Conference Abstracts

All Abstracts were presented at the Groundwater Conferences

Displaying 201 - 250 of 795 results
Title Sort descending Presenter Name Presenter Surname Area Conference year Keywords

Abstract

Well-established engineered systems for depth-discrete monitoring in fractured rock boreholes (referred to as a Multilevel System or MLS) are commercially available and offer much diversity in design options, however, they are used infrequently in professional practice and have seen minimal use in groundwater research. MLSs provide information about hydraulic head and hydrochemistry from many different depths in a single borehole and, therefore, magnify greatly the knowledge value of each borehole. Conventional practice globally is devoted to standard monitoring wells, either alone as longer single screened wells or in clusters or nests with a few wells screened at different depth intervals. These are the mainstay of the groundwater science and engineering community and severely limit prospects for each borehole to provide the information needed to solve the complex problems typically posed by fractured rock. This paper outlines the nature and evolution of MLS technologies and points to recent literature showing how MLSs add important insights that cannot be obtained using conventional wells. Also, it reviews commercially available MLS technologies, which present a range of robust options with each system having different characteristics and niches depending on characterization and monitoring goals and site conditions. The paper also describes refined MLS criteria aimed at improving the cost effectiveness and expanding capabilities of MLSs, so as to improve their accessibility for high resolution data acquisition in the context of both groundwater system characterization and long-term monitoring.

Abstract

Groundwater is a vital freshwater source, and its role in meeting water demands will become pivotal under future climate change and population growth. However, groundwater supply to meet this demand is at risk as aquifers can be rapidly contaminated, and the cost of aquifer rehabilitation and/or sourcing alternative water supplies can be high. The development of groundwater protection schemes is required to ensure long-term protection of groundwater quality and sustainable groundwater supply. A groundwater protection scheme is a practical and proactive means to maintain groundwater quality and forms an additional methodology for groundwater resource management/protection. There are no legislative guidelines on establishing groundwater protection schemes in water-scarce South Africa, despite groundwater being used extensively. Three groundwater protection schemes were designed and implemented to protect abstraction from a fractured aquifer in an undeveloped natural mountain catchment and two primary aquifers within different urban settings. The approach incorporated protection zone delineation (comprising four zones), aquifer vulnerability mapping/ ranking using the DRASTIC method (with the primary and fractured aquifer systems having varying vulnerabilities), and identification of potentially contaminating activities (which also vary significantly between the urban areas overlying the two primary aquifers, and the generally undeveloped natural mountain catchment fractured aquifer is situated within). Additionally, a protection response was established to determine monitoring frequencies. Practical insights into the design and implementation of these three groundwater protection schemes can serve as a model for implementation in other African aquifer systems.

Abstract

The determination of a sustainable groundwater yield is a complex and challenging task. There is a high degree of uncertainty associated with most aquifer parameters such as recharge from rainfall and aquifer storativity, especially in  fractured aquifers. This leads  to  analysts often taking a  very  conservative and  risk  adverse approach  in  determining  the  sustainableyield  for  boreholes.  The  problem  with  this  approach  is  that groundwater can be considered as impractical or not an option, due to the low and conservative yields. Potential well-fields also become too expensive to develop. The concept of sustainability does not only cater for the environment, but also for people (social) and the economy (business). A popular method to determine groundwater sustainability is the groundwater balance (also known as the groundwater budget) method. This method has come under scrutiny as it is proposed that capture zone method is a more conservative and technically correct approach. Two of the most important parameters in determining long-term borehole yield, namely recharge and storativity, are unknown and unknowable at the time of well-field development. At best, qualified guesses can be made with regard to these two parameters. This makes the capture method impractical as boreholes have to be drilled and tested first and capital spent before any planning can be done. 

In this paper, it was shown that the risk adverse approach in determining borehole yield will result in the most expensive groundwater development option. The principle of sustainability requires that environmental, social and economic considerations be taken into account. By following a risk adverse approach, which would be the most expensive, the principle of sustainability is violated and it cannot be claimed that the borehole yield is sustainable. Due  to  the  exponential relationship between  risk  and  cost,  a  no-risk  approach  would  be infinitely expensive. It was shown that due to the uncertainties, it is actually impossible to determine the sustainable yield of a borehole. The objective should rather be to develop a sustainable groundwater management plan. This can be achieved by following a systems management approach based on the minimum groundwater balance. The minimum groundwater balance approach makes use of, for example, hydro census data to determine a minimum groundwater balance for a system of aquifers based on recharge at a minimulevel of assurance, for example lower 95th percentile, rather than making use of the mean annual precipitation (MAP). The potential effects of storativity are neglected at this stage. The systems management approach was applied on a case study to demonstrate the application where some risk was taken for a limited period of time while monitoring takes place. Proactive warning systems would alert decision-makers when to develop new aquifers which are predefined, based on the minimum groundwater balance method. The difference is that in the case of the risk adverse approach, should it come to light that the recommended abstraction rates were wrong in the sense that it is too low, the capital is spent and cannot be recovered. In the case of the systems approach, where slightly risky abstraction rates are recommended for a limited period of time, additional well- fields can be developed well in advance, before any negative environmental impacts can occur.

Abstract

The availability of freshwater is one of the major development challenges that South Africa faces. South Africa is a water-scarce (semi-arid) country with rainfall distributed unevenly and away from the centres of major developments. The rainfall is tied to seasonal cycles that drive us repeatedly between floods and droughts. This paper serves to study the groundwater chemistry in light of the uranium mining that precedes shale gas fracking in the Karoo Uranium Province. The aim is to have groundwater baseline chemistry assessment before mining commence in order to be able to track mining effect on groundwater in the future. A total of 128 samples are dealt with in this work, 112 collected from groundwater, 9 collected from springs and 7 extracted from a database. The samples were analysed for physical parameters, cations, anions and metals. Redox potential was also determined as it plays a pivotal role because it controls the availability and form of uranium in a solution. Uranium is a radioactive actinide naturally occurring in the area. Therefore, this assessment will be crucial in order to understand how changing redox and pH conditions affect uranium solubility and to estimate the extent of uranium transport by water during and after mining. The effects of the redox potential and pH on uranium mobility have been examined in this work by means of computer modelling by using the Geochemist’s Workbench (GWB) 11.0. The composition of the water used for modelling resembled that of a typical bedrock groundwater of Karoo Uranium Province. The simulations were carried out under different redox potentials at different pH levels in the presence of ferrihydrite, dissolved organic matter and carbonates/bicarbonates to include the effects of uranium adsorption. The results show that the redox potential at which the uranium mineral (uraninite) dissolves varies depending on the pH of the groundwater.

Analysis of the simulation results indicated that the dissolution of uraninite takes place at a lower Redox condition with increasing pH (alkaline pH condition). This means higher redox conditions are needed for the dissolution of uraninite at low pH. Moreover, it is further concluded that the adsorption of uranium to ferrihydrite and carbonates is important at pH 6-10 and pH 5-8 respectively, which therefore play an important role in controlling the mobility of uranium in the modelled groundwater.

Abstract

Burning of coal for electricity production has resulted in vast amounts of ash being deposited in ash dumps. Rain water and ash water conditioning results in the wetting of ash dumps and if the water retention capacity is exceeded there is a possibility of leaching to soil and underlying aquifers. In this study two different coal ash are used to determine the water retention as excess amount of process water at power stations ash dumps can lead to impeding the desired water balance, which can be critical for maintain various plant processes. The nonlinear relationship between soil water content and matrix suction of a porous material under unsaturated conditions is described by the soil water characteristic curve (SWCC). The SWCC for a given material represents the water storage capability enabling the determination of varying matric suction such as prediction of important unsaturated hydraulic processes including soil permeability, shear strength, volume change with respect to the water content changes. This paper presents an alternative, cost effective and rapid method for measuring and subsequent estimating of the soil-water characteristics of any soil type. Several methods are available to obtain the measurements required for defining soil-water characteristics. However, obtaining the required measurements for a SWCC is generally difficult since there is no laboratory or field instrument, capable of measuring a typical complete plant available water suction range accurately. Due to high methodological effort and associated costs of other methods, a simplified evaporation method which was implemented in the HYPROP (Hydraulic Property analyzer, UMS, 2012) becomes a possible alternative. It relies on the evaporation method initially proposed Schindler (1980). A typical work range for a HYPROP system is 0 to 100 KPa as read out from the two high capacity tensiometers installed at different heights within a saturated sample column. For a dry coal ash dump to be optimally used as sinks, input water applications should be matched with evaporation rates and capillary storage. This will ensure the moisture storage of the ash dump is not exceeded and consequently avert leachate generation at the base of the ash dump. The field capacity of waste materials is of critical importance in determining the formation of leachate in landfills which in this case is the coal ash dump facility. It is the field capacity limit when exceeded which give rise to leachate generation consequently promoting a downward movement of generated leachate.he study found that it is possible to use the Hyprop together with an empirical based fitting model to define a complete SWCC along a dewatering path. The study found the Brooks-Corey model as the suitable representative of the Hyprop measured data, confirmed by AICc and RMSE analysis. The Brooks-Corey estimated retention function parameters within +/- 1% error. A mean value of 35.3% was determined as the water retention or field capacity value for Matimba Coal ash. If the ash dump is operated in excess of this value, chances of groundwater pollution are high.

