration and aerobic storage facilities to reduce nitrate levels.  In 2013 another group introduced pilot studies by virtue of abstraction in support of the water conservation and demand management strategy; which has proven that it could enable the operations to overcome water shortage periods and reduce pressure on Rand Water (RW). The pilot sites would deliver water into the dirty water circuit, but within five to ten years it may further be used to overcome months with zero potable water supply. .  In platinum mines the more the aquifers are used the cleaner the water becomes, simply because introduced pollutants are not constant sources and country rock is mostly inert.  In the future these aquifers have the potential to become larger storage facilities protected from floods and limited evaporation losses. It is foreseen that some of the mines in the western belt may have more water stored in primary aquifers than water stored within major water dams. Yields from these aquifers for individual aquifers may be up to 450 m3/hour and storage of 18 Mm3.  . Why then this paper if we are already using it?  The issue is that the true value of these aquifers an only be unlocked when they are  used as recharging aquifers and thereby actively storing dirty water within a dirty water aquifer.  Once we are able to undertake this the positive environmental gains such of environmental overflows, condition dirty water, reduction of pollution and significant reduction of the use of potable water from RW. {List only- not presented}

Abstract

This study intent to share the legal and institutional analysis of the UNESCO IHP project "Groundwater Resources Governance in Transboundary Aquifers" (GGRETA) project for the Stampriet Transboundary aquifer. The Intergovernmental Council (IGC) of the UNESCO International Hydrological Programme (IHP) at its 20th Session requested the UNESCO-IHP to continue the Study and Assessment of Transboundary Aquifers and Groundwater Resources and encouraged UNESCO Member States to cooperate on the study of their transboundary aquifers, with the support of the IHP. The GGRETA project includes three case studies: the Trifinio aquifer in Central America, the Pretashkent aquifer in central Asia and the Stampriet aquifer in southern Africa. This study focuses on the Stampriet Transboundary Aquifer System that straddles the border between Botswana, Namibia and South Africa. The Stampriet system is an important strategic resource for the three countries. In Namibia the aquifer is the main source of water supply for agricultural development and urban centers in the region, in Botswana the aquifer supplies settlements and livestock while in South Africa the aquifer supplies livestock ranches and a game reserve. The project methodology is based on UNESCO's Shared Aquifer Resources Management (ISARM) guidelines and their multidisciplinary approach to transboundary aquifers governance and management, addressing hydrogeological, socio-economic, legal, institutional and environmental aspects. The GGRETA builds recognition of the shared nature of the resource, and mutual trust through joint fact finding and science based analysis and diagnostics. This began with collection and processing of legal and institutional data at the national level using a standardized set of variables developed by the International Groundwater Resources Assessment Center (IGRAC). This was followed by harmonization of the national data using common classifications, reference systems, language, formats and derive indicators from the variables. The harmonized data provided the basis for an integrated assessment of the Stampriet transboundary aquifer. The data assisted the case study countries to set priorities for further collaborative work on the aquifer and to reach consensus on the scope and content of multicountry consultation mechanism aimed at improving the sustainable management of the aquifer. The project also includes training for national representatives in international law applied to transboundary aquifers and methodology for improving inter-country cooperation. This methodology has been developed in the framework of UNESCO's Potential Conflict Cooperation Potential (PCCP) program. The on-going study also includes consultation with stakeholders to provide feedback on proposals for multicountry cooperation mechanisms. It is anticipated that upon completion of the study, a joint governance model shall have been drawn amongst the three countries sharing the aquifer to ensure a mutual resource management.

Abstract

An understanding of the movement of moisture fluxes in the unsaturated zone of waste disposal sites play a critical role in terms of potential groundwater contamination. Increasing attention is being given to the unsaturated or vadose zone where much of the subsurface contamination originates, passes through, or can be eliminated before it contaminates surface and subsurface water resources. As the transport of contaminants is closely linked with the water ?ux in through the unsaturated zone, any quantitative analysis of contaminant transport must ?rst evaluate water ?uxes into and through the this region. Mathematical models have often been used as critical tools for the optimal quantification of site-speci?c subsurface water ?ow and solute transport processes so as to enable the implementation of management practices that minimize both surface and groundwater pollution. For instance, numerical models have been used in the simulation of water and solute movement in the subsurface for a variety of applications, including the characterization of unsaturated zone solute transport in waste disposal sites and landfills. In this study, HYDRUS 2D numerical simulation was used to simulate water and salt movement in the unsaturated zone at a dry coal ash disposal site in Mpumalanga, South Africa. The main objective of this work was to determine the flux dynamics within the unsaturated zone of the coal ash medium, so as to develop a conceptual model that explains solute transport through the unsaturated zone of the coal ash medium for a period of approximately 10 year intervals. Field experiments were carried out to determine the model input parameters and the initial conditions, through the determination of average moisture content, average bulk density and the saturated hydraulic conductivity of the medium. A two dimensional finite-element mesh of 100m x 45m model was used to represent cross section of the ash dump. Two dimensional time lapse models showing the migration of moisture fluxes and salt plumes were produced for the coal ash medium. An explanation on the variation of moisture content and cumulative fluxes in the ash dump was done with reference to preexisting ash dump data as well as the soil physical characteristics of the ash medium.
{List only- not presented}

Abstract

This paper describes the characteristics of the deep aquifer systems in South Africa as derived from the available data. The study formed part of the larger WRC project K5/2434 (Characterisation and Protection of Potential Deep Aquifers in South Africa). A review of the available literature relevant to potential deep aquifers in South Africa was done to allow characterisation of these aquifer systems. In addition, data obtained from the geological logs of the SOEKOR and KARIN boreholes were considered.

This paper focuses on deep aquifers in 1) the Karoo Supergroup, 2) the basement and crystalline bedrock aquifers, 3) the Table Mountain Group, 4) the Bushveld Igneous Complex and 5) the dolomites of the Transvaal Supergroup. From the available data the deep aquifer systems are described in terms of the following characteristics: lithology, occurrence, physical dimensions, aquifer type, saturation level, heterogeneity and degree of isotropy, formation properties, hydraulic parameters, pressurisation, yield, groundwater quality, and aquifer vulnerability.

The results of the study show that the deep aquifer systems of South Africa are generally fractured hard-rock aquifers in which secondary porosity was developed through processes such as fracturing and dissolution. The primary porosity of most of the rocks forming the aquifers is very low. Apart from the dolomite aquifers, most of the water storage occurs in the rock matrices. Groundwater flow predominantly takes place along the fractures and dissolution cavities which act as preferential pathways for groundwater migration. The aquifers are generally highly heterogeneous and anisotropic.

The deep aquifers are generally confined and associated with positive hydraulic pressures. The groundwater quality generally decreases with depth as the salinity increases. However, deep dolomite aquifers may contain groundwater of good quality. Due to the large depths of occurrence, the deep aquifer systems are generally not vulnerable to contamination from activities at surface or in the shallow subsurface. The deep dolomite aquifers are a notable exception since they may be hydraulically linked to the shallower systems through complex networks of dissolution cavities. The deep aquifers are, however, very vulnerable to over-exploitation since low recharge rates are expected.

Abstract

Two ventilation shafts were proposed to be excavated to depths of 100 and 350 m to intersect an underground mine, in the Bushveld Complex. The area is made up of fractured aquifers and the assignment was to identify the exact positions of the permeable zones within the shafts profiles as well as estimate the groundwater inflow rates at every 5 m interval along the shafts profiles. The project was budget and time constrained and therefore the preferred hydrogeological characterisation techniques, particularly the percussion drilling, aquifer testing and numerical modelling could not be conducted. The study was completed by conducting packer tests in HQ sized holes drilled at the exact positions of the proposed shafts. The packer test data was then interpreted using Thiem equation, a modification of Darcy Equation for radial flow, to estimate the steady state inflow rates into the shafts. Transient state flow is more challenging to calculate analytically, as it is time and aquifer storage dependent. However, transient state flow in shafts exists for the first 10 - 15 days only and is short lived. Thereafter, a steady state flow occurs where the rate is nearly fixed for the rest of the life of mine, unless new external stresses, such as mine dewatering, takes place within the radius of influence. Six months later the shafts were excavated and the permeable zones were encountered at the exact positions as predicted using the packer testing. In addition, the inflow rates calculated using analytical modelling was successful in estimating the inflow rates recorded after the shafts were excavated. The packer testing and analytical modelling was therefore effective in assisting the mine to plan the necessary pumps and management plans within the allocated budget and timeframe.

Abstract

POSTER As the National Water Act has evolved to provide for more effective and sustainable management of our water resources, there has been a shift in focus to more strategic management practices. With this shift come new difficulties relating to the presentation of sensitivity issues within a spatial context. To this end it is necessary to integrate existing significant spatial layers into one map that retains the context, enables simple interpretation and interrogation and facilitates decision making. This project shows the steps taken to map and identify key groundwater characteristics in the Karoo using Geographic Information Systems (GIS) techniques. Two types of GIS-based groundwater maps have been produced to assist with interpretation of existing data on Karoo Aquifer Systems in turn informing the management of groundwater risks within Shell's applications for shale gas exploration. Aquifer Attribute and Vulnerability maps were produced to assist in the decision making process. The former is an aquifer classification methodology developed by the project team, while the latter uses the well-known DRASTIC methodology. The overlay analysis tool of ESRI's ArcGIS 10.1 software was used, enabling the assessment and spatial integration of extensive volumes of data, without losing the original detail, and combining them into a single output. This process allows for optimal site selection of suitable exploration target areas. Weightings were applied to differentiate the relative importance of the input criteria. For the Attributes maps ten key attributes were agreed by the project team to be the most significant in contributing to groundwater/aquifer characteristics in the Karoo. This work culminated in the production of a series of GIS-based groundwater attributes maps to form the Karoo Groundwater Atlas which can be used to guide groundwater risk management for a number of purposes. The DRASTIC model uses seven key hydrogeological parameters to characterise the hydrogeological setting and evaluate aquifer vulnerability, defined as the tendency or likelihood for general contaminants to reach the watertable after introduction at ground surface.

