Conference Abstracts

All Abstracts were presented at the Groundwater Conferences

Displaying 751 - 795 of 795 results
Title Presenter Name Presenter Surname Area Conference year Sort ascending Keywords

Abstract

The Palla Road well-field is located in the Central District of Botswana approximately 160 km from Gaborone and 50 km from Mahalapye. The aim of this project was to review and update the existing groundwater model developed in the late 1990s of the Palla Road well-field in order to assess the viability of long-term groundwater abstraction due to the increasing water demands in the region. The  main  hydrogeological  units  recognised  in  the  project  area  comprise  of  aquifer  systems developed in the Ntane Sandstone Formation and formations of the Middle Ecca Group with minor aquifers developed in Mosolotsane Formation and the Stormberg Basalt. The finite-difference model boundary covers an area of 3 702 km2  and was set-up as a three-dimensional semi-uniform grid comprising of four layers. Eight recharge and 14 hydraulic conductivity zones in accordance with the geological  model  were  distinguished.  Steady  state calibration  was  accomplished  by  varying the hydraulic conductivity values, while keeping the recharge rates constant in order to achieve a unique solution. Transient calibration of the model covered three larger stress periods namely: (1) initial condition (pre-1988), (2) abstraction period (1988 to 2012) and  (3) predicted model simulations (2013 to 2036).

The calibrated groundwater flow model was used to assess the impacts associated with  the  proposed  abstraction  scenarios  for  the  Palla  Road  and  Chepete  well-fields  with consideration  of  potential  cumulative  impacts  due  to  the  Kudumatse  well-field.  Three  basic scenarios comprising certain sub-scenarios based on the future water demand for the Palla Road and Kudumatse region were considered. The model simulations show that the abstraction scenario 2a, namely simultaneous abstractions from the Chepete/Palla Road and Kudumatse well-fields, poses a risk to the sustainability of downstream water resources. The maximum simulated drawdown in the central and  southern parts of the Palla Road well-field  reach 14 m after six years of  pumping. Although outflow diminishes after a six-year period, it is restored to approximately 80-90% after the simulated recovery period. The presented 3-D multi-layer model can be used as a tool to determine the optimal abstraction rates while giving cognisance to the sustainability of the resource.

Abstract

The so-called apparent increase of transmisivity (T) or hydraulic conductivity (K) with scale is an artifact and does not exist in the field. The reason for the apparent increase of T with scale is due to the use of the “not applicable” random log Gaussian stochastic models that are used by geohydrologists. In the petroleum field, where deterministic methods are applied, the apparent increase of T with aquifer volume does not occur. Groundwater practitioners have to change their view and use models that do not show this effect.

Abstract

The mineral-rich basin of the West African region has vast reserves of gold, diamond as well as iron ore deposits. Throughout the regional geological setting characterised by structural variations and intrusive belts with metamorphic mineral-rich sequences covered by saprolite soils, one common chemical constituent remains a constant in the water reserves. Arsenic is in high concentrations throughout the region with chemical ranges commonly above the various country guidelines as well as international IFC and WHO standards. The aqueous chemical species is associated with arsenopyrite-rich mineralogy of the regional greenstone belts and highly weathered soils. 

This conference presentation investigates the natural source of the arsenic through baseline data, as well as the effect of mining on the already high concentrations of arsenic in both the groundwater and surface water. Natural levels of various chemical species in the regional area are already high at baseline level. One of the main research questions is thus whether mining and other anthropogenic activities will have  an impact on the environment or will  the changes to concentrations be so insignificant to allow the ecosystems and water users to continue in their current ways without any effect. Various case studies in Burkina Faso, Liberia, Sierra Leone and other countries have been combined to investigate the arsenic-rich resources of the West African region through groundwater specialist investigative methods with emphasis on geochemical modelling of the fluidrock and fluid–fluid interactions leading to the aqueous chemical conditions in the region.

Abstract

With increasing focus on wasted expenditure within local government and recent media reports on the money spent on poor quality service, it is becoming progressively important for those in a position of engaging consultants, either for groundwater supply or environmental work, to have confidence in the company or person they have employed. This paper focuses on how to assess consultants  before   they   walk  through   the  door  based   on   qualifications,   CVs,   professional registrations and previous work experience. It goes through the project lifestyle, explaining in a non- technical fashion the different processes involved in a groundwater supply or groundwater contamination assessment and provide simple indicators of good practice that should be evident in the   consultant's   work.   Topics   covered   include   assessing   proposals,   gathering   background information, health and safety, appointing sub-contractors, data quality, the use of appropriate published procedural guidelines, the use of relevant quality guidelines and what deliverables should be provided. 

Abstract

The Karoo Supergroup has a hydrogeological regime which is largely controlled by Jurassic dolerite dyke and sill complexes. The study area is located in the north-eastern interior of the Eastern Cape Province,  close  to  the  Lesotho  border.  The  sedimentary  rocks  of  the  upper  Karoo  constitute fractured and intergranular aquifers, due to relatively hydro-conductive lithologies. The main groundwater production targets  within  the  upper-Karoo  are  related  to  dolerite  intrusions  that have  a  number  of  characteristics that influence groundwater storage and dynamics. Magnetic, electromagnetic and electrical resistivity geophysical techniques are used to determine the different physical  characteristics  of  the  dolerite  intrusions,  such  as  size,  orientation  and  the  level  of weathering. Trends in the data collected from a large-scale development programme can provide evidence that intrusion characteristics also play a role in determining the hydrogeological characteristics of the area. Interpreted geophysical borehole drilling, aquifer  testing  and  water chemistry  data  can  be  used  to  indicate  hydrogeological  differences  between dolerite intrusion types. Observed trends could be used for more accurate future well-field target areas and development.

Abstract

POSTER Hydraulic fracturing, also known as hydrofracking or fracking, is being engaged in the Karoo region of South Africa in order to enhance energy supplies and improve the economic sector. It will also lead to independence in terms of reduced amount of imports for fuel due to an estimated 13.7 trillion cubic metres of technically recoverable shale-gas reserves in South Africa. 

Fracking is an extraction technique used with the purpose of having access to alternative natural methane gas, which is interbedded in shale deposits deep under the surface of the earth. In this process boreholes are drilled horizontally into shale formations to cover a larger area in the shale and  subsequently  attain  more  natural  gas.  After  these  horizontal  boreholes  are  drilled,  large volumes of water, mixed with chemicals and sand, are pumped into these boreholes under a very high pressure, forcing the natural gas out. This water mixture is referred to as the fracking fluid. Water is the main component in the fracking fluid and the water used for the fluid reaches volumes up to 30 million litres per borehole.

The aim of this study is to present a baseline study of the area and its water resources to ultimately facilitate in resolving the actual impact hydraulic fracturing will have in the area, using a simulation model which will predict the migration of the fracking fluid in the subsurface. In this model, the chemistry of  the fracking fluid  will  be  included  to determine  the impact  it might  have  on the groundwater quality in the area

Abstract

To date, South Africa has mined approximately 3.2 billion tons of coal from a number of different coal reserves located in various parts of the country. A large number of the mines have reached the end of their productive life, resulting in numerous mine closures. With closures, groundwater levels have rebounded, resulting in decant of mine water into the environment. This paper describes a case study of a closed underground coal mine, the rebound of water levels, the evolution of the groundwater quality and the impact it has had on the management of the potential decant.