Abstract

Access to safe water is not yet universal in Burkina because 30% of Burkinabes do not yet have access to drinking water. The objective of universal access to drinking water (ODD 6.1) is difficult to achieve in the context of population growth and climate change. Basement rocks underline 80% of Burkina Faso. However, about 40% of the boreholes drilled in the Burkina Faso basement rocks do not deliver enough water (Q < 0.2l/s) and are discarded. This study focuses on determining the appropriate hydrogeological target that can be searched to improve the currently low drilling success rate.

We set up a well-documented new database of 2150 boreholes based on borehole drilling, pumping tests, geophysical measurements, and geological analysis results. Our first results show that the success rate at 0.2l/s (i.e. 700 l/h) is 63% at the end of the drilling against 54% at the end of borehole development: the yield of 8% of the boreholes lowers significantly after only a few hours of development. We also found that the yield of the water intakes encountered during the drilling process slightly decreases with depth; beyond 60m, it is rare (only 15% of cases) to find water occurrences. We found clear relationships between the productivity of the borehole (yield after drilling and transmissivity obtained from the pumping test) and the thickness of the weathering rocks, indicating that the appropriate target to obtain a productive borehole is a regolith of about 35 meters thick.

Abstract

The most used methods for the capturing of shallow groundwater contamination are the use of abstraction wells and infiltration trenches. The use of trenches for the interception of shallow groundwater contamination has become a popular choice of remediation method due to the lower cost than a comparable pump-and-treat system. Trenches have large surface areas which limits the tendency of filter media clogging with suspended media as well as only a single pump and lower maintenance requirements. An important consideration of the use of trenches is determining the effectivity before design and construction. To date, limited information on the effectivity of trench designs are available, therefore a method to determine the effectivity of a trench was devised. This paper will discuss this evaluation method and look at some cases where planned trenches were successful and some cases where they were not.

Abstract

The pollution of water resources has become a growing concern worldwide. Industrial, agricultural and domestic activities play a pivotal role in water resources pollution. The challenge faced by pollution   monitoring   networks   is   to   understand   the   spatial   and   temporal   distribution   of contaminants. In hydrology, tracers have become a critical research tool to investigate surface water and groundwater transport dynamics. Synthetic DNA (deoxyribonucleic acid) tracers are being used in hydrological research to determine source areas, where uniquely labelled DNA from each source area  is  identified.  The main  objectivof the  study  was to  determine  the mass  balance of  the synthetic DNA tracer in surface water streams. Furthermore, to gain knowledge on DNA adsorption and decay and determine whether DNA behaves as conservative tracer in the surface water streams. Understanding the adsorption and decay characteristics of synthetic DNA tracers may promote its robustness in hydrological research. In this study, field injection experiments using synthetic DNA were  carried  out,  the  DNA  tracer  was  injected  together  with  sodium  chloride  (salt)  and deuterium as conservative reference tracers. The purpose was to compute DNA mass balance calculations with reference to the two conservative tracers. In this study two different DNA markers were used, namely T22 and T23. Additionally, with each injection experiment a field batch experiment was carried out to determine DNA loss characteristics on the field. From our study, the DNA loss between the injection point and the first measurement was greater than 90%. Therefore, it was important to conduct additional laboratory batch experiments to explain DNA loss characteristics. However, the issue of the initial DNA loss remained unresolved. Laboratory batch experiments results allow us to conclude the following: the type of material used, filtering, ion concentration and water composition reduced DNA concentration. Moreover, initial DNA losses occurred and not DNA decay. From our experiments we concluded that DNA can be used for long-term tracer experiments, subsequently, limiting synthetic DNA mass balance determination of synthetic DNA as it is a reactive. Overall, we can conclude that DNA does not behave as a conservative tracer.

Abstract

Big data analytics (BDA) is a modern and innovative platform of applications that include advanced analytical techniques such as data mining, statistical analysis, artificial intelligence, machine learning, and natural language processing. Regional data are generated through groundwater monitoring, remote sensing applications or global circulation models (GCM), however this is often too course for a local understanding. Groundwater managers rely on locally relevant information for effective operational decision making, however this is often missing. A Transboundary Aquifer (TBA) Analytic Framework was developed to match, integrate and model local hydrogeological data with regional earth-observation data using BDA. Drawing on the literature on BDA, a reference architecture for the TBA analytical framework was identified for application to various groundwater management scenarios in the Ramotswa Dolomitic Aquifer (Botswana - South Africa) and Shire Valley Alluvial Aquifer (Malawi - Mozambique). The TBA analytical framework allows for local clouds to store the local and regional structured and unstructured datasets and interconnecting these local clouds through a federated cloud infrastructure. In this regard, tools that are incorporated in the TBA analytical framework include data ingestion operators, data transformation operators, and feature extractors. Various machine learning algorithms and statistical techniques are incorporated in the TBA analytical framework to downscale the regional datasets. The downscaling involves selection of potential predictors and predictants variables based on data needs to address local groundwater management scenarios such as regulating groundwater abstraction to prevent groundwater depletion. Using the downscaled data the TBA analytical framework can be utilised to uncover patterns and statistical relationships in the datasets in order to model local groundwater processes such as cone of depression, groundwater levels forecasting, well protection zoning, amongst others.

Abstract

Synthetic flocculants are widely used in water treatment for their efficiency when it comes to flocculation but pose a risk to the environment and human health. The need for an alternative flocculant was investigated in this study. Bioflocculants which are produced by microorganisms have the potential to flocculate fine suspended particles. The bioflocculant production by Bacillus sp. isolated from Umlalazi Estuary in Mtunzini, KwaZulu-Natal Province was evaluated. Optimum flocculation conditions were obtained with an inoculum size of 1% v/v (89%), carbon source which was glucose with a flocculating activity of 88%, a multiple nitrogen source with a flocculating activity of 88%, an optimum temperature of 400C with 95% flocculating activity, shaking speed of 120 rpm with 95% flocculating activity, K+ for the cations was optimum at 95% flocculating activity and the pH of 7 had the flocculating activity of 94%. In the time course assay optimum conditions were reached after 84 hours with the flocculating activity of 92% at pH 5.29 using 0.4% (w/v) kaolin suspension. After extraction and purification, a bioflocculant yield of 2.1g/L was recovered from a 1L fermentation broth. Water treatment without the risk to human health is now a reality.

Abstract

Ladismith was established in 1851 where freshwater discharge from the Klein Swartberg Mountains. Growth of the town required building of the Goewerments Dam in 1920 and the Jan F le Grange Dam in 1978. However, water demand now matches supply, and water shortages are being experienced. Poor management and recent droughts exacerbated the situation. A project was initiated to address shortcomings with the existing supply and identify additional sources of water. Groundwater is an obvious option, with the regionally extensive Cango Fault located directly north of  the  town.  The  west-east  trending  fault  juxtaposes  highly  productive  Table  Mountain  Group Aquifers with less productive argillaceous rocks of the lower Witteberg Group. The Alluvial Aquifer is also a target, with a recently drilled DWA monitoring borehole reported to be high-yielding. Drilling and testing of three exploration boreholes drilled into the fault, returned lower than expected borehole  yields,  but  still sufficient  to  contribute  to  the  town’s water  supply  and  merit  further exploration. Boreholes drilled north of Ladismith could be used to increase the existing water supply by 50%.