Abstract

In the management of water resources especially groundwater resources, implementing existing regulations is one of the much needed aspects ensuring water security through the regulated use. However, such regulations are not regulated to ensure that they served the intended purpose in their original formulation. In South Africa, a study was carried out to assess the relevance and efficient of adhering to procedural requirements during water use licence application (WULA) process. Lived-experiences and observation methods were used to collect data. The department of water and sanitation was used as a case study. Interpretative analysis approach was used to provide the meaning on the analysed information. The WARMS database was accessed where the number of days that WULA process was extracted. The regulation No. 40713 about WULA process was analysed. The five-year-data prior and post the promulgation of regulation No. 40713 were extracted from WARMS database and evaluated in terms of the duration each application took to be processed for WULA. Data on water use for abstractions from all the regions were obtained from WARMS database and assessed. Dates when applications were submitted and when such applications were finalised were analysis per month and per years for temporal analysis. The number of entitlements received during the particular period and the number of applications recommended to be declined and issued were assessed using exploratory data analysis methods. Graphical method was adapted to increase results visualisation on water use entitlements. Key results showed that the process of WULA was generally slow and reasons were provided for such outcome. However, the temporal analysis revealed an increasing trend in the post promulgation of regulation No. 40713 suggesting that regulations when re-regulated serve its intended purpose. Although such findings are not conclusive but they inform a basis for re-regulating enforcement regulations in Southern African countries with issues similar to South Africa on water entitlement.

Abstract

The Transboundary Groundwater Resilience (TGR) Network-of-Networks project brings together researchers from multiple countries to address the challenges of groundwater scarcity and continuing depletion. Improving groundwater resilience through international research collaborations and engaging professionals from hydrology, social science, data science, and related fields is a crucial strategy enabling better decision-making at the transboundary level. As a component of the underlying data infrastructure, the TGR project applies visual analytics and graph-theoretical approaches to explore the international academic network of transboundary groundwater research. This enables the identification of research clusters around specific topic areas within transboundary groundwater research, understanding how the network evolved over the years, and finding partners with matching or complementary research interests. Novel online software for analysing co-authorship networks, built on the online SuAVE (Survey Analysis via Visual Exploration, suave.sdsc.edu) visual analytics platform, will be demonstrated. The application uses OpenAlex, a new open-access bibliographic data source, to extract publications that mention transboundary aquifers or transboundary groundwater and automatically tag them with groundwater-specific keywords and names of studied aquifers. The analytics platform includes a series of data views and maps to help the user view the entire academic landscape of transboundary groundwater research, compute network fragmentation characteristics, focus on individual clusters or authors, view individual researchers’ profiles and publications, and determine their centrality and network role using betweenness, eigenvector centrality, key player fragmentation, and other network measures. This information helps guide the project’s data-driven international networking, making it more comprehensive and efficient.

Abstract

This study was aimed at developing an integrated groundwater-surface water interaction (GSI) model for a selected stretch of the Modder River by considering the following five different aspects of the GSI: 1) the distribution of different aquifer systems (structural connectivity) along the river 2) the hydraulic connectivity between the aquifer systems, 3) the volumes of water abstracted from the aquifers by streamside vegetation, 4) the volumes of water replenished to the groundwater system through rainfall recharge, and 5) the exchange fluxes between the various components of the groundwater-surface water system. The distribution of the aquifer systems was investigated by means of a) geo-electrical surveys, and b) in situ slug tests while their hydraulic connectivity was investigated by hydrogeochemical routing. The volumes of water abstracted by streamside vegetation were estimated by the quantification of the transpiration from individual plants and the groundwater recharge was estimated by a root zone water balance. The water exchange fluxes between the groundwater and surface water were determined from a simple riparian zone groundwater budget. The results of the geo-electrical surveys and slug tests allowed the delineation of the riparian area aquifers (RAA) and the terrestrial area aquifers (TAA) on both the south-eastern and north-western sides of the river. Based on the results of hydrochemical analyses, saturation indices and inverse mass balance modelling, the GSI involves flow of water from the TAA to the RAA, and finally to the river on the south-eastern side while it involves flow from the river into the RAA with a limited exchange with the TAA on the south-eastern side. The dominant vegetation on the study area was found to be the Acacia karroo and Diospyros lycioides. The close similarities in isotope compositions of the xylem sap and the borehole water samples suggested that the Acacia karroo sourced its water from the groundwater storage while differences in isotope compositions suggested that the Diospyros lycioides did not source water from the groundwater storage at the time of measurement. The results of groundwater recharge estimation in the study area highlighted the fact that both the antecedent moisture and the rainfall amounts determine whether recharge to the groundwater system will take place. Finally, the results of baseflow estimation indicated that the river is a gaining stream along the south-eastern reach while acting as a losing stream along the north-western reach.

Abstract

POSTER About 97% of the earth's freshwater fraction is groundwater, excluding the amount locked in ice caps (Turton et al 2007) and is often the only source of water in arid and semi-arid regions and plays a critical role in agriculture, this dependency results in over-exploitation, depletion and pollution (Turton et al 2007). Groundwater governance helps prevent these issues. CSIR defines governance as the process of informed decision making that enables trade between competing users of a given resource, as to balance protection and use in such a way as to mitigate conflicts, enhance security, ensure sustainability and hold government officials accountable for their actions (Turton et al 2007). Realising the issues of groundwater governance is a requirement for developing policy recommendations for both national and trans-boundary groundwater governance. Groundwater level decline has led to depletion in storage in both confined and unconfined aquifer systems (Theesfeld 2010). There are about six institutional aspects, namely voluntary compliance, traditional and mental models, administrative responsibility and bureaucratic inertia, conflict resolution mechanisms, political economy and information deficits (Theesfeld 2010). Each of these aspects represents institutional challenges for national and international policy implementation. Traditional local practices should not be disregarded when new management schemes or technological innovations are implemented. The types of policies that impact governance include regulatory instruments, economic instruments and voluntary/advisory instruments. Regulatory or command and control policy instruments such as ownership and property right assignments and regulations for water use are compulsory. Economic policy instruments make use of financial reasons such as groundwater pricing, trading water right or pollution permits, subsidies and taxes. Voluntary /advisory policy instruments are those that influence voluntary actions or behavioural change without agreement or direct financial incentives. These are ideal types though no policy option ever relies purely on one type of instrument. The aim of these policies is to have an impact on governance structures (Theesfeld 2010). The national water act (1998) of the Republic of South Africa is not widely recognized as the most comprehensive water law in the world even though it is the highlight of socio-political events; socially it is still recent in most sites although the law was implemented 15 years ago (Schreiner and Koppen 2002). Regulations for use include quantity limitations, drilling permits and licensing, use licenses, special zone of conservation and reporting and registering requirement. In general when drilling and well construction are done commercially they increasingly fall under the scope of regulatory legislation. This paper will focus mostly on traditional and mental models; procedures that a certain community is dependent on should be taken into account before replacing with technological advanced tools. Consultation of the public can cause conflicts which lead to poor groundwater management.

Keywords: Groundwater governance, policy, policy instruments.

Abstract

Geochemical investigations for a planned coal mine indicated that the coal discard material that would be generated through coal processing would have a significant potential to generate acid rock drainage. A power station is planned to be developed in close proximity to the coal mine, and the potential for co-disposal of coal discard with fly-ash material required examination. Fly-ash is typically highly alkaline and has the potential to neutralise the acidic coal discard material. In order to investigate whether this was a viable option, the geochemical interaction between the coal discard and fly-ash was investigated. Geochemical data, including acid-base accounting, total chemical compositions, leach test data and kinetic test data, were available for the coal discard material and the fly-ash. Using these data as inputs, a geochemical model was developed using Phreeqci to predict the pH of leachate generated by mixing different ratios of coal discard and fly-ash. The ratio of coal discard to fly-ash was established that would result in a leachate of neutral pH. Using this prediction, a kinetic humidity cell test was run by a commercial laboratory for a total of 52 weeks using the optimal modelled ratio of discard and fly-ash. Although leachate pH from the kinetic test initially reflected a greater contribution from fly-ash, the pH gradually decreased to the near-neutral range within the first 20 weeks, and then remained near-neutral for the remainder of the 52-week test. During this period, sulphate and metal concentrations also decreased to concentrations below those generated by either the fly-ash or coal discard individually. The addition of fly-ash to the coal discard material provided sufficient neutralising capacity to maintain the near-neutral pH of the co-disposal mixture until the readily available sulphide minerals were oxidized, and the oxidation rates decreased. At the end of the test, sufficient neutralising potential remained in the humidity cell to neutralise any remaining sulphide material. The results of this investigation suggested that, under optimal conditions, co-disposal of fly-ash with coal discard is a viable option that can result in reduced environmental impacts compared to what would be experienced if the two waste materials were disposed of separately.