On closure of the Ermelo Mines in 1992, initial water quality monitoring indicated that a water treatment plant would be required to treat the mine decant. However, as the groundwater levels in the mine rebounded, the water quality in the mine void evolved from sulphate type water to sodium type water. The evolution of the water quality can be attributed to sulphate reducing bacteria, vertical recharge from the hanging aquifer and stratification. Water level and quality monitoring have shown that the water in the old mine void will not decant to surface due to the depth of the mine void, hydrogeological conditions, a "hanging aquifer"  and the recharge mechanisms. As a result, no water treatment will be required and the mine will not impact on the surface water. The main applications from this paper are:

  •  Design  of  a  correct  monitoring  procedure  to  allow  for  monitoring  of  water  quality stratification in rebounding mines.
  •  Identifying the role of sulphate reducing bacteria in the evolution of groundwater quality in a methane rich coal mine void.
  •  The role of a hanging aquifer in recharging of a coal mine void and resultant stratification. 
  • Designing of a mine taking into consideration mine closure.

The main contribution of this paper is the use of hydrogeological information in design of a coal mine so as not to decant on closure.

Abstract

Currently limited progress is made in South Africa (and Africa) on the protection of groundwater quality. To achieve the objective of water for growth and development and to provide socio- economic and environmental benefits of communities using groundwater, significant aquifers and well-fields must be adequately protected. Groundwater protection zoning is seen as an important step in this regard. Till today, only one case study of groundwater protection zoning exists in Africa. Protection zone delineation can be done using published reports and database data. However, due to the complexity of the fractured rock at the research site, more data are required. This data can be collected by conducting a hydro census and through aquifer tests. An inventory of the activities that can potentially impact water quality was done and aquifer characteristics such as transmissivity and hydraulic conductivity were determined through various types of aquifer testing. Fracture positions were identified using fluid-logging and fracture flow rates were also measured using fluid-logging data. A conceptual model and basic 3D numerical model were created to try to understand groundwater movement at the research site. The improved information will be used to build a more detailed numerical model and implement a trustworthy groundwater protection plan, using protection zoning. The expected results will have applicability to groundwater management in general. The protection plan developed during this project can be used as case study to update and improve policy implementation.

Abstract

National legislation is the outcome of processes, locally, provincial and nationally. Certain aspects of water management have first been the product of legal initiatives of the South African government, seeking  to  address  local  problems.  As  a  result,  the  National  Water  Act,  3of  1998,  was promulgated. The Act is in line with the Constitution of the Republic of South Africa, 108 of 1996, which embrace human rights. The Water Services Act, 108 of 1997, regulates the accessibility of water and sanitation by domestic users. Groundwater, in many parts of South Africa, provides the sole  and/or  partial  water  supply  for  meeting  basic  human  needs.  With  an  increase  in  the dependency on groundwater usage, the need to properly and effectively protect, use, develop, conservemanage  and  control  groundwater  resources  has  become  a  national  priority  by  the custodian of all water resources: the National Department of Water Affairs. The question arises whether  onot  the  current  groundwater  allocatiodecision-making tools  are  enough  to  make informed  decisions  regarding  the  final  approval,  or  not,  of  groundwater  use  licenses,  and whether  a  proper  framework  that  includes  guidelines  together  with  licensing  conditions  are available  for  decision- making   in   complex  groundwater   scenario   situations   as   part   of   the groundwater license decision process. The current research contributes to answering this question and finding solutions in order to improve and make the groundwater use authorisation process more  effective.  The  groundwater  situation  will  bdiscussed  on  a  comparative  basis  from international case studies regarding water legislation and groundwater resource management tools. A full evaluation and analysis of groundwater use authorisation process and decision-making tools oregional annational level  in  South  Africa will be done  and a Framework and tool for the evaluation, decision-making and determination of authorisation conditions of groundwater use authorisations, which includes existing lawful water use, general authorisations, and groundwater use licensing, will be developed. Scenarios and case studies are currently implemented.

Abstract

The National Environmental Management Waste Act, 59 of 2008 (NEMWA) clearly identifies the status and risk of contaminated sites and provides a legislative mechanism for remediation activities to be implemented and controlled. The Draft National Framework for the Management of Contaminated Land (henceforth Framework) provides national norms and standards for the practical implementation of remediation activities in compliance with NEMWA. A soil-screening value (SSV) for the protection of water resources is based on a two-phase equilibrium partitioning and dilution model which includes a dilution factor (DF) and partitioning coefficient (Kd) which converts the water quality guideline to a total soil-screening value. This paper presents a methodology to use soil-specific Kvalues to improve the accuracy of the new South African guideline for contaminated land.

Appropriate Phase 1 screening assessments are important due to the potential consequence it holds. Some uncertainty exists in the Phase 1 screening values due to variability in Kd values for different soil. This study shows that the Kvalues selected for the Framework is not representative of typical South African soils. Cu Kd values exceed the value provided by the Framework in all soils, but are lower that the Framework V Kd value in all soils. For Pb, low clay content weathered soils have lower Kd, but higher clay content soils are up to four orders of magnitude higher that the Kd in the Framework. Furthermore, due to the large variability (three to four orders of magnitude for Cu and Pb) point estimates of a single Kd value cannot be used for all soil types. However, for V only one order of magnitude variation is found. 

A way of addressing the uncertainty would be to determine the water soluble portion during the assessment. This would dramatically increase the certainty with which screening is conducted and could prevent significant inappropriate screening. Additional cost incurred be offset by saving as a result of unnecessary Phase 2 assessments or the reduction of undetected risks that later could impact the environment

Phase 1 screening could also be improved by including soil classification and some basic soil properties in the site assessment and adjusting Kd values, accordingly. Soil properties that can be used are typically clay content, pH and organic matter content. From these properties more appropriate Kds can be estimated for use in setting screening values.

Abstract

The aim of this project was to establish a detailed geohydrological database and monitoring network for  the  karst  aquifer  within  the  boundaries  of  the  Vanrhynsdorp  Water  User  Association.  An adequate monitoring network is necessary for the Vanrhynsdorp Water User Association to implement sustainable water use management as well as for the Department Water Affairs to ensure its mandate as trustee of all water resources. Hydrocensus projects were conducted in phases as the project escalated from historic town supply during 1978 towards a catchment driven water user association after implementation of the new National Water Act in October 1998 (Act 36 of 1998). With the successive hydrocensuses conducted, the monitoring network also evolved in regard to area monitored, point locations, monitoring schedules and parameters measured. Hydrocensus data were captured on the National Groundwater Archive, time series data on the Hydstra database and chemical analysis on the Water Management System. Time series graphs were compiled to analyse the monitoring data and to create a conceptual model of the karst aquifer. The study showed a general decline in groundwater levels and quality in the study area. The conclusion is that the aquifer is over exploited. It is recommended that an extensive management plan is developed and implemented to ensure sustainable use of this sensitive water resource. The installation and monitoring of flow meters on all production boreholes should be seen as urgent and stipulated as such in licensing conditions. This will ensure the effective management and regulation of this valuable groundwater resource.

Abstract

PMWIN5.3 has been one of the most commonly used software for groundwater modelling because of its free source and the adoption of the popular core program MODFLOW. However, the fixed formats required for data input and lack of GIS data support have posted big challenges for groundwater modellers who are dealing with large areas with complicated hydrogeological conditions. In South Africa, most geological and hydrogeological data have been captured and stored in GIS format during various national research projects such as WR2005, NGA, etc. Therefore, a proper linkage between PMWIN and ArcGIS is expected to do the pre-processing for modelling in PMWIN. Visual Basic for Application (VBA) embedded in ArcGIS 9.3 was used to develop the linkage. Based on the conceptualisation of the study area, the model dimension, discretisation and many value-setting processes can be easily carried out in ArcGIS other than directly in PMWIN. Then the grid specification file and other input files can be exported as the PMWIN-compatible files. The functions on the modification of model geometrics have also been integrated with the toolbar. The linkage can be used with a higher version of PMWIN or ArcGIS. It has been applied to several gold fields in the Witwatersrand gold basin to simulate the groundwater flow and mass transportation for various conditions and scenarios. One of the applications will be presented in this paper. It has been proven that the linkage is efficient and easy to use.

