Conference Abstracts
Title | Presenter Name Sort descending | Presenter Surname | Area | Conference year | Keywords | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Diamonds on the soles of their feet: groundwater monitoring in the Hout Catchment, Limpopo | Jacqueline | Goldin | Limpopo | 2021 | Citizen Science, framework, participatory methods, Rainfall, Groundwater Sampling, Data collection | ||||||
AbstractWe present findings from a current project in the Hout Catchment, Limpopo Province in South Africa, In grounding the discussion, we propose a citizen science framework that builds on ideas of the living lab, trust and research integrity. The idea of research integrity is not only about ethics but also about methods and we propose participatory methods that are inclusive, just and fair. We achieve trust and practices of research integrity, applying participatory action research methods which not only address the hydrological void in data by identifying water features in the catchment but also have intrinsic value, enhancing well being and brokering trust. The frame presents the idea of water literacy – where the material aspects of CS (dip-meters, rain gauges etc.) intersect with the more intangible goods that have to do with human well-being. In our application we redress the bias where the focus lies more on the natural science aspect rather than the humanities with its attention to human well-being and the recognition of difference and diversity. Considering CS within the frame of feminist philosophy, it is personally transformative with the element of ‘surprise’ that the end point is undetermined – and it focusses on diversity and difference across segments and within segments in the catchment. Participatory parity has intrinsic value (equity and a more just social context) but also extrinsic value (better data and plotting of map features for remote rural areas otherwise difficult to access). CS is a powerful emancipatory tool that is able to generate virtuous cycles of inclusion and equality. We propose a CS frame that captures the ideas of trust, the living lab, SDGs and the emancipatory notion of citizen science, narrowing the divide between the natural and social sciences and acknowledging research integrity and the opportunity for what we call ‘authentic’ learning. Also Refer Article published in the BWJVol131 https://bwa.co.za/the-borehole-water-journal/2021/12/28/south-african-groundwater-project-shows-the-power-of-citizen-science |
|||||||||||
Multi-Data Integration Approach In Groundwater Resource Potential Mapping: A Case Study From The North West Province, South Africa | A | Tessema | Naledi Local Municipality, North West Province | 2013 | case study, Groundwater | ||||||
AbstractA multi-data integration approach was used to assess groundwater potential in the Naledi Local Municipality located in the North West Province of South Africa. The geology comprised Archaean crystalline basement, carbonate rocks (dolomite and limestone) and windblown sand deposits of the Kalahari Group. The main objective of the study is to evaluate the groundwater resource potential using multi-data integration and environmental isotope approaches. Prior to data integration, weighting coefficients were computed using principal component analysis. The results of integration of six layers revealed a number of groundwater potential zones. The most significant zone covers ~14% of the study area and is located within carbonate rocks in the southern part of the study area. The localisation of high groundwater potential within carbonate rocks is consistent with the results of principal component analysis that suggests that lithology significantly contributed to the total data variance corresponding to principal component 1. In other words, carbonate rocks consisting of dolomite and limestone largely account for groundwater occurrence in the southern part of the area. In addition, the relatively elevated isotopic signature of tritium (≥1.0 TU) in groundwater samples located in the southern part of the area suggests a groundwater recharge zone. Furthermore, moderate-to-good groundwater potential zones within the Ventersdorp lava coincide with maximum concentration of fractures, which is consistent with the results of statistical correlation between borehole yield and lineament density. The multi-data integration approach and statistical correlation used in the context of evaluating groundwater resource potential of the area provided a conceptual understanding of hydrogeological parameters that control the development of groundwater in crystalline and carbonate rocks. Such approach is crucial in light of the increasing demand for groundwater arising from municipal water supply and agricultural use. The two approaches are very effective and can be used as a sound scientific basis for understanding groundwater occurrence elsewhere in similar hydrogeological environments. |
|||||||||||
Delineation Of Zones At Risk From Groundwater Inflows At An Underground Platinum Mine In South Africa | A | Stoll | National | 2013 | groundwater inflow | ||||||
AbstractThe subject mine has a policy of avoiding groundwater inflow into the underground workings due to the impact on the mine operations. It has already implemented a significant mitigation measure by excluding shallow mining and a large pillar under the river that is present in the mining area. To assess the potential for groundwater inflows into the underground mine workings as a result of a planned expansion project, Environmental Resources Management (ERM) undertook numerical groundwater modelling based on a detailed geological investigation to define the proposed mining area into high, medium and low mining risk areas with respect to potential groundwater inflow. The conceptual definitions of the mining risk areas are: High Risk – general groundwater seepage and inflow expected in the face and roof of the mining unit from numerous joints and fractures which is regarded as serious enough to permanently halt mining operations. Medium Risk – possibility of limited point source groundwater inflow in the face and roof of the mining unit from sporadic selective joints and fractures. Not expected to halt mining operations. Low Risk – no significant groundwater risk to mining operations expected. The areas identified as being potentially at risk from groundwater inflow were determined using a combination of geological mapping, ground geophysics and percussion drilling that was incorporated into a numerical hydrogeological model. The study undertaken by ERM enabled the mine to incorporate the identified mining risk zones into the early stages of the mine planning, and allowed for a significant reduction in the size of the safety pillar under the river. |
|||||||||||
Arsenic In The West-African Water Reserves: Investigation Into Sources Of The Contaminant Through Case Studies In The Region | AA | van Coller | Western Africa | 2013 | Contaminant, investigations, Groundwater reserve | ||||||
AbstractThe mineral-rich basin of the West African region has vast reserves of gold, diamond as well as iron ore deposits. Throughout the regional geological setting characterised by structural variations and intrusive belts with metamorphic mineral-rich sequences covered by saprolite soils, one common chemical constituent remains a constant in the water reserves. Arsenic is in high concentrations throughout the region with chemical ranges commonly above the various country guidelines as well as international IFC and WHO standards. The aqueous chemical species is associated with arsenopyrite-rich mineralogy of the regional greenstone belts and highly weathered soils. This conference presentation investigates the natural source of the arsenic through baseline data, as well as the effect of mining on the already high concentrations of arsenic in both the groundwater and surface water. Natural levels of various chemical species in the regional area are already high at baseline level. One of the main research questions is thus whether mining and other anthropogenic activities will have an impact on the environment or will the changes to concentrations be so insignificant to allow the ecosystems and water users to continue in their current ways without any effect. Various case studies in Burkina Faso, Liberia, Sierra Leone and other countries have been combined to investigate the arsenic-rich resources of the West African region through groundwater specialist investigative methods with emphasis on geochemical modelling of the fluid–rock and fluid–fluid interactions leading to the aqueous chemical conditions in the region. |
|||||||||||
Characterisation Of Hydrochemical Facies And Water Quality Of The Coastal Plain-Sand Aquifers Of Parts Of Eastern Niger Delta, Nigeria | AN | Amadi | Nigeria | 2013 | hydrochemical, Water quality, coastal aquifers | ||||||
AbstractSoil and water pollution are major environmental problem facing many coastal regions of the world due to high population, urbanisation and industrialisation. The hydrofacies and water quality of the coastal plain-sand of part of Eastern Niger-Delta, Nigeria, was investigated in this study. Hydrogeological investigations show that the aquifers in the area are largely unconfined sands with intercalations of gravels, clay and shale which are discontinuous and, however, form semi-confined aquifers in some locations. Pumping test results show that the transmissivity ranged between 152.0 m2/day and 2 835.0 m2/day with an average value of 1 026.0 m2/day, while the specific capacity varied between 828.0 m3/day and 15 314.0 m3/day with a mean value of 6 258.0 m3/day. Well-discharge ranged between 1 624.0 m3/day and 7 216.0 m3/day with an average value of 3 218.0 m3/day, while hydraulic conductivity varied between 3.2 m/day and 478.4 m/d with a mean value of 98.6 m/day. These findings indicate that the aquifer in the area is porous, permeable and prolific. The observed wide ranges and high standard deviations and mean in the geochemical data are evidence that there are substantial differences in the quality/composition of the groundwater within the study area. The plot of the major cations and anions on Piper, Durov, and Scholler diagrams indicated six hydrochemical facies in the area: Na-Cl, Ca-Mg-HCO3, Na-Ca-SO4, Ca-Mg-Cl, Na-Fe-Cl and Na-Fe-Cl-NO3. Heavy metal enrichment index revealed 12 elements in the decreasing order of: Fe > Ni > Cu > Zn > Mn > Cd > V > Co > Pb > Cr > As > Hg. The study identified salt intrusion, high iron content, acid-rain, hydrocarbon pollution, use of agrochemicals, industrial effluents and poor sanitation as contributors to the soil and water deterioration in the area. Saltwater–freshwater interface occurs between 5 m to 185 m, while iron-rich water is found between 20 m to 175 m. The first two factors are natural phenomenon due to the proximity of the aquifer to the ocean and probably downward leaching of marcasite contained in the overlying lithology into the shallow water table, while the last four factors are results of various anthropogenic activities domiciled in the area. The DRASTICA model, a modification of the DRASTIC model, was developed and used in the construction of the aquifer vulnerability map of the area. Modern sanitary landfill that ensures adequate protection for the soil and groundwater was designed and recommended to replace the existing open-dumpsites. Owing to the monumental and devastating effects of hydrocarbon pollution in the area, the need to eradicate gas-flaring and minimise oil spills in the area was advocated. Bioremediation and phytoremediation techniques were recommended to be applied in the clean-up of soils and water contaminated with hydrocarbon in the area.