Abstract

The provision, usage and discharge of water resources are major concerns for coal mines, both underground and opencast. Water resources in a coal mining environment will often account for a significant portion of the daily operational cost. In order to cut costs, the mine will often collect as much runoff as possible to recycle for future use. This on-going recycling of site water and management of the resource demands a complete site water balance model in order to understand the dynamics of the resource within the boundaries of the mine. To improve the understanding of the dynamics of the resource on a much larger scale, and the effect it will have on recharge in an open cast coal mine environment, one must consider alternative modelling approaches which can compensate for such conditions. This amounts to describing recharge as a modelling component in a physically based distributed model. The main goal of this project is to calculate recharge into the main pit at this specific colliery by applying parameters on a quaternary catchment scale. The colliery is located just west of the town of Ogies, Mpumalanga on the peripheral region of the quaternary catchment B20G. The physiography of the quaternary catchment B20F is described as a central Highveld region gently sloping to the north. The geohydrological modeling application MIKE SHE (developed by DHI) was used to develop a fully integrated catchment model. The model was created mainly to simulate the impact of human activities on the hydrological cycle and hence on water resource development and management. Different modules of MIKE SHE that was used during the modelling stage include saturated- and unsaturated flow and a small degree of overland flow.

Key words: Mpumalanga, MIKE SHE, recharge

Abstract

Modelling of groundwater systems and groundwater-surface water interaction using advanced simulation software has become common practice. There are a number of approaches to simulate Lake-aquifer interactions, such as the LAK Package integrated into MODFLOW, the high conductivity and fixed stage approaches. LAK and the high conductivity approaches were applied and compared in simulating Lake- aquifer interaction in the Lake Sibayi Catchment, north-eastern, South Africa using the finite difference three-dimensional groundwater flow model, Visual MODFLOW Flex under steady state conditions. The steady state model consisted of two layers: an upper layer consisting of the Sibayi, KwaMbonambi, Kosi Bay and Port Durnford Formations which have similar characteristics, and a lower model layer representing the karst, weathered and calcareous Uloa Formation. The bottom model boundary is constrained by the impermeable Cretaceous bedrock. The model area covers the surface and groundwater catchments of Lake Sibayi which is constrained in the east by the Indian Ocean. A no-flow boundary condition is assigned to the northern, western and southern sides and a constant head boundary is assigned to the eastern side. The Mseleni River and neighbouring plantations were modelled using the River and Evapotranspiration boundary conditions respectively. Input parameters for the various boundary conditions were obtained from the previously developed high resolution conceptual model, including recharge

Abstract

The current study investigated the subsurface of aquifers in Heuningnes Catchment focusing on aquifer characteristics for groundwater resource assessments. Surface geophysical resistivity method was adapted for mapping the shallow subsurface layers and hydrogeologic units at selected sites within the catchment. The aim was to provide a preliminary overview of the subsurface nature of aquifers within the study area, by establishing features such as geological layers, position of weathered zones, faults and water bearing layers. The multi-electrode ABEM SAS 1000 resistivity meter system, using the Wenner array, was used to obtain 2D resistivity data of the subsurface. The acquired data was processed and interpreted using Res2DINV software to produce the 2D resistivity models. The analysis of the resistivity models of the subsurface reveals maximum of four layers; sandstone, shale, poor clayed and brackish water saturated layer. On comparing the model results with the surficial geological formation of the catchment geological map, the identified layers were found to correspond with the geology of the area. The findings i) provide insights on sites that can be drilled for groundwater exploration, ii) show possible water-type variations in the subsurface. Although the results are not conclusive but they provide basis for further research work on quality and flow dynamics of groundwater.

{List only- not presented}
Key words: aquifer properties, hydrogeologic units, geo-electric model, electrical-resistivity method

Abstract

Precision agriculture continuously seeks improved methods to enhance productivity whether it is for greater crop yields or economic viability regarding labour inputs and satisfying the demand in a shorter time span. Soil moisture is one important factor that drives the agricultural industry and is therefore of utmost importance to manage it correctly. A shortage of water may result in reductions in yield, while excess irrigation water is a waste of water resources and can also have a negative impact on plant growth. Knowledge of the spatial distribution of soil moisture is important for determining soil moisture storage and soil hydraulic transport properties. Capturing field heterogeneity without exhaustive sampling and costly sample analysis is difficult. Electromagnetic induction, Frequency Domain Reflectometry, Neutron Scattering and conventional soil sampling have been utilised to determine the spatial variability of soil moisture within a field. Emphasis has been placed on practicality and accuracy of all the methods. Electromagnetics have proven itself to be the primary method to determine soil moisture within the field by comparing the results of the volumetric soil water content present in the field together with a combination of various soil properties such as clay and silt content, sand fraction, concretions, density and soil depth that contribute towards the accumulation of soil water. Electromagnetic induction has the highest resolution of data collected for a specific time period of all considered methods making it economically the best option for soil moisture management within a variable rate irrigation system. Electromagnetic induction has proven to be successful in delineating a field into management zones consisting of different classes based on observed conductivity values. Higher conductive zones are considered with small water demand. Lower conductive zones are considered with a greater water demand through a variable rate irrigation system. These water management zone maps could be informative for modelling, experimental design, sensor placement and targeted zone management strategies in soil science, hydrogeology, hydrology, and agricultural applications.

Abstract

Preventing the spread of seepage from tailings storage facilities (TSF's) in groundwater is necessary as it often contains toxic contaminants. Experience has shown that seepage from TSFs is inevitable and that zero seepage remains difficult even with complex liner systems. Multiple seepage control methods are often required to minimise seepage to ensure that environmental regulations are met. Control methods can be grouped into either barrier or collection systems. Barrier systems are used to hinder seepage whereas collection systems are used to intercept seepage. A blast curtain, which is the focus of this article, is a type of collection system that is still at a conceptual level but has seen little or no application worldwide. It works in principle, similarly to a curtain drain, but is typically extended to greater depths depending on the aquifer vulnerability. Numerical modeling has shown that this mitigation measure could add another line of defence for seepage control. The depth and effectiveness of the curtain can be optimized with a numerical model to ensure optimal interception of contaminated seepage around the TSF. Depths of up to 30 m in fractured aquifers have been simulated in this study. A blast curtain is constructed by drilling a set of boreholes around a TSF in close proximity to one another and then fracturing the rock using either explosives or fracking methods to create a more permeable zone. This is then combined with a series of scavenger wells or natural seepage to abstract the contaminated water. Numerical simulation has shown that blast curtains are effective especially if groundwater flow is horizontal. The effectiveness decreases if the vertical flow component is significant. A blast curtain can result in the lowering of the water table, however, local depression is a less of a concern than potential groundwater contamination. {List only- not presented}

Abstract

Vapour intrusion (VI) is recognized to drive human health risk at numerous sites that have been contaminated by petroleum products and other volatile contaminants. The risks related to VI are typically evaluated using direct measurement (vapour sampling) or modelling methods. ERM has developed a toolbox approach using a combination of exclusion distance criteria, direct measurement and modelling methods to assess risks and achieve closure. For direct measurement, samples of vapour are taken beneath the floor slab of buildings (sub-slab sampling) or from the air inside the buildings (indoor air sampling). Modelling methods are often used to estimate the partitioning of volatile contaminants from soil or groundwater sources into the vapour phase and the subsequent transport of vapours from the subsurface environment into habitable buildings. A limitation of modelling approaches is that they are designed to be conservative to be adequately protective of sensitive receptors. VI models also do not typically take into account the degradation of hydrocarbon vapours in the presence of oxygen, which has been found to be a significant process for petroleum hydrocarbons. The authors have compiled a dataset of petroleum vapour and groundwater results from over 50 petroleum release sites in southern Africa. These data were used to develop exclusion distance criteria for vapours emitted from contaminated groundwater sources (i.e. distance from the source at which sufficient aerobic attenuation has occurred for the VI risk to be negligible). A standard "lines of evidence" approach has been applied to the assessment of VI risk by firstly applying the exclusion distance criteria to sites with groundwater contaminant plumes beneath buildings, and if these are met, the sites are considered to have no unacceptable VI risk. Where exclusion screening criteria are not met, risk is estimated using modelling, and if a potential risk is predicted, then direct sub-slab measurements are taken to more accurately assess the risk. Lastly, where sub-slab assessment predicts a potential VI risk, indoor vapour measurement are taken to evaluate actual risk, taking into account interferences from other sources and background levels of contaminants. Mitigating measures can then be applied as appropriate. Various case studies will be presented including direct measurements at industrial and residential sites overlying contaminant plumes and modelling methods at residential properties adjacent to service station sites. A risk-based approach to the assessment of contaminated land provides a sustainable and cost effective methodology, and also avoids unnecessary remediation. The results show that VI risks can be adequately addressed with a toolbox approach using multiple lines of evidence.

