Conference Abstracts

All Abstracts were presented at the Groundwater Conferences

Displaying 1 - 50 of 575 results
Title Presenter Name Presenter Surname Area Conference year Sort descending Keywords

Abstract

This paper was presented at the GWD Central Branch Symposium, Potchefstroom in 2012

Numerical modelling of hydrogeological systems has progressed significantly with the evolution of technology and the development of a greater understanding of hydrogeology and the underlying mathematical principles. Hydrogeological modelling software can now include complex geological layers and models as well as allow the pinching out of geological features and layers. The effects of a complex geology on the hydraulic parameters determined by numerical modelling is investigated by means of the DHI-WASY FEFLOW and Aranz Geo Leapfrog modelling software packages.

The Campus Test Site (CTS) at the University of the Free State in Bloemfontein, South Africa was selected as the locale to be modelled. Being one of the most studied aquifers in the world, the CTS has had multiple research projects performed on it and as a result ample information is available to construct a hydrogeological model with a high complexity. The CTS consists primarily of stacked fluvial channel deposits of the Lower Beaufort Group, with the main waterstrike located on a bedding-plane fracture in the main sandstone aquifer.

The investigation was performed by creating three distinct hydrogeological models of the CTS, the first consists entirely of simplified geological strata modelled in FEFLOW by means of average layer thicknessand does not include the pinching out of any geological layers. The second model was created to be acopy of the first, however the bedding-plane fracture can pinch out where it is known to not occur. The third and final model consisted of a complex geological model created in Leapfrog Geo which was subsequently exported to FEFLOW for hydrogeological modelling.

Abstract

A new mining site situated near Kolwezi in the Democratic Republic of the Congo plans to develop a pit in phases over a period of six years. The mine requires dewatering volume estimates of the pit as well as a constant water supply to the plant. Hydrogeologic data available at the site during the scoping phase was limited to a few water level measurements and blowout yields from only five hydrological boreholes. Hydraulic properties from reports at neighbouring sites were extrapolated to the geological units at the site. The depth to water level at the site is about 20 m, with a planned final pit depth of approximately 180 m below surface.

Based on the limited data available an analytical approach to estimate the inflow into the mine was adopted. Analytical calculations proposed by Marinelli and Niccoli (2000) were used to estimate the inflow into the Pumpi mine pits. The analytical calculations consider recharge, depth of mining vertical and horizontal hydraulic conductivities. Drawdown evolution of pit dewatering are obtained by using different mining depths at different mine stages. The output results from the analytical calculations are the maximum extent of influence of the pit as well as the volume of water inflow into the pit. Limitations of the analytical equations are that they, amongst others, cannot consider complex boundaries.

Drilling and pump testing to obtain local hydraulic properties and boundary conditions are planned during the first quarter of 2013. The numerical model will be set up after the drilling and pumping tests, using the new data for calibration. The numerical model will contain as much of the physical layer definitions and potential internal boundaries as possible with model boundaries incorporated along  far  field  fault  zones  and  hydraulic  boundaries.  The  numerical model  should  improve the reliability of estimates of pit inflow and water supply to the plant.

The results between the analytical and numerical approaches can then be compared to improve future dewatering estimates with limited data. It is expected that the reliability of the analytical predictions will reduce after year 4, where the role of boundaries are expected to influence the drawdowns and related flow towards the pit.

Abstract

To date, South Africa has mined approximately 3.2 billion tons of coal from a number of different coal reserves located in various parts of the country. A large number of the mines have reached the end of their productive life, resulting in numerous mine closures. With closures, groundwater levels have rebounded, resulting in decant of mine water into the environment. This paper describes a case study of a closed underground coal mine, the rebound of water levels, the evolution of the groundwater quality and the impact it has had on the management of the potential decant.

On closure of the Ermelo Mines in 1992, initial water quality monitoring indicated that a water treatment plant would be required to treat the mine decant. However, as the groundwater levels in the mine rebounded, the water quality in the mine void evolved from sulphate type water to sodium type water. The evolution of the water quality can be attributed to sulphate reducing bacteria, vertical recharge from the hanging aquifer and stratification. Water level and quality monitoring have shown that the water in the old mine void will not decant to surface due to the depth of the mine void, hydrogeological conditions, a "hanging aquifer"  and the recharge mechanisms. As a result, no water treatment will be required and the mine will not impact on the surface water. The main applications from this paper are:

  •  Design  of  a  correct  monitoring  procedure  to  allow  for  monitoring  of  water  quality stratification in rebounding mines.
  •  Identifying the role of sulphate reducing bacteria in the evolution of groundwater quality in a methane rich coal mine void.
  •  The role of a hanging aquifer in recharging of a coal mine void and resultant stratification. 
  • Designing of a mine taking into consideration mine closure.

The main contribution of this paper is the use of hydrogeological information in design of a coal mine so as not to decant on closure.

Abstract

The Karoo Supergroup has a hydrogeological regime which is largely controlled by Jurassic dolerite dyke and sill complexes. The study area is located in the north-eastern interior of the Eastern Cape Province,  close  to  the  Lesotho  border.  The  sedimentary  rocks  of  the  upper  Karoo  constitute fractured and intergranular aquifers, due to relatively hydro-conductive lithologies. The main groundwater production targets  within  the  upper-Karoo  are  related  to  dolerite  intrusions  that have  a  number  of  characteristics that influence groundwater storage and dynamics. Magnetic, electromagnetic and electrical resistivity geophysical techniques are used to determine the different physical  characteristics  of  the  dolerite  intrusions,  such  as  size,  orientation  and  the  level  of weathering. Trends in the data collected from a large-scale development programme can provide evidence that intrusion characteristics also play a role in determining the hydrogeological characteristics of the area. Interpreted geophysical borehole drilling, aquifer  testing  and  water chemistry  data  can  be  used  to  indicate  hydrogeological  differences  between dolerite intrusion types. Observed trends could be used for more accurate future well-field target areas and development.

Abstract

In  South  Africa  salinisation  of  water  resources  by  dissolved  sulphates  resulting  from  acid  rock drainage (ARD) and metal leaching (ML) from surface coal mine spoils has a significant effect on water supply in the Gauteng Province. Predictions of mine water quality is required to select cost- effective rehabilitation and remediation measures to reduce future ARD and ML risks and to limit long-term  impacts.  A  load  balance  model  was  developed  in  Microsoft  Excel  to  simulated contaminant loads in a completely backfilled opencast mine in the Karoo Basin of South Africa after closure. The model calculated the balance between contaminant load into the pit water system from mainly pyrite oxidation processes in the spoils and load removed through decanting. Groundwater flow modelling data and simulated spoils seepage qualities for the mine site were used as input in the contaminant load calculations. The model predicted that the amount of contaminants added to the pit from spoils decrease considerably from the time of closure over a period of approximately 100 years. Thereafter the contaminant load decrease is gradual. This is due to a decrease in the volume of unsaturated spoils, as spoils at the bottom become permanently inundated as the pit fills up, thus limiting oxygen diffusion and oxidation. Cumulatively, the contaminant load gradually increases  in  the  backfilled  pit  until  the  onset  of  subsurface  and  surface  decant,  when  the contaminant load declines. This is due to removal of contaminants from the mine water system via decanting. Approximately 200 years after mine closure, 86% of the spoils are inundated. The model predicted that the quality of decanting water improves with time due to a decrease in load from spoils, removal of contaminants through decanting water and dilution effects of relatively clean groundwater inflows. Mass loads were used as input into the numerical groundwater model for the contaminant mass transport simulations to predict the migration of contaminant plumes with time. The geochemical model results assisted in developing conceptual water and waste management strategies for the opencast mine during operational and closure phase.

Abstract

The pollution of water resources has become a growing concern worldwide. Industrial, agricultural and domestic activities play a pivotal role in water resources pollution. The challenge faced by pollution   monitoring   networks   is   to   understand   the   spatial   and   temporal   distribution   of contaminants. In hydrology, tracers have become a critical research tool to investigate surface water and groundwater transport dynamics. Synthetic DNA (deoxyribonucleic acid) tracers are being used in hydrological research to determine source areas, where uniquely labelled DNA from each source area  is  identified.  The main  objectivof the  study  was to  determine  the mass  balance of  the synthetic DNA tracer in surface water streams. Furthermore, to gain knowledge on DNA adsorption and decay and determine whether DNA behaves as conservative tracer in the surface water streams. Understanding the adsorption and decay characteristics of synthetic DNA tracers may promote its robustness in hydrological research. In this study, field injection experiments using synthetic DNA were  carried  out,  the  DNA  tracer  was  injected  together  with  sodium  chloride  (salt)  and deuterium as conservative reference tracers. The purpose was to compute DNA mass balance calculations with reference to the two conservative tracers. In this study two different DNA markers were used, namely T22 and T23. Additionally, with each injection experiment a field batch experiment was carried out to determine DNA loss characteristics on the field. From our study, the DNA loss between the injection point and the first measurement was greater than 90%. Therefore, it was important to conduct additional laboratory batch experiments to explain DNA loss characteristics. However, the issue of the initial DNA loss remained unresolved. Laboratory batch experiments results allow us to conclude the following: the type of material used, filtering, ion concentration and water composition reduced DNA concentration. Moreover, initial DNA losses occurred and not DNA decay. From our experiments we concluded that DNA can be used for long-term tracer experiments, subsequently, limiting synthetic DNA mass balance determination of synthetic DNA as it is a reactive. Overall, we can conclude that DNA does not behave as a conservative tracer.