|
|||||||||||
Performance Monitoring Of The Monitored Natural Attenuation Of Petroleum Hydrocarbons In Groundwater Using Geochemical Parameters | AR | Gemmell | 2017 | MNA, geochemical indicators, geochemical parameters, monitoring network | |||||||
AbstractMonitored Natural Attenuation (MNA) refers to the monitoring of naturally occurring physical, chemical and biological processes. Three lines of evidence are commonly used to evaluate if MNA is occurring, and this paper focusses on the second line of evidence: The geochemical indicators of naturally occurring degradation processes and the site-specific estimation of attenuation rates. The MNA geochemical indicators include the microbial electron acceptors (e.g. dissolved oxygen, nitrate and sulphate) and the metabolic by-products (manganese (II), iron (II) and methane). In addition, redox and alkalinity are important groundwater indicators. So as to properly assess the geochemical trends a groundwater monitoring well network tailored to assessing and defining the contaminant plume is required. The expressed assimilative capacity (EAC) is used to estimate the capacity of the aquifer to degrade benzene, toluene, ethylbenzene and xylene (BTEX compounds) using the concentrations of geochemical indicators. Using the EAC, the groundwater flow through a perpendicular cross-section of the source area, and the source mass, the life of the contaminant source can be made. A practical example of the performance monitoring of MNA using geochemical parameters is described for a retail service station in KwaZulu-Natal, which has groundwater impacted by a petroleum hydrocarbon plume. This includes a description of the monitoring well network, the geochemical measurements, the calculation of the EAC, and the estimated life of the contaminant source. |
|||||||||||
Analyzing the effects of episodic groundwater recharge caused by extreme events in a semi-arid region: a case study in Beaufort West, South Africa. | Aarifah | Williams | Beaufort West | 2021 | recharge | ||||||
AbstractOn a global scale, groundwater is seen as an essential resource for freshwater used in both socioeconomic and environmental systems; therefore forming a critical buffer when droughts occur. Due to its location in a dry and semi-arid part of South Africa, Beaufort West relies on groundwater as a crucial source of fresh water. Thus, proper management of their groundwater resources is vital to ensure its protection and preservation for future generations. Although fluctuations have occurred over the years, groundwater levels in the area have progressively dropped due to abstraction in well fields. However, in 2011, an episodic flooding event resulted in extreme groundwater recharge with groundwater levels North-East of Beaufort West recovering tremendously. This led to the overall groundwater levels of Beaufort West becoming relatively higher. The general flow of groundwater in the town, which is from the Nuweveld Mountains in the North to the town dyke in the South, is dictated by dykes occurring in the area. This study aims to expand on the understanding of episodic groundwater recharge around extreme climatic conditions of high precipitation events in a semi-arid region. This was done by analyzing historical data for the Gamka Dam spanning over 30 years; estimating recharge in the Beaufort West well fields caused by the flooding event; as well as studying the hydrogeological setting and lineaments in the area. It was found that sufficiently elevated recharge around the observed flooding event only occurred in areas where the correct climatic (precipitation, evaporation), geological and geographical conditions were met. Ultimately, gaining a better understanding of these recharge events should aid in the assessment of the groundwater development potential of Beaufort West. |
|||||||||||
Episodic Groundwater Recharge Around Extreme Climatic Conditions in Beaufort West | Aarifah | Williams | Beaufort West | 2019 | Poster, recharge, extreme climate | ||||||
AbstractDue to its location in a dry and arid part of South Africa, Beaufort West relies on groundwater as a crucial source of freshwater for the town. Although there have been fluctuations over the years, groundwater levels in the area have progressively dropped due to unsustainable abstraction from wellfields. The general flow of groundwater in the town, which is from the North where the Nuweveld mountains are situated to the town dyke in the South, is dictated by major dykes in the area. In 2011, flooding resulted in extreme groundwater recharge with groundwater levels North East of Beaufort West recovering tremendously, from 45m below ground level to approximately 10m below ground level; and the general groundwater levels of Beaufort West becoming relatively higher. The purpose of this study was to gain a better understanding of episodic groundwater recharge around extreme climatic conditions of high precipitation events in a semi-arid region. This was done by analyzing data for surface water levels, groundwater levels, rainfall and evaporation from Beaufort West; using Sentinel 1 in InSAR (interferometric synthetic aperture radar) to utilize remote sensing as a tool to examine land surface fluctuations with regards to the changes in the groundwater levels; as well as studying the hydrogeological setting and lineaments in the area |
|||||||||||
Multi-data Integration Approach in Groundwater Resource Potential Mapping: A case study from the North West Province, South Afri | Abera | Tessema | North-West | 2015 | |||||||
AbstractMulti-data integration approach was used to assess groundwater potential in an area consisting crystalline basement and carbonate rocks that are located in the North West Province of South Africa. The main objective of the study is to evaluate the groundwater resource potential of the region based on a thorough analysis of existing data combined with field observation. Integration of six thematic layers was supplemented by a statistical analysis of the relationship between lineaments density and borehole yield. Prior to data integration, weighting coefficients were computed using principal component analysis. |
|||||||||||
Identification and Assessment of LNAPL Hydrogeological Conditions to Refine Conceptual Site Models. | Adolf | October | 2015 | ||||||||
AbstractLNAPL present in a monitoring well forms part of the broader groundwater system and is effectively influenced by hydrogeological conditions, which are always changing. Monitoring of LNAPL is therefore of utmost importance to identify and assess the LNAPL hydrogeological conditions. Both groundwater and LNAPL can exist as unconfined and confined. Groundwater is unconfined when the upper boundary is the water table and is confined as a result of the presence of a confining layer with a relatively low vertical hydraulic conductivity that inhibits the flow of all liquids. LNAPL becomes unconfined when the apparent free product thickness increases with a decreasing groundwater elevation and confined when apparent free product thickness increases with an increasing groundwater elevation. The LNAPL is confined as a result of the difference between the capillary properties of the mobile LNAPL zone and its confining layer. Specifically, LNAPL is confined when it cannot overcome the pore entry pressure of the confining unit. Consequently, LNAPL may be confined when groundwater is not. The paper attempts to describe the hydrogeological conditions in case histories of both primary and fractured aquifers and illustrate how to identify and assess the conditions. Data such as free phase and groundwater level monitoring, well logs, sieving of soil and LNAPL bail tests are used as assessment tools. The additional required data is gathered and integrated in the conceptual site model, followed by a revision of the CSM and a refinement of decision goals over time. Thus the CSM matures and enables an improved understanding of the site characteristics and the re-adjustment of decision criteria. {List only- not presented} |
|||||||||||
Groundwater Inflow Investigation At Finsch Diamond Mine | Adriaan | Pretorius | Finsch Diamond Mine | 2019 | Poster, inflow, mining | ||||||
AbstractHistorically Finsch Diamond Mine has experienced groundwater inflow in the underground workings of the mine. The inflow results in unsafe and undesirable working conditions. Sampling was conducted over a three month period in order to determine the source of the groundwater inflow. The sampling consisted of various underground samples, monitoring borehole samples as well as surficial water body samples. The samples were analysed for major and minor chemical constituents as well as O18 and H2 isotopes. In order to determine the source of inflow in the underground workings the samples were compared to that of the South African drinking water standard (SANS), graphically interpreted via Piper, expanded Durov and Stiff Diagrams as well as isotopically analysed by comparison to the Global Meteoric Water Line (GMWL). Geochemical modelling was employed in order to determine the typical chemical constituents where groundwater interacts with tailings material and to calculate mixing ratios. Comparison to SANS and the geochemical modelling indicated that elevated sulphate and sodium is associated with fine residue deposit (FRD) water. The Piper and expanded Durov diagrams indicated the presence of three major water types namely: calcium-magnesium-bicarbonate, calcium-magnesium-sulphate and sodium-sulphate types. The isotope analysis indicated the presence of three major water types namely: samples which correspond well with the GMWL, samples which do not correspond well with the GMWL but fall along a mixing line and water which does not correspond with the GMWL. From the analyses, it was clear that water with a sodium-sulphate signature and an evaporated nature, as seen from the isotope data occurred in the underground workings of the mine. These samples corresponded well with water from a nearby FRD and indicate that the FRD is responsible for inflow on shallow levels of the mine. |
|||||||||||
Groundwater monitoring of South Africa through numerical model | Akhona | Maqhubela | Sutherland | 2021 | Monitoring, numerical modelling, GRACE, SG measurements, MODFLOW, SAGOS | ||||||
AbstractMonitoring groundwater storage is conducted in the study. World Health Organisation estimates, about 55 million people affected by drought yearly. However, Surface water holds 0.3 percent of the freshwater, and groundwater holds 30.1 percent of the freshwater. Hence, monitoring groundwater storage is vital. Though the GRACE (Gravity Recovery And Climate Experiment) satellite provides global-scale groundwater data, but does not provide any information about changes in groundwater flow systems and has uncertainties, due to large noise produced. A correlation has to be established between gravity changes and groundwater storage variations through a program that simulates the flow of groundwater. The relationship between developed numerical models and data derived from superconducting gravity is imperative. This study is conducted in South African Geodynamic Observatory Sutherland (SAGOS) area at Sutherland, South Africa. The study aims to develop a numerical geohydrological model to monitor subsurface variations in water distribution through superconducting gravimeters (SG) records. The interpretation of the SG measurements to directly compare to one another at a higher resolution is considered in the study, through the correlation of the developed model and installed superconducting gravimetric residual data. A numerical groundwater flow model is developed using model muse on MODFLOW. Assigned boundary conditions, fractured rocks were activated by the model. Hydraulic conductivities were simulated for any layer, including storage coefficient. Hence, hydraulic conductivity is an important aspect of the study. In conclusion, gravity is an excellent tool for measuring groundwater recharge within the immediate vicinity of the SAGOS. This implies that gravity can aid in monitoring groundwater recharge and discharge in semi-arid areas. The application of the hydrological model at various scales comparing the Superconducting Gravimeter and GRACE satellite data is paramount to improve modelling groundwater dynamics. The consideration of developing numerical hydrological to monitor groundwater storage will add much value to missing information. |
|||||||||||
Waste Management in Nigeria: A paradigm Shift | Akobundu | Amadi | Nigeria | 2015 | waste management, environmental pollution, Modern sanitary landfill | ||||||