Abstract

POSTER Water is an invaluable resource without which life would cease to exist. Supply in South Africa has become limited due to increases in demand brought upon by population growth, urbanisation and industrialisation. In Southern Africa, water systems are considerably degraded by mining, industry, urbanisation and agricultural activity and a large amount of the fresh surface water has already been utilised. The stresses on this resource will unlikely make the current usage sustainable in years to come. In order to provide for basic needs for the future, groundwater as a resource will have to play a major role. It is for this reason that groundwater integrity needs to be preserved. 

Hydrocarbon contamination is a huge threat to groundwater as it contains toxic substances that are insoluble in water. These toxins are carcinogenic and mutagenic, and have a major impact on human health and ecosystem stability. When spilled, hydrocarbons will move downward through the unsaturated zone under the influence of gravity and capillary forces, trapping small amounts in the pore spaces. Accumulation will result in added weight along the water table, forcing the entire surface to be displaced downward. Some of the components can dissolve in the groundwater and move as a plume of contaminated water by diffusion and advection within the saturated zone. The transport of contaminants from petroleum hydrocarbon spills needs to be described in terms of a multiphase flow system in the unsaturated zone, taking into account contaminant movement in each of the three phases: air, water and free light non-aqueous phase liquid. Petroleum hydrocarbon behaviour in the subsurface is additionally complicated by the presence of multiple compounds, each with different properties. The net result is that some hydrocarbon fractions are transported faster than others and a contamination plume of varying intensity may spread over a large area.

The aim of this study is to develop a methodology to map and simulate the movement of groundwater that has been contaminated by hydrocarbons and to determine the fate of the water quality through decomposition. Associated remediation options will be determined thereafter.

Abstract

In  South  Africa  salinisation  of  water  resources  by  dissolved  sulphates  resulting  from  acid  rock drainage (ARD) and metal leaching (ML) from surface coal mine spoils has a significant effect on water supply in the Gauteng Province. Predictions of mine water quality is required to select cost- effective rehabilitation and remediation measures to reduce future ARD and ML risks and to limit long-term  impacts.  A  load  balance  model  was  developed  in  Microsoft  Excel  to  simulated contaminant loads in a completely backfilled opencast mine in the Karoo Basin of South Africa after closure. The model calculated the balance between contaminant load into the pit water system from mainly pyrite oxidation processes in the spoils and load removed through decanting. Groundwater flow modelling data and simulated spoils seepage qualities for the mine site were used as input in the contaminant load calculations. The model predicted that the amount of contaminants added to the pit from spoils decrease considerably from the time of closure over a period of approximately 100 years. Thereafter the contaminant load decrease is gradual. This is due to a decrease in the volume of unsaturated spoils, as spoils at the bottom become permanently inundated as the pit fills up, thus limiting oxygen diffusion and oxidation. Cumulatively, the contaminant load gradually increases  in  the  backfilled  pit  until  the  onset  of  subsurface  and  surface  decant,  when  the contaminant load declines. This is due to removal of contaminants from the mine water system via decanting. Approximately 200 years after mine closure, 86% of the spoils are inundated. The model predicted that the quality of decanting water improves with time due to a decrease in load from spoils, removal of contaminants through decanting water and dilution effects of relatively clean groundwater inflows. Mass loads were used as input into the numerical groundwater model for the contaminant mass transport simulations to predict the migration of contaminant plumes with time. The geochemical model results assisted in developing conceptual water and waste management strategies for the opencast mine during operational and closure phase.

Abstract

Ladismith was established in 1851 where freshwater discharge from the Klein Swartberg Mountains. Growth of the town required building of the Goewerments Dam in 1920 and the Jan F le Grange Dam in 1978. However, water demand now matches supply, and water shortages are being experienced. Poor management and recent droughts exacerbated the situation. A project was initiated to address shortcomings with the existing supply and identify additional sources of water. Groundwater is an obvious option, with the regionally extensive Cango Fault located directly north of  the  town.  The  west-east  trending  fault  juxtaposes  highly  productive  Table  Mountain  Group Aquifers with less productive argillaceous rocks of the lower Witteberg Group. The Alluvial Aquifer is also a target, with a recently drilled DWA monitoring borehole reported to be high-yielding. Drilling and testing of three exploration boreholes drilled into the fault, returned lower than expected borehole  yields,  but  still sufficient  to  contribute  to  the  town’s water  supply  and  merit  further exploration. Boreholes drilled north of Ladismith could be used to increase the existing water supply by 50%.

Abstract

The Paleozoicage Natal Group Sandstone (NGS) that outcrops from Hlabisa (in the north) to Port Shepstone (in the south) and Greytown (west) to Stanger (east) in the Province of KwaZulu-Natal, South Africa, is investigated in terms of its hydrogeological characteristics. This sandstone group, which comprises a lower Durban and an upper Marrianhill Formations, is a secondary/fractured aquifer system that has variable but good productivity across its members. It is characterised by variable borehole blow yields ranging from 0.2 l/s to as high as 20 l/s, with more than 50% of the boreholes having blow yield > 3 l/s. Preliminary analysis of these boreholes yields indicates that higher yielding boreholes are associated with a network of intersecting fractures and faults, and are recommended targets for future water well-siting in the area. Groundwater in the NGS is of good quality in terms of major and trace element composition and it has a total dissolved solids (TDS) composition of <450 mg/l. It was observed that the specific electrical conductivity (EC), TDS and major ions composition of groundwater within the sandstone decrease from north to south, which appears to be controlled by the geochemical composition of the aquifer material and an increase in the rate of recharge. Depth to groundwater is also found to decrease southwards because of an increase in the rate of recharge. Groundwater hydrochemical facies are generally either Na-HCO3 or Na-HCO3–Cl, and environmental isotope data (2H, 18O, Tritium) indicates that the groundwater gets recharge from modern precipitation. Furthermore, the EC increases from inland to the coastal zone, indicating maritime influences and the general direction of groundwater flow is eastwards, to the Indian Ocean.

Abstract

The pollution of water resources has become a growing concern worldwide. Industrial, agricultural and domestic activities play a pivotal role in water resources pollution. The challenge faced by pollution   monitoring   networks   is   to   understand   the   spatial   and   temporal   distribution   of contaminants. In hydrology, tracers have become a critical research tool to investigate surface water and groundwater transport dynamics. Synthetic DNA (deoxyribonucleic acid) tracers are being used in hydrological research to determine source areas, where uniquely labelled DNA from each source area  is  identified.  The main  objectivof the  study  was to  determine  the mass  balance of  the synthetic DNA tracer in surface water streams. Furthermore, to gain knowledge on DNA adsorption and decay and determine whether DNA behaves as conservative tracer in the surface water streams. Understanding the adsorption and decay characteristics of synthetic DNA tracers may promote its robustness in hydrological research. In this study, field injection experiments using synthetic DNA were  carried  out,  the  DNA  tracer  was  injected  together  with  sodium  chloride  (salt)  and deuterium as conservative reference tracers. The purpose was to compute DNA mass balance calculations with reference to the two conservative tracers. In this study two different DNA markers were used, namely T22 and T23. Additionally, with each injection experiment a field batch experiment was carried out to determine DNA loss characteristics on the field. From our study, the DNA loss between the injection point and the first measurement was greater than 90%. Therefore, it was important to conduct additional laboratory batch experiments to explain DNA loss characteristics. However, the issue of the initial DNA loss remained unresolved. Laboratory batch experiments results allow us to conclude the following: the type of material used, filtering, ion concentration and water composition reduced DNA concentration. Moreover, initial DNA losses occurred and not DNA decay. From our experiments we concluded that DNA can be used for long-term tracer experiments, subsequently, limiting synthetic DNA mass balance determination of synthetic DNA as it is a reactive. Overall, we can conclude that DNA does not behave as a conservative tracer.