Abstract

After a period of heavy rainfall in 2006, pit water from a rehabilitated opencast coal mine in the Mpumalanga Province started decanting, causing impacts on the adjacent agricultural land and river system. Various actions have since been taken to manage the pit water, including construction of contour berms to prevent clean water entering the ramps, construction of levees and dam walls to increase the decant level, irrigation of mine water on the rehabilitated areas of the pits, disposal of pit water in nearby pans, recirculation of pit water by means of pumping between the various voids, controlled release of pit water to the river system, and construction of a pipeline to pump pit water to a nearby colliery where there is a demand for process water. For the purpose of mine closure, a water management plan was required for which an estimate of the water make of the colliery was needed. The water make was estimated by using measured quantities (rainfall data, pumping rates, dam water levels) and estimated quantities (evaporation from open water bodies), while making a number of simplifying assumptions. This approach revealed that the conventional method of estimating the water make as a percentage of rainfall recharged through the spoils, significantly underestimates the volumes of water that need to be dealt with at the colliery. Large volumes of groundwater appear to be entering the pits along preferential pathways connected to recharge zones at higher elevations, contributing to the water make of the colliery.

Abstract

The Department of Water Affairs (DWA), Chief Directorate: Resource Directed Measures has developed guidelines over the past decade  in ordeto  facilitatproper implementation of the Groundwater   Resourc Directed   Measures   (GRDM)   (also   known   as   determination   of   the groundwater component of the Reserve). An intrinsic component of the GRDM is delineation of Integrated Units of Analysis (IUAs) from which the allocatable groundwater and surface water components are calculated, which essentially drives the allocation of water use licenses. Delineation typically follows a three-tiered approach, namely primary, secondary and tertiary level. Primary delineation is based on quaternary boundaries (considered to be the basic building block of the IUA); secondary follows geological, hydrogeological and hydrological boundaries, groundwater abstraction zones and baseflow contribution; and tertiary is dependent on management criteria. How then, do we undertake this challenging task of delineating IUAs to a level where it can be better managed and monitored? Complexities arise when hydrogeological data are scarce, hydrological and hydrogeological systems are not in sync, aquifers extend across a quaternary, water management area, provincial and administrative boundaries, surface water and groundwater interactions are not well understood, and legislation on protection of water resources differs greatly from one country to the next. Having undertaken delineation of IUAs in the Waterval Catchment (Upper Vaal WMA), Olifants WMA and Mvoti to Umzimkhulu WMA with the available datasets, the key criteria for the respective  WMAs  have  ultimately  been  management  class,  significant  aquifers,  groundwater– surface water interaction and groundwater stressed areas, and secondary catchment boundaries, followed by other hydrogeological, geological and management considerations.

Abstract

Groundwater  is  a  reliable  freshwater  resource.  Its  location   underground  prevents  it  from evaporative  forces.  Thus  it  serves  as  storage  of  most  of  the  world’s  liquid  fresh  water.  Being enclosed in the ground it is not also easily contaminated. Since groundwater can be used wherever it exists without costly treatments, there is over-dependence on the resource. Though in the past it was mainly used by rural dwellers for domestic water supply, presently, due to effects of climate change on surface water resources, pressures of population growth leading to expansion of towns and cities, groundwater is also supplied for agriculture and industrial purposes. But, the resulting effect from these additional users is the vulnerability of groundwater resources to reduction and pollution. Its importance in sustaining livelihood and development has been highly credited and its management  is  looked  upon  as  a  prerogative.  To  enhance  groundwater  management  in  the Sandveld, a qualitative content analysis approach was used to evaluate six factors considered to be highly needed in groundwater management. This background was used to find out how institutional arrangement in South Africa facilitates or constraints groundwater management in the Sandveld, a highly groundwater dependent area in the West Coast of the Western Cape. The results showed that all  six  factors  are  present,  but  three  facilitate  groundwater  management  while  three  others constrain management. The community involvement which ranked first, is deficient. Thus, institutional weaknesses that need to be strengthened have been identified.

Abstract

After drilling technology improvements in South Africa in the early 1900s, several deep (>300 m) exploratory drilling programmes were conducted to explore for pressurised groundwater resources. The results were not significant, except for the Cretaceous Uitenhage Artesian Basin and recent investigations in folded Table Mountain Group Aquifer systems. Large sedimentary units in Southern Africa do have the structural geometry to drive regional artesian systems; however, diverse climate and aquifer hydraulic limitations counteract these conditions to such a level that sustainable basin- like  deep  flow mechanisms  are  probably  non-existing,  except where enhanced  by  deep mining activities.

On the contrary, several deep drilling projects in South Africa, Botswana and Namibia have undoubtedly  proven  the  existence  of  pressurised  groundwater  strikes  below  300 m  (northern Kalahari)  to  as  deep  as  3 000 m  (western  Karoo  Basin).  Given  the  regional  hydrogeological characteristics of these systems, the availability of sufficient recharge zones required to drive sustainable artesian flow or semiartesian conditions becomes a challenge. The existence of isolated pressurised compartments as a result of the lithostatic pressurisation in the deeper sections of many of the sedimentary successions may prove to be a more realistic explanation for these pressurised water strikes observed during deep drilling operations in Southern Africa.

Abstract

With increasing focus on wasted expenditure within local government and recent media reports on the money spent on poor quality service, it is becoming progressively important for those in a position of engaging consultants, either for groundwater supply or environmental work, to have confidence in the company or person they have employed. This paper focuses on how to assess consultants  before   they   walk  through   the  door  based   on   qualifications,   CVs,   professional registrations and previous work experience. It goes through the project lifestyle, explaining in a non- technical fashion the different processes involved in a groundwater supply or groundwater contamination assessment and provide simple indicators of good practice that should be evident in the   consultant's   work.   Topics   covered   include   assessing   proposals,   gathering   background information, health and safety, appointing sub-contractors, data quality, the use of appropriate published procedural guidelines, the use of relevant quality guidelines and what deliverables should be provided. 

Abstract

This study explores some of the principle issues associated with quantifying surface  water and groundwater interactions and the practical application of models in a data scarce region such as South Africa. The linkages between the various interdependent components of the water cycle are not well understood, especially in those regions that suffer problems of data scarcity, and there remain  urgent  requirements  for  regional  water  resource  assessments.  Hydrology  (both  surface water and groundwater hydrology) is a difficult science; it aims to represent highly variable and non- stationary processes which occur in catchment systems, many of which are unable to be measured at the scales of interest. The conceptual representations of these processes are translated into mathematical form in a model. Different process interpretations, together with different mathematical representations, result in the development of diverse model structures. These structural uncertainties are difficult to resolve due to the lack of relevant data. Further uncertainty is introduced  when  parameterising  a  model,  as  the  more  complex  the  model,  the  greater  the possibility that many different parameter sets within the model structure might give equally acceptable results when compared with observations. Incomplete and often flawed input data are then used to drive the models and generate quantitative information. Approximate implementations (model structures and parameter sets), driven by approximate input data, will necessarily produce approximate results. Most model developers aim to represent reality as far as possible, and as our understanding of hydrological processes has improved, models have tended to become more complex. Beven (2002) highlighted the need for a better philosophy toward modelling than just a more explicit representation of reality and argues that the true level of uncertainty in model predictions  is  not  widely  appreciated.  Model  testing  has  limited  power  as  it  is  difficult  to differentiate  between  the  uncertainties  within  different  model  structures,  different  sets  of alternative parameter values and in the input data used to run a model. A number of South African case studies are used to examine the types of data typically available and explore the extent to which a model is able to be validated considering the difficulty in differentiating between the various sources of uncertainty. While it is difficult to separate input data, parameter and structural uncertainty, the study found that it should be possible to at least partly identify the uncertainty by a careful examination of the evidence for specific processes compared with the conceptual structure of a specific model. While the lack of appropriate data means there will always be considerable uncertainty surrounding model validation, it can be argued that improved process understanding in an environment can be used to validate model outcomes to a degree, by assessing whether a model is getting the right results for the right reasons.

Abstract

POSTER Hydraulic fracturing, also known as hydrofracking or fracking, is being engaged in the Karoo region of South Africa in order to enhance energy supplies and improve the economic sector. It will also lead to independence in terms of reduced amount of imports for fuel due to an estimated 13.7 trillion cubic metres of technically recoverable shale-gas reserves in South Africa. 

Fracking is an extraction technique used with the purpose of having access to alternative natural methane gas, which is interbedded in shale deposits deep under the surface of the earth. In this process boreholes are drilled horizontally into shale formations to cover a larger area in the shale and  subsequently  attain  more  natural  gas.  After  these  horizontal  boreholes  are  drilled,  large volumes of water, mixed with chemicals and sand, are pumped into these boreholes under a very high pressure, forcing the natural gas out. This water mixture is referred to as the fracking fluid. Water is the main component in the fracking fluid and the water used for the fluid reaches volumes up to 30 million litres per borehole.