AbstractThe manner in which municipal and industrial wastes generated are disposed in the urban areas in Nigeria is worrisome. The practice of dumping solid wastes in abandoned burrow-pits or valley and the discharge of liquid wastes directly on soils or surface water without any form of treatment has resulted in soil and water pollution. The continuous release of dangerous gases into the atmosphere by industries unabated has contributed to air pollution. These inadequate waste disposal techniques have created serious environmental and health challenges. Due to increasing population growth rate, urbanization, industrialization and economic growth, there has been a phenomenal increase in the volume of wastes generated daily and handling of these wastes have constituted an environmental problem. The need to manage these wastes in an environmentally-friendly manner that will guarantee safety of the soil and water resources lead to the present study. The newly designed waste management landfill incorporates advanced features such as complex multiple liner construction to facilitate organic decomposition and maintain structural integrity. The multiple protective layers and regular monitoring ensure that the waste management landfills exist in harmony with their surrounding environments and communities. These features that enhances maximum protection of soil and water from contamination by plume by decaying waste is lacking in the un-lined open waste dumps been practiced in the country. Pollution abatement, waste reduction, energy saving, health and economic benefits are some of the advantages of the newly designed sanitary landfill system. |
|||||||||||
Geogenic Influence on Groundwater Chemistry in parts of Northern Nigeria | Akobundu | Amadi | Nigeria | 2015 | Granites | ||||||
AbstractThe quality of groundwater is influenced by the chemistry of the rocks through which it migrates. The rock types in an area, particularly their weathered products and rainfall contribute greatly to the chemistry of groundwater. The present study examines the impact of bedrock on the chemistry of groundwater from shallow granite aquifers in Northern Nigeria. Groundwater samples from northeast (Hong), northwest (Zango) and Northcentral (Ogbomosho) were collected and analyzed for relevant water quality parameters. The concentration of fluoride (0.0-3.50) and some heavy metals such as iron (0.3-4.6), nickel (0.1-0.98), copper (0.0-.85), lead (0.001-0.4.0), Manganese (0.00-1.4) and arsenic (0.0-0.76) were slightly higher than their recommended maximum permissible limit in some locations and the observed anomalies can be attributed to geogenic influence as no visible industries are domiciled in these areas. Based on these signatures, the geochemical evolutions of groundwater from the three locations were quantitatively described by the interaction with rock-forming minerals released into the groundwater system through natural processes of weathering and dissolution in the flow-path. This is a testimony to the fact that groundwater can be grossly contaminated with critical elements by natural means. Analyses of rock samples from these locations revealed the presence of nacaphite, a fluoride rich mineral as well as arsenic, nickel, copper, lead and iron. The observed concentration ranges of fluoride and heavy metals are a reflection of the natural background concentration and a landmark in geochemical characterization of groundwater system in these areas. The enrichment trend is in the order of Zango > Hong > Ogbomosho. This implies that the granites in the area are composed of mineral containing these elements. Communities living in the granite/rhyolite dominated region where cases of fluorosis and heavy metal contamination have been observed should discontinue the use of groundwater from the area for domestic and drinking purposes. The Government should provide an alternative source of drinking water for the people. |
|||||||||||
Hydrocarbon plume delineation using a Hydrogeological and Geophysical approach | Albert | Kruger | 2015 | ||||||||
AbstractSimple and cost-effective techniques are needed for land managers to assess and quantify the environmental impacts of hydrocarbon contamination. During the case study, hydrocarbon plume delineation was carried out using hydrogeological and geophysical techniques at a retail filling station located in Gauteng. Laboratory and controlled spill experiments, using fresh hydrocarbon product, indicate that fresh hydrocarbons generally have a high electrical resistivity, whilst biodegraded hydrocarbons have a lower resistivity. This is attributed to the changes from electrically resistive to conductive behaviour with time due to biodegradation. As such, it should be possible to effectively delineate the subsurface hydrocarbon plume using two-dimensional (2D) Electrical Resistivity Tomography (ERT). As part of the case study, two traverses were conducted using an Electric Resistivity Tomography (ERT) survey with an ABEM SAS1000 Lund imaging system. The resultant 2D tomographs were interpreted based on the resistivity characteristics and subsurface material properties to delineate the plume. Localised resistivity highs were measured in both models and are representative of fresh hydrocarbons whereas areas of low resistivity represented areas of biodegraded hydrocarbons. More conventional plume delineation techniques in the form of intrusive soil vapour and groundwater vapour surveys as well as hydrochemical anlayses of the on-site monitoring wells were used to compare the results and to construct the detailed Conceptual Site Model. During the investigation, four existing monitoring wells located on the site and additional two wells were installed downgradient of the Underground Storage Tanks (USTs) in order to determine the extent of the plume. In conclusion, a comparison was found between the groundwater results and geophysical data obtained during the case study and it was concluded that ERT added a significant contribution to the Conceptual Site Model. |
|||||||||||
Hydrogeochemical Evolution of an Opencast Colliery After Decommissioning - Static vs. Dynamic Prediction | Altus | Huisamen | Mpumalanga | 2015 | |||||||
AbstractStatic indicator tests, such as acid-base accounting, are commonly used to provide an indication of ARD potential of backfill material in opencast coal mines. This potential for acidity is then commonly incorporated into numerical models, wrongfully, as a constant contamination source with the maximum possible sulphate being released from the pit, ad infinitum, which is, obviously, not the case. Dynamic tests on the other hand, are considered superior, but are expensive and time consuming. The proposed alternative approach is geochemical modelling, illustrated by a case study in the Mpumalanga coal fields. A decommissioned colliery near Carolina, Mpumalanga, was recently confronted with the prediction of the impacts that its backfilled opencasts might have on groundwater in the long term with regards to acid and contaminant generation, demanding a more realistic and well-defined conceptual and numerical approach than the simple minimum screening method. This study utilised the integration of a well-defined conceptual model, mineralogical data, acid-base accounting data, leaching test data, literature and groundwater monitoring data to address the long term hydrogeochemical evolution of groundwater at the colliery, using transiently calibrated geochemical and numerical flow models. Using the mineralogical data available from samples collected, as well as the sulphur content identified by ABA, a standard error was calculated for the abundances of all mineral phases present along with mean weight percentages, defining the likely boundaries of mineral abundances. Using these values along with reactive surface areas calculated from average grain sizes, using a collapsing core model, as well as rate constants from literature, the fluid rock interaction in the leaching tests was simulated and calibrated against leaching test results in the geochemical model, by varying mineral abundances, reactive surface areas and rate constants within the statistically acceptable boundaries. Once a calibrated mineral assemblage was identified using this method, the assemblage was geochemically modelled in the natural environment, after calculation of fluid to rock ratios, which in this case was purely potential backfill porosity vs. recharge due to the natural groundwater level being below the pit base, as well as potential oxygen fugacity. The calculated concentrations of constituents were then introduced into a transiently calibrated numerical flow and transport model via recharge concentrations, to also chemically calibrate this model. The chemical calibration was successful within a 20 mg/L range, illustrating the reliability of the conceptual and geochemical models, but also the reliability of predicted numerical modelling results. Based on the available data and modelling results, the colliery would not have a future impact on groundwater with regards to ARD and metals. However, elevated major cation and anion concentrations are expected, calculated within order of magnitude accuracy, and can be managed according to dynamic and realistic models, instead of a static worst case scenario. |
|||||||||||
Numerical Modelling of Groundwater Flow Between a Complex Underground Mine and an Operational Opencast Mine | Altus | Huisamen | Mpumalanga | 2015 | |||||||
AbstractThe management of groundwater inflows into an opencast colliery in Mpumalanga is normally fairly easily achievable due to low inflow volumes and high evaporation rates. But, when flooded underground mine workings are encountered, groundwater inflow complexity increases dramatically. Understanding, predicting and managing groundwater inflow under these conditions can be challenging and highly complex. While normal opencast inflows are easily modelled these connected mines are pushing numerical models to their limits. This case study aims to illustrate an approach based on a finite difference model that has been used successfully in a South African coal mine. Based on a study at a colliery near Ermelo, Mpumalanga, the understanding and conceptualisation of the aquifer geometry, geological structures, hydrogeology, defunct underground mine geometry and interconnection between opencasts and the underground, proved to be vital, not only in calibration of the model, but also in the construction of the various layers and calculation of flow volumes between the various sources and sinks. This also aided greatly in constant source contaminant transport modelling to trace which mining areas may have a contamination effect on each other or the surrounding aquifer. In constructing the numerical flow model, the underground mine geometry was found to intersect various layers in the MODFLOW based model and pinching out in some areas. Due to the requirement of MODFLOW that layers should be continuous with no pinchouts to the model boundaries, this presented a notable challenge in the model construction. Therefore, mine geometry was divided into various slices, fitting within the hydrogeological layers, but still retaining the original geometry. The layers were then further divided laterally using different materials to represent the mine hydraulic properties and aquifer properties respectively, ensuring that the lateral distribution of materials also represents the underground mine geometry accurately. Using this model construction, the calculated mean residual head for the simulation of the current situation was found to be less than 3m while the simulation of the current mining situation with no underground mine present, yielded a mean residual head of approximately 10m. Additionally, inflows measured in the opencast penetrating the underground were measured at approximately 1000m3/d while the calibrated model calculated inflows of 1160m3/d, while simulating the current mining situation including the defunct underground. The current decant from the defunct underground, to the southeast of the site, was calculated as 1.9 L/s by the model while the measured rate was just over 1 L/s. Also, as expected, the dewatering of the opencast penetrating the flooded, defunct underground mine, was calculated to predominantly impact an underground mine compartment, isolated by underground seals, as opposed to the aquifer, which has a much lower hydraulic conductivity. {List only- not presented} |
|||||||||||
Characterisation and Protection of Deep Aquifers in South Africa: Potential Resources | Amy | Allwright | South Africa | 2017 | Deep aquifers, aquifer protection | ||||||