Abstract

Ladismith was established in 1852 at a point where freshwater springs discharge from the Swartberg mountains. Growth of the town required building of the Goewerments Dam in 1920 and the Jan F le Grange Dam in 1978. However, water demand now matches supply, and water shortages are being experienced. Poor management and recent droughts exacerbated the situation. A project was initiated to address problems with the existing water supply and identify additional sources of water. Groundwater is an obvious option, with the regionally extensive Cango-Baviaanskloof fault being located directly north of the town. The west-east trending fault juxtaposes the highly productive Table Mountain Group aquifer with less productive argillaceous rocks of the lower Witteberg Group. This paper presents the results of initial geohydrological exploratory work and examines the role groundwater can play in the future water supply to the town.
{List only- not presented}
KEYWORDS
groundwater, exploration, water supply, Ladismith

Abstract

The Department of Water and Sanitation reviewed and re-designed (optimised) the national water resources monitoring networks. During the re-design, monitoring objectives were formulated and prioritised. The highest priority, i.e. to make available data and information related to quantity and quality of present and future water resources is through planned infrastructure development and other interventions. The data and information dissemination aims at providing strategic decision support for the equitable and sustainable allocation of resources to the population, environment and other economic sectors of society. In setting up the groundwater monitoring network, an approach was followed which allowed for the incorporation of local and international best-practice; hydrogeological information combined with expert knowledge. We used the following criteria to establish the baseline or background sites for the national groundwater monitoring network: borehole spatial densities; pristine areas (no land-use activities); aquifer yield; recharge; baseflow; sites for background monitoring related to groundwater reserve determinations and the setting of resource quality objectives; springs; and international obligations. Trend monitoring sites were selected around baseline sites and around towns who were groundwater dependent. The trend monitoring sites allow for trends to be determined in terms of: (i) over-exploitation/abstraction of groundwater; (ii) groundwater quality degradation from various land use practices; and (iii) groundwater water use. Regional Spatial Design Workshops were held to compare the existing water resources monitoring network with the newly designed network and the existing monitoring network were optimised accordingly. Google Earth was used to query the detail of the monitoring sites, consider land-use coverages and incorporated expert input to position sampling points in line with the monitoring objectives. The implementation of the updated groundwater monitoring network will rely predominantly on hydrogeological considerations and field-
based investigations and observations. When the networks are optimised, statistical techniques will be useful to ascertain monitoring point location, redundancy and frequency.

Abstract

In recent years, practical applications of vector and raster multi-layers overlay analysis to enhance outcomes of conventional hydrogeological methods for allocation of productive boreholes have been applied in arid and semi-arid lands and is currently being tested in Ethiopia, Kenya, Somalia and Angola in cooperation with UNICEF. Advanced Remote Sensing (RS) and Geographic Information Systems (GIS) techniques combined with traditional geological, hydrogeological and geophysical methods are being used for improved access to sustainable drinking water supply boreholes in the scope of a WASH program. Identifying suitable areas with a good potential for sustainable groundwater resources exploitation mainly depends on a) consistent/reliable aquifer recharge and b) favourable hydrogeological conditions for groundwater abstraction. Multi-layer analyses and attribution of layer scores to the hydrogeological information layers – aquifer recharge, aquifer class, lineaments, slope, land cover, and presence of streams – combine into a qualitative Groundwater Suitability Map, using pairwise comparison (weights) to determine their relative importance with the Analytic Hierarchy Process (AHP). Additionally, traditional field methods enhance the quality of outputs and delineate Target Areas for detailed investigations: validation of hydrogeological conceptual models, hydrogeological assessment, groundwater sampling and finally, geophysical methods. Downscaling the remote sensed information of the groundwater suitability map with field verifications is required to recommend borehole drilling sites. The engagement of stakeholders is vital for the data collection and validation of the weighting criteria analyses (AHP method), as well as for the cooperation on the ground, validation of the Target Areas selection and implementation.

Abstract

The City of Cape Town (CoCT) commenced a study into the feasibility of the Table Mountain Group aquifers (TMGA) for augmenting the water supply to the city in 2002. It comprised drilling of exploration boreholes in several target areas and the establishment of a hydrogeological and ecological monitoring network. Due to the prolonged drought and associated water crisis, the CoCT decided to fast-track the TMGA development in 2017. The first wellfield is currently developed within the catchment area of the Steenbras Dam comprising production boreholes targeting the Skurweberg and the Peninsula aquifers of the TMGA. Since groundwater abstraction from the Peninsula and Skuweberg aquifers might have a short-term or long-term impact on aquatic ecosystems (i.e. streams and wetlands) that are linked to the TMGA. As a result, evaluation of the potential impact of groundwater abstraction from this aquifer system requires an understanding of the nature and extent of groundwater dependency of the ecosystems. A variety of data sets and parameters have been measured over the last decade at ecological monitoring sites across the study area, of which two sites are located within the Steenbras catchment that are probably connected to the Skurweberg Aquifer. Recently further boreholes and monitoring sites have been added. This paper describes the various methods used and results of the analysis towards a conceptual understanding and quantification of the groundwater dependency of the selected ecosystems. While groundwater contribution is only one factor in ecosystem functioning, sustainable and adaptive management of the groundwater use must be based on the conceptual model and ongoing monitoring of the ecosystem responses.

Abstract

POSTER The Evander Goldfield basin has been mined since the early 1950s at depths between 400 and 2 000 m below ground and is detached from the larger Witwatersrand basin. The assessment and prediction of mine water rebound has become increasingly important for the gold mining industry in the Witwatersrand basin as more mine shafts mothballs and dewatering ceases. The development of a  3-D  mine  void  model  is  crucial  in  predicting  the  rate  of  flooding  as  the  prediction  of  the groundwater rebound is primarily driven by the volumes of mine voids along with the amount of recharge. All available mine plan data for the Evander Gold Mine (EGM) were obtained digitally from Harmony Gold. However, the majority of the old mine workings (e.g. Leslie and Winkelhaak) were available  as  2-D  data  and  elevations  of  the  mine  developments  (stopes  and  drives)  had  to  be captured from hardcopy plans. Data from the more recent mining operations (e.g. Shaft 6), including updated survey and mine plan data, were directly used for the development of the 3-D void model. The calculated mine void volume, based on the EGM operations mine plan data, is approximately 80 518 045 m3. The mine void calculations were checked against the total tons of rock milled by the EGM operations since the late 1950s and was considered valid estimations of the EGM mine void volume. The validated EGM 3-D mine workings plan was subsequently used to determine the stage- volume relationships. The 3-D mine void model established, will then be incorporated into a regional numerical groundwater flow model to be calibrated against observed abstractions and water levels and utilised to predict future dewatering rates.

Abstract

In order to establish sound groundwater resource management within towns and Municipal areas the development of a training manual on groundwater resource management and groundwater governance for Municipalities is of utmost importance. A Training Manual can be extensively used for capacitating municipal official, technicians, managers, and decision-makers, as well as communities where villages and towns are partially or solely reliant on groundwater resources. Increased knowledge and skills will not only lead to more effective groundwater resource management, but also to more sustainable groundwater use and protection of groundwater resources. This also forms part of provisions made by the National Water Act 1998 (Act 36 of 1998). Before a training manual can be compiled, training needs assessments of all reachable training institutions in South Africa and Free State Municipalities and Northern Cape Municipalities as identified as pilot areas in the proposal of the Training Manual for Groundwater Resource Management and Groundwater Governance for Municipalities in South Africa needed to be performed. Training needs assessment determines if a gap exist regarding available training and training needs on Groundwater Resource Management and Groundwater Governance. If a gap exists then it proofs that the development of a Training Manual on Groundwater Resource Management and Groundwater Governance for Municipalities in South Africa is required, as well as the accessibility to such a training course is of utmost importance.

Abstract

 Predicting and quantifying the hydrogeological interference of big underground works is a complex effort. This is due to the considerable uncertainty in estimating the key geomechanical and hydrogeological parameters affecting the area of potential interference of the projects. Moreover, the pattern of involved groundwater flow systems is hardly identified, either in natural or disturbed conditions. Base tunnels through mountain ridges are particularly complex in their interactions with groundwater. Several approaches and tools have been published to predict the magnitude and distribution of water inflows inside tunnels and their impact on many receptors (springs, rivers, lakes, wells, groundwater-dependent ecosystems). The research, co-funded by Italferr Spa (Italian railway national company for tunnel design), deals with calibrating and validating these methods based on huge datasets. Main engineering companies provided data from completed base tunnel projects. In particular, in this study, the Drawdown Hazard Index (DHI) method has been calibrated with a dataset of a 15 km long sector of the Gotthard base tunnel drilled through a crystalline geological setting. The calibration involved only the Potential Inflow (PI) parameter to verify the matching between the probability of inflow and the actual output of the excavation, according to the available data in the preliminary stage of the project. An alternative tool based on a machine-learning approach was then applied to the same dataset, and a comparison was presented.