The aim of this study is to present a baseline study of the area and its water resources to ultimately facilitate in resolving the actual impact hydraulic fracturing will have in the area, using a simulation model which will predict the migration of the fracking fluid in the subsurface. In this model, the chemistry of  the fracking fluid  will  be  included  to determine  the impact  it might  have  on the groundwater quality in the area

Abstract

POSTER Water is an invaluable resource without which life would cease to exist. Supply in South Africa has become limited due to increases in demand brought upon by population growth, urbanisation and industrialisation. In Southern Africa, water systems are considerably degraded by mining, industry, urbanisation and agricultural activity and a large amount of the fresh surface water has already been utilised. The stresses on this resource will unlikely make the current usage sustainable in years to come. In order to provide for basic needs for the future, groundwater as a resource will have to play a major role. It is for this reason that groundwater integrity needs to be preserved. 

Hydrocarbon contamination is a huge threat to groundwater as it contains toxic substances that are insoluble in water. These toxins are carcinogenic and mutagenic, and have a major impact on human health and ecosystem stability. When spilled, hydrocarbons will move downward through the unsaturated zone under the influence of gravity and capillary forces, trapping small amounts in the pore spaces. Accumulation will result in added weight along the water table, forcing the entire surface to be displaced downward. Some of the components can dissolve in the groundwater and move as a plume of contaminated water by diffusion and advection within the saturated zone. The transport of contaminants from petroleum hydrocarbon spills needs to be described in terms of a multiphase flow system in the unsaturated zone, taking into account contaminant movement in each of the three phases: air, water and free light non-aqueous phase liquid. Petroleum hydrocarbon behaviour in the subsurface is additionally complicated by the presence of multiple compounds, each with different properties. The net result is that some hydrocarbon fractions are transported faster than others and a contamination plume of varying intensity may spread over a large area.

The aim of this study is to develop a methodology to map and simulate the movement of groundwater that has been contaminated by hydrocarbons and to determine the fate of the water quality through decomposition. Associated remediation options will be determined thereafter.

Abstract

Ladismith was established in 1851 where freshwater discharge from the Klein Swartberg Mountains. Growth of the town required building of the Goewerments Dam in 1920 and the Jan F le Grange Dam in 1978. However, water demand now matches supply, and water shortages are being experienced. Poor management and recent droughts exacerbated the situation. A project was initiated to address shortcomings with the existing supply and identify additional sources of water. Groundwater is an obvious option, with the regionally extensive Cango Fault located directly north of  the  town.  The  west-east  trending  fault  juxtaposes  highly  productive  Table  Mountain  Group Aquifers with less productive argillaceous rocks of the lower Witteberg Group. The Alluvial Aquifer is also a target, with a recently drilled DWA monitoring borehole reported to be high-yielding. Drilling and testing of three exploration boreholes drilled into the fault, returned lower than expected borehole  yields,  but  still sufficient  to  contribute  to  the  town’s water  supply  and  merit  further exploration. Boreholes drilled north of Ladismith could be used to increase the existing water supply by 50%.

Abstract

POSTER All groundwater is vulnerable to contamination, and natural in homogeneity in the physical environment results in certain areas being more vulnerable to contamination than others. Inherent in the agricultural, domestic and industrial sectors of Pietermaritzburg, is the generation of contaminants which, upon reaching the aquifer, result in the deterioration of the quality of groundwater, thus resulting in the water no longer being fit for its intended use. The DRASTIC method is used to calculate the groundwater vulnerability of a 670 km2 region, including the city of Pietermaritzburg. The suggested ratings of each parameter are scrutinised and adapted, according to their relevance to the region and according to known geological occurrences. The use of this method enables the user to generate a regional scale vulnerability map of the groundwater in Pietermaritzburg. The vulnerability map generated has the ability to effectively highlight vulnerable areas to groundwater contamination, which is of critical importance in correct land-use planning, as well as in indicating areas of particular concern, where further detailed investigations are needed. The results of such an assessment are used as an input, together with a contamination inventory to assess the potential risk of groundwater pollution in a groundwater risk map. Furthermore, the result informs local decision-makers and enables proactive prevention of groundwater pollution, in accordance with section 13 of the 1998 National Water Act. The intrinsic vulnerability of the Pietermaritzburg region was found to range from low to very high. The area found to be highly vulnerable is the region northeast of Springbank which requires investigation at a local scale.

Abstract

The key towards modern groundwater management lies in a profound strategy from monitoring data collection over data processing and information management to clear reporting on the development of groundwater resources. Only thus planners are enabled to take informed decisions towards sustainable use and well-keeping of available groundwater. A core in this strategy is the digital database in which all relevant data and information is stored, handled and displayed. It is thus that the Namibian Ministry of Agriculture, Water and Forestry (MAWF) decided to replace within the activities of the Namibian–German cooperation project “Groundwater for the north of Namibia”, the existing national groundwater database GROWAS with the completely new development of the GROWAS II  version.  Through  the  experience  of  the  project  partner  BGR  (Federal  Institute  for Geosciences and Natural Resources) the focus was put on the critical issue of data quality control. As the analysis of the old system indicated unclear data operation procedures as a major source of errors, improved user-friendliness was high on the agenda for the new database. Developed closely to  the  needs  of  Namibian  Water  Authorities,  GROWAS II  features  a  GIS-based  graphical  user interface (GUI) with a vast range of query functions, a modular system including time series tools, hydrochemistry, licenses for abstraction application and groundwater status reporting functions, among others. Quality control is secured through different measures like the “fosterage” option which allows the input of data into a temporary status with restricted access until released by senior experts, the quick and direct interaction with Google Earth to verify locations and the extensive use of look-up tables and descriptive keys in alignment with other regional geo-databases. Furthermore, data entries can be marked according to their estimated reliability with traffic light coding. These measures should ensure that only good quality data will be added in the future. Upcoming development steps are the practical tests of the single modules in day-to-day use, the integration into or exchange with other information systems and the improvement of older existing data as far as possible. Namibia will thus be better prepared for future groundwater challenges.

Abstract

The Deep Artesian Groundwater Exploration for Oudtshoorn Supply (DAGEOS) Project is culminating in development of the Blossoms Well-field (C1 Target Zone), about 20 km south of the town. The target Peninsula Aquifer is located at depths >300 m below ground level, geopressured to ~800 kPa (8 bar) artesian head. Each production well has to be uniquely designed for site-specific hydrogeological, hydrochemical and aquifer hydraulic conditions. Hydrostratigraphy rather than stratigraphy must inform the final well design. It is a recipe for unnecessary expense and deleterious consequences for aquifer management, to design and commence the drilling of wide-diameter production wells without the data and information provided by necessary exploration and essential pilot boreholes, yielding broader hydrogeological insights.

During discovery exploration at the C1b Target Site Area (TSA), drilling of a 715 m-deep  diamond-core exploration  borehole (C1b2)  was essential  for  the  proper  siting and  safe design  of  a  production  well  (C1b3).  Following confirmation  of  the  artesian nature  of  the  Peninsula Aquifer, the C1b2 borehole was equipped for monitoring, prior to the drilling of the nearby (~25 m distant) C1b3 production well, which was piloted with a core borehole down to a low level (~290 m) within the Goudini Aquitard, where it became marginally artesian and was then plugged and sealed. This pilot borehole was reamed with wide-diameter percussion tools to a depth where casing could be firmly cemented within the Goudini, above a solid, relatively unfractured zone. The final stage of drilling into the Peninsula Aquifer, using the Wassara water-hammer method, was thereafter continuously monitored from the C1b2 site, and the subsequent recovery history of C1b3 is comprehensively documented. The DAGEOS   drilling   and   deep-groundwater   monitoring   provides   significant   experience   in   solving technological problems likely to be encountered in the future development of shale-gas in the main Karoo basin. The confined, artesian aquifer behaves very differently to other, conventional groundwater schemes and requires a different management approach that focuses on managing the artesian pressure within the basin  and  its  response  to  abstraction.

The  potential  adverse  influences  of  high  and/or  extended abstraction on the Peninsula Aquifer may be divided into two general categories: 1) depletion or degradation of the groundwater resource, and 2) environmental or ecological consequences. Depletion in the case of a confined aquifer refers to depletion in storage capacity due to non-elastic behaviour. Environmental/ecological impacts of groundwater extraction arise only when the ‘radius-of-influence’, defined by the distance from the centroid of a well-field to the perimeter of the cone of depression in the ‘potentiometric surface’ (surface of pressure potential in the aquifer), reaches recharge and or discharge boundaries. The new Oudtshoorn Groundwater Scheme affords an opportunity to stage a transition from an increasingly risky reliance on surface water that is prone to severe reduction through climate change, to a deep groundwater resource that is capable of acting as a sustainable buffer against water-scarcity through drought intervals that may endure over decades rather than years, and can be operated without electricity supply by utilising the artesian pressure in the aquifer. This approach was demonstrated in a 3- month artesian flow test during 2009.