Abstract

The assessment and prediction of mine water rebound has become increasingly important for the gold mining industry in the Witwatersrand basin, South Africa. The cessation of dewatering lead to large volumes of contaminated surface discharges in the western parts of the basin. Towards the eastern extremity of the Witwatersrand basin the detached Evander Goldfield basin has been mined since the early 1950s at depths between 400 and 2000 metres below ground, while overlain by shallower coal mining operations. The hydrogeology of the Evander basin can be categorised by a shallow weathered-fractured rock aquifer comprising of the glacial and deltaic sediments of the Karoo Supergroup, while the deeper historically confined fractured bedrock aquifer consist predominantly of quartzite with subordinate lava, shale and conglomerate of the Witwatersrand Supergroup. The deep Witwatersrand aquifer has been actively been dewatered for the last 60 years with a peak rate of 60 Ml per day in the mid late 1960s. Modelling the impacts of mine dewatering and flooding on a regional scale as for the Evander basin entails challenges like the appropriate discretisation of mine voids and the accurate modelling of layered aquifer systems with different free groundwater surfaces on a regional scale. To predict the environmental impacts of both the historic and future deep mining operations, the detailed conceptual model of the aquifers systems and a 3-dimensional model of the mine voids were incorporated into a numerical groundwater model to simulate the dewatering and post-closure rebound of the water tables for the basin. The presented model could serve as an example for the successful modelling of mine dewatering and flooding scenarios for other parts of the Witwatersrand basin.

Abstract

South Africa has an energy crisis. The country requires 53 Gigawatt of new capacity by 2030. The exploitation  of  unconventional  gas  is  a  potential  game-changer  to  meet  South  Africa’s  current energy deficit to fuel economic growth and development. Water management, both in terms of abstraction and disposal, has emerged as a critical issue in the development of unconventional gas reservoirs. This presentation focuses on a high-level, qualitative analysis of the groundwater-related institutional and governance challenges associated with unconventional gas exploration and production. The findings represent a synthesis of information sourced from regulatory and legislative documents as well as international experience. The analysis maps the current groundwater institutional and governance landscape in South Africa and lessons learned from other regimes such as the United Kingdom and United States of America. Good governance entails ensuring that there is compliance with policy and legislation, effective decision-making, appropriately allocated accountability, transparency and that stakeholder interests are considered and balanced. This forms the basis of a preliminary gap analysis.

Abstract

Work is being conducted in Limpopo province following a large volume release of petroleum hydrocarbons that took place from a leaking underground pipeline, resulting in significant groundwater contamination. This is considered to be the largest petroleum hydrocarbon release recorded to date in South Africa. The leak took place for 15 years before it was discovered 13 years ago in 2000. From the pressure tests that were performed, 10-15 ML of A-1 Jet fuel is considered to havbeen  released  to  the  subsurface.  Product  bailing was  the  first method  employed  for  the recovery of the free product, and was later replaced with a P&T system which was considered to be more effective.

The village located about 6 km to the north of the spillage depends mostly on groundwater. This paper presents a progress update of works that have been conducted in support of developing a conceptual model which aims to determine the areal extent of the plume.

Abstract

An understanding of the movement of moisture fluxes in the unsaturated zone of waste disposal sites play a critical role in terms of potential groundwater contamination. Increasing attention is being given to the unsaturated or vadose zone where much of the subsurface contamination originates, passes through, or can be eliminated before it contaminates surface and subsurface water resources. As the transport of contaminants is closely linked with the water flux through the unsaturated zone,  any quantitative analysis of contaminant transport must first evaluate water fluxes into and through this region. Mathematical models have often been used as critical tools for the optimal quantification of site-specific subsurface water flow and solute transport processes so as to  enable  the  implementation of management practices that minimize  both surface water  and groundwater pollution. For instance, numerical models have been used in the simulation of water and solute movement in the subsurface for a variety of applications, including the characterisation of unsaturated zone solute transport in waste disposal sites and landfills. In this study, HYDRUS 2D numerical simulation was used to simulate water and salt movement in the unsaturated zone at a dry coal ash disposal site in Mpumalanga, South Africa. The main objective of this work was to determine the flux dynamics within the unsaturated zone of the coal ash medium, so as to develop a conceptual model  that  explains  solute  transport through  the unsaturated  zone  of the coal ash medium for a period of approximately 10 year intervals. Field experiments were carried out to determine the model input parameters and the initial conditions, through the determination of average moisture content, average bulk density and the saturated hydraulic conductivity of the medium. A two-dimensional finite-element mesh of 100 m × 45 m model was used to represent cross  section  of  the  ash  dump.  Two-dimensional  time  lapse  models  showing  the  migration  of moisture fluxes and salt plumes were produced for the coal ash medium. An explanation on the variation of moisture content and cumulative fluxes in the ash dump was done with reference to pre-existing ash dump data, as well as the soil physical characteristics of the ash medium.

Abstract

Flowing fluid electrical conductivity (FFEC) profiling provides a simple and inexpensive way to characterise a borehole with regards to the vertical location of transmissive zones, the hydraulic properties  of  the  various  transmissive  zones  and  the  intra-well  flow  conditions  which  may  be present in the well under ambient conditions. The method essentially involves analysing the time evolution of fluid electrical conductivities in a borehole under pumped and ambient conditions using a down-hole conductivity/temperature data logger. The premise of the method is that the borehole column of water has its electrical conductivity altered by adding saline water into the borehole. This results in a contrast in electrical conductivity (EC) between the water in the borehole and the water in the adjacent formation. At depths where transmissive zones are present, decreases in EC values in the FFEC profile will be observed where formation water with a lower EC (relative to the borehole water column) enters into the well, whilst pumping at low abstraction rates (between 500 ml and 1 liter per minute). By altering the EC of the well-borewater and maintaining a constant pumping rate,  the  sequence  of  FFEC  profiles  depicts  the  dynamic  flow  and  transport  response which  is dependent upon the hydraulic properties of the formation. In this paper the authors present several examples where FFEC profiling has been used to identify transmissive zones in boreholes where no information existed with regards to the vertical distribution of transmissive zones. Furthermore, the authors present case studies where FFEC profiling has been employed as an alternative technology to more conventional hydraulic profiling techniques. This includes a comparative technology case study where down-hole impeller flow meter technology was employed in addition to FFEC profiling and a multi-rate FFEC profile test which was used to determine discrete fracture transmissivity values in a borehole where packer testing equipment could not be installed. Within the context of groundwater contamination investigations, the method holds several attractions as it generates minimal waste water to be managed and disposed of, is inexpensive and can be completed within a relatively short time period.

Abstract

Limestones  and  dolomites  form  an  important  aquifer  system  in  Zambia.  The  municipal  water supplies for Lusaka and several population centres on the Copperbelt all depend on the carbonates for a substantial proportion of their water supply. Currently 155,912 ha of land are irrigated in Zambia, which is about 30 percent of the economical irrigation potential. Development of large scale irrigation schemes from carbonate rock aquifers proves to be a viable groundwater resource in Zambia.

The Katanga carbonate rock aquifers are considered to have good groundwater potential, with high yielding anomalies of up to 60l/s common in certain areas of the country. A phased approach was adopted  to   characterise   the   Katanga   Carbonates   by  means  of  quantifying   the  volume  of groundwater available for abstraction within the geological boundaries. The first phases included geophysical surveys (mainly electrical resistivity and magnetic methods), exploration drilling and aquifer   testing.   Later   phases   included   the   drilling   of   production   boreholes   and   wellfield development. 

Lessons learned during the exploration included the identification of high yielding drilling targets and the role of anomaly frequency in target selection. Further development of the Katanga aquifers for production provided challenges regarding production borehole construction and design. The feasibility of the optimum  design of  production  boreholes versus  the  initial capital  cost of the development of these carbonates proved to be an important consideration in this regard.