Abstract

This study investigates and elaborates the development and testing of a multilevel sampling device. The primary purpose of this device is to achieve multilevel sampling in a well simultaneously, producing samples that are representative of the in situ groundwater. The device has been designed to have four different depths from which extraction of groundwater samples can be performed. Testing of the device involves a two-part process. A laboratory based testing and field based testing. The laboratory testing was done in a simulated well where three water tests were performed; normal tap water, salt water and hot boiling water. The field based testing was done on existing boreholes in the Rietvlei Wetland Reserve in the Western Cape. In the two processes involved, hydrochemical parameters were used to test for the efficiency of the device in terms of its working performance and to furthermore analyse the water chemistry which enables us to determine the water quality.

Abstract

The City of Cape Town (CCT) initiated its “New Water Programme” in 2017 (during the major 2015-2018 “Day Zero” drought) to diversify its bulk water supply, thereby improving longterm water security and resilience against future droughts. This includes bulk groundwater abstraction from the major fractured Peninsula and Nardouw Aquifers of the Table Mountain Group (TMG) in the mountain catchments east of the CCT. The TMG aquifers are essential in sustaining groundwater-dependent ecosystems associated with the Cape Floral Kingdom – a global biodiversity (but also extinction) hotspot with exceptional endemic diversity. A strong geoethical, “no-regrets” approach is therefore required to develop TMG wellfield schemes for the CCT (and other towns/cities in the Western/Eastern Cape) to reduce the risk of any negative ecological and environmental impacts while still enhancing the drought resilience of the city, providing water for future urban growth, and meeting Sustainable Development Goals 6 and 11.

To this extent, the CCT has developed an extensive regional (and local, in terms of Steenbras Wellfield) environmental monitoring network, incorporating a range of in-situ and remote sensing-based measurements across the Earth’s “Critical Zone” – this includes current groundwater, surface water, ecological, soil and meteorological monitoring stations, and future seismo-geodetic monitoring. An ongoing ambition is to include this CCT TMG monitoring network into the “Greater Cape Town Landscape”, which is currently in development as one of six national South African landscapes under the “Expanded Freshwater and Terrestrial Environmental Observation Network” (EFTEON) platform being hosted by the South African Environmental Observation Network.

Abstract

There is an urgent need to support the sustainable development of groundwater resources, which are under increasing pressure from competing uses of subsurface geo-resources, compounded by land use and climate change impacts. Management of groundwater resources is crucial for enabling the green transition and attaining the Sustainable Development Goals. The United Nations Framework Classification for Resources (UNFC) is a project-based classification system for defining the environmental-socio-economic viability and technical feasibility of projects to develop resources and recently extended for groundwater. UNFC provides a consistent framework to describe the level of confidence in groundwater resources by the project and is designed to meet the needs of applications pertaining to (i) Policy formulation based on geo-resource studies, (ii) Geo-resource management functions, (iii) Business processes; and (iv) Financial capital allocation. To extend use in groundwater resources management, supplemental specifications have been developed for the UNFC that provide technical guidance to the community of groundwater professionals to enhance sustainable resource management based on improved decision-making. This includes addressing barriers to sustainably exploiting groundwater resources, avoiding lack of access to water and also related to ‘common pool resources’ in which multiple allocations are competing with domestic water supply (e.g. geo-energy, minerals, agriculture and ecosystems, and transboundary allocation of natural resources). UNFC for groundwater resources is designed to enhance governance to protect the environment and traditional users while ensuring socio-economic benefits to society. Consequently, it is a valid and promising tool for assessing both the sustainability and feasibility of groundwater management at local, national and international levels.

Abstract

POSTER Shale gas, a form of natural gas, has only recently become an economic source of energy. In the last 20 years techniques such as horizontal drilling coupled with hydraulic fracturing, have made possible the extraction of these unconventional hydrocarbon reservoirs. America has used hydraulic fracturing to produce numerous shale gas deposits in the country. This production has satisfied America's energy needs, and essentially made them a net exporter of petroleum. In light of this success South Africa is interested in developing potential economically profitable reserves of shale gas in the Karoo. However media, as well as recent studies, have identified issues with the hydraulic fracturing. These studies have linked hydraulic fracturing to contamination of groundwater resources in active production regions in America. There are fears among experts that the same could happen in the Karoo. This would be devastating to the local ecosystem and human population, as groundwater is the main water resource in the region. However it may still be necessary to proceed with shale gas development for its economic benefits. To ensure that some of the risks of hydraulic fracturing is mitigated, this paper proposes an early warning monitoring system. This system will essentially protect the local groundwater resources by early detection of any indicators that identify hydraulic fracturing contamination. The early warning system will operate by continues monitoring of groundwater parameters, in real time, and compare this regional baselines, and there by identify any changes in the groundwater properties. If a change is linked to a contamination event, the system will warn authorities, thus allowing for rapid response and ultimately ensure conservation of groundwater resources in the region.

Abstract

The National Water Act, 1998 (Act 36 of 1998) requires water resources management be driven at a local level, in keeping with the local nature of water systems. Polokwane Local Municipality (PLM) as the Water Services Authority, is responsible for supplying adequate domestic water to 16 Rural Water Schemes and Groundwater Schemes. The Department of Water and Sanitation (DWS) Masterplan highlighted that the DWS, Catchment Management Agencies and Water Boards need to develop wellfields and management plans to ensure sustainable use of aquifers. The Aquifer Management Plan (AMP) for the Polokwane Urban Complex (PUC) within the Olifants-Sand Water Supply Scheme was developed with an overall aim of achieving integrated and adaptive management of the aquifer. This is to assist in confronting climate change challenges and water security at local level. The AMP forms part of the Integrated Water Resource Management and should be seen in the context of other related guidelines and activities, such as catchment management, water conservation and demand management, waste water management, and water resource planning and management. Extensive consultation with PLM and various other stakeholders as part of the Aquifer Management Plan was meant to foster a groundwater management relationship between the Department, PLM and other stakeholders to create an enabling environment for implementation of the Aquifer Management Plan. A set of goals, targets and actions were developed for the Aquifer Management Plan These goals and targets serve as steps that allow for ‘zooming’ into the more specific actions. During consultations with the PLM, relevant Professional Service Providers, the DWS Limpopo Provincial Office and numerous other stakeholders, 75 actions within the 10 goals were identified. Ultimately, an Aquifer Management Plan had to identify actions that can improve groundwater resource management within the Polokwane Urban Complex and develop a supportive cross-institutional relationship in which to pursue them.

Abstract

Open pit mines often experience problems related to groundwater inflows. To perform mineral extractionin safe conditions with high productivity, it is essential to have dry working conditions. For this reason, the groundwater table is often lowered below the elevation of the floors of the pits by using various dewatering schemes. Numerical groundwater models are powerful tools that can be used to simulate the behaviour of aquifers during dewatering operations. However, these models typically require a lot of geohydrological data which are often expensive and time-consuming to collect. When geohydrological input data are limited, artificial neural networks (ANNs) provide an alternative approach of predicting the behaviour of the groundwater system during dewatering. This study investigated the possibility of predicting the impacts of pit dewatering on the aquifer system in the vicinity of open pit mines where geohydrological inputs are limited, using ANNs. First, the performance of the ANNs in predicting hydraulic head responses was evaluated by using synthetic data sets generated by a numerical groundwater model developed for a fictional mine. The synthetic data sets were then used to both train and evaluate the performance of the ANNs. The ANN found to give the best predictions of the hydraulic heads had an architecture of 2-6-1 (input-hidden-output layers) and was based on the hyperbolic tangent transfer function. This network was selected to predict the hydraulic heads at a number of piezometers installed at two open pit mines in the Democratic Republic of the Congo. The only input to the ANN was the recorded hydraulics heads and the time of recording. A portion of the real data set was used to train the ANN, while the remaining portion was used to evaluate the performance of the ANN in predicting the hydraulic heads. The results of the performance analyses indicated that the ANN successfully predicted the general behaviour of the aquifer system under dewatering conditions, using only limited input data. The results of this investigation therefore illustrate the great potential of using ANNs to predict aquifer responses during dewatering operations in the absence of comprehensive geohydrological data sets. Since these networks recognise patterns in the training data sets without considering the underlying physical principles that govern the processes, the responses of complex systems that are dependent on numerous parameters may be predicted.