 

Abstract

POSTER A quick analysis of spring water quality was conducted in four neighbouring villages, namely Vondo, Matondoni, Maranzhe and Murangoni in Thohoyandou town under the Thulamela Local Municipality (TLM) of the Vhembe District Municipality (VDM). For the purposes of this study these villages will be termed VMMM villages. A study on the spring water quality of VMMM villages was conducted by the CSIR to determine whether the natural quality state of the spring water used by the surrounding communities was suitable for drinking purposes without pre-treatment. From the four springs that were identified in the VMMM villages, namely Tshali (S1), Ramufhufhi (S2), Tshinwela (S3) and Tshivhase (S4), water samples were taken for the quality analyses in the laboratory. The results indicated that S2 and S4 had a high coliform count of 35 and 600 per 100 ml, respectively), that is above  10  counts  per  100 ml.  In  springs  S2  and  S4  the  total  coliform  count  also  displayed  the presence of E.coli (6 and 310 per millilitre, respectively)  – E.coli should not be detected at all according to SANS standard limits (2011). While all other parameters were within standard limits (SANS 241, 2011), it was also interesting to note that both S3 and S4 had a problem of high turbidity (1, 6 and 105 NTU, respectively) compared to 1 NTU which is the standard limit (SANS 241, 2011). These results showed that although these communities relied on groundwater in the form of springs for drinking purposes, unmonitored use of these resources may be a health hazard that has a potential to  result  in disease outbreak  and  unprecedented  deaths. While  groundwater through springs is considered natural, increased activity around the source due to human activity and interference by domestic animals, these sources may be rendered unsafe for drinking purposes without prior treatment. Therefore, there is need for local authorities to put measures in place to monitor water resources considered indigenous and traditional to the communities, especially in areas where these resources have become the main source of water supply for drinking purposes.

Abstract

The National Environmental Management Waste Act, 59 of 2008 (NEMWA) clearly identifies the status and risk of contaminated sites and provides a legislative mechanism for remediation activities to be implemented and controlled. The Draft National Framework for the Management of Contaminated Land (henceforth Framework) provides national norms and standards for the practical implementation of remediation activities in compliance with NEMWA. A soil-screening value (SSV) for the protection of water resources is based on a two-phase equilibrium partitioning and dilution model which includes a dilution factor (DF) and partitioning coefficient (Kd) which converts the water quality guideline to a total soil-screening value. This paper presents a methodology to use soil-specific Kvalues to improve the accuracy of the new South African guideline for contaminated land.

Appropriate Phase 1 screening assessments are important due to the potential consequence it holds. Some uncertainty exists in the Phase 1 screening values due to variability in Kd values for different soil. This study shows that the Kvalues selected for the Framework is not representative of typical South African soils. Cu Kd values exceed the value provided by the Framework in all soils, but are lower that the Framework V Kd value in all soils. For Pb, low clay content weathered soils have lower Kd, but higher clay content soils are up to four orders of magnitude higher that the Kd in the Framework. Furthermore, due to the large variability (three to four orders of magnitude for Cu and Pb) point estimates of a single Kd value cannot be used for all soil types. However, for V only one order of magnitude variation is found. 

A way of addressing the uncertainty would be to determine the water soluble portion during the assessment. This would dramatically increase the certainty with which screening is conducted and could prevent significant inappropriate screening. Additional cost incurred be offset by saving as a result of unnecessary Phase 2 assessments or the reduction of undetected risks that later could impact the environment

Phase 1 screening could also be improved by including soil classification and some basic soil properties in the site assessment and adjusting Kd values, accordingly. Soil properties that can be used are typically clay content, pH and organic matter content. From these properties more appropriate Kds can be estimated for use in setting screening values.

Abstract

The possibility of large reserves of shale gas underlying the Karoo and their exploitation has focused attention on the groundwater resources and aquifers of this region. Much is known about the relatively shallow aquifers (<300 m) which supply many local municipalities and farmers with water for domestic, stock and irrigation use (mostly from boreholes <150 m in depth). Conversely, little is known about the deeper formations (>500 m) and associated groundwater occurrences and their possible interconnection to the shallow aquifer systems. This paper covers a desk study of the southern Karoo, mostly above the Great Escarpment, carried out by a group of hydrogeologists/geochemists with a cumulative experience of about 250 years. The main consideration at this stage has been the collation and analysis of existing information, using GIS, conceptualisations, and identification of knowledge gaps.

A Karoo Groundwater Atlas was published in 2012 and Volume 2 has been released at this conference, which present a summary of the main analyses. Borehole yield, recharge and quality in the shallow aquifer tend to improve, and water levels become shallower, from west to east, associated with higher rainfall and increased percentage of dolerite and sandstone. Aquifer yield, quality, lithology and presence of dolerites constitute 60% of a groundwater attributes ratings classification; 54% of the study area has a high rating. Twenty four percent of the study area has a high vulnerability rating. Knowledge of the characteristics of groundwater associated with the deeper formations is restricted to a few thermal springs and sparse data from some deep hydrocarbon exploration wells. Weak artesian flows were recorded from two such wells in the Dwyka Group below the Great Escarpment, with Total Dissolved Solids of up to 10 000 mg/L and temperatures of up to 77 oC, from depths of 2 347 to 3 100 m. Further work and cooperation with other researchers/institutions is on-going and planned to fill in knowledge gaps and assess the risks to groundwater of shale gas exploration.

Abstract

The study on estimation of groundwater recharge was done in Grasslands Catchment, about 70 km south-east of Harare, Zimbabwe. The catchment is underlain by Archean Granitic rocks intruded by dolerite  dykes/sheets  and  form  part  of  the  Basement  Complex.  The  catchment  is  a  stream headwater wetland, at the source of Manyame River. The catchment comprises an upland region or interfluves of area 2.12 km2 and a dambo area of 1.21 km2. The study focused on the assessment of temporal and spatial variability of moisture fluxes based on solute profiling, and groundwater recharge and investigations of moisture transport mechanisms. The methodology involved the use of  both  hydrometric  and  hydrochemical  techniques.  Groundwater  recharge  rates  and  moisture fluxes were calculated using a chloride mass balance technique in comparison to the hydrograph separation technique. Groundwater recharge was estimated to be 185 mm/year using the chloride mass  balance  and  215 mm/year  using  the  hydrograph  separation  technique.  Mechanisms  of recharge were investigated using the bimodal flow model that comprised of diffuse flow and preferential flow. The results revealed that preferential flow contributes up to 95% of the recharge in the interfluves, whilst diffuse flow contributes up to 5% of the total recharge. The results reveal that the groundwater hydrograph technique results are in agreement with the chloride mass balance method. The study illustrated how routine observations can improve process understanding on groundwater recharge mechanisms. The techniques are not expensive, are easy to use and can be replicated elsewhere depending on availability of data.

Abstract

The determination of a sustainable groundwater yield is a complex and challenging task. There is a high degree of uncertainty associated with most aquifer parameters such as recharge from rainfall and aquifer storativity, especially in  fractured aquifers. This leads  to  analysts often taking a  very  conservative and  risk  adverse approach  in  determining  the  sustainableyield  for  boreholes.  The  problem  with  this  approach  is  that groundwater can be considered as impractical or not an option, due to the low and conservative yields. Potential well-fields also become too expensive to develop. The concept of sustainability does not only cater for the environment, but also for people (social) and the economy (business). A popular method to determine groundwater sustainability is the groundwater balance (also known as the groundwater budget) method. This method has come under scrutiny as it is proposed that capture zone method is a more conservative and technically correct approach. Two of the most important parameters in determining long-term borehole yield, namely recharge and storativity, are unknown and unknowable at the time of well-field development. At best, qualified guesses can be made with regard to these two parameters. This makes the capture method impractical as boreholes have to be drilled and tested first and capital spent before any planning can be done. 

In this paper, it was shown that the risk adverse approach in determining borehole yield will result in the most expensive groundwater development option. The principle of sustainability requires that environmental, social and economic considerations be taken into account. By following a risk adverse approach, which would be the most expensive, the principle of sustainability is violated and it cannot be claimed that the borehole yield is sustainable. Due  to  the  exponential relationship between  risk  and  cost,  a  no-risk  approach  would  be infinitely expensive. It was shown that due to the uncertainties, it is actually impossible to determine the sustainable yield of a borehole. The objective should rather be to develop a sustainable groundwater management plan. This can be achieved by following a systems management approach based on the minimum groundwater balance. The minimum groundwater balance approach makes use of, for example, hydro census data to determine a minimum groundwater balance for a system of aquifers based on recharge at a minimulevel of assurance, for example lower 95th percentile, rather than making use of the mean annual precipitation (MAP). The potential effects of storativity are neglected at this stage. The systems management approach was applied on a case study to demonstrate the application where some risk was taken for a limited period of time while monitoring takes place. Proactive warning systems would alert decision-makers when to develop new aquifers which are predefined, based on the minimum groundwater balance method. The difference is that in the case of the risk adverse approach, should it come to light that the recommended abstraction rates were wrong in the sense that it is too low, the capital is spent and cannot be recovered. In the case of the systems approach, where slightly risky abstraction rates are recommended for a limited period of time, additional well- fields can be developed well in advance, before any negative environmental impacts can occur.

Abstract

The Sagole hot spring is located in the northern Limpopo Province of South Africa. Investigations were carried out in order to investigate the groundwater aquifer and water chemistry. Results were envisaged to the understanding of the geothermal potential of the area. Regional scale airborne magnetic data and geology were used for identifying structures and lithological boundaries that are associated with thermal groundwater aquifers. Detailed ground follow-up and verification surveys were  carried  out  across  the  target,  using  magnetic,  electrical  resistivity  tomography  (ERT), frequency-domain electromagnetic (FDEM) and radiometric methods. Water samples were collected from the spring eye and archival groundwater data was analysed. The interpretation of the airborne magnetic data revealed the presence of west to east, northwest and intersecting lineaments at the hot spring. From magnetic data, the groundwater aquifer was found to be capped by basalt with heat rising to the surface along possible geological contacts, faults or fractures. The FDEM profile data across the aquifer zone had peak values above 100 mS/m. The inversion of ERT data defined a highly electrical conductive, low resistivity with thickness of about 60 m. Chemical analysis of the ground water revealed that the water does not have any indication of pollution. The thermal water was found to be of meteoric origin. The drilling of artesian thermal boreholes through the capping basalt should be explored. The hot-water boreholes will be utilised by the community for domestic, irrigation and possible development of micro-geothermal systems.