Abstract

The hydraulic parameters of heterogeneous aquifers are often estimated by conducting pumping (and recovery) tests during which the drawdown in a borehole intersecting the aquifer is measured over time, and by interpreting the data after making a number of assumptions about the aquifer conditions. The interpreted values of the hydraulic parameters are then considered to be average values that represent the properties of the bulk aquifer without taking into account local heterogeneities and anisotropies. An alternative and more economic approach is to measure streaming potentials in the vicinity of the borehole being tested. The streaming potential method is a non-invasive geophysical method that measures electrical signals generated by groundwater flow in the subsurface through a process known as electrokinetic coupling. This method allows data to be recorded at a high spatial density around the borehole. The interpretation of streaming potential data in terms of aquifer hydraulic parameters is facilitated by a coupled flow relationship which links the streaming potential gradient to the hydraulic gradient through a constant of proportionality called the electrokinetic coupling coefficient. In the current study, field measurements of streaming potentials were taken during the pumping and recovery phases of pumping tests conducted at two sites with dissimilar geological and geohydrological conditions. The recorded streaming potential data were interpreted by calculating the hydraulic head gradient from the streaming potential gradient, and by using the potential field analytical solution for the transient mode, which relates the streaming potential field directly to the average hydraulic conductivity. Hydraulic conductivity values estimated from the streaming potential method were of the same order as values determined from the analysis of drawdown data, with a relative error of 0.2. This study demonstrates that the streaming potential method is a viable tool to compliment pumping tests and provide a spatial representation of the hydraulic parameters.

Abstract

With the revision of the European Drinking Water Directive (Directive on the quality of water intended for human consumption 2020/2184) in December 2020, the preparation of Water Safety Plans (WSP) is foreseen according to the guidelines of WHO. Within the EU Interreg Adrion MUHA project, a decision support tool (DST) has been developed to provide a holistic approach to drinking water infrastructure risk analysis. The project mainly addresses four water-related risks: accidental pollution, floods, droughts and earthquakes. The core of the DST is the inventory of hazardous events (causes, their consequences and impacts) for each component of the drinking water supply chain: (1) drinking water source - catchment area, (2) water supply system, and (3) domestic distribution system. For each identified potential hazard, the type of hazard was determined (e.g., biological, chemical, radiological, or physical hazard (including turbidity), inadequate availability of water supplied to customers, safety to personnel, external harm to third parties, including liability). The DST was tested in the partner countries (Italy, Slovenia, Croatia, Serbia, Montenegro and Greece) to verify the resilience of the measures and elaborate the WSP.

In the end, the REWAS-ADRION strategy was elaborated, aiming to increase the resilience of drinking water supplies to floods, droughts, accidental pollution, and earthquake-related failures by improving the water safety planning mechanism based on the concept of inter-agency cooperation to support water utilities, civil protection organizations, and water authorities.

Abstract

The SADC Grey Data archive http://www.bgs.ac.uk/sadc/ provides a chronology of groundwater development within the constituent countries of the SADC region. Early reports show how groundwater development progressed from obtaining water by well digging to the mechanical drilling of boreholes for provision of water for irrigation, township development, transport networks and rural settlement. During the 1930s steam driven drilling rigs were supplanted by petrol engine driven cable tool percussion drilling. Dixey (1931), in his manual on how to develop groundwater resources based on experiences in colonial geological surveys in eastern and southern Africa, describes aquifer properties, groundwater occurrence and resources as well as water quality and groundwater abstraction methods. Frommurze (1937) provides an initial assessment of aquifer properties in South Africa with Bond (1945) describing their groundwater chemistry. South African engineers transferred geophysical surveying skills to the desert campaign during World War II. Paver (1945) described the application of these methods to various geological environments in South Africa, Rhodesia and British colonial territories in eastern and central Africa. Test pumping methods using electric dippers were also developed for the assessment of groundwater resources. Enslin and others developed DC resistivity meters, replacing early Meggar systems, produced data that when analysed, using slide rules with graphs plotted by hand, identified water bearing fractures and deeply weathered zones. Tentative maps were drawn using interpretation of aerial photographs and heights generated using aneroid altimeters. The problems faced by hydrogeologists remain the same today as they were then, even though the technology has greatly improved in the computer era. Modern techniques range from a variety of geophysical surveying methods, automated rest level recorders with data loggers to GPS location systems and a whole host of remotely sensed data gathering methods. Worryingly, using such automated procedures reduces the ability of hydrogeologists to understand data limitations. The available collection of water level time series data are surprisingly small. Surrogate data need to be recognised and used to indicate effects of over abstraction as demand grows. As the numbers of boreholes drilled per year increases the number of detailed hydrogeological surveys undertaken still remains seriously small. Has our knowledge of hydrogeological systems advanced all that much from what was known in the 1980s? Case histories from Malawi, Zimbabwe and Tanzania illustrate a need for groundwater research with well-judged sustainability assessments to underpin safe long-term groundwater supply for the groundwater dependent communities in the region.

Abstract

One-third of the world faces water insecurity, and freshwater resources in coastal regions are under enormous stress due to population growth, pollution, climate change and political conflicts. Meanwhile, several aquifers in coastal regions extending offshore remain unexplored. Interdisciplinary researchers from 33 countries joined their effort to understand better if and how offshore freshened groundwater (OFG) can be used as a source of potable water. This scientific network intends to 1) estimate where OFG is present and in which volumes, 2) delineate the most appropriate approaches to characterise it, and 3) investigate the legal implications of sustainable exploitation of the offshore extension of transboundary aquifers. Besides identifying the environmental impact of OFG pumping, the network will review existing policies for onshore aquifers to outline recommendations for policies, action plans, protocols and legislation for OFG exploitation at the local to international levels. Experienced and early-career scientists and stakeholders from diverse disciplines carry out these activities. The Action leads activities to foster cross-disciplinary and intersectoral collaboration and provides high-quality training and funded scientific exchange missions to develop a pool of experts to address future scientific, societal, and legal challenges related to OFG. This interaction will foster new ideas and concepts that will lead to OFG characterisation and utilisation breakthroughs, translate into future market applications, and deliver recommendations to support effective water resource management. The first exchange mission explored the Gela platform carbonate reservoir (Sicily), built a preliminary 3D geometrical model, and identified the location of freshened groundwater

Abstract

Globally, a growing concern have been that the heavy metal contents of soil are increasing as the result of industrial, mining, agricultural and domestic activities. While certain heavy metals are essential for plant growth as micronutrients, it may become toxic at higher concentrations. Additionally, as the toxic metals load of the soil increases, the risk of non-localized pollution due to the metals leaching into groundwater increases. The total soil metal content alone is not a good measure of risk, and thus not a very useful tool to determine potential risks to soil and water contamination. The tendency of a contaminant to seep into the groundwater is determined by its solubility and by the ratio between the concentration of the contaminant sorbed by the soil and the concentration remaining in solution. This ratio is commonly known as the soil partitioning or distribution coefficient (Kd). A higher Kd value indicate stronger attraction to the soil solids and lower susceptibility to leaching. Studies indicate that the Kd for a given constituent may vary widely depending on the nature of the soil in which the constituent occurs. The Kd of a soil represents the net effect of several soil sorption processes acting upon the contaminant under a certain set of conditions. Soil properties such as the pH, clay content, organic carbon content and the amount of Mn and Fe oxides, have an immense influence on the Kd value of a soil. Kds for Cu, Pb and V for various typical South African soil horizons were calculated from sorption graphs. In most cases there were contrasting Kd values especially when the cations, Cu and Pb, had high contamination levels, the value for V was low. There is large variation between the Kds stipulated in the Framework for the Management of Contaminated land (as drafted by the Department of Environmental Affairs) and the values obtained experimentally in this study. The results further indicate that a single Kd for an element/metal cannot be used for all soil types/horizons due to the effect of soil properties on the Kd. The results for Cu and Pb indicated that the Kds can range in the order of 10 to 10 000 L/kg for Cu and 10 to 100 000 L/kg for Pb. The variation in V Kd was not as extensive ranging from approximately 10 to 1 000 L/kg. {List only- not presented}

Abstract

Water management is a difficult and complex business requiring appropriate institutional arrangements as well as guidance and support from government, which is often unable to act effectively to address day-to-day water resource management (WRM) issues. Theoretically, water as a 'common pool resource' is best managed by users self-organised at a local level and within a basin framework. Water users and other stakeholders have detailed and up-to-date local knowledge as well as an interest in ensuring effective management to share water equitably between different users and to control pollution. This approach is supported by South Africa's National Water Act (NWA), which provides for the establishment of Catchment Management Agencies (CMAs) to perform a range of WRM activities within the framework of a National Water Resource Strategy (NWRS).
Hence, water resource management in general and conjunctive use in particular requires cross sector and cross level cooperative governance. Relevant institutions include the DWA at national and regional level, the CMA, if established, provincial departments that might impact on the water resources, water user associations, water services authorities, water services providers, water boards, and individual water users. These institutions are responsible for various activities and often require some level of inter- and intra-institutional cooperation. Ideally, multiple organisations, policies, legislation, plans, strategies and perspectives should be involved in water-related decision-making, which in turns creates complex leadership challenges. Globally, the lack of sustainable groundwater management can be ascribed to poor governance provisions. These include, but are not limited to, institutional arrangements and political will, including fragmented and overlapping jurisdictions and responsibilities, competing priorities, traditional approaches, rights and water pricing systems, diverging opinions, incomplete knowledge, data as well as uncoordinated information systems. Adding the poor operational and maintenance issues, decision-makers often view groundwater as an unreliable resource and are hesitant to make significant investments in groundwater infrastructure and capacity.
The recent Worldbank and WRC report on groundwater governance in South Africa revealed that the technical, legal, institutional and operational governance provisions were found to be reasonable at the national level but weak concerning cross-sector policy coordination. At the local level, basic technical provisions such as hydrogeological maps and aquifer delineation with classified typology are in place but other governance provisions such as institutional capacity, provisions to control groundwater abstraction and pollution, cross-sector policy coordination and the existence and implementation of groundwater management action plans are weak or non-existent.
It appears from this review that the major hindrances for sustainable groundwater governance and more so for integrated water resource management and conjunctive use scenarios are the discrepancy between groundwater and surface water provisions in the relevant legislation, associated guidelines and their implementation at regional and local, and the lack of skills and clear responsibilities for implementing water resource management actions at municipal level. This is demonstrated with several case studies.