Abstract

Many aquifer systems worldwide are subject to hydrochemical and biogeochemical reactions involving iron, which limit the sustainability of groundwater schemes. This mainly manifests itself in clogging of the screen and immediate aquifer with iron oxyhydroxides resulting in loss of production capacity. Clogging is caused by chemical precipitation and biofouling processes which also manifests in South African well-fields such as in Atlantis and the Klein Karoo. Both well-fields have the potential to provide a sufficient, good quality water supply to rural communities; however, clogging of the production boreholes has threatened the sustainability of the schemes as quality and quantity of water is affected. Rehabilitation of the affected boreholes using techniques such as the Blended Chemical Heat Treatment method does not provide a long-term solution. Such treatments are costly with varying restoration of original yields achieved and clogging recurs with time. Currently the research,  management  and  treatment  options  in  South  Africa  have  focused  on  the  clogging processes which are complex and site-specific, making it extremely difficult to treat and rectify. This project attempts to eliminate elevated concentrations of dissolved iron, the cause of the clogging. High iron concentrations in groundwater are associated with reducing conditions in the aquifer allowing for the dissolution of iron from the aquifer matrix. These conditions can be natural or human-induced. Attempts to circumvent iron clogging of boreholes have focussed on increasing the redox potential in the aquifer, by injection of oxygen-rich water into the system, to prevent dissolution and to facilitate fixation of iron in the aquifer matrix. Various in situ treatment systems have  been  implemented  successfully  overseas  for  some  time.  In  South  Africa  thus  far  in  situ treatment of iron has only been proposed as a solution for production borehole clogging. Based on experience from abroad the most viable option to research the elimination of ferrous iron in South African aquifer systems would be through the in situ iron removal treatment. Different techniques of increasing the dissolved oxygen concentration in the injected water to intensifying the redox change in the aquifer can be applied; however, the use of ozone as the oxidant is a new approach. Its effectiveness is evaluated by the results in iron removal in surface water treatment for drinking water supply.

Abstract

After a period of heavy rainfall in 2006, pit water from a rehabilitated opencast coal mine in the Mpumalanga Province started decanting, causing impacts on the adjacent agricultural land and river system. Various actions have since been taken to manage the pit water, including construction of contour berms to prevent clean water entering the ramps, construction of levees and dam walls to increase the decant level, irrigation of mine water on the rehabilitated areas of the pits, disposal of pit water in nearby pans, recirculation of pit water by means of pumping between the various voids, controlled release of pit water to the river system, and construction of a pipeline to pump pit water to a nearby colliery where there is a demand for process water. For the purpose of mine closure, a water management plan was required for which an estimate of the water make of the colliery was needed. The water make was estimated by using measured quantities (rainfall data, pumping rates, dam water levels) and estimated quantities (evaporation from open water bodies), while making a number of simplifying assumptions. This approach revealed that the conventional method of estimating the water make as a percentage of rainfall recharged through the spoils, significantly underestimates the volumes of water that need to be dealt with at the colliery. Large volumes of groundwater appear to be entering the pits along preferential pathways connected to recharge zones at higher elevations, contributing to the water make of the colliery.

Abstract

This paper has been based on a study conducted at the Nyalazi plantation in KwaZulu-Natal, South Africa. The study was conducted in order to determine the impacts of the different timber species planted on the groundwater levels associated with the site area. Commercial timber plantations are widespread  throughout  the  country  and  form  an  essential  component  of  the  South  African economy. The site is located 200 km north of the port of Durban and approximately 20 km north of the town of St Lucia in the KwaZulu-Natal Province. The study area, the Nyalazi plantation, is located on the western shores of Lake St Lucia, situated on a peninsula between the Nyalazi River, west of the site and Lake St Lucia to the east. The two main tree species which are located in the Nyalazi plantation are Pinus elliottii and Eucalyptus grandis Camaldulensis. The geological units which influence the hydrogeological regime of the site area include the recent deposits of cover sands and the Port Durnford Formation. These geological successions are the most influential on the groundwater environment as these are the units closest to the surface. The study area is located on the Maputuland coastal plain, also referred to as the Zululand coastal plain, which is classified as a primary aquifer and is the largest of its kind in South Africa. High recharge is experienced within the upper formations of the coastal plain which are unconfined aquifers (Mkhwanazi, 2010). This aquifer consists of unconsolidated clays and sands, which may be defined as an alluvial or primary aquifer (Rawlins & Kelbe, 1991). The monitoring network was initiated by SAFCOL (South African Forest Company, Ltd) in 1995, now known as SiyaQubeka. In total 21 monitoring points were installed, which  includes  piezometers  and  deeper  boreholes.  The  trends  of  the  groundwater  level  data collected over the 17-year period was analysed. Limited historical information was available for the Pinus elliottii plantation; however, based on the data it was evident that the mature pine plantations had minor effects on the groundwater environment of the study area. Conversely, the Eucalyptus species indicated a significant impact with the lowering of the groundwater table between 10 and 16 m over a period of 13 years within the plantation area, which equates to an average decline of one metre per year.

Abstract

Vapour intrusion (VI) is the term used to define the encroachment of vapour phase contaminants from subsurface sources into structures such as buildings and basements. It is widely recognised that VI often forms the principal risk of exposure to receptors at petroleum release sites. Petroleum VI (PVI) generally occurs where a release of petroleum hydrocarbon product migrates from its source (for example, from a leaking underground storage tank) to the groundwater table at which point, given favourable conditions, the hydrocarbon plume may migrate laterally beneath an adjacent building or structure. Subsequent volatilisation of the petroleum product results in the upward diffusion of vapours towards the surface where the vapours may enter into the building or structure at concentrations which may be harmful to human health. The subject of PVI with regards to its fate and transport mechanisms, as well as associated mitigation measures, is rapidly gaining attention on a global scale, although to date this exposure pathway remains largely unassessed in South Africa, with no regulatory guidance currently available. In the late 1990s and early 2000s focus was placed on the development of VI screening criteria by which sites could be screened with respect to their hydrogeological conditions and contamination status so as to determine whether VI may be a potential exposure pathway of concern, with much of the early work being completed by the United States Environmental Protection Agency. For the past decade the majority of the available screening criteria  and  guidance  has  not,  or  has  only  partially  accounted  for  biodegradation  processes associated with VI, which has led to doubt over the application of such screening criteria in many cases. Furthermore, recent research conducted abroad has highlighted the importance of the role of oxygen in the vadose zone in the natural attenuation of petroleum hydrocarbon vapours as they diffuse through the soil profile. This research is pointing towards the notion that currently applied screening criteria may be overly conservative when applied to petroleum impacted sites, leading to many  unnecessary  PVI  investigations  being  conducted  to  the  disruptioof  occupants  of  the buildings, and at great cost. Over the last two years ERM has compiled a dataset of PVI results from numerous investigations it has conducted throughout Southern Africa and in this paper the authors present data that supports the growing global trend towards recognising the role that oxygen plays in attenuating petroleum hydrocarbon vapours in the vadose zone. The data also support the notion that confirmed cases of PVI into buildings have generally been found to be the exception to the rule and not the norm.

Abstract

POSTER The Evander Goldfield basin has been mined since the early 1950s at depths between 400 and 2 000 m below ground and is detached from the larger Witwatersrand basin. The assessment and prediction of mine water rebound has become increasingly important for the gold mining industry in the Witwatersrand basin as more mine shafts mothballs and dewatering ceases. The development of a  3-D  mine  void  model  is  crucial  in  predicting  the  rate  of  flooding  as  the  prediction  of  the groundwater rebound is primarily driven by the volumes of mine voids along with the amount of recharge. All available mine plan data for the Evander Gold Mine (EGM) were obtained digitally from Harmony Gold. However, the majority of the old mine workings (e.g. Leslie and Winkelhaak) were available  as  2-D  data  and  elevations  of  the  mine  developments  (stopes  and  drives)  had  to  be captured from hardcopy plans. Data from the more recent mining operations (e.g. Shaft 6), including updated survey and mine plan data, were directly used for the development of the 3-D void model. The calculated mine void volume, based on the EGM operations mine plan data, is approximately 80 518 045 m3. The mine void calculations were checked against the total tons of rock milled by the EGM operations since the late 1950s and was considered valid estimations of the EGM mine void volume. The validated EGM 3-D mine workings plan was subsequently used to determine the stage- volume relationships. The 3-D mine void model established, will then be incorporated into a regional numerical groundwater flow model to be calibrated against observed abstractions and water levels and utilised to predict future dewatering rates.