Abstract

This paper outlines the core factors related to the economic assessment of groundwater resources. Included in the discussion is a delineation of the factors that determine the economic value of groundwater as well as a thorough description of the range of ecosystem services that are derived from groundwater resources.

Several factors affect the economic value of aquifers, but these factors can split into two categories, natural asset values and ecosystem services values.

Ecosystem services are the benefits that humans receive from ecosystems, and are officially defined by the Millennium Ecosystems Assessment. Ecosystems produce these ecosystem services on an annual basis, and the value of these services accrue on a country’s national income statement, and should ideally be measured through indicators that relate to Gross Domestic Product (GDP).

Aquifer themselves are natural assets. They form part of the ecological infrastructure of a country and the values of these assets theoretically appear on a country’s natural resources balance sheet. The asset value can be determined by calculating the Net Present Value (NPV) of the perpetual stream of aquifer ecosystem services delivered.

By understanding the full range of factors that underlie the natural asset values of aquifers, along with their ecosystem service values and the full range of inter-temporal and inter-ecosystem service characteristics, we can begin to adequately assess the economic value of groundwater resources.

Abstract

Inadequate characterisation of petroleum release sites often leads to the design and implementation of inappropriate remedial systems, which do not achieve the required remedial objectives or are inefficient in addressing the identified risk drivers, running for lengthy periods of time with little benefit. It has been recognised that high resolution site characterisation can provide the necessary level of information to allow for appropriate solutions to be implemented. Although the initial cost of characterisation is higher, the long-term costs can be substantially reduced and the remedial benefits far greater. The authors will discuss a case study site in the Karoo, South Africa, where ERM has utilised their fractured rock toolbox approach to conduct high resolution characterisation of a petroleum release incident to inform the most practical and appropriate remedial approach. The incident occurred when a leak from a subsurface petrol line caused the release of approximately 9 000 litres of fuel into the fractured sedimentary bedrock formation beneath the site. Methods of characterisation included: 

Surface  geological  mapping  of  regionally  observed  geological  outcrops  to  determine  the structural orientation of the underlying bedding planes and jointing systems. 

A surface electrical resistivity geophysics assessment for interpretation of underlying geological and hydrogeological structures. 

Installation of groundwater monitoring wells to delineate the extent of contamination. 

Diamond core drilling to obtain rock cores from the formation for assessment of structural characteristics and the presence of hydrocarbons by means of black light fluorescence screening and hydrocarbon detection dyes. 

Down-borehole geophysical profiling to determine fracture location, fracture density, fracture dip and joint orientation. 

Down-borehole deployment of Flexible Underground Technologies (FLUTe®) liners to determine the precise vertical location of light non-aqueous phase liquid (LNAPL) bearing joint systems and fracture zones, and to assist in determining the vertical extent of transmissive fractures zones.

ERM used the information obtained from the characterisation to compile a remedial action plan to identify suitable remedial strategies for mitigating the effects of the contamination and to target optimal areas of the site for pilot testing of the selected remedial methods. Following successful trials of a variety of methods for LNAPL removal, ERM selected the most appropriate and efficient technique for full-scale implementation.

Abstract

PMWIN5.3 has been one of the most commonly used software for groundwater modelling because of its free source and the adoption of the popular core program MODFLOW. However, the fixed formats required for data input and lack of GIS data support have posted big challenges for groundwater modellers who are dealing with large areas with complicated hydrogeological conditions. In South Africa, most geological and hydrogeological data have been captured and stored in GIS format during various national research projects such as WR2005, NGA, etc. Therefore, a proper linkage between PMWIN and ArcGIS is expected to do the pre-processing for modelling in PMWIN. Visual Basic for Application (VBA) embedded in ArcGIS 9.3 was used to develop the linkage. Based on the conceptualisation of the study area, the model dimension, discretisation and many value-setting processes can be easily carried out in ArcGIS other than directly in PMWIN. Then the grid specification file and other input files can be exported as the PMWIN-compatible files. The functions on the modification of model geometrics have also been integrated with the toolbar. The linkage can be used with a higher version of PMWIN or ArcGIS. It has been applied to several gold fields in the Witwatersrand gold basin to simulate the groundwater flow and mass transportation for various conditions and scenarios. One of the applications will be presented in this paper. It has been proven that the linkage is efficient and easy to use.

Abstract

Work is being conducted in Limpopo province following a large volume release of petroleum hydrocarbons that took place from a leaking underground pipeline, resulting in significant groundwater contamination. This is considered to be the largest petroleum hydrocarbon release recorded to date in South Africa. The leak took place for 15 years before it was discovered 13 years ago in 2000. From the pressure tests that were performed, 10-15 ML of A-1 Jet fuel is considered to havbeen  released  to  the  subsurface.  Product  bailing was  the  first method  employed  for  the recovery of the free product, and was later replaced with a P&T system which was considered to be more effective.

The village located about 6 km to the north of the spillage depends mostly on groundwater. This paper presents a progress update of works that have been conducted in support of developing a conceptual model which aims to determine the areal extent of the plume.

Abstract

Artesian boreholes are a common feature worldwide in confined aquifers. However, the hydraulic testing of these boreholes and estimation of aquifer properties from such tests still pose a challenge for hydrogeologists. Common hydraulic tests, such as step-drawdown or constant discharge rate tests  require  a  static water  level  at the  start  of  the  test,  and  the measurement of  drawdown (increasing over time) and abstraction rate (fixed for a period of time). Usually, when undertaking a pumping test in an artesian borehole, the drawdown is measured from ground level, and the drop in hydraulic head between static pressure and ground level is often ignored. This also implies that the starting time of the test is not at the static water level. A constant head test, set at ground level, is the other option. However, the decrease in flow rate is not only dependent on the hydraulic properties of the aquifer, but also masked by pipe hydraulic effects within the well. This kind of test would also limit the available drawdown to be utilised for the test. 

Hence,  it was  required  to  develop a method for undertaking hydraulic tests in  strong artesian boreholes allowing for the drawdown to fluctuate between above and below ground and avoiding the pitfalls described above. The solution is a specially designed and constructed well-head for the installation of the pump and monitoring equipment prior to the hydraulic test. The standard tests are slightly modified and will only be carried out after sealing the well-head and reaching static hydraulic pressure. 

The recommended well-head construction and subsequent hydraulic tests were carried out at a strong artesian borehole in the Blossoms Well-field, south of Oudtshoorn in the Western Cape of South Africa.

Abstract

POSTER Lake Kosi Bay is an estuary-linked lake system composed of four interconnected lakes, namely Makhawulani , Mpungwini , Nhlange , Amanzamnyama and interconnecting channels, which drains via a sandy opening to the Indian ocean and three extensive areas of swamps (Wright 2002 ). The Kosi Bay lake system is considered as the most pristine lake system on the South African coast and has been used as a recreational fishing destination since 1950 (James et al. 2001). The lakes are separated from the ocean by a strip of forested sand dunes (South African Wetlands Conservation Programme 1999;  Wright  2002).  Groundwater  utilisation  in  the  area  ranges from  extraction  of seasonal groundwater from shallow, hand-dug wells to drilling of boreholes for family or communal use and development of groundwater well-fields for agricultural projects (Botha et al. 2012). The exact amount of abstraction of the groundwater is unknown. 

The  Kosi  Bay  system  is  situated  on  the  northern  KwaZulu-Natal  coast,  2.9 km  south  of  the Mozambique international boarder. According to a Statistics South Africa survey (2007), the approximate  population  is  163 694.  The  Kosi  system  falls  under  the  UMkhanyakude  District Municipality, which covers more than 128 818 km2. The travelling distance from north of Durban is 470 km and coordinates of the Kosi Bay system are 2650S-2711S, 3238E- 3253 (Write et al. 1997). The catchment has an area of about 304 km2. The Kosi Bay system is principally clean, white sands, particularly in the northern most reaches where tidal influences are most marked and the system experiences a seasonal inflow of fresh water into its heard (Andeas Holbach 2012).

Abstract

Determining   impacts   associated   with   the   production   of   shale   gas   in   the   semi-arid   Karoo   on groundwater is vital to people living in the Karoo. On the one hand shale gas can be a game-changer for energy supply, but on the other it may have a devastating effect on the environment. Knowing the potential  impacts  of  shale  gas  mining  beforehand,  the  government  can  set  appropriate  regulatory protocols  and  tools  in  place  to mitigate  potential  risks.  This paper  describes research  done  on  the potential impact that hydraulic fracturing could have on groundwater in the Karoo. A wild card that only exists in the Karoo Basin of South Africa is the numerous dolerite intrusions. These dolerite structures are associated with relative high-yielding boreholes because of the fractured contact aureole that exist between solid dolerite and the adjacent Karoo sediments. Compromised cement annuli of gas wells are the  major  preferential  flow  paths along which  methane  and fracking fluid  can escape  into shallow, freshwater aquifers. This study focused solely on the impact of compromised cement annuli of gas wells. The Karoo Basin is under artesian conditions which imply that any pollutant will always try to migrate upwards in the Karoo. The hot-water springs in the Karoo indicate that upward velocities of water are relatively high (the spring water take only days to travel from deep down to the surface). The cubic law was  used  to  estimate  potential  upward  leakage  rates  from  gas  wells  (during  production,  but  after cessation thereof as well, when pressures will rebuild  because  of  artesian  behaviour  of  the  Karoo formations).  Potential  leakage  rates  along  faulty annuli of a well can vary between a value close to zero to two liters per second in the case of an aperture of 0,5 mm. These leakage rates were used as input to a 2D numerical groundwater flow and mass transport model. The 2D model was run for 30 years and the movement of pollution from the gas wells on the pad simulated. The model indicates that an area of 300 ha could be contaminated over a period of 30 years in a downstream groundwater flow direction.  If  an  abstraction  borehole  drilled  along  a  fault  zone  or  a  dyke,  intersecting  the  fracked reservoir, is introduced into the model, results predict that the pollutant will reach the borehole in less than two months if the borehole is situated six kilometres from the well-pad. The total impact that fracking will have on the groundwater in the Karoo, is a function of the total area that will be fracked.