Abstract

Gold Mining activities the past 60 years at AngloGold Ashanti polluted the groundwater underlain by 4000 ha of land at the Vaal River and West Wits operations in South Africa. Sulphide material in Tailings Storage Facilities, Waste Rock Dumps and extraction plants produce Saline Mine Drainage with Sulphate, minor salts and metals that seep to the groundwater and ultimately into surface water resources. Water regulation requires mines to prevent, minimise/ reduce or eliminate pollution of water resources. The waste philosophy has matured from tolerate and transfer to treat and termination of pollution sources. The impact of the pollution was determined and possible technologies to treat the impact were evaluated. Source controls of proper water management by storm water management, clean dirty water separation, lined water conveyance structures and reduced deposition of water on waste facilities is crucial. The aquifer character determines the possible remediation technology. From the possible technologies phytoremediation, physical interception and re-use of this water was selected. In future possible treatment of the water would be considered. This paper explain the strategy and report on the phased implementation of these plans and the expected results. The establishment of 750 ha of woodlands as phytoremediation, interception trenches of 1250 m, 38 interception boreholes and infrastructure to re-use this water in 10 water management areas is planned. The total volume of 15 Ml/day would be abstracted for re-use from the boreholes and trenches. The woodlands can potentially attenuate and treat 5 ml/day. The established woodlands of 150 ha proof successful to intercept diffused seep over the area of establishment and reduce the water level and base flow. The 2 implemented trenches of 1000 m indicate a local decline in the water level with interception of shallow groundwater within 1-2 m from surface. The 2 production interception well fields abstracting 50 and 30 l/s respectively indicate a water level decline of between 2 to 14 m with regional cones of depression of a few hundred meters to intercept groundwater flow up to 20 meter. Predictions from groundwater modelling indicate that these schemes can minimise pollution during the operational phase and protect downstream water resources. Predictions from modelling indicate that the pollution sources need to be removed to ensure long term clean-up to return the land to save use. The gold and uranium prize is securing the removal of the sources through re-processing of the tailings and waste rock dumps. After removal of the sources of pollution the remediation schemes would have to be operated for 20 years to return the groundwater to an acceptable standard of stock watering and industrial water use. The water quality is observed by a monitoring network of approximately 100 observation boreholes.

Abstract

It is estimated that the three coal layers in the Springbok Flats contain about 5 TCF of coal bed methane (CBM). Two sedimentary basins, namely the southern Tuinplaas basin and the northern Roedtan basin, exist with coal layers with a total thickness of 7m which occurs mainly in three mayor seams. The coal layers are located between 20 m to more than 600m.
Farmers in the Flats are concerned about the environmental impact of fracking the coal beds. They are mostly worried about the risk of groundwater pollution; the drawdown of the water table and the producing of a bad quality water during the mining process. They set up an EPA for the Springbok Flats in 2010 and until now, they have stopped more than 6 companies to conducted exploration (stopped strictly on account of the different laws in SA that were not adhered too).
On average, 1000 liters of water is produced for every 2000 cubic feet coal bed methane mined in the USA. The quality of the produced water is not good (with typical Na values of more than 5 000 mg/l) and cannot be used for irrigation purposes.
It is thus expected that about 500 million m3 of bad quality water will be produced for every 1 TCF mined in the Flats. This groundwater will be removed from the system and it is expected that a drawdown of up to 30m will be evident at places in the Springbok Flats. There are also a large number of dykes and faults in the Flats which imply that the upward movement of methane and water will be very probable after abandonment of each coal methane well.

Abstract

The Department of Water Affairs and Sanitation is the custodian of the Water Resource in South Africa. The Western Cape Regional Office, Geotechnical Service Sub Directorate, is responsible for management of groundwater resources in two Water Management Areas (WMA), Olifants Doorn-Berg and Breede-Gouritz. Twenty-nine monitoring routes comprising 800 sites in total are monitored across the Western Cape Region. The purpose of this paper is to create awareness of groundwater related databases and the type of information products used in assessing the status of data bases and groundwater resources. This is to assist and support the scientists, technicians, managers, external stakeholders and/or general public. The main question that needs to be answer is: "What is the current groundwater data management situation in the Regional office?" With the GIS as platform, geographical information was generated from existing data bases to answer questions such as, what is being monitored, where is it being monitored, who is monitoring it, why is it being monitored and when is it being monitored? These questions are applicable to the Region, Water Management Areas, the monitoring route and geosites. Graphical time-series information generated from available data, in combination with the generated geographical information, showed the gaps, hot spots and what is still needed for all the facets of groundwater management (from data acquisition to information dissemination) processes. The result showed the status of data bases, need for data in areas of possible neglect, training gaps, inadequate structure and capacity, instrumentation challenges, need for improvement of commitment and discipline, as well as many other issues. The information generated proves to be an easy tool for Scientists, Technicians and Data Administrators to assist them to be on top of the groundwater resource management in their area of responsibility. The expansion of the use of GIS as a groundwater management tool is highly recommended. This will ensure better understanding of the resource: "The Hidden Treasure".

Abstract

The national water balance is primarily based on the availability of surface water and the historic allocation thereof. The changes that are required the next 20 years to ensure sustainable development of the nation will be painful, but is unfortunately at present not part of the public discussion, it is essentially ignored in favour of more "popular water topics".This paper intends to look at a few core aspects, they include the current water allocation in the national water balance, the relative value of the utilisation, the position of groundwater resources in changing the current relative allocation and the current groundwater utilisation. The paper further intends to be a less formal presentation of these aspects with the required data, references and conclusions available for distribution afterwards.

Abstract

PMWIN5.3 has been one of the most commonly used software for groundwater modeling because of its free source and the adoption of popular core program MODFLOW. However, the fixed formats required for data input and lack of GIS data support have posted big challenges for groundwater modelers who are dealing with large areas with complicated hydrogeological conditions. In South Africa, most geological and hydrogeological data have been captured and stored in GIS format during various national research projects such as WR2005, NGA and etc. Therefore, a proper linkage between PMWIN and ArcGIS is expected to do the preprocessing for modeling in PMWIN. Visual Basic for Application (VBA) embedded in ArcGIS 9.3 was used to develop the linkage. Based on the conceptualization of the study area, the model dimension, discretization and many value setting processes can be easily carried out in ArcGIS other than directly in PMWIN. Then the grid specification file and other input files can be exported as the PMWIN-compatible files. The functions of move, rotation, refinement, sub-model, deleting and inserting row(s) or column(s) of the model have also been developed to avoid the inconvenience aroused from model modification. The linkage can be used with a higher version of PMWIN or ArcGIS. It has been applied to several gold fields in the Witwatersrand gold basin to simulate the groundwater flow and mass transportation for various conditions and scenarios. One of the applications will be presented in this paper. It has been proved that the linkage is efficient and easy to use. {List only- not presented}

Abstract

POSTER Aquifer stress arising from urbanization and agricultural activities, these two factors affect aquifer properties when prolonged. Increase in urbanization especially those situated on top unconfined or semi-confined aquifer results in pressure on natural resources, this includes water resources, and changes of land use for agricultural purposes with high economic benefits has an effect on groundwater quality to due to application of Nitrogen- fertilizers during crop rotation and this is largely experienced in developing countries. The effects ranges from groundwater quality to aquifer storage as prolonged aquifer withdrawals due to irrigation, construction, manufacturing affects groundwater storage. Assessment of urbanization and agricultural effects on groundwater requires a complex analysis as integration approaches needs to be discovered for a better analysis of the two more specially when assessing groundwater pollution. The study was conducted to assess the impacts of urbanization and agricultural activities on aquifer storage and groundwater quality: by (a) determining the relationship between the occurrence of contamination due to urbanization by assessing contaminants present in the study area (b) develop groundwater protection, and if any offer recommendation for groundwater management. Multiple-well tests were conducted observing the behavior of drawdown and recovery for assessing groundwater storage. Two aquifer properties were observed to yield information about any changes in aquifer storage (transmissivity and storage coefficient) and groundwater quality lab test focusing on TDS, nitrate and pH were conducted. Historical results reflect that before industrial and urban revolution the groundwater contained small amounts of TDS compared with the present results. Increase in nitrate and pH concentrations observed in location closer to agricultural areas. Prolonged aquifer withdrawals increases expansion of cone of depression and therefore increases aquifer vulnerability and the risk of aquifer being polluted, and this increases storage coefficient. This study can be used to formulate protection zones for water resources and practice towards groundwater management.