Abstract

The Karoo Supergroup has a hydrogeological regime which is largely controlled by Jurassic dolerite dyke and sill complexes. The study area is located in the north-eastern interior of the Eastern Cape Province,  close  to  the  Lesotho  border.  The  sedimentary  rocks  of  the  upper  Karoo  constitute fractured and intergranular aquifers, due to relatively hydro-conductive lithologies. The main groundwater production targets  within  the  upper-Karoo  are  related  to  dolerite  intrusions  that have  a  number  of  characteristics that influence groundwater storage and dynamics. Magnetic, electromagnetic and electrical resistivity geophysical techniques are used to determine the different physical  characteristics  of  the  dolerite  intrusions,  such  as  size,  orientation  and  the  level  of weathering. Trends in the data collected from a large-scale development programme can provide evidence that intrusion characteristics also play a role in determining the hydrogeological characteristics of the area. Interpreted geophysical borehole drilling, aquifer  testing  and  water chemistry  data  can  be  used  to  indicate  hydrogeological  differences  between dolerite intrusion types. Observed trends could be used for more accurate future well-field target areas and development.

Abstract

POSTER One of the critical elements of water resource management is the dynamic exchange between groundwater and surface water. Quantifying this exchange strongly relies on an adequate characterisation of the lithological architecture of the involved aquifer system. In the past, this characterisation often relied on lithological data obtained through invasive methods. However, given the spatial heterogeneity of the subsurface, these methods do not provide the density of sampling required for an accurate ‘‘image’’ of the large‐scale architecture of the aquifer system, leading to large uncertainties in the variations and continuities of subsurface structure. These uncertainties inevitably lead to inaccuracies in the conceptual geohydrological model, thereby diminishing the prospects of an accurate assessment of the groundwater–surface water interaction. In order to limit the uncertainties, the results of electrical resistivity tomography (ERT) surveys conducted on a  site  near  the  Krugersdrift  Dam in the Free State Province of South Africa  were used to make inferences   regarding  the   prevailing  geohydrological  conditions.  The   resistivity  models   were compared to borehole logs from existing boreholes to produce a refined model of the subsurface architecture related to groundwater–surface water interactions.

Abstract

Groundwater boreholes are a key element of many mining projects, as part of dewatering and water supply  systems,  and  must  achieve  high  levels  of  operational  efficiency  and  service  availability. Outside of the mining industry, planned borefield maintenance programmes have become a key part of professional well-field management, with proven benefits in terms of operational cost savings and continuity of pumping. However, the benefits of proactive planned maintenance of groundwater boreholes on mine sites have only recently been widely recognised. Potential operational problems are described, including water quality issues which can result in mineral contamination leading to deposits and scale build-up which can clog screens and pumps, reduce water flow and yield, and eventually cause pump breakdowns and mine stoppages. Best practice methodologies to remove or minimise the contamination are described and the benefits of implementing a planned maintenance programme are discussed. Case studies are described from two significant mines in Australia, where boreholes suffered from mineral contamination, including calcium carbonate and iron bacteria contamination. Both mines suffered  from  increased  pump  breakdowns,  groundwater  yields  consistently  below  target  and serious cost overruns. Borehole rehabilitation treatment plans were implemented to resolve the immediate contamination problems followed by an ongoing maintenance programme to prevent or minimise their reoccurrence. Treatment programmes included a downhole camera survey, use of a bespoke software program to review the results of the survey and the available water quality data, and a purpose built rehabilitation rig that included the use of specialist chemical treatments to remove and control the existing encrustation and clogging deposits.

Abstract

The Department of Water Affairs (DWA), Chief Directorate: Resource Directed Measures has developed guidelines over the past decade  in ordeto  facilitatproper implementation of the Groundwater   Resourc Directed   Measures   (GRDM)   (also   known   as   determination   of   the groundwater component of the Reserve). An intrinsic component of the GRDM is delineation of Integrated Units of Analysis (IUAs) from which the allocatable groundwater and surface water components are calculated, which essentially drives the allocation of water use licenses. Delineation typically follows a three-tiered approach, namely primary, secondary and tertiary level. Primary delineation is based on quaternary boundaries (considered to be the basic building block of the IUA); secondary follows geological, hydrogeological and hydrological boundaries, groundwater abstraction zones and baseflow contribution; and tertiary is dependent on management criteria. How then, do we undertake this challenging task of delineating IUAs to a level where it can be better managed and monitored? Complexities arise when hydrogeological data are scarce, hydrological and hydrogeological systems are not in sync, aquifers extend across a quaternary, water management area, provincial and administrative boundaries, surface water and groundwater interactions are not well understood, and legislation on protection of water resources differs greatly from one country to the next. Having undertaken delineation of IUAs in the Waterval Catchment (Upper Vaal WMA), Olifants WMA and Mvoti to Umzimkhulu WMA with the available datasets, the key criteria for the respective  WMAs  have  ultimately  been  management  class,  significant  aquifers,  groundwater– surface water interaction and groundwater stressed areas, and secondary catchment boundaries, followed by other hydrogeological, geological and management considerations.

Abstract

Industrial  facilities  and  mining  activities  represent  a  potential  contamination  hazard  to  down gradient surface water and groundwater environments. The assessment of the risks posed by such contaminant sources should facilitate regulators to determine set compliance limits. These limits should, however, take in consideration the heterogeneous nature of fractured rock aquifers. This paper will focus on the limitations or technical feasibility of applying single groundwater quality compliance limits for fractured rock aquifers. It will also aim to describe how groundwater contamination limits could be determined in a more feasible manner.

Abstract

This study examined the effective use of the hydrogeologic conceptual model (HCM) to implement the integrated water resource management (IWRM) approach. While research focuses on using hydrogeologic models  in  groundwater  for  planning,  few  studies  show  how  to  use  HCM  for  a successful IWRM approach, especially in  resource  poor  catchments.  This  is  largely  due  to  t he lack of adequate data to showcase such models. Despite the lack of numerical groundwater data, the HCM was used in this study and it provided the scientific and visual presentation of key issues for practical understanding by stakeholders. For the first time, HCM provided a  practical understanding of t he  groundwater system in the Limphasa River catchment. By using HCM and physical factors qualitatively, the study revealed that, apart from storage, abstraction mechanisms significantly contributes to regional initiatives of groundwater supply whose central objective is to utilise and manage such water sustainably. The model is based on the relationship between groundwater availability  and  its  related  hydrogeologic factors.  Findings suggest improvement  in quantifying the studied parameters through field experiments to provide a better estimation on storage and abstraction of groundwater in relation to impacts of a future changing climate. Since using HCM has shown practical usage, replicating it in catchments with similar physical and socioeconomic environments, would be desirable as refining the model progresses.