AbstractThe importance of groundwater in South Africa has become evident over the past decades, especially as pressure on surface water resources intensifies in response to increasing water supply demands. Research has significantly progressed on the shallow groundwater resources conventionally used for water supply, and leading on from this deeper groundwater resources have become a focus point as a future water source. This focus on deep aquifers is driven by new developments, such as shale gas development, injection of brines into deep aquifers, carbon sequestration and geothermal energy. The understanding of deep groundwater in South Africa is often limited due to insufficient data at these depths. To develop a body of knowledge on deep geohydrology in South Africa, an investigation on the currently available information was launched to assess potential deep groundwater resources. The investigation formed part of the larger WRC Project K5/2434 (Characterisation and Protection of Potential Deep Aquifers in South Africa). The geology of South Africa was reviewed from a deep groundwater perspective to provide an initial analysis of potential deep groundwater aquifers. The main potential deep aquifers were identified for further investigation using a ranking system, where Rank 1 shows a positive indication, Rank 2 shows some indication, Rank 3 shows a neutral indication, and Rank 4 shows a negative indication for deep groundwater systems. The Rank 1 geological groups include (in no particular order): the Limpopo Belt, Witwatersrand Supergroup, Transvaal Supergroup, Waterberg and Soutpansberg Groups, Natal Group, Cape Supergroup, Karoo Supergroup. In a number of the identified potential deep aquifers, the indicator for deep groundwater flow systems was the presence of thermal springs. Additionally, deep groundwater occurs below the traditionally exploited weathered zone, and the importance of fractured aquifers becomes paramount in the investigation of potential deep aquifers. In conclusion, three main components were considered for the investigation of potential deep aquifers systems, 1) geological groups; 2) thermal springs and 3) depth of fractures. These three components should be used holistically going forward to best characterise the potential deep aquifers of South Africa. |
|||||||||||
Groundwater transport modelling: A fractional/fractal perspective | Amy | Allwright | 2019 | modelling | |||||||
AbstractThe complexity of real world systems inspire scientists to continually advance methods used to represent these systems as knowledge and technology advances. This fundamental principle has been applied to groundwater transport, a real world problem where the current understanding often cannot describe what is observed in nature. There are two main approaches to improve the simulation of groundwater transport in heterogeneous systems, namely 1) improve the physical characterisation of the heterogeneous system, or 2) improve the formulation of the governing equations used to simulate the system. The latter approach has been pursued by incorporating fractal and fractional derivatives into the governing equation formulation, as well as combining fractional and fractal derivatives. A fractal advection-dispersion equation, with numerical integration and approximation methods for solution, is explored to simulate anomalous transport in fractured aquifer systems. The fractal advection-dispersion equation has been proven to simulate superdiffusion and subdiffusion by varying the fractal dimension, without explicit characterisation of fractures or preferential pathways. A fractional-fractal advection-dispersion equation has also been developed to provide an efficient non-local modelling tool. The fractional-fractal model provides a flexible tool to model anomalous diffusion, where the fractional order controls the breakthrough curve peak, and the fractal dimension controls the position of the peak and tailing effect. These two controls potentially provide the tools to improve the representation of anomalous breakthrough curves that cannot be described by the classical-equation model. In conclusion, the use of fractional calculus and fractal geometry to achieve the collective mission of resolving the difference between modelled and observed is explored for the better understanding and management of fractured systems. |
|||||||||||
An Innovative Application Of The Mixing Cell Model To Quantify Surface Water–Groundwater Interaction | Amy | Allwright | National | 2013 | Innovation, groundwater resource management, baseflow | ||||||
AbstractThe significance of a reliable groundwater resource assessment is of growing importance as water resources are stretched to accommodate the growing population. An essential component of a groundwater resource assessment is the quantification of surface water–groundwater interaction. The insufficient amount of data in South Africa and the apparent lack of accuracy of current estimates of the groundwater component of baseflow lead to the investigation of a new method. This applicability of this new approach, the Mixing Cell Model (MCM), to quantify the groundwater contribution to baseflow is examined to assess whether the method would be of use in further groundwater resource assessments. The MCM simultaneously solves water and solute mass balance equations to determine unknown inflows to a system, in this application the groundwater component of baseflow. The incorporation of water quality data into the estimation of the surface water–groundwater interaction increases the use of available data, and thus has the ability to increase the confidence in the estimation process. The mixing cell model is applied to datasets from the surface water–groundwater interaction test site developed by the University of the Free State, in addition to data collected along the middle Modder River during a fieldwork survey. The MCM is subsequently applied to a set of quaternary catchments in the Limpopo Province for which there are available calibrated estimates of the groundwater component of baseflow for the Sami and Hughes models. The MCM is further applied to the semi-arid quaternary catchment D73F to assess the applicability of the mathematically-based MCM in a flow system within a regionally-defined zero groundwater baseflow zone. The results indicate that the MCM can reliably estimate the groundwater component of baseflow to a river when sufficient data are available. Use of the MCM has the potential to evaluate as well as increase the confidence of currently determined groundwater baseflow volumes in South Africa, which will in turn ensure the responsible and sustainable use of the countries water resources. |
|||||||||||
Seasonal Climate Forecasting in Groundwater Management: Evidence from Dendron, Limpopo | Amy | Fallon | Limpopo | 2015 | over-exploitation, climate variability | ||||||
AbstractSouth Africa's water legislation of has often been deemed 'progressive', yet implementation of policies can be weak in terms of groundwater - a resource inherently more difficult to govern than surface water due to its invisibility, difficulties in mapping, the long timescales involved and its ties to land tenure. Furthermore, shallow, hard rock aquifers are frequently perceived as "self-controlling" by their users and thus not requiring active management. This view is however not optimal in areas with a large dependence on groundwater for livelihoods invoking the question what happens between the periods of over-abstraction and the recharge events that replenish them? There is a need for better management, particularly in light of climate variability when recharge episodes can be infrequent and drought can lead to extra calls on aquifers. Seasonal climate forecasts have the potential to provide information to contribute to groundwater management strategies. This study focuses on the case of Dendron in Limpopo Province. Numerous consultancy reports have been released over the past few decades regarding the over-exploitation of groundwater due to the area's long history of potato cultivation via groundwater-irrigation. The primary aim of this study is to determine the potential contribution of seasonal forecast information in the Dendron area for agricultural groundwater management, given insights to the needs of commercial farmers in the area the dominant users of groundwater. We examine the effectiveness of formal and informal groundwater management strategies in the area and then consider current use of seasonal forecasts and their potential value for decision-making. We also highlight the need for a better understanding of the role of seasonal climate variability in groundwater systems to understand their potential as climate buffers during periods of drought. Insights will be drawn from interviews with farmers and representatives from the Department of Water and Sanitation, and a needs-analysis workshop with the farming community. Constraints and barriers to uptake are also investigated, looking at factors such as data quality and availability, timing of forecasts, perceptions of forecasts, and their communication. |
|||||||||||
Numerical Modelling Of a Coal Mine to Improve the Understanding of Mine Water Decant: A 1000-Piece Puzzle | Amy | Allwright | 2017 | coal ash, dolomites, Mining , numerical modelling | |||||||
AbstractA coal mine in South Africa had reached decant levels after mine flooding, where suspected mine water was discharging on the ground surface. Initial investigations had indicted a low-risk of decant, but when ash-backfilling was performed in the defunct underground mine, decant occurred. Ash-backfilling was immediately suspended as it was thought to have over-pressurised the system and caused decant. Contrariwise, a number of years later decant was still occurring even though ash-backfilling had been terminated. An investigation was launched to determine whether it was the ash-backfilling which had solely caused decant, or if additional contributing factors existed. Understanding the mine water decant is further complicated by the presence of underlying dolomites which when intersected during mining produced significant inflows into the underground mine workings. Furthermore, substantial subsidence has taken place over the underground mine area. These factors combined with the inherent difficulty of understanding unseen groundwater, produced a proverbial 1000-piece puzzle. Numerical groundwater modelling was a natural choice for evaluating the complex system of inter-related processes. A pre-mining model simulated the water table at the ground surface near the currently decanting area, suggesting this area was naturally susceptible for seepage conditions. The formation of a pathway from the mine to the ground surface combined with the natural susceptibility of the system may have resulted in the mine water decant. This hypothesis advocates that mine water was going to decant in this area, regardless of ash backfilling. The numerical groundwater flow model builds a case for this hypothesis from 1) the simulated upward flow in the pre-mining model and 2) the groundwater level is simulated above the surface near the currently decanting area. A mining model was then utilised to run four scenarios, investigating the flux from the dolomites, subsidence, ash-backfilling and a fault within the opencast mine. The ash-backfilling scenario model results led to the formation of the hypothesis that completing the ash-backfilling could potentially reduce the current decant volumes, which is seemingly counterintuitive. The numerical model suggested that the current ash-backfill areas reduce the groundwater velocity and could potentially reduce the decant volumes; in spite of its initial contribution to the mine water decant which is attributed to incorrect water abstraction methods. In conclusion, the application of numerical models to improve the understanding of complex systems is essential, because the result of interactions within a complex system are not intuitive and in many cases require mathematical simulation to be fully understood. |
|||||||||||
Integrated Hydrogeological, Hydrochemical And Environmental Isotope Investigation Of The Area Around The Kusile Power Station, Mpumalanga, South Africa | Andile | Dlamini | Mpumalanga | 2019 | Isotopes | ||||||
AbstractIndustrial areas are major sources of surface and groundwater pollution. As a result, constant monitoring of water quality is of vital importance to detect pollution incidences in time and to take corrective actions. This integrated hydrogeological, hydrochemical and environmental isotopes (?2H, ?18O, 3H) study has been undertaken to investigate the hydrogeological conditions around the Kusile coal-fired power station located in the quaternary catchment B20F. The study area is characterized by mainly weathered and fractured and fractured aquifer systems. The weathered and fractured aquifers are made up of the Ecca Group shale lithologies, with weathering depths ranging between 5 and 12 m below ground surface (b.g.l.), while the fractured aquifer system is made up of the Pretoria Group quartzites, chert and shale units. Both aquifer systems have borehole yields ranging from 0.1 to 2 L/s. The depth to groundwater ranges from few cms to 22.7 m, with an average depth of 7.6 m b.g.l. Regional groundwater flow direction is from south-east to north-west, following the topographic gradient. The hydrochemical analysis from 25 boreholes, 6 springs, and 19 surface water points show electrical conductivity (EC) values less than 70 mS/m, pH values in the range from 5.2 to 9.6. High concentrations of Fe, Mn and Zn were measured in some samples that have high turbidity (> 5 NTU). The hydrochemical data shows six hydro-chemical facies with Mg-HCO3 as the most dominant indicating a shallow circulating less evolved recharge area groundwater. Multivariate statistical methods in the form of factor and cluster analyses were applied in the analyses of the hydrochemical data collected. The results of Factor analysis indicated three factors which explained 81.5% of the total variance in the hydrochemical data. The first factor is characterised by strong loadings of EC, Mg, SO42-, Ca, and Cl which could explain the contribution of the major ions to the salinity. The second factor has high positive loadings of Fe, turbidity, and a strong negative loading of dissolved oxygen indicating reducing conditions. Factor three shows high positive loadings of HCO3-, pH and Na, where the positive correlation of HCO3- and pH shows carbonate buffering on the pH of the system. The Hierarchial Cluster Analysis subdivided the samples into two clusters and two sub-clusters. Cluster 1 is dominated by surface water samples which are characterised by elevated concentration of HCO3-, turbidity, and SO42-. The second cluster has two sub-clusters. Cluster C-2-1 is characterised by lower Cl and K concentrations while cluster C-2-2 contains boreholes which are dominated by Mg-HCO3 water type. Environmental isotope data indicates that groundwater recharge is from a mixture between sub-modern and recent precipitation. Four surface water samples along a stream line show a similar isotopic signature as the groundwater samples indicative of an interaction between the groundwater and surface water. The preliminary results of the inorganic hydrochemical data doesn't indicate pollution from the Kusile coal-fired Power Station. |