Abstract

Implementation of a mining project in South Africa involved dewatering of a fractured rock aquifer at considerable depth below ground level. Groundwater quality within this aquifer is not suitable for domestic use due to high levels of salinity. Numerous geological investigations in the area indicate that the target aquifer is confined, with a different piezometric head to the shallower aquifers. However, regulators and other interested and affected parties expressed concern regarding the potential mixing of more saline groundwater from the deeper aquifer to be dewatered with groundwater from shallower aquifers, which are extensively used for farming and domestic purposes.
A large database of groundwater quality monitoring data collected over 16 years was available to investigate the degree of mixing between the deeper more saline and shallower freshwater aquifers. The groundwater chemistry of selected boreholes with known geological profile, depth and construction was used to develop groundwater fingerprinting criteria for each of the aquifers in the area. These fingerprinting criteria were then applied to private and exploration boreholes in the area in order to identify the main aquifer from which groundwater was being sourced. Once the boreholes were classified in terms of groundwater origin, an attempt was made to identify indicators of mixing with deeper, more saline groundwater from the aquifer being dewatered.
Groundwater fingerprinting allowed identification of impacts related to the mining operations. The data showed that there was no upward mixing of water related to dewatering operations, but rather that surface spillages and disposal schemes may have resulted in minor changes in shallow groundwater quality. {List only- not presented}

Abstract

Stringent drinking water standards for constituents like chromium, arsenic, and nitrates, combined with continually higher demand for groundwater resources have led to the need for more efficient and accurate well characterization. Many boreholes are screened across multiple aquifers to maximize groundwater production, and since these aquifers can have different water qualities, the water produced at the wellhead is a blend of the various water qualities. Furthermore, the water entering a well may not be distributed equally across the screened intervals, but instead be highly variable based on the transmissivity of the aquifers, the depth of the pump intake, the pumping rate, and whether any perforations are sealed off due to physical, chemical, or biological plugging. By identifying zones of high and low flows and differing water qualities, well profiling is a proven technology that helps optimize operational groundwater production from water supply boreholes or remediation systems. This frequently results in increased efficiencies and reduced treatment costs. By accurately defining groundwater quantity and quality, dynamic profiling provides the data needed to optimize well designs. Conventional exploration methods frequently rely on selecting well screen intervals based on performing and analyzing drill stem tests for one zone at a time. Using dynamic flow and water quality profiling, the transmissivity and water quality can be determined for multiple production zones in a matter of one to two days. It also allows the location and size of the test intervals to be adjusted in the field, based on real-time measurements.

In this paper we discuss dynamic well profiling techniques with project case examples of characterization different types groundwater boreholes for a variety of applications and industries resulting in significant cost saving and sustainable water abstraction.

Abstract

The generation of acid mine drainage (AMD), as a result of mining activities, has led to the degradation of groundwater quality in many parts of the world. Coal mining, in particular, contributes to the production of AMD to a large extent in South Africa. Although a vast number of remediation methods exist to reduce the impacts of AMD on groundwater quality, the use of a coal fly ash monolith to act as a reactive and hydraulic barrier has not been extensively explored. This study, therefore, aims to investigate how different ways of packing ash affect the hydraulic conductivity of ash and influence leachate quality when acid-mine drainage filters through the ash. Coal ash is highly alkaline due to the existence of free lime on the surface of the ash particles. Previous studies that investigated alternative uses of coal ash, particularly in AMD treatment, suggest that coal ash has the potential to neutralise pH in acid water and remediate acidic soils. To test the effects of different packing methods of coal ash on the hydraulic conductivity and quality of acid mine leachate flowing through it, several Darcy column tests will be conducted. During the course of these experiments, the following parameters will be measured, electrical conductivity, pH discharge, lime (CaCO3) and selected elements of environmental concern.

Abstract

South Africa has committed to achieving the United Nations Sustainable Development Goals (SDG's) by 2030. But what does this mean and how does groundwater fit in to this? SDG 6 in particular focuses on ensuring universal access to safe and affordable drinking water for all by 2030. SDG 6 requires that the country protects and restores water-related ecosystems such as forests, mountains, wetlands, aquifers and rivers which are essential if we are to mitigate water scarcity. To accomplish this, South Africa has proceeded to align various plans, strategies, and policies to encompass the targets of the SDG's. This paper will focus on SDG sub-goal 6.3 which incorporates improvement of water quality and sub-goal 6.6 which involves protection and restoration of ecosystems. The methodology given by the UN for the groundwater in indicator 6.3.2 stipulates that countries are required to report on "proportion of water with good ambient water quality", in South Africa however we had to domesticate the indicator i.e. render it suitable for South African conditions so we changed the methodology to "proportion of water the conforms to the Water Quality Objectives (WQO's)" but there are virtually no WQO's developed for groundwater. Four core groundwater quality parameters (Electrical Conductivity, pH, Nitrate and Sulphate) are available through ZQM stations categorized through 65 hydrogeological (Vegter) regions. Groundwater water quality baseline is calculated as a reference period/range per hydrogeological region. For SDG 6.6, the indicator required for groundwater is "Quantity of groundwater within aquifers" The methodology received by the UN for "Quantity of groundwater within aquifers" required a baseline (average reference period of five years) in meters per hydrogeological region. This indicator is again domesticated for South Africa and based on the 40-60 percentiles of groundwater levels per hydrogeological region. There are a number of future indicators that can be included for aquifers under SDG 6.6, but the groundwater sector needs to come together and decide what is important to report on. These SDG targets reporting has given the Water and Sanitation sector a new look at data. It has forced us to critically think of concepts such as baseline and performance monitoring. We now know where our data gaps and targets are, and we have to provide an action plan to address these.

Abstract

This article present field evidence on the effect of artefacts other than the horizontal groundwater flux on the single-borehole tracer dilution test. The artefacts on the tracer dilution were observed during two single-borehole tracer dilution tests conducted in an alluvial channel aquifer in the main Karoo Basin of Southern Africa. Field evidence shows that early time of the tracer dilution plot can be affected by artefacts other than the horizontal groundwater flux. These artefacts have great potential to increase the early time gradient of tracer dilution curve leading to overestimation of the horizontal groundwater flux. A qualitative approach that can be used to isolate and remove portion of the dilution plot that has resulted from artefacts other than the groundwater flow prior to calculating the horizontal groundwater flux is proposed.

Abstract

Groundwater modelling at the mine sites involves assumptions from the geological model, mining stages, parametrization, and fractures, among others. Modelling work mainly focuses on calibrating against historical measurements before operations (pre-mining) or afterwards (transient calibration). Calibration is carried out mainly with gradient-based algorithms. However, the majorlimitation is the number of model runs, since the number of parameters can easily reach hundreds or more. PEST has become the common tool for parameter estimation. The Jacobin calculation required for the Levenberg Marquardt algorithm requires several model runs. This, a limited factor for the calibration and, subsequently, uncertainty quantification. The next generation of PEST, named PESTPP, is gained popularity in the groundwater community. The great advantage of PESTPP,, compared to the classical PEST, is its new module, Iterative Ensemble Smoother (IES). PESTPP-IES covers both parameter estimation and uncertainty quantification in one goal. Its empirical formulation of the Jacobian matrix reduces the number of runs; thus, the numerical bottleneck can be significantly reduced. PESTPP-IES has been extensively tested in an open-pit mine at the geological complex conditions in the Peruvian Andes. The work involves the task of model simplification, e.g., from a regional model to a detailed local pit model, calibration and uncertainty quantification of pit dewatering volumes. Detailed model was kept calibrated based on hydraulic-head measurements, and dewatering volumes were predicted. All these consider transient changes in the mining plan within the same FEFLOW model. Results validate the methodology and practicability in mining applications.

Abstract

South Africa utilizes coal for energy and chemical feedstock thereby generating millions of tons of ash every year. The ash is stockpiled in surface waste facilities where it poses a risk of leaching and contaminating groundwater. This study utilizes standard leaching tests, TLCP and SPLP, to evaluate and predict the mobility of different elements that leach from fly ash. Two different fly ash samples (Ash M and Ash T) were used in the study. A QEMSCAN analysis was also performed on the samples as well as the coal to determine the elementary and mineralogical compositions. Both Ash samples were generated from bituminous coals and had similar physical properties. Both ash samples were mixed respectively with the two different leachates one more acidic (Leachate A) the other more basic (Leachate B). Trace elements are present in ash in small amounts, but still at lower levels still pose threat to the environment and human health. Only three trace elements were found present in both ash samples. The detected trace elements in an increasing concentration order are: Manganese>Chromium>Copper. It appears the leaching behaviour of these trace elements is similar to the other metals, being insoluble at near neutral and alkaline pH range while dissolvable at low pH ranges. The results show that Leachate B was found to extract more material than Leachate A on a milligrams per gram of ash basis. The risk to groundwater contamination can be minimized by understanding the leaching dynamics and water retention of fly ash dumps as the results show.

Abstract

Underground coal gasification (UCG) is a chemical process that converts coal in-situ into a gaseous product at elevated pressures and temperatures. Underground coal gasification produces an underground cavity which may be partially filled with gas, ash, unburned coal and other hydrocarbons. In this study we assessed the stratification down the length of the boreholes. This was done by comparing the Electrical Conductivity (EC) profile of background boreholes to the verification borehole that were drilled after gasification was complete. Stratification was seen in all boreholes including the cavity borehole. The EC levels were lower in the cavity which may be due to the dilution factor induced by injecting surface water during quenching of the gasifier. The thermal gradient shows a steady increase in temperature with depth with higher temperatures measured in the verification boreholes. This increase in temperature may suggest that heat is still being retained in the cavity which is expected. This study serves as the preliminary investigation on the stratification of temperature and EC and will be proceeded with in depth surveys that covers all the groundwater monitoring wells that monitor different aquifers identified on site proceed.