Abstract

Gold mining  activities over  the  past 60 years  in the Klerksdorp  goldfield produced  saline mine drainage that polluted water. Oxidation of sulphide material in tailings storage facilities, waste rock dumps and extraction plants is mobilised to produce saline mine drainage with sulphate, minor salts and  metals  that  seep  to  the  groundwater  and  ultimately  into  surface  water  resources.  Water regulation requires mines to prevent, minimise/reduce or eliminate pollution of water resources. The waste philosophy has matured from tolerate and transfer to treat and termination of pollution sources.  The  impact  of  the  pollution  was  determined  and  possible  technologies  to  treat  the impact   were   evaluated.   Source   controls   with   proper  water  management  by  storm  water management,  clean  dirty  water  separation,  lined  water  conveyance  structures  and  reduced deposition of water on waste facilities are crucial. The aquifer character determines the possible remediation technology. From the possible technologies phytoremediation, physical interception and  re-use  of  this  water  was  selected.  In  future  possible  treatment  of  the  water  would  be considered. This paper explain the strategy and report on the phased implementation of these plans and the expected results. The establishment of 500 ha of woodlands as phytoremediation, interception trenches of 1 000 m, 38 interception boreholes and infrastructure to re-use this water is planned. The total volume of 15 Ml/day would be abstracted for re-use from the boreholes and trenches. The woodlands can potentially attenuate and treat 5 Ml/day. The established woodlands of 150 ha prove to be successful to intercept diffused seepage over the area of establishment and reduce  the  water  level  and  base  flow.  The  two  production  interception  well- fields  that  are abstracting  50  and  30 l/s,  respectively  , indicate  a  water  level decline of between 2 to 14 m, with regional cones of depression of a few hundred meters to intercept groundwater flow up to a 20 m depth. Predictions from groundwater modelling indicate that these schemes can minimise pollution during the operational phase and protect downstream water resources. Predictions from modelling indicate that the pollution sources need to be removed to ensure long-term clean-up to return the land to safe use. The gold and uranium prize is securing the removal of the sources through  re-processing  of  the  tailings  and  waste  rock  dumps.  After  removaof  the  sources  of pollution,  the  remediation  schemes  would  have  to  boperated  for  2years  to  return  the groundwater to an acceptable standard  of  stock  watering  and  industrial  water  use.  The  water quality is observed by a monitoring network of approximately 100 observation boreholes.

Abstract

The monitoring of groundwater to detect changes resulting from anthropogenic activities requires an understanding of the particular aquifer system, release mechanisms and migration pathways which form the basis of a conceptual hydrogeological model. This conceptual hydrogeological model illustrates the connections between sources, pathways and receptors. The objective of a monitoring programme implemented in the context of shale gas exploration activities in the Karoo would be the detailed monitoring of groundwater quality for the protection of groundwater users. This objective requires a defensible baseline dataset so that changes in water quality can be investigated.  In selecting parameters to monitor, cognisance must be taken of parameters which occur in multiple sources, those naturally present in the shallow potable aquifer, potential tracers representing the deeper groundwater and additives arising from the exploration activities. Sodium, potassium and chloride  are  all  likely  to  be  present  in  both  deep  and  shallow  groundwater  and  are  potential additives. Given the expected higher salinity of deep connate groundwater, the use of aggregate parameters such as electrical conductivity might be of particular importance. Lithium, fluoride, strontium and uranium, while constituents of both the shallow and deep groundwater, are likely to be present at higher concentrations in the deeper groundwater, and could be indicators of deeper groundwater.  Geochemical  analysis  of  cores  may  provide  initial  clues  as  to  such  indicator parameters. Methane, which is known to occur in some existing Karoo boreholes, is potentially one of the more mobile tracers which could indicate migration from potential future production zones to shallow aquifers. The viability of using methane and other dissolved gasses (for example ethane) as indicators would require the use of stable isotope analyses to elucidate the origin of the gases.

 

Abstract

The increase in awareness of environmental issues and the desire for a cleaner environment by the public has caused mining companies to place greater emphasis on the continuous rehabilitation of harmful effects caused by mining operations. Ongoing rehabilitation is also a requirement of the government departments involved in mining in South Africa. The biggest concern for the relevant government departments is the possible uncontrolled pollution of water resources in the vicinity of mines, after they have closed. In  the  compilation  of  this  paper,  the  unique  nature  of  the  South  African  situation  has  been considered – this refers to a legally acceptable approach towards current legislation and policies. This study leads to the construction of a logical approach towards mine closure, specifically to understand issues around costs and financial liability. The final product of this approach should ultimately give more clarity on: 

the principles followed to identify objectives for mine closure and groundwater assessment;

key steps to follow when assessing site hydrogeology and to determine related impacts, risks, closure costs and liabilities; and an overview of methods that could be used for the mitigation of polluted aquifers and a brief site-specific application.

Abstract

POSTER Electrical Resistivity Tomography (ERT) surveys were conducted in the Kruger National park (KNP) as part of a recent Water Research Commission project (titled: Surface water, groundwater and vadose zone interactions in selected pristine catchments in the Kruger National Park). The surveys were carried out in a pristine ephemeral third-order supersite catchment, namely the southern granite (Stevenson Hamilton). This supersite is representative of the southern granite region of KNP as it covers part of the dominant geology, rainfall gradient and dominant land system.

Electrical   resistivity   profiling   provided   valuable   data   on   the   subsurface  geological   material distribution and results depended on soil/rock properties, water content and salinity. The purpose of electrical surveys was to characterise the hydrogeological components of weathering and depth to water level using the subsurface resistivity distribution. The ground resistivity is related to various geological parameters such as the mineral and fluid content, porosity and degree of water saturation in the rock.

Based on the initial ERT survey interpretations, boreholes were drilled providing actual subsurface results in the form of borehole drilling logs, water levels, hydraulic data and in situ groundwater quality  parameters.  Integrating  the  ERT  survey  data  with  the  results  from  the  intrusive  survey enabled an updated conceptualisation of groundwater flow characteristics and distribution across the southern granite supersite.

Abstract

South Africa currently ranks number nine in the world of the proved coal reserves that has been estimated to last for over 200 years. Coal constitutes about 77% of the primary energy needs in the country, with the Waterberg Coalfield estimated to host about 40% of the remaining South African coal resources. Coal deposits in the study area largely consist of shales, mudstones, siltstones and sandstones which host coal-containing clay minerals; quartz, carbonates, sulphides and the most abundant sulphide mineral is pyrite. Once mining begins, the sulphide minerals are exposed to surface which allows contact with atmospheric oxygen and water causes oxidation to take place, therefore causing acid-mine drainage (AMD). Acid-base accounting (ABA) was used to determine the balance between the acid-producing potential (AP) and acid-neutralising potential (NP). From the analysis the Net Neutralising Potential (NP-AP) was determined, which is one of the measurements used to classify a sample as potentially acid or non-acid-producing. Mineralogical analyses will be done by x-ray defraction (XRD) to define and quantify the mineralogy of the geological samples which can help in the management plan to minimise generation of acid. AMD does not only result in thgeneration of acid, but as well as in decreased pH values and increased values of specific conductance, metals, acidity, sulphate, and dissolved and suspended solids. Inductively coupled plasma analysis was done to determine the release of the heavy metals which can be detrimental to the environment. Sample analysis was done on the interburden, overburden as well as the coal samples. From results obtained, over 35% to 50% of the samples have an excess of acid potential which classifies the samples as having a higher risk for acid generation. About 30% to 40% of the samples have a higher neutralising potential; the rest of the samples have a medium acid risk generation. The water demand will increase as developments continue in the  area, with inter- catchment transfers identified as the answer to fill the gap of water scarcity. Acid mine drainage poses a big threat on water resources, both groundwater and surface water nationally, which might be less of a problem in the Waterberg because of the cycle of low rainfall in the area, but the potential of AMD cannot be neglected.

Abstract

A multi-data integration approach was used to assess groundwater potential in the Naledi Local Municipality located in the North West Province of South Africa. The geology comprised Archaean crystalline basement, carbonate rocks (dolomite and limestone) and windblown sand deposits of the Kalahari Group. The main objective of the study is to evaluate the groundwater resource potential using multi-data integration and environmental isotope approaches. Prior to data integration, weighting coefficients were computed using principal component analysis.

