Conference Abstracts

All Abstracts were presented at the Groundwater Conferences

Displaying 301 - 350 of 795 results
Title Presenter Name Presenter Surname Area Sort descending Conference year Keywords

Abstract

Groundwater recharge assessment was undertaken in the crystalline aquifer of the Upper Crocodile River Basin, Johannesburg South Africa. The basin is characterised by the complex hydrogeological setting represented by weathered and fractured granitic gneisses overlain by quartzite, shale and dolostone. A number of recharge estimation methods including the Stable Isotope Enrichment Shift method, were tested. The measurement of δ 18O and δD in springsrevealed the presence of high elevation recharge or cold weather recharge that occurs prior to extreme evaporation, undergoing deep circulation and discharging at the contact between the Witwatersrand quartzite and the underlying shale. In the dolostones, recharge occurs after evaporation at higher elevation undergoing deeper circulation through the dissolution cavities.

The Water Table Fluctuation method in the dolostone resulted in the mean annual recharge of 99 mm/year, representing 14% of mean annual precipitation. The Reservoir Water Balance method revealed that the Pretoria Group shale aquifer contributes 16% of dam water outflow per year (groundwater discharge) which equates to 3 429 662 m3 on average, while 7% of dam inflow is lost to groundwater constituting groundwater recharge of average 2 084 131 m3 per annum. Baseflow Separation method applied gave an average recharge value of 9.4% for the entire catchment. The estimated average recharge for the entire catchment was found to be 13% corresponding to 91 mm, which equates to 374 Mm3 . The Stable Isotope Enrichment Shift Method resulted an average annual recharge of 26.1% in the aquifers composed of quartzites and 3% in the dolostones. The method is found to be promising for application in spring regimen however, a further development is recommended since small shifts exaggerate recharge while large shifts undermine it.

Abstract

Enslin,S; Webb, SJ

The Vredefort Dome 120 km southwest of Johannesburg is a meteorite impact crater that formed at approximately 2 Ga. The region hosts farmland, and the town of Parys is situated in the northwestern part of the dome. The dome is the location of the annual Wits University/AfricaArray Geophysical Field School. The aim of the field school is to teach geoscience students several geophysical techniques while conducting scientific research in the area.

A geophysical survey during the 2019 field school over an open field just outside of Parys revealed a buried fracture that hosts ground water. A 150 m long magnetic profile over the fractures shows a magnetic low (approximately 500 nT) that correlates with a low resistivity region on the inverted electrical resistivity data (dipole-dipole method). Euler deconvolution depth estimates and magnetic modelling estimate an overburden thickness of around 10 m and a similar fracture thickness. The magnetic low of the fracture is due to weathering and removal of any magnetic material in the granites in the region.

Two existing boreholes that lie 618m due south and at a 10 m lower elevation have water levels of around 6.4 m. Both boreholes lie near a riverbed and vegetation, and appear to lie along an extension to the fracture. This fractures detected using geophysical methods seems to form part of a larger fracture system within the Vredefort Dome, that is linked to the formation of the dome. These fractures provide a vital source of water for the local farming community.

Abstract

Sternophysingids are a group of stygobitic amphipods that inhabit groundwater networks characterised by large fractures, cracks and voids, as well as smaller pores, fissures, cavernous openings and interstitial spaces. Two species occurring in Gauteng, South Africa, Sternophysinx filaris and Sternophysinx calceola, were studied using morphological descriptions and molecular analyses to elucidate the distribution, evolutionary history, phylogeny and population structure. The population structure and distribution of stygobitic amphipods is a reflection of the physical structure of groundwater networks, and their evolutionary history can be used to understand the formation of groundwater bodies. S.filaris is a small and common inhabitant of aquifers in the northern regions of the country, while S. calceola occurs in many of the same locations but is much larger and rarer. No morphological differences were observed between individuals of different populations of S. filaris or S. calceola and detailed illustrations have been provided for each. This finding is not believed to be indicative of a high degree of connectivity within the subterranean groundwater network, lending to high rates of gene flow, instead, these morphological similarities are a symptom of cryptic speciation. Sternophysingids are likely to arise from an very ancient and widespread ancestor inhabiting much of Gondwanaland prior to its breakup. Using the COI gene, S. calceola collected from the type locality in Matlapitse Cave was successfully PCR-amplified and sequenced. Phylogenies were constructed using a limited variety of crangonyctoid sequences and the sternophysingids were confirmed to belong to the Crangonyctoidea superfamily, being most closely allied with the Western Australian paramelitids. The relationship between these groups is still distant and ancient; it is expected that the South African paramelitids would be more closely related, as well as other African, Madagascan and Indian crangonyctoids.

Abstract

The demand for water continues to increase despite water shortages in the already over stressed Vaal River Basin. The Vaal River supplies water to the major metropolitan cities of Johannesburg and Tshwane. Water shortage threatens food security and the economic expansion of the country and it is unclear if there will be sufficient water to meet future water demands in the Vaal River Basin. In this study satellite observation techniques were used to quantify the available water resources and identify the underlying factors driving changes in water storage.