|||||||||||
Arsenic in the west-African water reserves: Investigation into sources of the contaminant through case studies in the region | Andre | van Coller | West Africa | 2015 | Arsenic | ||||||
AbstractThe mineral rich basin of the West African region has vast reserves of gold, diamond as well as iron ore deposits. Throughout the regional geological setting characterised by structural variations and intrusive belts with metamorphic mineral rich sequences covered by saprolite soils, one common chemical constituent remains a constant in the water reserves. Arsenic is in high concentrations throughout the region with chemical ranges commonly above the various country guidelines as well as international IFC and WHO standards. The aqueous chemical species is associated with arsenopyrite rich mineralogy of the regional greenstone belts and highly weathered soils. This conference article and presentation investigates the natural source of the arsenic through baseline data as well as the effect of mining on the already high concentrations of arsenic in both the groundwater and surface water. Natural levels of various chemical species in the regional area are already high at baseline level. One of the main research questions is thus whether mining and other anthropogenic activities will have an impact on the environment or will the changes to concentrations be so insignificant to allow the ecosystems and water users to continue in their current ways without any effect. Various case studies in Burkina Faso, Liberia, Sierra Leone and other countries have been combined to investigate the arsenic-rich resources of the West African region through groundwater specialist investigative methods with emphasis on geochemical modelling of the fluid-rock and fluid-fluid interactions leading to the water quality in the region. |
|||||||||||
Groundwater Stratification And Impact On Coal Mine Closure | Andrew | Johnstone | National | 2013 | Groundwater, coal mine | ||||||
AbstractTo date, South Africa has mined approximately 3.2 billion tons of coal from a number of different coal reserves located in various parts of the country. A large number of the mines have reached the end of their productive life, resulting in numerous mine closures. With closures, groundwater levels have rebounded, resulting in decant of mine water into the environment. This paper describes a case study of a closed underground coal mine, the rebound of water levels, the evolution of the groundwater quality and the impact it has had on the management of the potential decant. On closure of the Ermelo Mines in 1992, initial water quality monitoring indicated that a water treatment plant would be required to treat the mine decant. However, as the groundwater levels in the mine rebounded, the water quality in the mine void evolved from sulphate type water to sodium type water. The evolution of the water quality can be attributed to sulphate reducing bacteria, vertical recharge from the hanging aquifer and stratification. Water level and quality monitoring have shown that the water in the old mine void will not decant to surface due to the depth of the mine void, hydrogeological conditions, a "hanging aquifer" and the recharge mechanisms. As a result, no water treatment will be required and the mine will not impact on the surface water. The main applications from this paper are:
The main contribution of this paper is the use of hydrogeological information in design of a coal mine so as not to decant on closure. |
|||||||||||
The Seven Deadly Sins of Numerical Modelling | Andries | Wilke | South Africa | 2021 | numerical modelling, recharge | ||||||
AbstractPope Gregory defined the seven deadly sins in order to guide the Catholic Church in the 6th century. The past 20 odd years in the industry has shown that there are several mistakes that are repeatedly made by numerical modelers. Although we all acknowledge that any numerical model is a non-unique solution, and that there exists and infinite number of solutions, there are several sins that will prevent the model from giving an accurate representation. This paper will provide the most common mistakes made in a format that is accessible to numerical modelers as well as other practitioners. Issues covered will include boundary conditions, model complexity and recharge. |
|||||||||||
A fresh look at the National Water Balance | Andries | Wilke | 2015 | ||||||||
AbstractThe national water balance is primarily based on the availability of surface water and the historic allocation thereof. The changes that are required the next 20 years to ensure sustainable development of the nation will be painful, but is unfortunately at present not part of the public discussion, it is essentially ignored in favour of more "popular water topics".This paper intends to look at a few core aspects, they include the current water allocation in the national water balance, the relative value of the utilisation, the position of groundwater resources in changing the current relative allocation and the current groundwater utilisation. The paper further intends to be a less formal presentation of these aspects with the required data, references and conclusions available for distribution afterwards. |
|||||||||||
Arsenic In The West-African Water Reserves: Investigation Into Sources Of The Contaminant Through Case Studies In The Region | André | van Coller | West African region | 2013 | Contaminant, case study | ||||||
AbstractThe mineral-rich basin of the West African region has vast reserves of gold, diamond as well as iron ore deposits. Throughout the regional geological setting characterised by structural variations and intrusive belts with metamorphic mineral-rich sequences covered by saprolite soils, one common chemical constituent remains a constant in the water reserves. Arsenic is in high concentrations throughout the region with chemical ranges commonly above the various country guidelines as well as international IFC and WHO standards. The aqueous chemical species is associated with arsenopyrite-rich mineralogy of the regional greenstone belts and highly weathered soils. This conference presentation investigates the natural source of the arsenic through baseline data, as well as the effect of mining on the already high concentrations of arsenic in both the groundwater and surface water. Natural levels of various chemical species in the regional area are already high at baseline level. One of the main research questions is thus whether mining and other anthropogenic activities will have an impact on the environment or will the changes to concentrations be so insignificant to allow the ecosystems and water users to continue in their current ways without any effect. Various case studies in Burkina Faso, Liberia, Sierra Leone and other countries have been combined to investigate the arsenic-rich resources of the West African region through groundwater specialist investigative methods with emphasis on geochemical modelling of the fluid–rock and fluid–fluid interactions leading to the aqueous chemical conditions in the region. |
|||||||||||
A Groundwater Vulnerability Assessment Of The Greater Pietermaritzburg Region Using DRASTIC In A GIS Environment | Andy | Zwiers | Pietermaritzburg, KwaZulu-Natal | 2013 | Groundwater, Groundwater Vulnerability, GIS | ||||||
AbstractPOSTER All groundwater is vulnerable to contamination, and natural in homogeneity in the physical environment results in certain areas being more vulnerable to contamination than others. Inherent in the agricultural, domestic and industrial sectors of Pietermaritzburg, is the generation of contaminants which, upon reaching the aquifer, result in the deterioration of the quality of groundwater, thus resulting in the water no longer being fit for its intended use. The DRASTIC method is used to calculate the groundwater vulnerability of a 670 km2 region, including the city of Pietermaritzburg. The suggested ratings of each parameter are scrutinised and adapted, according to their relevance to the region and according to known geological occurrences. The use of this method enables the user to generate a regional scale vulnerability map of the groundwater in Pietermaritzburg. The vulnerability map generated has the ability to effectively highlight vulnerable areas to groundwater contamination, which is of critical importance in correct land-use planning, as well as in indicating areas of particular concern, where further detailed investigations are needed. The results of such an assessment are used as an input, together with a contamination inventory to assess the potential risk of groundwater pollution in a groundwater risk map. Furthermore, the result informs local decision-makers and enables proactive prevention of groundwater pollution, in accordance with section 13 of the 1998 National Water Act. The intrinsic vulnerability of the Pietermaritzburg region was found to range from low to very high. The area found to be highly vulnerable is the region northeast of Springbank which requires investigation at a local scale. |
|||||||||||
Assessing The Change In Hydraulic Properties Of Fly Ash Over Time When Disposed Into Opencast Coal Mines In Mpumalanga, South Africa | Angelo | Johnson | Mpumalanga | 2017 | AMD, leaching, Darcy column tests, trace tests, fly ash | ||||||
AbstractLarge volumes of fly ash are generated by the coal-fired power stations and is currently disposed onto waste dumps, with already limited space. Therefore, a need for an alternative ash disposal method arises. This study evaluates the feasibility of fly ash disposed as backfill into opencast coal mines. The change in the hydraulic properties of the ash under different conditions and over time play an important role in determining this feasibility. Leachate and tracer tests are conducted in the laboratory through Darcy column tests where; These experiments will be conducted with fly ash of different moisture content and ages (3 days, 28 days and 90 days old ash) to establish the change in hydraulic properties and porosity over time. Infiltration tests will also be conducted on the existing ash dumps in the field and results will be compared to that of the laboratory tests. Conceptual models will then be generated from a combination of the laboratory and field results. The study is still in progress, but the literature review suggests that the possible outcomes are: 1) hydraulic conductivity of the fly ash will be lower than that of the backfill spoils and is expected to further decrease over time, therefore acting as a barrier to the movement of groundwater, 2) general groundwater levels within the backfill are expected to rise; resulting in the decrease of the unsaturated zone and therefore limits oxygen exposure to backfill spoils, and (3) the alkaline nature of fly ash might potentially neutralize acidic levels of AMD. Fly ash, when disposed as backfill into opencast coal mines, might aid in the mitigation/prevention of AMD formation. |
|||||||||||
Aquifer structure and extent based on Airborne Geophysical investigation: A case study based in Saldanha Bay Local Municipality, West Coast. | Angelo | Johnson | Saldanah Bay | 2021 | Poster, Skytem, 3D mapping survey, MAR, interpretation, aquifer management | ||||||