The results of integration of six layers revealed a number of groundwater potential zones. The most significant zone covers ~14% of the study area and is located within carbonate rocks in the southern part of the study area. The localisation of high groundwater potential within carbonate rocks is consistent with the results of principal component analysis that suggests that lithology significantly contributed to the total data variance corresponding to principal component 1. In other words, carbonate rocks consisting of dolomite and limestone largely account for groundwater occurrence in the southern part of the area. In addition, the relatively elevated isotopic signature of tritium (≥1.0 TU)  in  groundwater  samples  located  in  the  southern  part  of  the  area  suggests  a  groundwater recharge   zone.   Furthermore,   moderate-to-good   groundwater   potential   zones   within   the Ventersdorp lava coincide with maximum concentration of fractures, which is consistent with the results of statistical correlation between borehole yield and lineament density. The multi-data integration approach and statistical correlation used in the context of evaluating groundwater resource potential of the area provided a conceptual understanding of hydrogeological parameters that control the development of groundwater in crystalline and carbonate rocks. Such approach is crucial in light of the increasing demand for groundwater arising from municipal water supply and agricultural use. The two approaches are very effective and can be used as a sound scientific basis for understanding groundwater occurrence elsewhere in similar hydrogeological environments.

Abstract

The deterioration of wetlands due to human activity has been a problem for many years. Under the old Water Act 36 of 1956 no provision of water was made for managing the environment. This idea was only introduced in the 1970s and focussed mainly on maintaining the floodplains and estuaries in the Kruger National Park, with small amounts being allocated to drinking water for wildlife. This was followed by the Conservation of Agricultural Resources Act, 43 of 1983, the first legislation under which wetlands could be protected, and which today still provides an important legal platform for the protection of wetlands, through integrated conservation of the soil, water resource and vegetation. South Africa became a signatory to the Ramsar Convention in 1975, but until the late 1990s not much was done to enforce wetland conservation. With the introduction of the National Water Act, 36 of 1998, and the National Environmental Management Act, 107 of 1998, South African legislatiobecame  the  first  to  balance  human,  environmental  aneconomic  interests,  for  the purpose of sustainable development. As part of this review I refer to case studies in Gauteng and discuss some of the challenges we still face.

Abstract

Groundwater is not often regarded as ecosystems and especially fractured aquifer systems are seen as organism free. Conventional tests show very little to no presence of micro-organisms in groundwater. However, these micro-organisms are ubiquitous and can be detected by using sophisticated methods. In this specific case study where petroleum hydrocarbon  contamination exists in a fractured rock aquifer, the presence of micro-organisms has been for years inferred by means of monitoring for secondary lines of evidence that prove attenuation of the contaminants, not only by means of dilution, adsorption or diffusion into the matrix, but through metabolism. The sampling evidence is clear that the preferential sequence of metabolism is taking place whereby electron acceptors are reduced as predicted for such biodegradation. Specifically sulphate is consumed and mostly manganese is reduced, with some iron reduction also being observed. Monitoring has shown that  groundwater recharge bringing in  new  nutrients effected increased biodegradation. In order to definitively identify the contribution made by micro-organisms, DNA testing was performed. The results support the secondary lines of evidence. Outside of the contaminated zone very low population numbers of organisms were detected in the groundwater. Inside the contaminated zone elevated population numbers were observed indicating that active biodegradation is taking place. Furthermore, the edges of the plume, where contaminant levels are mostly below detection, contained a more diverse population of micro-organisms than the central area. Conditions on the edge of the plume probably represent an ideal nutrient environment for the organisms as opposed to the high concentration source, which might be toxic to some organisms. Better understanding of the bio-dynamics of this fractured aquifer presents a unique opportunity to better manage and enhance the remediation of the contaminants. Possible strategies include the addition of nutrients when necessary and the cultivation of the naturally occurring organisms to augment the population. The data shows that aquifers are ecosystems even in fractured environments.

Abstract

This paper was presented at the GWD Central Branch Symposium, Potchefstroom in 2012

Numerical modelling of hydrogeological systems has progressed significantly with the evolution of technology and the development of a greater understanding of hydrogeology and the underlying mathematical principles. Hydrogeological modelling software can now include complex geological layers and models as well as allow the pinching out of geological features and layers. The effects of a complex geology on the hydraulic parameters determined by numerical modelling is investigated by means of the DHI-WASY FEFLOW and Aranz Geo Leapfrog modelling software packages.

The Campus Test Site (CTS) at the University of the Free State in Bloemfontein, South Africa was selected as the locale to be modelled. Being one of the most studied aquifers in the world, the CTS has had multiple research projects performed on it and as a result ample information is available to construct a hydrogeological model with a high complexity. The CTS consists primarily of stacked fluvial channel deposits of the Lower Beaufort Group, with the main waterstrike located on a bedding-plane fracture in the main sandstone aquifer.

The investigation was performed by creating three distinct hydrogeological models of the CTS, the first consists entirely of simplified geological strata modelled in FEFLOW by means of average layer thicknessand does not include the pinching out of any geological layers. The second model was created to be acopy of the first, however the bedding-plane fracture can pinch out where it is known to not occur. The third and final model consisted of a complex geological model created in Leapfrog Geo which was subsequently exported to FEFLOW for hydrogeological modelling.

Abstract

The Namibian uranium province, located in the Namib Desert, derives its name from the local presence of almost ten uranium tenements. The mines conduct monitoring of natural radionuclide concentrations of Ra226, Ra228, Pb210, U234, U238, Th232 and Po210 in local aquifers. This data is useful in mine rehabilitation and developing closure criteria, as only radiation doses additional to natural doses are usually considered ‘controllable’ for radiation protection purposes. An accredited laboratory analyzed the baseline data collected through quarterly groundwater sampling with submersible pumps. The uranium deposits are hosted in Damara age granites or as secondary mineralization in Tertiary calcareous paleochannels. The analysis of the long-term baseline data provides the background radionuclide concentrations of three aquifer types in the province, i.e., the Quaternary saturated alluvium of the Khan and Swakop ephemeral Rivers, the Tertiary paleochannel sediments, and Proterozoic basement aquifers. The ephemeral rivers are important because they supply groundwater downstream of the mines for agricultural use. The analysis demonstrated that the alluvial aquifers have the lowest natural radionuclide content, with the U234 concentrations ranging between 0.03 and 3.4 Bq/l, while paleochannel and basement aquifers show intermittent U234 concentrations ranging between 0.25 and 5.1 Bq/l. The groundwater in the immediate ore zones shows the highest U234 concentrations, ranging between 44.8 and 86.3 Bq/l, exceedingly higher than the WHO standards of 1 Bq/l. This study illuminates that radioactivity is a natural phenomenon and that groundwater baseline data is paramount to groundwater protection.

Abstract

For the Department of Water and Sanitation (DWS) to better leverage the wealth of information being collected by various “silo” operational source water information systems, a high-priority initiative was launched to establish a National Integrated Water Information System (NIWIS), which currently consists of over 40 web-accessible dashboards including groundwater related dashboards mostly accessible to the public. Dispersed and disintegrated data and information stored in different sources and formats would hinder decision support in the water sector and deter improvement in service delivery by the DWS. The DWS undertook an extensive and rigorous business requirements analysis exercise within the DWS to ensure that the proposed system does not become a white elephant and facilitate the prioritization of system deliverables. A prototype (waterfall) approach was adopted to develop the NIWIS to ensure the development was still within the suggested business requirements. NIWIS has enabled mostly DWS managers to establish one trusted source of decision-making information for timeous, effective and efficient responses to service delivery. The number of NIWIS dashboards continues to grow as improved data-related business processes are adopted. The unavailability of reliable data from DWS data sources and the exclusion of business requirements from organizations external to DWS were identified as the main challenges to NIWIS disseminating comprehensive, credible information. Therefore, this paper aims to provide some details of the geohydrological information that NIWIS provides and seek feedback from this International Hydrogeologists community for further development of NIWIS.