Abstract

Edible vegetable oil (EVO) substrates have been successfully used to stimulate the in situ anaerobic biodegradation of groundwater contaminated chlorinated solvents as well as numerous other anaerobically biodegradable contaminants like nitrates and perchlorates at a many commercial, industrial and military sites throughout the United States of America and Europe. EVO substrates are classified as a slow release fluid substrate, and comprise of food grade vegetable oil such as canola or soya bean oil. The EVO substrate serves as an easily biodegradable source of carbon (energy) used to create a geochemically favorable environment for the anaerobic microbial communities to degrade specific contaminants of concern. EVO substrate's can either be introduced into the subsurface environment as pure oil, in the form of light non aqueous phase or as an oil/water emulsion. The emulsified vegetable oil substrates holds several benefits over non-emulsified vegetable oil as the fine oil droplet size of the commercially manufactured emulsified oils can more easily penetrate the heterogeneous pore and fracture spaces of the aquifer matrix. The use of this technology to stimulate in situ biodegradation of groundwater contaminants is still relatively unknown in South Africa. This paper will give an overview of the EVO technology and its application, specifically looking at the advantages of using this relatively inexpensive, innocuous substrate based technology to remediate contaminated groundwater within fractured rock environments commonly encountered in South Africa. {List only- not presented}

Abstract

Groundwater is an important resource for multiple uses in South Africa. Hence, setting limits to its sustainable abstraction while assuring basic human needs is required. Due to prevalent data scarcity related to groundwater replenishment, which is the traditional basis for estimating groundwater availability, the present article presents a novel method for determining allocatable groundwater in quaternary catchments through information on streamflow. Using established methodologies for assessing baseflow, recession flow, and instream ecological flow requirement, the methodology develops a combined stepwise methodology to determine annual groundwater storage volume using linear reservoir theory, essentially linking low flows proportionally to upstream groundwater storages. The approach was trialled for twenty-one perennial and relatively undisturbed quaternary catchments with longterm and reliable streamflow records. Using the Desktop Reserve Model, maintenance low instream flow requirements necessary to meet present ecological state of the streams were determined, and baseflows in excess of these flows were converted into allocatable groundwater storages on an annual basis. Results show that groundwater development potential exists in nineteen of the catchments, with upper limits to allocatable groundwater volumes (including present uses) ranging from 0.02 to 2.60 Mm3/a over the catchments. With a secured availability of these volumes 75% of the years, variability between years is assumed to be manageable. A significant (R2 = 0.86) correlation between baseflow index and the drainage time scale for the catchments underscores the physical basis of the methodology and also enables the reduction of the procedure by one step, omitting recession flow analysis. The method serves as an important complementary tool for the assessment of the groundwater part of the Reserve and the Groundwater Resource Directed Measures in South Africa.

Abstract

Artesian boreholes are a common feature worldwide in confined aquifers, but the hydraulic testing of these boreholes, and estimation of aquifer properties from such tests, still poses a challenge for hydrogeologists. Common hydraulic tests, such as step-drawdown or constant-discharge rate tests require a static water level at the start of the test, and the measurement of drawdown (increasing over time) and abstraction rate (fixed for a period of time). Usually, when undertaking a pumping test in an artesian borehole, the drawdown is measured from ground level, and the drop in hydraulic head between static pressure and ground level is often ignored. This procedure also implies that the starting time of the test is not at the static water level. A constant-head test, set at ground level, is the other option. However, the decrease in flow rate is not only dependent on the hydraulic properties of the aquifer, but also masked by pipe hydraulic effects within the well. This kind of test would also limit the available drawdown to be utilized for the test. Hence, it was required to develop a method for undertaking hydraulic tests in strong artesian boreholes, allowing for the drawdown to fluctuate between levels both above and below ground and avoiding the pitfalls described above. The solution is a specially designed and constructed wellhead for the installation of the pump and monitoring equipment prior to the hydraulic test. The standard tests are slightly modified and are only undertaken after sealing the wellhead and reaching static hydraulic pressure. The recommended wellhead construction and subsequent hydraulic tests were implemented at a strong artesian borehole in the Blossoms Wellfield, south of Oudtshoorn in the Western Cape province of South Africa.

 

Abstract

Water scarcity is a global challenge, particular in South Africa, which is a semi-arid country. Due to the continuing drought, appropriate groundwater management is of great importance. The use of groundwater has increased significantly over the years and has become a much more prominent augmentation component to the supply chain especially in rural communities. However, the approach used to develop groundwater resources, specifically in rural areas, can be improved in numinous ways to ensure drilling of successful boreholes that could meet water demands. A recent study done in the Thaba Nchu area focused on an adapted approach, which resulted in drilling successful boreholes that would be able to sustain their augmentation role in the long term. The adapted approach involves (i) a hydro-census that includes local knowledge and focused field observations, (ii) study of aerial photographs and geological maps on a regional scale, rather than on a village scale area, (iii) an optimised geophysical investigation to identify and map geological structures to drill production boreholes, (iv) conducting aquifer pump test to determine an optimum sustainable yield, (v) collecting water samples to determine if water quality is suitable for its specific use (vi) providing a monitoring program and abstraction schedule for each borehole. The adapted approach highlights the following improvements: (i) drilling of new production boreholes during times of bounty to allow for better time management on the project; (ii) including an experienced geohydrologist during planning phases, (iii) including a social component focussing on educating local communities on the importance of groundwater and introducing them to the concept of citizen's science, (iv) establishing a communication channel through which villagers can report any mechanical, electrical, quantity or quality issues for timeous intervention. Through applying these small changes to established components of development of groundwater resources, budgets and time management were optimised and additional communities could be added to the project without additional costs. This approach not only emphasised ways to improve the awareness and potential of groundwater resources, but also affects the economical-, social- and environmental welfare in rural communities.

Abstract

Estimating groundwater recharge response from rainfall remains a major challenge especially in arid and semi-arid areas where recharge is difficult to quantify because of uncertainties of hydraulic parameters and lack of historical data. In this study, Chloride Mass Balance (CMB) method and Extended model for Aquifer Recharge and soil moisture Transport through unsaturated Hardrock (EARTH) model were used to estimate groundwater recharge rates. Groundwater chemistry data was acquired from the Department of Water and Sanitation (DWS) and Global Project Management consultants, while groundwater samples were collected to fill-in the identified gaps. These were sent to Council for Geoscience laboratory for geochemical analysis. Rainfall samples were also collected and sent for geochemical analysis. An average value of rainfall chloride concentration, average groundwater chloride concentration and mean annual precipitation (MAP) were used to estimate recharge rate at a regional scale. Local scale recharge was also calculated using chloride concentration at each borehole. The results were integrated in ArcGIS software to develop a recharge distribution map of the entire area. For EARTH model, long term rainfall and groundwater levels data were acquired from the South Africa Weather Services and DWS, respectively. Soil samples were collected at selected sites and analysed. These were used to determine representative values of specific yield to use on EARTH model. 60% of the groundwater levels data for 5 boreholes was used for model calibration while the remaining 40% was used for model validation. The model performance was evaluated using coefficient of determination (R2), correlation coefficient (R), Root Mean Square Error (RMSE) and Mean square error (MSE). Regional recharge rates of 12.1 mm/a (equivalent to 1.84% of 656 mm/a MAP) and 30.1 mm/a (equivalent to 4.6% MAP) were calculated using rainfall chloride concentrations of 0.36 and 0.9 mg/L, respectively. The estimated local recharge rates ranged from 0.9-30.2 mm/a (0.14 - 4.6%) and 2 - 75 mm/a (0.3 - 11.4%) using chloride concentration of 0.9 and 0.36 mg/L, respectively. The average recharge rate estimated using EARTH model is 6.12% of the MAP (40.1 mm/a). CMB results were found to fall within the same range with those obtained in other studies within the vicinity of the study area. The results of EARTH model and CMB method were comparable. The computed R2, R, RMSE and MSE ranged from 0.47-0.87, 0.68-0.94, 0.04-0.34, 0.16-3.16, and 0.50-0.79, 0.68-0.89, 0.07-0.68, 0.15-8.78 for calibration and validation, respectively. This showed reasonable and acceptable model performance. The study found that there is poor response of groundwater levels during rainy season which is likely to be due to lack of preferential flows between surface water and groundwater systems. This has resulted in poor relationship between estimated and observed groundwater levels during rainfall season.

Key words: ArcGIS, CMB, EARTH, Groundwater recharge, rainfall

Abstract

The advent of the 'Big Data' age has fast tracked advances in automated data analytics, with significant breakthroughs in the application of artificial intelligence (AI). Machine learning (ML), a branch of AI, brings together statistics and computer science, enabling computers to learn how to complete given tasks without the need for explicit programming. ML algorithms learn to recognize and describe complex patterns and relationships in data - making them useful tools for prediction and data-driven discovery. The fields of environmental sciences, water resources and geosciences have seen a proliferation of the use of AI and ML techniques. Yet, despite practical and commercial successes, ML remains a niche field with many under-explored research opportunities in the hydrogeological sciences. Currently physical-process based models are widely applied for groundwater research and management, being the dominant tool for describing and understanding processes governing groundwater flow and transport. However, they are limited in terms of the high data requirements, costly development and run time. By comparison, ML algorithms are data-driven models that establish relationships between an input (e.g. climate data) and an output (e.g. groundwater level) without the need to understand the underlying physical process, making them most suitable for cases in which data is plentiful but the underlying processes are poorly understood. Combining data-driven and process-based models can provide opportunities to compensate for the limitations of each of these methodologies. We present applications of ML algorithms as knowledge discovery tools and explore the potential and limitations of ML to fill in data gaps and forecast groundwater levels based on climate data and predictions. Results represent the first step in on-going work applying ML as an additional tool in the study and management of groundwater resources, alongside and enhancing conventional techniques such as numerical modelling.