The outcomes of this research clearly show that fracking in South Africa cannot be done in the same way than  it  is  currently  done  worldwide.  A  rule  that  will  force  gas  companies  to  disclose  fracking  fluid contents is non-negotiable. Companies should also be required to measure pressures in the fracked gas reservoir after closure. An additional requirement to enforce sealing of the entire fracked reservoir with a very dense material like bentonite or a mud with a very high density to capture the fracking fluids deep down in the gas reservoir should not be negotiable.

Abstract

The effluent at the eMalahleni water reclamation plant is being processed through reverse osmosis which improves the quality of the mine water to potable standards. Brine ponds are generally used for inland brine disposal and this option has been selected for the eMalahleni plant. Limited capacity to store the brines requires enhanced evaporation rates and increased efficiency of the ponds. This study aims to establish the physical behaviour of the brine from the eMalahleni plant in an artificial evaporation environment. This includes the actual brine and synthetic salts based on the major components.

An experimental unit was designed to accommodate and manipulate the parameters that affect the evaporation rate of brines and distilled water under certain scenarios. Two containers, the one filled with 0.5M of NaCl and the other with distilled water were subjected to the same environmental conditions in each experimental cycle. Each container had an area of a 0.25 m² and was fitted with identical sensors and datalogger to record the parameter changes. The energy input was provided by infra-red lights and wind-aided electrical fans. This equipment used in these experiments was to simulate actual physical environmental conditions. 

The rate of evaporation was expected to be a function of humidity, wind, radiation, salinity and temperature. The experiments showed the type of salt and thermo-stratification of the pond to be significant contributors to the evaporation rate. The results also showed that the NaCl solution absorbed more heat than the water system. The difference in evaporation observed was ascribed to a difference in the heat transfer rate, which resulted in a higher temperature overall in the brine container than in the water container under similar applied conditions. This effect remained despite the introduction of 2 m/s wind flow over the tanks as an additional parameter. The wind factor seemed to delay evaporation due to its chilling effect upon the upper layers of the ponds, initially hindering the effective transfer of radiative heat into the ponds.

 

Abstract

Lake  Sibayi  (a  topographically  closed  freshwater  lake)  and  coastal  aquifers  around  the  Lake  in eastern South Africa are important water resources and are used extensively for domestic water supplies. Both the Lake and groundwater support an important and ecologically sensitive wetland system   in   the   area.   Surface   and   subsurface   geological   information,   groundwater   head, hydrochemical and environmental isotope data were analysed to develop a conceptual model of aquifer–lake interaction for further three-dimensional numerical modelling. These local geologic, groundwater head distribution, lake level, hydrochemistry and environmental isotope data confirm a direct hydraulic link between groundwater and the Lake. In the western section of the catchment, groundwater flows to the lake where groundwater head is above Lake stage, whereas along the eastern section, the presence of mixing between Lake and groundwater isotopic compositions indicated that the Lake recharges the aquifer. Stable isotope signals further revealed the movement of lake water through and below the coastal dune cordon and eventually discharges into the Indian Ocean. Quantification of the 14-year monthly water balance for the Lake shows strong seasonal variations of the water balance components. Recent increase in rate of water abstraction from the lake combined with decreasing rainfall and rapidly increasing pine plantations may result in a decrease in lake level which would have dramatic negative effects on the neighboring ecosystem and a potential seawater invasion of the coastal aquifer.

Abstract

Flowing fluid electrical conductivity (FFEC) profiling provides a simple and inexpensive way to characterise a borehole with regards to the vertical location of transmissive zones, the hydraulic properties  of  the  various  transmissive  zones  and  the  intra-well  flow  conditions  which  may  be present in the well under ambient conditions. The method essentially involves analysing the time evolution of fluid electrical conductivities in a borehole under pumped and ambient conditions using a down-hole conductivity/temperature data logger. The premise of the method is that the borehole column of water has its electrical conductivity altered by adding saline water into the borehole. This results in a contrast in electrical conductivity (EC) between the water in the borehole and the water in the adjacent formation. At depths where transmissive zones are present, decreases in EC values in the FFEC profile will be observed where formation water with a lower EC (relative to the borehole water column) enters into the well, whilst pumping at low abstraction rates (between 500 ml and 1 liter per minute). By altering the EC of the well-borewater and maintaining a constant pumping rate,  the  sequence  of  FFEC  profiles  depicts  the  dynamic  flow  and  transport  response which  is dependent upon the hydraulic properties of the formation. In this paper the authors present several examples where FFEC profiling has been used to identify transmissive zones in boreholes where no information existed with regards to the vertical distribution of transmissive zones. Furthermore, the authors present case studies where FFEC profiling has been employed as an alternative technology to more conventional hydraulic profiling techniques. This includes a comparative technology case study where down-hole impeller flow meter technology was employed in addition to FFEC profiling and a multi-rate FFEC profile test which was used to determine discrete fracture transmissivity values in a borehole where packer testing equipment could not be installed. Within the context of groundwater contamination investigations, the method holds several attractions as it generates minimal waste water to be managed and disposed of, is inexpensive and can be completed within a relatively short time period.

Abstract

The water quality in the crystalline rocks of the Johannesburg and its environs has been severely altered by the mining activity. Due to freshwater scarcity and dependency of the people on the groundwater, it is important to understand the extent of hydrogeochemical footprint in the area. The water quality characteristic has been thoroughly assessed in the crystalline aquifers based on the input from hydrogeochemical characteristics and environmental isotopes. The results show that the calculated dilution factor for acid-mine decant is in the range of 68% as a result of interaction with surrounding fresh water. The SO4/Cl ratio has a wide range of values that falls between 0 an306.37, while that of Fe/Ca ratio falls between 0 and 5.59. High SO4/Cl values potentially indicate thinterference of acid-mine decant with the groundwater system traced through sulphate concentration. Similarly, a high Fe/Ca ratio also indicates the impact of acid-mine decant on the groundwater system where iron is traced with respect to calcium concentration. In this regard the ratios above 0,25 (with the assumption of 1 to 4 natural abundance for Fe:Ca in water in the area) could potentially represent acid-mine decant source.The results confirm that most of the water- supply wells have heterogeneous chemistry with distinctive hydrogeochemical footprint represented by abnormally high Fe, SO4 and Si as a result of acid-mine decant.

Abstract

An understanding of the movement of moisture fluxes in the unsaturated zone of waste disposal sites play a critical role in terms of potential groundwater contamination. Increasing attention is being given to the unsaturated or vadose zone where much of the subsurface contamination originates, passes through, or can be eliminated before it contaminates surface and subsurface water resources. As the transport of contaminants is closely linked with the water flux through the unsaturated zone,  any quantitative analysis of contaminant transport must first evaluate water fluxes into and through this region. Mathematical models have often been used as critical tools for the optimal quantification of site-specific subsurface water flow and solute transport processes so as to  enable  the  implementation of management practices that minimize  both surface water  and groundwater pollution. For instance, numerical models have been used in the simulation of water and solute movement in the subsurface for a variety of applications, including the characterisation of unsaturated zone solute transport in waste disposal sites and landfills. In this study, HYDRUS 2D numerical simulation was used to simulate water and salt movement in the unsaturated zone at a dry coal ash disposal site in Mpumalanga, South Africa. The main objective of this work was to determine the flux dynamics within the unsaturated zone of the coal ash medium, so as to develop a conceptual model  that  explains  solute  transport through  the unsaturated  zone  of the coal ash medium for a period of approximately 10 year intervals. Field experiments were carried out to determine the model input parameters and the initial conditions, through the determination of average moisture content, average bulk density and the saturated hydraulic conductivity of the medium. A two-dimensional finite-element mesh of 100 m × 45 m model was used to represent cross  section  of  the  ash  dump.  Two-dimensional  time  lapse  models  showing  the  migration  of moisture fluxes and salt plumes were produced for the coal ash medium. An explanation on the variation of moisture content and cumulative fluxes in the ash dump was done with reference to pre-existing ash dump data, as well as the soil physical characteristics of the ash medium.