AbstractSaldanha Bay Local Municipality appointed Skytem to conduct an airborne geophysical 3D aquifer mapping survey. As part of improving the sustainable management of the groundwater resources and exploring the options of Managed Aquifer Recharge, a better understanding of the aquifers is required. The Skytem technology unlocked a rich understanding of the subsurface geology and the groundwater contained in it. Before the main survey commenced, a trial survey was conducted to investigate the quality of the data that may be expected from the main survey. The trial survey was conducted over the existing water supply wellfield where there were existing groundwater data including borehole lithology from drilling and ground geophysics. Consequently, the main survey commenced and consisted of the following: The survey interpretation showed the following important aquifer characteristics that will be useful for future management of the aquifer system: The survey output and interpretations are regarded as very useful for the update of the conceptual models for the area. Data can now be used to update the numerical models and improve the management of the wellfields. |
|||||||||||
Assessing The Temporal Change In Hydro-Geochemical Properties Of Fly Ash When Disposed Into Opencast Coal Mines In Mpumalanga, South Africa | Angelo | Johnson | Mpumalanga | 2019 | hydrochemical, fly ash | ||||||
AbstractThis study focus on the feasibility of coal ash backfill into historical and future, acid generating coal mines. However, there is limited knowledge of how South African ash would behave in these acidic opencast mines. Therefore the aim is to improve the understanding of the change in hydro-geochemical properties of coal ash with reference to acid mine drainage (AMD). Fly ash from two power stations in Mpumalanga were assessed in the laboratory. The hydraulic properties of ash were determined through the use of Darcy up flow column tests, where ash was continuously leached with natural AMD. The influent and effluent was monitored for pH, EC and metal concentrations to investigate the chemical changes in the AMD, flowing through ash. The laboratory results exhibited decreasing trends in K over time, from 10-1 m/d to 10-3 m/d. These changes in hydraulic conductivity are initially subjected to the pozzolanic bindings that formed during the curing phase of the experiment. Subsequently, secondary mineralization occurs induced by calcium rich minerals which are deposited in the flow paths, causing a further decrease in K towards 10-2 m/d. Lastly, the Fe (>130 mg/L) and SO4 (>2000 mg/L) concentrations in the AMD together with the low pH = 2.5 causes a clogging effect at the front face of the ash columns, ultimately causing the K to decrease towards 10-3 m/d. Calcium was the dominant cation that leached out and sulphate the dominant anion, which was due to high concentrations in both the ash and AMD. It was observed that most of the leachate water was of a better quality than the influent AMD water quality. Based on the research findings, an ash monolith deposited at the decanting position of an opencast mine may have positive impacts. Ultimately, reducing AMD decant volumes and improving water quality. |
|||||||||||
Geochemical investigations to improve the prediction of mine water impacts: A case study in the Elandsfontein Aquifer System, West Coast. | Angelo | Johnson | West Coast | 2021 | Phosphate mine, waste sreams, mine water impacts, PHREEQC, geochemical | ||||||
AbstractThe impact of the future closure of the KROPZ phosphate mine in the West Coast on the various potential receptors including the underlying Elandsfontein Aquifer System (EAS), Langebaan Lagoon (RAMSAR-site) and wetlands were assessed. This abstract/paper describes the geochemical characterization and management options related to the waste streams from the mining activity, to assess the post closure contribution to groundwater flow from the mine towards potential receptors. The PHREEQC geochemical modelling code was used to predict potential mine water impacts. The input water quality parameters used in the model included: background groundwater quality, pit water and processed water generated from phosphate separation process at the mine. Various scenarios were simulated combining the different process water streams with the tailings and soft stockpile material at the mine. The geochemical predictions showed some management options that should be prevented, while also providing guidance to promising options where most of the chemical parameters does not exceed the WUL stage 1 thresholds. There is however, an increase in sulphate concentrations that need attending to before the mine goes into production phase. Currently there seems to be no immediate concern on the Lagoon relating to the prediction of mine water impacts post mine closure. Some of the management scenarios do however show low levels of potential impacts on SANParks property 100 years post closure. These predictions do however correlate to areas where limited calibration data is available. At the time of this abstract the sites for new boreholes have been selected and the initial boreholes are being drilled to confirm aquifer properties in areas with limited data. |
|||||||||||
Exploring Danish experiences for Groundwater mapping in South Africa | Anker Lajer | HØjberg | South Africa, Denmark | 2021 | mapping , fractured geology, SAGMAA, guidelines | ||||||
AbstractWater supply relies entirely on groundwater in Denmark. A national groundwater mapping programme was established in 2000 to protect this valuable resource. It builds on a thorough and holistic understanding of the hydrogeological settings, obtained through an extensive data collection, culminating with an identification of threats and aquifer vulnerablility. As part of the programme, new approaches, methods, and instruments have been developed, such as airborne geophysical survey by Sky-TEM that allows the mapping of large areas in a fine resolution. Another key element in the mapping is the development of three-dimensional hydrogeological and numerical models. These are used to understand the groundwater flow paths and delineate wellhead capture zones as well as infiltration areas, which, depending on the assessed vulnerability, may be subject to protective measures. The Danish mapping approach have been tested at selected South African sites through the Strategic Sector Cooperation (SSC) between Denmark and South Africa. The approach was applied in a study supporting Umgeni Water to identify groundwater resources to supply numerous villages near the town of Ladysmith. The study illustrated a high potential for adapting relevant parts of the Danish approach to South Africa, but also revealed some challenges, e.g. related to the fractured geology, where groundwater recharge can be concentrated along dykes, a process very different from what is generally observed in Denmark. The SSC has initialised the project “South African Groundwater Mapping and Assessment Approach (SAGMAA)” to share knowledge gain through the national groundwater mapping programme in Denmark with South Africa and explore the possibility of adapting elements from the Danish approach to South African conditions in a broader context. The objective of the project is to provide recommendations to South African guidelines, and the paper will present results from the comparison of approaches in the two countries and preliminary recommendations to guidelines. |
|||||||||||
A Case Study: The Impact Of Alluvial Diamond Mining Operations On Surface- And Groundwater Resources In The North West Province | Anna-Maria | Kruger | North-West | 2017 | Alluvial diamonds, processing methods, waste water, tailing dams, low aquifer potential | ||||||
AbstractThe North West Province has produced a large portion of South Africa’s inland alluvial diamonds. Kimberlite intrusions are typically the parent source for the alluvial diamonds. Diamondiferous kimberlite intrusions were eroded over time by surface run-off and streams which transport the diamondiferous sediments downstream to depositional regimes. The diamondiferous alluvial deposits around Schweizer- Reneke were mostly deposited on magmatic rock of the Ventersdorp Supergroup. Formal alluvial mining in the area often requires a considerable amount of overburden material to be removed in order to access the coarser gravel beds which contain the economic grade diamonds. Diamond production from secondary sources in this region totalled approximately 14.4 million carats up to 1984, and small scale production persists today. The case study focuses on the impacts of alluvial diamond mining operations on surface- and groundwater resources in the North West Province, South Africa. To recover diamonds from the sediments, the industry is currently focussing on using modern processing methods and a more clinical approach to increase the sustainability of mining, therefore minimizing the impact on the environment. Wastewater from the screening and the fines management phase is delivered to the primary water treatment phase where up to 70% of process water is recirculated to the processing plant, minimising the volumes of fresh water required. The settled sludge or waste is deposited on a tailings storage facility. Alluvial diamond mining operations, unlike many other industrial processes and types of mining, have a lower environmental hazardous risk associated with waste material, however, it is a possibility that leachate emanating from tailings often have a high salt content. The process raw water to these operations are supplied from both surface- and groundwater sources from the local area. Supplying processing raw water in a sustainable manner is often a challenge in drought stricken areas with limited surface flow and low aquifer potential. |
|||||||||||
Assessing Different Coal Combustion Residue (CCR) Backfill Scenarios In Opencast Coal Mines, Mpumalanga, South Africa | Annalisa Sagra | Vicente | Mpumalanga | 2019 | opencast coal | ||||||
AbstractSouth Africa relies heavily on coal to generate electricity and meet the countries energy demands (National Electricity Regulator, 2004). Numerous opencast coal mines are decanting acid mine water (AMW) as a result of coal mining activities, causing elevated salt concentrations in nearby surface and ground water bodies. Additionally, the burning of coal for power generation produces large amounts of coal combustion residues (CCR's) annually (Reynolds-Clausen and Singh, 2016), which are disposed of in holding ponds or landfill sites, with limited space. To keep the generation of coal-energy sustainable, there is a need to prevent AMD generation from abandoned mines, whilst concurrently disposing of coal ash. A potential solution is to backfill opencast coal mines with CCR monoliths (large single ash blocks), however, limited studies have focussed on understanding this applications behaviour to determine whether this activity will have a positive, negligible or negative effect on groundwater quality. This study addresses this gap by assessing the flow and transport characteristics of CCR's under numerous generic numerically modelled backfilling scenarios: (1) No CCR's, (2) CCR's placed above water table, (3) CCR's placed below water table, (4) CCR's placed in middle of pit, (5) CCR's on down gradient side of the pit, and (6) CCR's placed from the base up to the weathered zone. Results display that CCR backfill scenarios that intercept the water table experience a 10 - 12 % rise in water levels, whereas, scenarios that do not intercept the water table have no significant effect on the flow regime. This is due to the low hydraulic conductivity of CCR's that act as a hydraulic barrier. CCR backfill scenarios experienced significantly reduced salt loads leaving the pit. The contaminant plume migrates southwards down gradient in all scenarios, with the exception of scenario 5 which successfully contains the plume. The modelling results thus indicate that all CCR backfilling scenarios provide a positive environmental improvement. |
|||||||||||
Latest approaches and examples illustrating the key role of numerical modelling in sustainable groundwater use in South Africa | Annalisa Sagra | Vicente | South Africa various | 2021 | numerical modelling, recharge | ||||||
AbstractGroundwater in South Africa has great potential to supplement our country’s water demands. Currently, studies show that less than 10% by volume of the Average Groundwater Exploitation Potential is abstracted on an annual basis. The 2017 drought has aided in creating awareness of the importance of this resource towards building water resilience. If managed correctly, groundwater is commonly viewed as a sustainable source. Oftentimes, the ‘sustainability’ of a groundwater resource is an ‘open-ended’ definition based on the hydrogeologist’s interpretation of aquifer pumping test data alone. This approach often discounts the cumulative impact of environmental factors (including drought and climate change) and other users on groundwater. The use of numerical groundwater models to support and inform the conceptual models provides the mechanism to bridge this gap. This paper discusses various approaches and examples of where numerical modelling plays a key role in supporting groundwater usage in a sustainable and informed manner. In particular, this includes: •Inclusion of impact from other anthropogenic activities and groundwater users, with model scenarios that show the potential impact of each on the other, as well as the combined result to groundwater (levels and water quality) •Consideration of extreme climatic events (e.g. 1 in 100-year drought and/or flood), including the use of uncertainty analysis and consideration of dynamic groundwater management, such as the possible varying of sustainable pumping rates to suit the prevailing conditions •Identification of groundwater receptors and appropriate assessment of potential impacts to those receptors from groundwater usage, including “target-audience” thinking in the post-processing and reporting of numerical model results, so as to convey clear messages to the interested and effected parties and stakeholders •Use of multiple methods and technologies to calculate and model surface water / groundwater interaction and recharge, including uncertainty analysis, and intelligent challenging of traditional methods of estimating groundwater recharge |