Abstract

The Anglo-American Municipal Capability & Partnership Program (MCPP) has partnered with the Council for Scientific and Industrial Research (CSIR) to implement programs focused on Strategic Water Management and Strategic Planning within the Gamagara and Tsantsabane Local municipalities within the Northern Cape Region. The CSIR appointed GEOSS South Africa (Pty) Ltd to assist with Municipal Groundwater Capacity Development and Support for these two municipalities. This work explores multi-level groundwater governance systems between the local municipality, government, the mining industry, and the private groundwater sector. The scope of the work focused on developing a comprehensive and practical groundwater management plan detailing the standard operating procedures for each municipality. These operating procedures have been drawn up using principles of best practice guidelines for groundwater monitoring and management but have taken site-specific details of the groundwater supply to the respective Municipalities into account. Workshops were conducted where Municipal staff were trained in basic principles pertaining to groundwater and practical skills in monitoring and managing their supply. This has proved very successful in informing Municipalities about their local groundwater system and aquifer. The capacity-building development aspect will ensure that Municipalities have the resources and the knowledge to manage their groundwater resource effectively. GEOSS has undergone several training workshops and offers weekly technical support to the two Municipalities. As the confidence of the municipal staff to manage their resource grows, their independence from the mining companies should lessen.

Abstract

The increasing water demand for the Northern Cape Province initiated the feasibility study to augment and/or upgrade the Vaal Gamagara Water Supply (VGWS) scheme. The study completed in 2011, recommended the upgrade of the total VGWS scheme to supply the water demand of users for the planning horizon to 2030. However, short term water demand and to augment the water from the Vaal River could also be sourced from groundwater and/or mine dewatering. This resulted in the detailed assessment of the exploitation potential of three groundwater development target areas namely SD1, SD2 and SD4, largely underlain by karst aquifers. The intrusive work done on the Vaal Gamagara target areas is arguably one of the largest groundwater investigations of modern time for South Africa. This paper describes the development of the 3-dimensional groundwater flow models for the three target areas as part of this investigation. The software code chosen for the modelling work was the program SPRING which uses the finite-element approximation to solve the groundwater flow equation.

Each conceptual groundwater model developed was converted into a multi-layer numerical flow model for each groundwater development area and calibrated against observed heads, spring flows and long term water level monitoring data. Once the models demonstrated to reasonably reproduce past behaviour, they were used to forecast the outcome of future groundwater behaviour (i.e. abstraction from the well fields). Three large scale transient groundwater models have been built to analyse regional flow systems, to simulate water budget component changes, and to optimize groundwater development on a ‘sustainable’ basis. Different scenarios were developed for each target area to study the impact of different recharge scenarios and variable abstraction rates on the groundwater development of the area. Several simulations were carried out iteratively to identify the necessary number, optimal pumping rates and the temporal variability of the withdrawal period. While the proposed abstraction rates for all three groundwater regions (SD1, SD2 and SD4) of 13 million m3 / annum are considered as ‘sustainable’, by definition ‘sustainability’ has so determine the balance between economic, social and environmental interest. Perhaps a more applicable term for the long-term abstractions rates for the SD well fields is the maintainable aquifer yield which simply refers to a yield (volume/ time) that can be maintained by reduced discharge or enhanced recharge, without continually mining the aquifer or depleting aquifer storage.

Abstract

The University of the Free State investigated the possible dewatering of boreholes situated on the farm properties in the vicinity of an underground coal mine. The investigation consisted of three phases.
Phase one was a hydrocensus on the farm properties.
Phase two consisted of borehole yield determination by conducting pumping tests on the boreholes (where possible) identified in the hydrocensus phase.
Phase three included a visit to the underground mine workings, where water samples were collected at different groundwater inflow locations (especially water flowing in at the ventilation shaft). The monthly groundwater monitoring data of the underground coal mine was also incorporated for interpretation purposes. It appears that the water levels of the boreholes outside the mining boundaries are not affected. The water levels of the monthly monitored boreholes stabilized or even started recovering over the last few years. It also seems as though the larger streams in the area drains the groundwater as most of the deeper water level areas coincides with the presence of the streams. Most of the boreholes have typical borehole yields that is to be expected from Karoo formations i.e. between 0.5 and 1.5 L/s. An interesting observation is that a number of the boreholes with deep water levels are situated along dolerite contact zones at the western side of the mine. This may also be a geological structure resulting from the impact of a meteorite? From the available data it appears that the boreholes along this structure have the same chemical character as the water flowing down the ventilation shaft, strengthening the belief that the water from the shaft originates from this structure (or structures).

To determine the origin of the water flowing down the ventilation shaft, a detailed study of the structure to the west of the shaft is recommended. The farmers in the area should carefully monitor their water use in the boreholes, as over-abstraction can result in total failure of some of the boreholes.

Abstract

We present findings from a current project in the Hout Catchment, Limpopo Province in South Africa, In grounding the discussion, we propose a citizen science framework that builds on ideas of the living lab, trust and research integrity. The idea of research integrity is not only about ethics but also about methods and we propose participatory methods that are inclusive, just and fair. We achieve trust and practices of research integrity, applying participatory action research methods which not only address the hydrological void in data by identifying water features in the catchment but also have intrinsic value, enhancing well being and brokering trust. The frame presents the idea of water literacy – where the material aspects of CS (dip-meters, rain gauges etc.) intersect with the more intangible goods that have to do with human well-being. In our application we redress the bias where the focus lies more on the natural science aspect rather than the humanities with its attention to human well-being and the recognition of difference and diversity. Considering CS within the frame of feminist philosophy, it is personally transformative with the element of ‘surprise’ that the end point is undetermined – and it focusses on diversity and difference across segments and within segments in the catchment. Participatory parity has intrinsic value (equity and a more just social context) but also extrinsic value (better data and plotting of map features for remote rural areas otherwise difficult to access). CS is a powerful emancipatory tool that is able to generate virtuous cycles of inclusion and equality. We propose a CS frame that captures the ideas of trust, the living lab, SDGs and the emancipatory notion of citizen science, narrowing the divide between the natural and social sciences and acknowledging research integrity and the opportunity for what we call ‘authentic’ learning.

Also Refer Article published in the BWJVol131 https://bwa.co.za/the-borehole-water-journal/2021/12/28/south-african-groundwater-project-shows-the-power-of-citizen-science

Abstract

Sand mining in southern Africa is on the rise, fuelled largely by rapid urbanisation. This creates a range of societal and biophysical challenges and supports livelihoods in regions with high unemployment. Relevant scientific studies are scarce. This study explores the impacts of sand mining from ephemeral rivers on Botswana, South Africa and Mozambique communities through field visits, interviews, modelling, remote sensing and legislative analysis. What was expected to be a hydrogeology project focussing on water resources identified a broader range of issues that should be considered. Initial results uncovered a range of negative biophysical impacts, including alteration of hydrological regimes, which in turn affect groundwater recharge and exacerbate drought and flood risks, destruction of riparian vegetation, increased erosion, damage to infrastructure (including bridges and roads), reduced water quality, and the spread of invasive plant species. Equally important are the range of social impacts, such as drowning people and livestock, loss of agricultural land, increased traffic, dust, noise and crime. Complex governance arrangements influence these social and environmental challenges. The findings highlight the need to adopt an inter- and trans-disciplinary approach that considers linkages between human and natural systems. This approach is essential for finding sustainable solutions for the provision of construction materials that limit detrimental impacts on water resources, ecosystems and livelihoods. 