Abstract

The  possible  future  exploitation  of  methane  in  the  Karoo  has  stimulated  work  from  various disciplines to examine its occurrence, exploitability and exploitation risks. Groundwater issues are vital in this context because of its possible use during exploration and exploitation, and more important, to understand the risks of its pollution during and after all these activities. This paper presents the experiences of the authors to document the presence of methane in the Karoo based on data from boreholes, springs, tunneling and deep drilling. There have been frequent anecdotal reports of explosive gas in boreholes, both dry and wet, in the Karoo. In some cases the gas is identified as methane. Thermal spring waters in the Karoo invariably contain some amounts of methane. Methane pockets have been found in the Karoo during tunneling projects and in some deep Soekor boreholes. A groundwater study in the vicinity of the Gariep Dam indicated substantial quantities of methane in warm groundwater and an association with helium. The isotope concentrations of carbon and hydrogen in methane characterise the methane-forming processes. Such analyses in samples from the central Karoo basin are consistent with that of thermogenic gas found  elsewhere  in  the  world.  Towards  the  edges  of  the  basin,  lower  13C-values  indicate  that methane  there  is  produced  by  microbial  processes  at  shallower  depths.  The  presence  of thermogenic methane together with helium on the surface is likely to give clues to pathways from depth.

Abstract

In this study, a petroleum hydrocarbon contamination assessment was conducted at a cluster of petroleum products storage and handling facilities located on the Southern African Indian Ocean coastal zone. The Port Development Company identified the need for the assessment of the soil and groundwater pollution status at the tank farms in order to develop a remediation and management plan to address hydrocarbon related soil and groundwater contamination. Previous work conducted at the site consisted of the drilling and sampling of a limited number of boreholes. The current investigation was triggered by the presence of a free-phase product in the coal-grading tippler pit located ~350 m down gradient and south-east and east of the tank farms, rendering the operation thereof  unsafe.  The  assessment  intended  identifying  the  source  of  product,  distribution  and mobility, the extent of the contamination, and the human health risks associated with the contamination. To achieve these, the investigation comprised site walkover and interviews, drilling of 76 hand auger and 101 direct push holes to facilitate vertical soil profile VOC screening and sampling  (soil  and  groundwater),  as  well  as  granulomeric  analysis  to  understand   grain   size distribution  within  the  soil  profile.  The  highest  concentrations  were  associated with the coarse sand layers with the highest permeability. Free-phase hydrocarbons product was found in holes adjacent to the pipeline responsible for the distribution of the product from the jetty to the different tanks farms. Of the 57 soil samples, 21 had high values of GRO and DRO, with 22 below Detection Limit and 14 can be described having traces of hydrocarbon. Both TAME and MTBE were detected in most of the water samples, including from wells located far down gradient. The groundwater sink, adjacent to the pipeline running from west to east, resulted in the limited lateral spread of MBTE in this area, with limited movement towards the sea. The depth of the soil contamination varies over the sites. Based on the site  assessment  results  it  was  concluded  that  most  of  the groundwater contamination, which is a mixture of different product types, is associated with the pipeline responsible for transporting product from the jetty to the different petroleum companies.

Abstract

The thermal springs of Swaziland and adjacent KwaZulu-Natal have, over the years, attracted attention from hydrogeologists, hydrochemists and structural geologists. While some of the springs in Swaziland are well known amenities, others are less well-visited and some difficult to access. There are eleven warm springs in Swaziland, discharging between 1 and 10 l/s from Precambrian age rocks; all are situated at or near valley bottoms. The springs have surface discharge temperatures of between 25 and 52 oC and total dissolved solids concentrations of less than 400 mg/l. In all cases the water is meteoric in origin. Geothermometry indicates that maximum temperatures up to 100 oC are achieved during circulation. If the average geothermal gradient is about 20 oC/km as recorded in a deep mine at Barberton, then this would require circulation up to a depth of several kilometres. However, it is likely that circulation bottoms at about 1 km, as pressure of overburden inhibits dilation of fractures at such depths, and the excess temperature may derive from a locally enhanced geothermal gradient. The discharge water is young, with 14C ages of between 4 000 and 5 000 years.

Abstract

The subject mine has a policy of avoiding groundwater inflow into the underground workings due to the impact on the mine operations. It has already implemented a significant mitigation measure by excluding shallow mining and a large pillar under the river that is present in the mining area. To assess the potential for groundwater inflows into the underground mine workings as a result of a planned expansion project, Environmental Resources Management (ERM) undertook numerical groundwater modelling based on a detailed geological investigation to define the proposed mining area into high, medium and low mining risk areas with respect to potential groundwater inflow. The conceptual definitions of the mining risk areas are: 

High Risk general groundwater seepage and inflow expected in the face and roof of the mining unit from numerous joints and fractures which is regarded as serious enough to permanently halt mining operations. 

Medium Risk possibility of limited point source groundwater inflow in the face and roof of the mining unit from sporadic selective joints and fractures. Not expected to halt mining operations. 

Low Risk no significant groundwater risk to mining operations expected.

The areas identified as being potentially at risk from groundwater inflow were determined using a combination of geological mapping, ground geophysics and percussion drilling that was incorporated into a numerical hydrogeological model. The study undertaken by ERM enabled the mine to incorporate the identified mining risk zones into the early stages of the mine planning, and allowed for a significant reduction in the size of the safety pillar under the river.

Abstract

The so-called apparent increase of transmisivity (T) or hydraulic conductivity (K) with scale is an artifact and does not exist in the field. The reason for the apparent increase of T with scale is due to the use of the “not applicable” random log Gaussian stochastic models that are used by geohydrologists. In the petroleum field, where deterministic methods are applied, the apparent increase of T with aquifer volume does not occur. Groundwater practitioners have to change their view and use models that do not show this effect.

Abstract

The mineral-rich basin of the West African region has vast reserves of gold, diamond as well as iron ore deposits. Throughout the regional geological setting characterised by structural variations and intrusive belts with metamorphic mineral-rich sequences covered by saprolite soils, one common chemical constituent remains a constant in the water reserves. Arsenic is in high concentrations throughout the region with chemical ranges commonly above the various country guidelines as well as international IFC and WHO standards. The aqueous chemical species is associated with arsenopyrite-rich mineralogy of the regional greenstone belts and highly weathered soils.

This conference presentation investigates the natural source of the arsenic through baseline data, as well as the effect of mining on the already high concentrations of arsenic in both the groundwater and surface water. Natural levels of various chemical species in the regional area are already high at baseline level. One of the main research questions is thus whether mining and other anthropogenic activities will have  an impact on the environment or will  the changes to concentrations be so insignificant to allow the ecosystems and water users to continue in their current ways without any effect. Various case studies in Burkina Faso, Liberia, Sierra Leone and other countries have been combined to investigate the arsenic-rich resources of the West African region through groundwater specialist investigative methods with emphasis on geochemical modelling of the fluid–rock and fluid–fluid interactions leading to the aqueous chemical conditions in the region.

Abstract

POSTER The study focuses on the primary aquifer in the Cedarville flats. Groundwater extracted from the aquifer is the primary source for domestic and agricultural purposes for farmers and the community in the Cedarville area. The aim of the study is to develop a conceptual hydrogeological model of the primary aquifer in Cedarville flats which may be used as an input to a groundwater flow model that will predict the behaviour of the aquifer. The main objectives of the research are:

Characterise  the  aquifer  based  on  borehole  log  information,  depth  to  water,  hydraulic properties of the aquifer and recharge.

Examine the hydrochemistry and environmental isotope composition of groundwater.

Develop a conceptual hydrogeological model for the Cedarville primary aquifer.

The study area boundary covers a large area including towns like New Amalfi and it goes to Lehlohonolo, but the main focus is in the primary aquifer in the Cedarville flats. The topography varies from predominantly hilly around the escarpment with numerous rivers draining deep valleys to a less mountainous undulating central area like Cedarville flats. Cedarville flats found in the midst of extremely broken ground forming the only considerable extent of plane country in the Eastern Cape territories. They cover about roughly 90 square miles and are hemmed in by ranges of mountains on the south and east and by small hills on the west and north. The aquifer is recharged by Mzimvubu River, which is the largest river in the Mzimvubu river basin; it extends from the Lesotho highlands to the Indian Ocean. It has four main tributaries: the Tsitsa, Tina, Kinira and Mzintlava, all having their headwater in the Drakensberg Mountains. The study area only shows the Tswerika, Riet, Mvenyane, Droewing and non-perennial streams. These streams all flow into the Mzimvubu River and their headwater is from the smaller mountains around the area.

The local geology of the area is formed by the Beaufort Group rocks and alluvium rocks which are quaternary in age. The geology that is specifically found in the Cedarville flats aquifer is made of alluvial deposits consisting of clay, sand and gravel. Surrounding the aquifer are Tarkastad subgroup rocks which are predominantly argillaceous rocks, including shale, carbonaceous shale, clay stone, mudstone and siltstone. The primary aquifer in the Cedarville flats is capable of sustaining long-term, large-scale production, and these kinds of aquifers are rarely found in the southern Karoo Basin.

Existing boreholes will be used to examine the bore log information, like lithology and thickness of the rocks that form the aquifer. Groundwater hydrographs will be drawn to determine the groundwater level variation. Pumping tests will be conducted to help with hydraulic conductivity, storativity and transmissivity of the aquifer. Water samples will be collected to test the water chemistry and environmental isotopes of the groundwater. Secondary data will be requested from National Groundwater Archives (NGA), Weather SA and the Department of Water Affairs. When all the data is collected, then a conceptual hydrogeological model will be produced.

 

 

Abstract

Gold mining on the Witwatersrand has started in the late nineteenth century as sporadic open cast mining and ceased in the late twentieth century, leaving a complex network of haulages, tunnels and ultra-deep vertical shafts/sub-vertical shafts. At least three ore bodies (conglomeritic horizons) were mined down to a depth in excess of 3 000 m from surface. Three large mining basins resulted from the mining methodology applied, namely the Western, Central and Eastern (Rand) Basins.