|||||||||||
Hydrogeochemical processes in the shallow aquifer of the Lubumbashi river basin: multivariate statistical approach | Antoine | Lumu Moussa | 2015 | ||||||||
AbstractUnderstanding the hydrogeochemical processes that govern groundwater quality is important for sustainable management of the water resource. A study with the objective of identifying the hydrogeochemical processes and their relation with existing quality of groundwater was carried processes in the shallow aquifer of the Lubumbashi river basin. The study approach includes conventional graphical plots and multivariate analysis of the hydrochemical data to define the geochemical evaluation of aquifer system based on the ionic constituents, water types, hydrochemical facies and groundwater factors quality control. Water presents a spatial variability of chemical facies (HCO3- - Ca2+ - Mg2+, Cl- - Na+ + K+, Cl- - Ca2+ - Mg2+ , HCO3- - Na+ + K+ ) which is in relation to their interaction with the geological formation of the basin. The results suggest that different natural hydrogeochemical processes like simple dissolution, mixing, and ion exchange are the key factors. Limited reverse ion exchange has been noticed at few locations of the study. At most, factor analyses substantiate the findings of conventional graphical plots and provide greater confidence in data-interpretation. {List only- not presented} |
|||||||||||
Complexity versus Simplicity: A comparative analysis of complex geology in hydrogeological modelling | Anton | Lukas | 2012 | modelling, FEFLOW | |||||||
AbstractThis paper was presented at the GWD Central Branch Symposium, Potchefstroom in 2012 Numerical modelling of hydrogeological systems has progressed significantly with the evolution of technology and the development of a greater understanding of hydrogeology and the underlying mathematical principles. Hydrogeological modelling software can now include complex geological layers and models as well as allow the pinching out of geological features and layers. The effects of a complex geology on the hydraulic parameters determined by numerical modelling is investigated by means of the DHI-WASY FEFLOW and Aranz Geo Leapfrog modelling software packages. The Campus Test Site (CTS) at the University of the Free State in Bloemfontein, South Africa was selected as the locale to be modelled. Being one of the most studied aquifers in the world, the CTS has had multiple research projects performed on it and as a result ample information is available to construct a hydrogeological model with a high complexity. The CTS consists primarily of stacked fluvial channel deposits of the Lower Beaufort Group, with the main waterstrike located on a bedding-plane fracture in the main sandstone aquifer. The investigation was performed by creating three distinct hydrogeological models of the CTS, the first consists entirely of simplified geological strata modelled in FEFLOW by means of average layer thicknessand does not include the pinching out of any geological layers. The second model was created to be acopy of the first, however the bedding-plane fracture can pinch out where it is known to not occur. The third and final model consisted of a complex geological model created in Leapfrog Geo which was subsequently exported to FEFLOW for hydrogeological modelling. |
|||||||||||
An Investigation Of The Natural Groundwater Recharge And Discharge Of The West Coast Aquifer Systems | Aqeela | Parker | West Coast Aquifer Systems | 2019 | Poster, recharge, Discharge | ||||||
AbstractGroundwater in the West Coast has been utilised for many years as there are not many surface water resources in the area, and is therefore extremely important. Despite studies being conducted on the aquifer systems since 1976, they are still poorly understood especially with regards to their recharge and discharge processes. This means that the amount of water entering and leaving these systems are unknown, which may lead to over abstraction. It is therefore important to investigate these systems to prevent overexploitation of the groundwater as it will have adverse effects for both humans and ecosystems dependent on it. As part of a managed aquifer recharge (MAR) project for the Saldanha Bay Municipality, this study aims at providing better insight and understanding on the natural resource volumes. The study focusses on groundwater recharge, flow paths and discharge processes and aims at quantifying the volume of water related to each. The study will be conducted by identifying aquifer characteristics through Frequency Domain Electromagnetic and Electrical resistivity geophysical methods. Groundwater flow paths through the unsaturated zone, into the groundwater and towards the discharge area will be determined using Chloride Mass Balance calculations and water isotope analyses. The mass balance equations along with isotope analyses will then aid in the identification of natural recharge and discharge areas of the West Coast aquifer systems, as well as quantifying the volume of water moving through each aquifer. Temperature profiles will also be generated to identify specific layers of the aquifer systems and to determine their groundwater-surface water interactions. The aquifer characteristics will be used in numerical models to test the conceptual understanding of recharge and flow through the systems as well as assessing the volumes of water available to the users of the system. |
|||||||||||
An investigation of the natural groundwater recharge and discharge of the Saldanha Bay Aquifer Systems, South Africa | Aqeela | Parker | Saldanah Bay | 2021 | Bulk water supply, recharge, Discharge | ||||||
AbstractSaldanha Bay is partially dependent on groundwater as part of their bulk water supply, as surface water resources in the area are extremely limited and fully allocated. Due to this, there is lots of pressure on the groundwater resources by industrial development and residential growth. Despite studies being conducted on these aquifer systems since 1976, they are still poorly understood especially with regards to their recharge and discharge processes. This study aimed at providing better insight and understanding on the natural groundwater recharge and discharge processes in order to assist in the better management of groundwater resources in Saldanha Bay. Recharge investigations included a Time Domain Electromagnetic airborne geophysical survey, the assessment of groundwater levels, infiltration tests, hydrochemical analyses as well as stable and radioactive isotope analyses. These methods allowed for the delineation of the geological layers and extent, determination different water quality spatially across the aquifer, determination of flow paths through the saturated and unsaturated zones, identification of inter-aquifer flow as well as different recharge processes in the area. The results of this study showed that is highly likely that the Saldanha Bay Aquifers are mainly recharged via deep flow paths from the Aurora Mountain Range and Moorreesburg region. Investigations also showed that it is unlikely that the Aquifer Systems are recharged by local rainfall due to thick unsaturated sands and low annual rainfall, except for runoff at the foot of granite hills through focused recharge processes. The Berg River, Langebaan Lagoon and the Atlantic Ocean were identified as being the main discharge zones for the area. It is recommended that further hydrogeological investigations are conducted in the Moorreesburg region in order to get a fuller picture of the regional groundwater recharge processes and flow to Saldanha Bay. |
|||||||||||
The Effects of Groundwater use and River Modifications on Non-Perennial River Systems. | Aqeelah | Benjamin | Agulhas, Touws and Tankwa-Karoo | 2019 | Poster, use, river systems | ||||||
AbstractThe hydrological cycle consists of several components, with two of the major processes being that of surface water flows and groundwater flows. It has been proven before that these two components interact with each other and are often critical to the survival of the associated users and ecosystems, especially in non-perennial river systems. Non-perennial river systems have a limited number of studies, especially on its link to groundwater and the management of the system. Surface water and groundwater individually contribute to the quality, quantity and distribution of water available and the effect on down gradient users. Understanding these processes would help greatly in managing the non-perennial river/groundwater catchment systems along with its respective ecosystem. The aim is, therefore, to provide an understanding of the groundwater and surface water interactions in the research catchments of Agulhas, Touws and Tankwa-Karoo, and to understand the influence of management decisions related to groundwater use. To achieve this aim, conceptual models will be formulated for the different sites using borehole, geophysics, hydraulic and geochemical data collected in the research catchments. Prediction of the effects of groundwater use on the river systems, and river modifications on groundwater levels, will be done using numerical models to simulate the flow processes and the interactions. With the often strong reliability on groundwater in semi-arid and arid regions to support ecosystems and surface water pools, it is expected that the results will indicate a decrease in river flows (and existence of pools) with an increase in shallow aquifer groundwater abstraction. However, the regional flow of groundwater and surrounding faults and springs may have an influence large enough to counter the expected result. |
|||||||||||
Identifying suitable sites for Managed Aquifer Recharge within the Saldanha Bay Local Municipality, situated in the West Coast of South Africa | Ashleigh | Tomlinson | West Coast, Western Cape | 2021 | MAR | ||||||
AbstractThe West Coast in the Western Cape of South Africa is a water-scarce area. With pressure from population and industrial growth, recurring droughts and climate change, there is increasing urgency in the West Coast to protect groundwater resources. Saldanha Bay is dependent on groundwater as part of its bulk water supply system. Where the natural groundwater recharge is no longer sufficient to meet the growing groundwater needs, practices such as Managed Aquifer Recharge (MAR) can be used to ensure the sustainability of these groundwater resources. This study aims to identify areas within the Saldanha Bay Local Municipality suitable for Managed Aquifer Recharge to maximize the water available during periods of limited surface water supply. As such, the MAR study site identification requires a comprehensive geohydrological assessment of the Saldanha Bay aquifer. This includes an understanding of the quality and quantity of the source water available for recharge, the aquifer structure and hydraulic properties, the space available to store water, and the compatibility of the recharged water with the groundwater. MAR research methods included Time Domain Electromagnetic (TDEM) airborne geophysical surveys, infiltration tests, pumping tests and hydrochemical analysis. TDEM surveys provided clarity on the various aquifer geological properties. Infiltration and pumping tests shed light on the horizontal and vertical hydraulic properties of the aquifer. PhreeqC modelling outputs helped predict the outcome of the mixing between groundwater and potential MAR water resources. Geological features were delineated through TDEM surveys and inferred five suitable MAR sites where clay layers were missing. Infiltration and pumping tests showed that Langebaan Road is better suited to borehole injection, whereas Hopefield has the benefit of infiltration MAR techniques as an additional option. PhreeqC outputs exhibit that both pipeline and Berg River water show promising results as potential source water resources for MAR as compared to other resources. |
|||||||||||
Identifying Potential Managed Aquifer Recharge Zones In West Coast Aquifers, Western Cape | Ashleigh | Tomlinson | Western Cape | 2019 | Poster, recharge, MAR | ||||||