Abstract

Water budget assessment and related recharge in karstified and fractured mountainous aquifers suffer a large uncertainty due to variable infiltration rates related to karst features. The KARMA project (karma-project.org), funded by the European Commission, has addressed this knowledge gap. The increase in human withdrawals and the effect of climate change can modify the recharge rate and, consequently, the spring discharge. The regional aquifer of Gran Sasso mountain, Central Italy, has been investigated by monitoring spring discharge isotope composition and calculating the inflow using a GIS approach on 100x100 m cells, considering local conditions, including karst features. The results for the 2000-2022 period highlight the preferential recharge area of the endorheic basin of Campo Imperatore (up to 75% of precipitation) and a mean infiltration of about 50% of rainfall. Different methods applied for recharge evaluation (Turc, Thornthwaite and APLIS) agree with a recharge rate close to 600 mm/year. This amount roughly corresponds to the spring discharge, evidencing: i) a “memory effect” in spring discharge, which is higher than previewed during dry years; ii) a variation in discharge due to rainy and drought year distribution, frequently recorded at springs with delay (1-2 years); iii) no significant trends of spring depletion since last 20 years; iv) the risk of lowering of snow contribution to recharge due to the temperature rise. The results provide updated information to the drinking water companies and the National Park Authority for sustainable management of the available groundwater resources.

Abstract

The drinking water health issues have been considered due to improved living standards in recent years. Finding and developing high-quality groundwater with high-level minerals has become key to improving human health. The hydrochemical test data of 66 springs in Zhaojue County were analyzed using various methods, and the spatial distributions of H2 SiO3 -rich groundwater, hydrogeochemical characteristics, formation conditions and genesis were revealed. The main results including: 1) the groundwater with H2 SiO3 (≥25mg / L) was identified as the low salinity and alkaline water, which distributed in the six areas with the basement rocks of basalt,with a distribution area of about 79 square kilometers. The H2 SiO3 concentration was generally 25.74~46.04 mg/L; the low mineralization characterized the H2 SiO3 -rich groundwater of study area while the main hydrochemical types of groundwater are HCO3 - Ca·Mg, HCO3 -Ca, and HCO3 -Na; the Pearson correlation coefficient between the content of H2 SiO3 in groundwater and the content of pH is relatively high, indicating that the level of H2 SiO3 in groundwater in the study area is significantly affected by the pH value of the solution; the H2 SiO3 -rich groundwater was influenced by the water-rock interactions, the distribution range and solubility of silicate minerals ,the development of surrounding rock fissures, and water conservation and recharge conditions in the county, among which the water-rock interactions play a critical role. The results can provide a basis for the development of mineral water industry and the construction of urban and rural high-quality water sources in Zhaojue County.

Abstract

Most of the Northern Cape has been hit with a drought for the past 4-7years. The western part of the Northern Cape have been dry for at least 7 years now with no rainfall or very little rainfall, while the more central part have been dry for the past 4 years with very little rainfall. It is only the past 2 years that this has been seen as a problem, but for the past 7years the Department with local municipalities have tried their utmost to manage the problem of water scarcity.

During the past 7years the DWS has learned many lessons on how to manage the groundwater in these areas to ensure sustainable future use but must also look at new initiatives to deal with this problem as drought is going to be the new norm in the western parts of South Africa.

Abstract

The current Grahamstown/Makhanda drought has once again highlighted the vulnerability of the local surface water resources. The two local dams supplying the western part of town (and the university) are fed by a typical Eastern Cape river which requires a very large amount of rainfall to generate runoff into the dam. Rainfall records since 1860 indicate that statistically, the current drought is not the worst drought the town has endured and there have been many similar droughts in the past, most recently in the mid-1990s, and early 1980s. The severe drought in the 1980s led to the municipality commissioning a groundwater feasibility study carried out by Dr Andrew Stone, employed by Rhodes University at the time. The study included the drilling and testing of 13 boreholes, as well as a report on incorporating groundwater into the town's water infrastructure. All but two of these boreholes are destroyed, and they, along with the report were forgotten about. Around 4 years ago, we discovered the report at the university and began building on the work undertaken by Andrew Stone by monitoring 31 of the town's boreholes and carrying out a detailed analysis of the towns local groundwater fed spring, which many of the town's residents rely on. The current drought reignited the interest in groundwater, particularly with the arrival of Gift of the Givers who drilled a further 15 boreholes in town. The renewed focus on groundwater development came with its own complexities since the western part of town that the university resides in and the historically white area, is the only part of town to yield good quality groundwater. The local synclinal fold structure has resulted in a bowl type landscape in which much of the town is situated. Resistant Witteberg quartzitic sandstone rocks are observed as high-lying ridges which border the south-western margin of the town. The less resistant Dwyka tillite and Witteberg shales are generally found in the low-lying areas. This paper discusses the current water crisis, and how groundwater could be used on an on-going basis to relieve the water deficit in drier times caused by the vulnerable local dams.

Abstract

The Lake Sibaya groundwater-dependent catchment in uMhlabuyalingana (KwaZulu-Natal) has been the focus of hydrological research since the 1970s. The continuous decline in lake water levels and groundwater stores has prompted recent efforts. To increase confidence in the relative attribution of known causes of declines, an existing MODFLOW groundwater model was updated based on reviewed and extended hydrological input datasets and more accurate land-use and land cover (LULC) change data. A novel approach was used in this study, which involved running the ACRU surface-water model in distributed mode to provide dynamic recharge outputs for the groundwater model. This approach considers LULC changes, improved spatial and temporal distribution of climatic data, and land-surface hydrological processes. The refined groundwater model provided satisfactory simulations of the water system in the Lake Sibaya catchment. This study reports on the advances and limitations discovered in this approach, which was used to reassess past to current status quo model simulations for the region. The model was then used, as part of a multidisciplinary project, to assess the response of the lake water system under various LULC preferences based on inputs from local communities under two future climate scenarios (warmer wetter and warmer drier) in the current ongoing WRC project. The ultimate goal is to advise water resources management in the catchment.

Abstract

Groundwater is not often regarded as ecosystems and especially fractured aquifer systems are seen as organism free. Conventional tests show very little to no presence of micro-organisms in groundwater. However, these micro-organisms are ubiquitous and can be detected by using sophisticated methods. In this specific case study where petroleum hydrocarbon  contamination exists in a fractured rock aquifer, the presence of micro-organisms has been for years inferred by means of monitoring for secondary lines of evidence that prove attenuation of the contaminants, not only by means of dilution, adsorption or diffusion into the matrix, but through metabolism. The sampling evidence is clear that the preferential sequence of metabolism is taking place whereby electron acceptors are reduced as predicted for such biodegradation. Specifically sulphate is consumed and mostly manganese is reduced, with some iron reduction also being observed. Monitoring has shown that  groundwater recharge bringing in  new  nutrients effected increased biodegradation. In order to definitively identify the contribution made by micro-organisms, DNA testing was performed. The results support the secondary lines of evidence. Outside of the contaminated zone very low population numbers of organisms were detected in the groundwater. Inside the contaminated zone elevated population numbers were observed indicating that active biodegradation is taking place. Furthermore, the edges of the plume, where contaminant levels are mostly below detection, contained a more diverse population of micro-organisms than the central area. Conditions on the edge of the plume probably represent an ideal nutrient environment for the organisms as opposed to the high concentration source, which might be toxic to some organisms. Better understanding of the bio-dynamics of this fractured aquifer presents a unique opportunity to better manage and enhance the remediation of the contaminants. Possible strategies include the addition of nutrients when necessary and the cultivation of the naturally occurring organisms to augment the population. The data shows that aquifers are ecosystems even in fractured environments.

Abstract

It's been said that you cannot manage what you cannot measure. This is especially true with groundwater management; where we have limited data allowing us to 'see' the underground source. All over the world, people are spending aquifers full of money (bucket loads) on monitoring programmes and hydro census's. They capture borehole locations, water levels, abstraction rates, rainfall measurements and water quality analysis, then typically store the product, the deliverable, their valuable data, in a massive amount of spreadsheets. They have measured, but struggle to manage effectively because the data has not been stored in a centralised, consolidated fashion. Join us for a journey through Dagbreek, an open cast pit at Sishen mine, one of the largest open cast iron ore pits in the world and certainly part of the biggest dewatering project in South Africa. See how Sishen utilised technology to eliminate manual, paper-based data collection and spreadsheets. See how they utilised a cloud-based information management system to centralise and consolidate their data before transforming the data into valuable visualised information. See how this is equipping Sishen's decision makers with easy to interpret and up-to-date information, empowering them to make more effective operational and management decisions about their dewatering and groundwater management strategy

Abstract

Water security is pivotal for economic growth, sustainable development and poverty reduction in SADC. Increasing aridity and dwindling surface water supplies are resulting in new opportunities for groundwater as a source for domestic, agricultural and industrial use. We carried out an assessment of groundwater governance in the SADC region to determine the effectiveness of provisions to regulate groundwater. Numerous sources of information were solicited, reviewed, and data was mined using framework analysis and qualitative context analysis approaches. This provided a systematic model for managing and mapping the data. There is a good understanding of aquifer systems at the regional level. Transboundary aquifers have been delineated and areas prone to groundwater drought have been identified. Information systems to manage groundwater data, however, are disparate throughout the region and institutions to manage groundwater are inadequate and are functioning within an environment of scarce financial and human resources. The hydrogeological capacity in public institutions such as government departments is a major concern and regulations to protect groundwater resources are often not in place. This includes instruments to control groundwater abstraction and potentially polluting activities. Where regulatory instruments are in place, often no enforcement or sanctions of unlawful activities are taking place. There is also limited coordination with other sectors such as energy and mining. Furthermore, the implementation of groundwater management action plans, where developed, is weak. Overall, groundwater management in the SADC region was found to be poor. Whilst the groundwater governance challenges are great, there are opportunities to support diagnostic analysis of transboundary aquifer systems, competency development, establishing regional groundwater monitoring networks, strengthening institutional frameworks, and development of groundwater resources, e.g. to clear the backlog in access to improved water supply.