Abstract

The hydrogeological setting of a proposed mine site can significantly influence the viability of the mining venture. The management of groundwater inflows, costs of the dewatering technology, construction and maintenance of storage facilities, discharge strategies and anticipated environmental impacts are vital factors for consideration. It is fundamental to assess the hydrogeological setting at an early stage of the mine life cycle and should involve the collection of sufficient hydrogeological data, conceptualisation of the hydrogeological setting and an assessment of planned mine operations and anticipated impacts. Ambient hydrogeological conditions at the deposit area may be identified by conducting a hydrocensus and utilising existing ore exploration drilling data. Information from the hydrocensus and ore exploration drilling can provide valuable preliminary data on groundwater risks, dewatering and available groundwater resources. Potential groundwater/surface water interactions and receptors sensitive to environmental impacts can be identified during a hydrocensus. Similarly, water strikes and fracture density recorded during exploration drilling provide valuable insight to the subterranean environment. It is also possible to obtain aquifer hydraulic properties through packer testing of exploration boreholes. Geochemical test work on exploration borehole-cores could provide valuable information regarding contamination risks from ore deposit and waste material storage. The installation of piezometers within available and accessible exploration holes that extend below the regional groundwater level can pioneer the collection of monitoring data crucial for consideration during the mine life cycle and provide an understanding of the interaction between hydrogeological units and recharge characteristics. Ultimately, mine operations and associated potential impacts on the surrounding groundwater environment can be simulated with the application of numerical hydrogeological flow and contaminant transport models. The numerical models can simulate the regional groundwater flow system and complexities of the mine environment, the accuracy of which is influenced by the type, spatial and temporal distribution of the data collected. It is accordingly suggested that the collection of hydrogeological data and information during the exploration phase would facilitate the timely conceptualisation of potential groundwater risks and effective planning of hydrogeological investigations required during upcoming phases while assisting in the budget optimisation of these future studies.

Abstract

Climate change contributes to the way in which people live. Natural resources such as groundwater, wood and surface water form a great part of livelihood in rural communities and are used extensively in rural areas where basic services have not yet been provided. The effect of climate change to all these natural resource may impact the lives of those in rural communities. Climate change is already starting to affect some of the poor and most vulnerable communities around the world. The aim of the dissertation is to develop a framework to assess the vulnerability of rural communities to climate change, with a specific focus groundwater and issues relating to gender. A questionnaire and interviews were used to collect data about rural communities' level of awareness climate change, their attitudes toward coping with climate change impact, level of education, income scale and how does this affect their security. Hyrodocensus was taken around the village to determine the rivers, dams, boreholes, abandoned boreholes and wells. Water samples were collected and analysed. The response rate was higher in females than in male's stakeholders (54% vs 46%).the results show that woman were mostly doing the hard work to complete daily basic activities. Education was found to be of high school level and incomes were low. The framework was developed with basic need showed that the area was at risk of poverty .Boreholes was found and water quality was analysed to be adequate for drinking water purpose. More information will be discussed on presentation.

Abstract

The University of the Free State investigated the possible dewatering of boreholes situated on the farm properties in the vicinity of an underground coal mine. The investigation consisted of three phases.
Phase one was a hydrocensus on the farm properties.
Phase two consisted of borehole yield determination by conducting pumping tests on the boreholes (where possible) identified in the hydrocensus phase.
Phase three included a visit to the underground mine workings, where water samples were collected at different groundwater inflow locations (especially water flowing in at the ventilation shaft). The monthly groundwater monitoring data of the underground coal mine was also incorporated for interpretation purposes. It appears that the water levels of the boreholes outside the mining boundaries are not affected. The water levels of the monthly monitored boreholes stabilized or even started recovering over the last few years. It also seems as though the larger streams in the area drains the groundwater as most of the deeper water level areas coincides with the presence of the streams. Most of the boreholes have typical borehole yields that is to be expected from Karoo formations i.e. between 0.5 and 1.5 L/s. An interesting observation is that a number of the boreholes with deep water levels are situated along dolerite contact zones at the western side of the mine. This may also be a geological structure resulting from the impact of a meteorite? From the available data it appears that the boreholes along this structure have the same chemical character as the water flowing down the ventilation shaft, strengthening the belief that the water from the shaft originates from this structure (or structures).

To determine the origin of the water flowing down the ventilation shaft, a detailed study of the structure to the west of the shaft is recommended. The farmers in the area should carefully monitor their water use in the boreholes, as over-abstraction can result in total failure of some of the boreholes.

Abstract

Currently limited progress is made in South Africa (and Africa) on the protection of groundwater used for drinking water. To achieve the objective of water for growth and development and to provide socio-economic and environmental benefits of communities using groundwater, significant aquifers and well fields must be adequately protected. Groundwater protection zoning is seen as an important step in this regard. Till today, limited case studies of groundwater protection zoning exists in Africa. A case study at the Rawsonville research site is conducted in this research project. Generic protection zones can be delineated at the site using published reports and database data. However, due to the complexity of the fractured rock at the research site, these would be of limited value and would not provide adequate protection for the well field Baseline data was collected by conducting a hydro census and through aquifer tests. An inventory of the activities that can potentially impact water quality was done and aquifer characteristics such as transmissivity and hydraulic conductivity were determined through various types of aquifer testing. Fracture positions were identified using fluid logging and fracture flow rates were also measured using fluid logging data. A conceptual model and preliminary 3D numerical model were created to try to understand groundwater movement at the research site. The knowledge gained will be used to guide information gathering and monitoring that can be used to build a more detailed numerical model and implement a trustworthy groundwater protection plan at a later stage. The expected results will have applicability to groundwater management in general. The protection plan developed during this project can be used as a case study to update and improve policy implementation. {List only- not presented}

Abstract

Resources required for groundwater sampling includes but not limited to pumping equipment, trained manpower and technical resources specific to the sampling function. Bearing these expenses in mind, choosing a laboratory for testing the water samples collected should be a carefully considered purchase. Choosing a testing facility that cannot deliver an efficient, reliable and technically sound service could render the sampling futile.

Water samples submitted to a laboratory for testing are received from third party sources more than ninety percent (90%) of the time and sampling techniques and sample integrity cannot be verified by the laboratory. However, the validity, reliability and integrity of the laboratory testing are within the control of the testing facility. These aspects of a laboratory are usually controlled within a quality management system where established policies and procedures form the basis of such a system. This system maintains a foundation for technical competence and customer service at the laboratory.

There are numerous testing facilities available to Consultants requiring chemical and microbiological groundwater testing, each with varying levels of integrity and technical ability. It is imperative to maintain confidence in the validity of results of analyses from a laboratory and this assurance can be understood through an examination of a facility's management system.

An established quality management system would comprise a policy statement, associated technical methods and technical and administrative procedures. This system would be formally documented and audited as part of the on-going laboratory's management system. In some instances, laboratories formalise this into an accreditation of the laboratory to an international standard, such as ISO 17025:2005.

The assurance that the results of analyses from any laboratory are of sound technical integrity would depend on factors such as
- personnel training,
- accommodation and environmental conditions under which the tests are carried out,
- validation of the methodology applied (including the uncertainty of measurement),
- the calibration and maintenance of the equipment used,
- understanding the traceability of and measurement undertaken,
- handling and preservation of the sample on receipt and while in the laboratory.

Each of these factors plays a critical role in the integrity of results of analyses and should be interrogated when trying to understand the reliability and competence of the laboratory of choice.{List only- not presented}

Abstract

Model calibration and scenario evaluations of 2D and 3D groundwater simulations are often computationally expensive due to dense meshes and the high number of iterations required before finding acceptable results. Furthermore, due to the diversity of modelling scenarios, a standardised presentation of modelling results to a general audience is complicated by different levels of technical expertise.

Reducing computational time
In this presentation we look briefly at the use of Reduced Order Models (ROM's), which is one of the recent developments in groundwater modelling. The method allows significant speed-up times in model calibration and scenario evaluation studies. In saturated flow for example, these approaches show speed-up times of >1000 when compared to full models created with Finite Element of Finite Difference methods. These methods are demonstrated to a case study in the Table Mountain Group, in which we show a simplified parameter calibration and scenario evaluation study.

Standardising presentation
In order to present the results to as wide an audience as possible, the use of a web-browser as a GUI is proposed, where the web-page is coupled to a geo-spatial database and data is presented in a spatial and numeric format. The use of the spatial database manager PostgreSQL with PostGIS is proposed. Through a browser interface, users can run modelling scenarios using the ROM, which is evaluated in near real-time. Following the evaluation of the model, we show how PostGIS can spatially present data on a base-map such as google maps. In keeping with the current trends in online map customisation, viewers can interactively choose to overlay the base-map with a data-type (such as pressure or hydraulic head contours or flow direction) that is most intuitive for their level of familiarity with the data.

Conclusion
In using advanced modelling techniques and a simplified browser based presentation of results, high-level decisions in water resource management can be significantly accelerated with the use of interactive scenario evaluations. Furthermore, by reaching a broader audience, public participation will be significantly enhanced.