In  the  early  days  of  mining  on  the  Witwatersrand  reefs,  gold  mine  companies  realised  that dewatering of their mine workings is required to secure mining operations at deeper levels and decades of pumping and treatment of pumped mine water followed. As the majority of deep gold mines on the Witwatersrand ceased operations since 1970, the deeper portions of the mine voids became flooded and led to a new era in the mining history in the Witwatersrand.

Rewatering of the mine voids is a combination between excessive surface water ingress generated by surface runoff, and to lesser degree recharge from an overlying fractured and weathered aquifer system (where developed). The flow regime in the mine voids from a scattering of ingress/direct recharge points and single discharge points are complex and is driven by shallow (<100 m) and probably deep (>1 000 m) man-made preferential pathways.

The high concentrations of iron sulphide minerals (pyrite. for example FeS2) content, three percent (by weight), of the mined reefs/backfilled stopes and surrounding waste rock piles/tailings dams mobilised significant levels of sulphates (SO4) and ferrous iron (Fe2+) producing an acidic mine-void water (<3 pH).

Monitoring of the rewatering mine void hydrological regime became necessary following the first acid-mine water decant from a borehole in the West Rand Basin, and the Department initiated a mine-void water table elevation trend and water quality monitoring programme. Results from this monitoring programme will be illustrated and discussed in this paper with some views on the future water quality and discharge scenarios.

Abstract

Open pit mining operations are located in various, usually complex, geological settings and equally variable climatic regions from arid to extremely high rainfall. Many Southern African open pit mines occur in competent and un-weathered rock masses, and groundwater flow is therefore structurally controlled. Assessing and reducing pit slope pore pressure should be incorporated into pit slope design. Site hydrogeological investigations followed by numerical groundwater modelling is completed to produce predicted pore pressure distributions over the life of a mine and to assess the potential effect of dewatering actions on slope stability. Investigations were completed for two Southern African pits and simulated pore pressure distributions were used in slope stability analysis. In the first case, the simulated slopes are shown to be free draining, and the designed pit slopes are predicted to remain safe and remain so even with the built-up of pore pressure. In the second instance, pore pressure reduction through an aggressive horizontal drill holes programme is demonstrated to improve probability of failure. This has demonstrated the need for collaboration between geotechnical and hydrogeological investigations to improve slope design, reduce likelihood of pit wall failures and reduce mining cost through excavating steeper depressurised slopes.

Abstract

The assessment and prediction of mine water rebound has become increasingly important for the gold mining industry in the Witwatersrand basin, South Africa. The cessation of dewatering lead to large volumes of contaminated surface discharges in the western parts of the basin. Towards the eastern extremity of the Witwatersrand basin the detached Evander Goldfield basin has been mined since the early 1950s at depths between 400 and 2000 metres below ground, while overlain by shallower coal mining operations. The hydrogeology of the Evander basin can be categorised by a shallow weathered-fractured rock aquifer comprising of the glacial and deltaic sediments of the Karoo Supergroup, while the deeper historically confined fractured bedrock aquifer consist predominantly of quartzite with subordinate lava, shale and conglomerate of the Witwatersrand Supergroup. The deep Witwatersrand aquifer has been actively been dewatered for the last 60 years with a peak rate of 60 Ml per day in the mid late 1960s. Modelling the impacts of mine dewatering and flooding on a regional scale as for the Evander basin entails challenges like the appropriate discretisation of mine voids and the accurate modelling of layered aquifer systems with different free groundwater surfaces on a regional scale. To predict the environmental impacts of both the historic and future deep mining operations, the detailed conceptual model of the aquifers systems and a 3-dimensional model of the mine voids were incorporated into a numerical groundwater model to simulate the dewatering and post-closure rebound of the water tables for the basin. The presented model could serve as an example for the successful modelling of mine dewatering and flooding scenarios for other parts of the Witwatersrand basin.

Abstract

The Paleozoicage Natal Group Sandstone (NGS) that outcrops from Hlabisa (in the north) to Port Shepstone (in the south) and Greytown (west) to Stanger (east) in the Province of KwaZulu-Natal, South Africa, is investigated in terms of its hydrogeological characteristics. This sandstone group, which comprises a lower Durban and an upper Marrianhill Formations, is a secondary/fractured aquifer system that has variable but good productivity across its members. It is characterised by variable borehole blow yields ranging from 0.2 l/s to as high as 20 l/s, with more than 50% of the boreholes having blow yield > 3 l/s. Preliminary analysis of these boreholes yields indicates that higher yielding boreholes are associated with a network of intersecting fractures and faults, and are recommended targets for future water well-siting in the area. Groundwater in the NGS is of good quality in terms of major and trace element composition and it has a total dissolved solids (TDS) composition of <450 mg/l. It was observed that the specific electrical conductivity (EC), TDS and major ions composition of groundwater within the sandstone decrease from north to south, which appears to be controlled by the geochemical composition of the aquifer material and an increase in the rate of recharge. Depth to groundwater is also found to decrease southwards because of an increase in the rate of recharge. Groundwater hydrochemical facies are generally either Na-HCO3 or Na-HCO3–Cl, and environmental isotope data (2H, 18O, Tritium) indicates that the groundwater gets recharge from modern precipitation. Furthermore, the EC increases from inland to the coastal zone, indicating maritime influences and the general direction of groundwater flow is eastwards, to the Indian Ocean.

Abstract

Gold mining  activities over  the  past 60 years  in the Klerksdorp  goldfield produced  saline mine drainage that polluted water. Oxidation of sulphide material in tailings storage facilities, waste rock dumps and extraction plants is mobilised to produce saline mine drainage with sulphate, minor salts and  metals  that  seep  to  the  groundwater  and  ultimately  into  surface  water  resources.  Water regulation requires mines to prevent, minimise/reduce or eliminate pollution of water resources. The waste philosophy has matured from tolerate and transfer to treat and termination of pollution sources.  The  impact  of  the  pollution  was  determined  and  possible  technologies  to  treat  the impact   were   evaluated.   Source   controls   with   proper  water  management  by  storm  water management,  clean  dirty  water  separation,  lined  water  conveyance  structures  and  reduced deposition of water on waste facilities are crucial. The aquifer character determines the possible remediation technology. From the possible technologies phytoremediation, physical interception and  re-use  of  this  water  was  selected.  In  future  possible  treatment  of  the  water  would  be considered. This paper explain the strategy and report on the phased implementation of these plans and the expected results. The establishment of 500 ha of woodlands as phytoremediation, interception trenches of 1 000 m, 38 interception boreholes and infrastructure to re-use this water is planned. The total volume of 15 Ml/day would be abstracted for re-use from the boreholes and trenches. The woodlands can potentially attenuate and treat 5 Ml/day. The established woodlands of 150 ha prove to be successful to intercept diffused seepage over the area of establishment and reduce  the  water  level  and  base  flow.  The  two  production  interception  well- fields  that  are abstracting  50  and  30 l/s,  respectively  , indicate  a  water  level decline of between 2 to 14 m, with regional cones of depression of a few hundred meters to intercept groundwater flow up to a 20 m depth. Predictions from groundwater modelling indicate that these schemes can minimise pollution during the operational phase and protect downstream water resources. Predictions from modelling indicate that the pollution sources need to be removed to ensure long-term clean-up to return the land to safe use. The gold and uranium prize is securing the removal of the sources through  re-processing  of  the  tailings  and  waste  rock  dumps.  After  removaof  the  sources  of pollution,  the  remediation  schemes  would  have  to  boperated  for  2years  to  return  the groundwater to an acceptable standard  of  stock  watering  and  industrial  water  use.  The  water quality is observed by a monitoring network of approximately 100 observation boreholes.

Abstract

Quantification of hydrological processes is required for many projects related to potential groundwater recharge. Thus, investigation on various hydrogeologic conditions is paramount. Changes of climate can affect the hydrological cycle by altering groundwater recharge. As a result, an understanding of the hydrological conditions is essential to make sensible predictions of the possible groundwater recharge. Thus WetSpass, which yields spatially varying groundwater recharge using hydrological inputs, can be used together with a geographical information system to quantify the environmentally acceptable flow regime of the catchment area. This paper presents an overview on the use of WetSpass in combination with GIS on quantification of groundwater potential which will assist to sustainable groundwater development in the catchment area. Previous applications are presented.

Abstract

South Africa has an energy crisis. The country requires 53 Gigawatt of new capacity by 2030. The exploitation  of  unconventional  gas  is  a  potential  game-changer  to  meet  South  Africa’s  current energy deficit to fuel economic growth and development. Water management, both in terms of abstraction and disposal, has emerged as a critical issue in the development of unconventional gas reservoirs. This presentation focuses on a high-level, qualitative analysis of the groundwater-related institutional and governance challenges associated with unconventional gas exploration and production. The findings represent a synthesis of information sourced from regulatory and legislative documents as well as international experience. The analysis maps the current groundwater institutional and governance landscape in South Africa and lessons learned from other regimes such as the United Kingdom and United States of America. Good governance entails ensuring that there is compliance with policy and legislation, effective decision-making, appropriately allocated accountability, transparency and that stakeholder interests are considered and balanced. This forms the basis of a preliminary gap analysis.