Abstract

The Karoo Supergroup has a hydrogeological regime which is largely controlled by Jurassic dolerite dyke and sill complexes. The study area is located in the north-eastern interior of the Eastern Cape Province,  close  to  the  Lesotho  border.  The  sedimentary  rocks  of  the  upper  Karoo  constitute fractured and intergranular aquifers, due to relatively hydro-conductive lithologies. The main groundwater production targets  within  the  upper-Karoo  are  related  to  dolerite  intrusions  that have  a  number  of  characteristics that influence groundwater storage and dynamics. Magnetic, electromagnetic and electrical resistivity geophysical techniques are used to determine the different physical  characteristics  of  the  dolerite  intrusions,  such  as  size,  orientation  and  the  level  of weathering. Trends in the data collected from a large-scale development programme can provide evidence that intrusion characteristics also play a role in determining the hydrogeological characteristics of the area. Interpreted geophysical borehole drilling, aquifer  testing  and  water chemistry  data  can  be  used  to  indicate  hydrogeological  differences  between dolerite intrusion types. Observed trends could be used for more accurate future well-field target areas and development.

Abstract

The Karoo Supergroup has a hydrogeological regime which is largely controlled by Jurassic dolerite dyke and sill complexes. The study area is located in the north-eastern interior of the Eastern Cape Province,  close  to  the  Lesotho  border.  The  sedimentary  rocks  of  the  upper  Karoo  constitute fractured and intergranular aquifers, due to relatively hydro-conductive lithologies. The main groundwater production targets  within  the  upper-Karoo  are  related  to  dolerite  intrusions  that have  a  number  of  characteristics that influence groundwater storage and dynamics. Magnetic, electromagnetic and electrical resistivity geophysical techniques are used to determine the different physical  characteristics  of  the  dolerite  intrusions,  such  as  size,  orientation  and  the  level  of weathering. Trends in the data collected from a large-scale development programme can provide evidence that intrusion characteristics also play a role in determining the hydrogeological characteristics of the area. Interpreted geophysical borehole drilling, aquifer  testing  and  water chemistry  data  can  be  used  to  indicate  hydrogeological  differences  between dolerite intrusion types. Observed trends could be used for more accurate future well-field target areas and development.

Abstract

Collecting groundwater information close to the ocean often raises the question whether a tidal effect could be influencing the data. Sometimes this issue leads to speculation that is counterproductive and sometimes it is overlooked thereby causing judgement errors when interpreting data. This paper looks at the theoretical background of tidal influences in coastal aquifers to identify the screening factors to consider when deciding whether a contaminated site assessment needs to take tidal influences into account. The rising and falling of the tides cause a standing wave with varying frequency that is dampened by the neighbouring aquifer as the wave travels into it. Unconfined aquifers generally tend to be affected over a short distance, while the pressure wave can travel significant distances in a confined aquifer. There are indications that the rise and fall of the tides prevent discharge of the LNAPL, but it could cause lateral spreading due to the head changes in the aquifer. The tidal fluctuation also causes uncertainties in the LNAPL measurements. The case study presents data from a site where tidal variation directly influences the distribution of LNAPL in monitoring holes, while the variation in total fluid level is slight. In this specific case the tidal variation has to be accounted for, otherwise skewed measurement data will be collected.

Abstract

POSTER Aquifer stress arising from urbanization and agricultural activities, these two factors affect aquifer properties when prolonged. Increase in urbanization especially those situated on top unconfined or semi-confined aquifer results in pressure on natural resources, this includes water resources, and changes of land use for agricultural purposes with high economic benefits has an effect on groundwater quality to due to application of Nitrogen- fertilizers during crop rotation and this is largely experienced in developing countries. The effects ranges from groundwater quality to aquifer storage as prolonged aquifer withdrawals due to irrigation, construction, manufacturing affects groundwater storage. Assessment of urbanization and agricultural effects on groundwater requires a complex analysis as integration approaches needs to be discovered for a better analysis of the two more specially when assessing groundwater pollution. The study was conducted to assess the impacts of urbanization and agricultural activities on aquifer storage and groundwater quality: by (a) determining the relationship between the occurrence of contamination due to urbanization by assessing contaminants present in the study area (b) develop groundwater protection, and if any offer recommendation for groundwater management. Multiple-well tests were conducted observing the behavior of drawdown and recovery for assessing groundwater storage. Two aquifer properties were observed to yield information about any changes in aquifer storage (transmissivity and storage coefficient) and groundwater quality lab test focusing on TDS, nitrate and pH were conducted. Historical results reflect that before industrial and urban revolution the groundwater contained small amounts of TDS compared with the present results. Increase in nitrate and pH concentrations observed in location closer to agricultural areas. Prolonged aquifer withdrawals increases expansion of cone of depression and therefore increases aquifer vulnerability and the risk of aquifer being polluted, and this increases storage coefficient. This study can be used to formulate protection zones for water resources and practice towards groundwater management.

Abstract

This article present field evidence on the effect of artefacts other than the horizontal groundwater flux on the single-borehole tracer dilution test. The artefacts on the tracer dilution were observed during two single-borehole tracer dilution tests conducted in an alluvial channel aquifer in the main Karoo Basin of Southern Africa. Field evidence shows that early time of the tracer dilution plot can be affected by artefacts other than the horizontal groundwater flux. These artefacts have great potential to increase the early time gradient of tracer dilution curve leading to overestimation of the horizontal groundwater flux. A qualitative approach that can be used to isolate and remove portion of the dilution plot that has resulted from artefacts other than the groundwater flow prior to calculating the horizontal groundwater flux is proposed.

Abstract

While traditional well and spring sampling are limited to the integration of point data and the interpolation of the data across large scales. Electrical measurements of aquifers can be extended across a range of scales and integrated to provide an improved quantitative understanding of groundwater systems. At a site in Oklahoma, USA, a karst-managed aquifer recharge research site is being used to test electrical techniques for aquifer characterization on the kilometer scale and monitoring the aquifer on the meter scale. At the kilometer scale, the data illustrate fault locations, siphons in flow paths, and previously uncharacterized conduits. At the metre scale, the monitoring data illustrate porosity structure, flow paths, and potential biological changes in the subsurface. The results indicate that electrical approaches can significantly change aquifer conceptual models and provide targeted sampling locations in karstic bedrock aquifers.

Abstract

Electromagnetic (EM) techniques were used to map groundwater salinity and clay layers in the Netherlands. The EM method used the so-called time domain system, is towed behind an ATV and is therefore called towed TEM. The results revealed a detailed 3-dimensional insight into the subsurface’s sequence of clay and sandy layers. Also, shallow saline groundwater, far from the coast, has been detected related to a subsurface salt dome. The rapid, non-destructive data acquisition makes the tTEM a unique tool. Electromagnetic (EM) techniques detect electrical conductivity contrasts in the subsurface with depth. EM data can often be interpolated into a 3D model of electrical conductivity. Expert knowledge of the regional geohydrologist, together with existing (borehole) data, is paramount for the interpretation. The towed Transient Electro-Magnetic system (tTEM) is developed to acquire data up to 60-80m depth by driving a transmitter and a receiver behind an ATV. With a speed of 10-15 km/h, measurements are collected every 5m. On fields, the distance between lines is typically 20m, resulting in a dense network of data that is inverted into 1D resistivity models, showing the variation of conductivity with depth. Interpolating 1D resistivity models into a 3D model allows for further interpretation in terms of geology, lithology, and groundwater quality. The tTEM technique bridges the gap between point measurements and more expensive and lower-resolution airborne EM data collection. The technique is sensitive to disturbance by man-made conducting infrastructure.