AbstractThe overexploitation of water resources has resulted in a global decline in groundwater levels. Managed aquifer recharge (MAR) is a globally acceptable practice to manage the depletion of water in overexploited aquifers in regions with limited water availability. The West Coast of South Africa experiences a semi-arid climate with predominantly dry summers. This study aims to identify potential areas suitable for MAR in the Saldanha Bay area to maximize the water available to these areas during the dry season. This will be done through the delineation of the aquifer(s) units to determine the distribution of suitable aquifers, understanding the aquifer(s) hydraulic and hydrogeological characterises and investigate the water quality. This study focuses on 1) Frequency domain electromagnetic and electrical resistivity geophysical methods to characterise the subsurface; 2) Aquifer testing, to estimate the hydraulic properties of the aquifer(s); 3) Water quality sampling and analysis for water quality investigations. Practical considerations like distance from suitable water sources will also be considered. The expectations for this study, based on the results that should be obtained from these methods, should include the identification of several zones that would allow for MAR practices |
|||||||||||
Qualitative interpretation of groundwater flow distribution within the southern granite supersite of the Kruger National Park | Ashton | Van Niekerk | Mpumalanga | 2015 | |||||||
AbstractUnderstanding the hydrogeology of fractured or crystalline rocks could be complicated because of its complex structure and a porosity that is almost exclusively secondary. These types of geologies are known to exhibit strong heterogeneities and irregularities contrasted in hydraulic properties, spacing and flow distribution within fractured rock aquifers. Therefore it is important to develop a conceptual model based on site specific data such as the hydraulic roles between groundwater and nearby hillslope/surface water bodies in order to understand its movement within the environment. Therefore this study intends to develop a hydrogeological conceptual model to qualitatively interpret the dominant groundwater flow processes at a 3rd order scale within southern granite supersite of the Kruger National Park (KNP). Key findings based on actual subsurface results in the form of Electrical Resistivity Tomography (ERT) surveys, borehole drilling logs, water levels and hydraulic data suggest that two aquifer types exist on the southern granite supersite namely, a weathered low resistivity of 3-75 ?m (average depth ranging 383-328 mamsl) and hard rock high resistivity of 1875-5484 ?m (average depth ranging 364-299 mamsl) granite/gneiss aquifer. The weathered aquifer flow system responds to localized processes such as piston recharge, indirect surface water recharge and groundwater water discharge via interflow. This was due to the relatively rapid response time of 2-3 weeks in groundwater levels to the major sequence of rainfall events over the hydrological year. The hard rock aquifer is part of a regional groundwater flow system. This is owed to the lengthy response time lags of 2-3 months in groundwater levels to the major sequences of rainfall events over the hydrological year. Due to the generally low transmissivity (ranging 9.50E-08 to 11.2 m2/day) values obtained during the borehole pump and slug tests and inclining trend of groundwater levels after the wet season, suggest these ephemeral hillslope landscapes are likely to act as hydraulic boundary areas. In that they contribute during the dry season to the regional hydraulic head generating baseflow to perennial streams. Therefore from a management perspective certain reaches within these ephemeral streams contribute to recharge which in turn should receive attention as many of the ephemeral stream sand are used for grading tourist gravel roads. Furthermore these granite ephemeral landscapes are characteristic of generally low transmissive aquifer properties and therefore should be given careful consideration before including it in a water supply scheme scenario. |
|||||||||||
An Updated Hydrogeology Concept Within The Kruger National Park Southern Supersite | Ashton | van Niekerk | The Kruger National Park, Limpopo, Mpumalanga | 2013 | Hydrogeological, ERT | ||||||
AbstractPOSTER Electrical Resistivity Tomography (ERT) surveys were conducted in the Kruger National park (KNP) as part of a recent Water Research Commission project (titled: Surface water, groundwater and vadose zone interactions in selected pristine catchments in the Kruger National Park). The surveys were carried out in a pristine ephemeral third-order supersite catchment, namely the southern granite (Stevenson Hamilton). This supersite is representative of the southern granite region of KNP as it covers part of the dominant geology, rainfall gradient and dominant land system. Electrical resistivity profiling provided valuable data on the subsurface geological material distribution and results depended on soil/rock properties, water content and salinity. The purpose of electrical surveys was to characterise the hydrogeological components of weathering and depth to water level using the subsurface resistivity distribution. The ground resistivity is related to various geological parameters such as the mineral and fluid content, porosity and degree of water saturation in the rock. Based on the initial ERT survey interpretations, boreholes were drilled providing actual subsurface results in the form of borehole drilling logs, water levels, hydraulic data and in situ groundwater quality parameters. Integrating the ERT survey data with the results from the intrusive survey enabled an updated conceptualisation of groundwater flow characteristics and distribution across the southern granite supersite. |
|||||||||||
Effects of Urbanization and Agricultural activities on Aquifer storage and Groundwater quality | Athenkosi | Matshini | 2015 | ||||||||
AbstractPOSTER Aquifer stress arising from urbanization and agricultural activities, these two factors affect aquifer properties when prolonged. Increase in urbanization especially those situated on top unconfined or semi-confined aquifer results in pressure on natural resources, this includes water resources, and changes of land use for agricultural purposes with high economic benefits has an effect on groundwater quality to due to application of Nitrogen- fertilizers during crop rotation and this is largely experienced in developing countries. The effects ranges from groundwater quality to aquifer storage as prolonged aquifer withdrawals due to irrigation, construction, manufacturing affects groundwater storage. Assessment of urbanization and agricultural effects on groundwater requires a complex analysis as integration approaches needs to be discovered for a better analysis of the two more specially when assessing groundwater pollution. The study was conducted to assess the impacts of urbanization and agricultural activities on aquifer storage and groundwater quality: by (a) determining the relationship between the occurrence of contamination due to urbanization by assessing contaminants present in the study area (b) develop groundwater protection, and if any offer recommendation for groundwater management. Multiple-well tests were conducted observing the behavior of drawdown and recovery for assessing groundwater storage. Two aquifer properties were observed to yield information about any changes in aquifer storage (transmissivity and storage coefficient) and groundwater quality lab test focusing on TDS, nitrate and pH were conducted. Historical results reflect that before industrial and urban revolution the groundwater contained small amounts of TDS compared with the present results. Increase in nitrate and pH concentrations observed in location closer to agricultural areas. Prolonged aquifer withdrawals increases expansion of cone of depression and therefore increases aquifer vulnerability and the risk of aquifer being polluted, and this increases storage coefficient. This study can be used to formulate protection zones for water resources and practice towards groundwater management. |
|||||||||||
Investigating groundwater governance arrangements for shale gas exploration and production in the main Karoo Basin, South Africa | Athenkosi | Matshini | Karoo | 2015 | |||||||
AbstractSouth Africa relies on coal and imported crude oil for most of its energy demands. However, the current high demand for the coal and oil and other sources of energy threat the sustainability of such energy sources, hence, the need to diversity the energy sources. However, these energy sources (coal and oil) are non-renewable sources of energy and the production of energy from renewable sources is almost non-existent. Therefore, the production of shale gas in the main Karoo Basin of South Africa provides a potential and opportunity to diversify South Africa energy mix. In pursuing such an opportunity, one has to be mindful that shale gas is neither sustainable nor a green energy system. This study aims to improve knowledge on groundwater governance arrangements regarding shale gas exploration and production in order to inform the appropriate regulatory regime and best practices to protect groundwater resources. Although there has been much effort to understand the technical implications of shale gas exploration and production on groundwater, not much attention has been given to understanding the broader groundwater governance issues. Addressing groundwater governance issues is critical to effective regulation of unconventional gas exploration and production. This is because; failure of groundwater management often results from inadequate governance arrangements, rather than lack of knowledge about sustainable yield or pollution vulnerability of aquifers. It has been argued that, there exists a perpetual tension between viewing groundwater as a common-resource and the rights of private appropriation of groundwater for use. Thus, groundwater is inherently vulnerable to the "tragedy of the commons" in which actual users and potential polluters act solely in their individual short-term interest rather than taking into account long-term communal considerations. The study provides significant insights regarding appropriate and effective institutional arrangements for groundwater governance. |
|||||||||||
Can Palaeochannels Be Used To Enhance Groundwater Recharge? A Case Study: Langebaan Road Aquifer | Awodwa | Magingi | Western Cape | 2017 | Palaeochannels, hydraulic parameters, Drought, artificial recharge | ||||||
AbstractThe assumed interconnection between palaeochannels and subsurface water resources is described. This paper (poster) discusses the different methods that can be used to indicate the significance of palaeochannels into groundwater recharge. Hydraulic parameters such as permeability and transmissivity of the layer underlying the palaeochannel act as the main dependents of groundwater recharge on palaeochannels. Considering the drastic drought from which South Africa is recovering or has recovered the importance of artificial recharge through palaeochannels is explained. The Langebaan Road Aquifer with its palaeochannel is used as a practical example and a detailed explanation on how palaeochannels can be used to enhance groundwater recharge is further demonstrated. Enhancement of recharge would ensure groundwater sustainability and augmentation to surface water especially during drought periods. |
|||||||||||
Community Involvement In Groundwater Management In The Western Cape: The Sandveld Case Study | Ayuk Juveta | Nchoung | Western Cape | 2013 | groundwater management, case study, Groundwater, Water treatment | ||||||
AbstractGroundwater is a reliable freshwater resource. Its location underground prevents it from evaporative forces. Thus it serves as storage of most of the world’s liquid fresh water. Being enclosed in the ground it is not also easily contaminated. Since groundwater can be used wherever it exists without costly treatments, there is over-dependence on the resource. Though in the past it was mainly used by rural dwellers for domestic water supply, presently, due to effects of climate change on surface water resources, pressures of population growth leading to expansion of towns and cities, groundwater is also supplied for agriculture and industrial purposes. But, the resulting effect from these additional users is the vulnerability of groundwater resources to reduction and pollution. Its importance in sustaining livelihood and development has been highly credited and its management is looked upon as a prerogative. To enhance groundwater management in the Sandveld, a qualitative content analysis approach was used to evaluate six factors considered to be highly needed in groundwater management. This background was used to find out how institutional arrangement in South Africa facilitates or constraints groundwater management in the Sandveld, a highly groundwater dependent area in the West Coast of the Western Cape. The results showed that all six factors are present, but three facilitate groundwater management while three others constrain management. The community involvement which ranked first, is deficient. Thus, institutional weaknesses that need to be strengthened have been identified. |