Abstract

The Western Cape region in South Africa is currently experiencing its worst drought since 1904. As a result, the City of Cape Town (CoCT) implemented emergency response projects to augment water supply through desalination, re-use of treated effluent and groundwater abstraction from several groundwater systems. Amongst the targeted aquifers, the Cape Flats Aquifer (CFA) presents unique challenges and opportunities for abstraction and managed aquifer recharge (MAR). The CFA is a coastal unconfined primary aquifer within the urban and peri-urban environment. As such it is well situated to take advantage of enhanced recharge from treated effluent and urban stormwater. MAR is currently being tested and implemented with a three-fold purpose: (1) create hydraulic barriers against seawater intrusion and other contamination sources, (2) protect groundwater dependent wetlands and RAMSAR sites and (3) increase storage to enhance resilience to drought. Due to local hydrogeological characteristics and a high demand for open land, in the short term, high quality treated effluent will be injected directly through boreholes. Numerical modelling has supported siting and quantifying necessary injection rates. Current estimates indicate that available treated effluent will increase sustainable yields from the aquifer two-fold, as well as providing an additional storage volume equivalent to 2 to 3 years abstraction. In the future this is expected to be complemented with the re-design of urban water drainage to further enhance the recharge of stormwater. Given the time-constraints of an emergency response project, long-term testing and study of the system to support design and implementation have been significantly reduced and had to be replaced by a 'learn by doing' approach. We aim to present the on-going challenges of implementing MAR to complement an emergency response, as well as an overview of the scheme, new data and insights gained through the process.

Abstract

The Limpopo River Basin (LRB) is highly vulnerable to recurrent floods and droughts, significantly threatening its water and food security. Sustainable groundwater management is necessary to improve resilience. Scientists and stakeholders must collaborate to evaluate management scenarios that can identify sustainable practices. A transboundary basin-scale management instrument was developed using a multisector collaborative modelling approach to identify the role of groundwater in building resilience. The approach used an integrated hydro(geo)logical model, co-created through stakeholder workshops. The model assessed management scenarios identified during a series of local, national and transboundary stakeholders workshops, focusing on improving groundwater storage during wet periods for use during dry periods in a context of population growth and increasing groundwater reliance across the basin. Management scenarios: (1) increasing groundwater abstraction; (2) deforestation; (3) afforestation; and (4) managed aquifer recharge (MAR) using injection wells capturing excess water from major dams, rainwater harvesting through local ponds/ wells, and small water reservoirs. Analysis of scenario outputs suggested that local groundwater storage techniques, especially water harvesting and storage through small-scale water well recharge, were the most effective strategy in reducing the risk and impact of floods and drought at the basin scale. Upscaling this strategy can significantly increase groundwater levels across the basin, supporting increasing groundwater reliance. The study showed that the multisector collaborative modelling approach effectively co-creates management strategies and identifies appropriate and inclusive strategies to improve resilience in data-limiting conditions. The proposed modelling outcomes are useful in making informed decisions regarding water management and transboundary cooperation in the LRB.

Abstract

Annually, UNICEF spends approximately US$1B in water, sanitation and hygiene programming (WASH), approximately half of which is spent in humanitarian contexts. In emergencies, UNICEF supports the delivery of water, sanitation and hygiene programming under very difficult programming contexts – interruptions to access, power supply and a lack of reliable data. Many of these humanitarian situations are in contexts where water scarcity is prevalent and where the demand and competition for water are increasing, contributing to tension between and within communities. While water scarcity is not new to many of these water-scarce areas, climate change is compounding the already grave challenges related to ensuring access to safe and sustainable water services, changing recharge patterns, destroying water systems and increasing water demand. Incorrectly designed and implemented water systems can contribute to conflict, tension, and migration. Ensuring a comprehensive approach to water security and resilient WASH services can reduce the potential for conflict and use water as a channel for peace and community resilience. This presents an enormous opportunity for both humanitarian and development stakeholders to design water service programmes to ensure community resilience through a four-part approach: 1. Groundwater resource assessments 2. Sustainable yield assessments (taking into consideration future conditions) 3. Climate risk assessments 4. Groundwater monitoring/early warning systems UNICEF promotes this approach across its WASH programming and the sector through technical briefs, support and capacity building.

Abstract

Due to its location in a dry and arid part of South Africa, Beaufort West relies on groundwater as a crucial source of freshwater for the town. Although there have been fluctuations over the years, groundwater levels in the area have progressively dropped due to unsustainable abstraction from wellfields. The general flow of groundwater in the town, which is from the North where the Nuweveld mountains are situated to the town dyke in the South, is dictated by major dykes in the area. In 2011, flooding resulted in extreme groundwater recharge with groundwater levels North East of Beaufort West recovering tremendously, from 45m below ground level to approximately 10m below ground level; and the general groundwater levels of Beaufort West becoming relatively higher. The purpose of this study was to gain a better understanding of episodic groundwater recharge around extreme climatic conditions of high precipitation events in a semi-arid region. This was done by analyzing data for surface water levels, groundwater levels, rainfall and evaporation from Beaufort West; using Sentinel 1 in InSAR (interferometric synthetic aperture radar) to utilize remote sensing as a tool to examine land surface fluctuations with regards to the changes in the groundwater levels; as well as studying the hydrogeological setting and lineaments in the area

Abstract

A standard methodology for establishing a groundwater baseline for unconventional gas projects in South Africa did not exist at the time the current study was undertaken. The study was therefore aimed at filling this gap, specifically focusing on hydraulic fracturing and underground coal gasification (UCG) operations.

An extensive literature review was conducted to establish the baseline methodology. The latest literature on hydraulic fracturing and UCG was reviewed to determine how these activities may potentially impact on the groundwater environment. The literature review further examined the role that geological structures, such as dolerite intrusives, may be play in the migration of contaminants associated with unconventional gas projects. The literature review then focused on questions such as what size the study area should be, what geological and hydrogeological investigations need to be conducted before embarking on the sampling events, which chemical parameters need to be included in the groundwater analyses, whether the drilling of dedicated boreholes are required to collect representative groundwater samples, and how to collect representative samples for these different chemical parameters.

In this paper, the proposed methodology is presented in the form of a flow diagram to be used to guide future groundwater baseline projects in South Africa.

Abstract

Southern Africa hosts over 93% of the continent's energy, which has been conserved in coal seams deposited  in  various  Karoo  age  sedimentary  basins.  Carbon  dioxide  geological  storage  (CGS)  is proving  to  be  an  emerging  greenhouse  gas  technology  (GHGT),  that  global  governments  have elected to mitigate the projected coal use in Southern Africa. One of the major challenges of successfully introducing CGS to the public and world leaders is the significant risk the technology poses to groundwater resources. Lack of public confidence is further coupled by the poor knowledge of the subsurface behaviour of injected media, such as CO2, in South African potential lithological reservoirs. The study has utilised data from a current MSc research, in which the Springbok Flats Coal Basin (SFCB) has been used as the problem set-up. The aim of this study is to determine which FELOW™ mesh  geometry would  be  the most  suitable  to  simulate  a  CO2   ingress plume within  a regional aquifer. The study has utilised principals of dense vegetation zones (DVZ) and density- variable fluid flow (DVFF) when simulating the ingression. The specific objective is to utilise the simulation  results  to  guide  amendments  of  water  legislature,  towards  accommodating  CO2 geological  injection  and  storage operations.  Results indicate  that  a  combination  of  high-quality triangular meshes of various geometries, created with the FEFLOW compatible mesh generator, TRIANGLE, produced the best 3D model and simulation results. The basic matrice unit for the DTZ was defined as a quad mesh composed of two right-angled triangles and one equi-angualar triangle (five nodes), while the unit for modelling springs was defined as a quad mesh with four-equi-angular triangles, both used in various scales. The results were used to amend the Stream Flow Reduction Activities (SFRA) policy and thus the aquifer licensing procedure of the National Water Act, in order to accommodate the allocation of aquifer use licenses for CO2  geological storage operations. The amendments illustrate the significance of finite element simulation codes for integrated water resources management policy.