Total Water Storage (TWS) values derived from the Gravity Recovery and Climate Experiment (GRACE) twin satellites were used to calculate changes in TWS anomaly in order to identify losses and gains in storage over 12 years. GRACE satellite data were compared with PERSIANN (Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks) rainfall data and MODIS ET (Moderate-Resolution Imaging Spectroradiometer Evapotranspiration) time series data. It was observed that GRACE satellites are capable of recovering the geophysical signal caused by water storage changes at a coarser resolution. TWS anomaly indicates an increase in water storage over the study period of 0.0155 mm of EWH. Evapotranspiration from MODIS ET show a relatively steady trend with no significant changes.

Based on visual comparison, seasonal effect was captured by all datasets. Linear trends fitted on the data shows that rainfall amount is decreasing and GRACE TWS is increasing, which indicates that there are other factors contributing to the TWS. A comparison of the GRACE TWS and surface water anomalies in the Vaal River Basin showed an increasing trend, which could imply that inter-basin transfers from adjacent basins play a significant role in TWS dynamics in the Vaal River Basin. It was found that a combination of satellite observation techniques allows for robust interpretation of the data. If water storage continues to decline at the current South Africa’s water crisis are likely to worsen and the impacts could be devastating, which necessitates the development of adaptation measures in order to survive in an ever changing climatic environment. This study proves that satellite techniques are useful tools for monitoring and water assessment studies in in large scale basins

Abstract

POSTER The Fountains East and Fountains West groundwater compartments (by means of the Upper and Lower Fountain springs) have been supplying the City of Pretoria with water since its founding in 1855. These adjacent compartments which are underlain by the Malmani dolomites of the Chuniespoort Group are separated by the Pretoria syenite dyke and are bounded to the north by the rocks of the Pretoria Group (Timeball Hill Formation). Swallow holes and paleosinkholes play important roles in recharge in karst environments. Available sinkhole data and geotechnical percussion borehole logs are being collated to compile a detailed conceptual geological model. Inorganic chemistry data (2007 - 2012) as well as spring discharge volumes (2011 - 2012) for the Upper and Lower Fountain springs, supplied by the City of Tshwane Municipality, is being used to characterise the two compartments. This is done by means of piper diagrams, stiff diagrams and temporal plots. Isotope data for the Upper and Lower Fountain springs are available for 1970 to 2007. ?D and ?18O data from the Upper and Lower Fountain springs are plotted against each other and the Global Meteoric Water Line. Other stable isotopes (including 14C and 3H) are also plotted as time trends and interpreted. Interpretation of the combined geotechnical, chemical and isotope data will aid in understanding the karst aquifer and the controls on groundwater system within and possibly between these compartments.

Abstract

The Gravity Recovery and Climate Experiment satellites detect minute temporal variation in the earth’s gravitational field at an unprecedented accuracy, in order to make estimation of the total water storage (TWS). GRACE provides a unique opportunity to study and monitor real time water variation in the hydrologic stores( snow, groundwater, surface water and soil moisture) due to increase or decrease in storage. The GRACE monthly TWS data are used to estimate changes in groundwater storage in the Vaal River Basin. The Vaal River Basin has been selected because it is one of the most water stressed catchment in South Africa; it is well-renowned for its high concentration of industrial activities and urbanized zones. Therefore, in order to meet future water demands it is critical to monitor and calculate changes in groundwater dynamics as an important aspect of water management, where such a resource is a key to economic development and social development.

Previous studies in the Vaal River Basin, where mostly localized focusing largely on groundwater quality and to a lesser extent groundwater assessment. Hydrological models have been generated for the whole of South Africa, many of this models does not take into account the groundwater. Thus, there is a significant gap in our understanding of surface and ground water dynamics in the Vaal River Basin. The paucity of data and monitoring networks is often the limitation in calculating changes in water storage over a large area, particularly in Africa. In this scenario GRACE is the only approach to estimate changes in hydrological stores as it covers large areas and generate real time data. It does not require information on soil moisture, which is often difficult to measure. The preliminary results indicate that the change in TWS anomaly derived from GRACE data is - 12.85 mm of vertical column of water at 300 km smoothing radius. The change in groundwater storage is calculated by incorporating hydrologic components to the TWS (work in progress). The results obtained from this study will be compared to existing hydrological models and results generated from models applicable to the semi-arid region of South Africa. It is anticipated that this satellite observation technique, GRACE, will provide an accurate estimate of change in groundwater storage. Furthermore, it will show the usefulness of satellite based techniques for improving our understanding of groundwater dynamic, which will improve water management practices.

Abstract

At a regional scale, groundwater recharge is often calculated using surface water models. Precipitation and surface water runoff are easier to measure than groundwater recharge, and evapotranspiration can be estimated with relative accuracy using indirect methods. In modelling, surface water measurements can be used for calibration, and groundwater is the residual term in the water balance of the catchment. This can give a good indication of regional trends, but provides limited scope for the accommodation of groundwater system characteristics and recharge processes. Recently, much research has been focused on the interaction of surface and groundwater models. The coupling of physically based surface and ground water models allows for calibration of the model using both surface and groundwater data while providing scope for improved insight into the processes which define the interaction of groundwater with the rest of the water cycle. For example: stream discharge, interflow, preferential flow through the unsaturated zone and interaction with surface water retained in dams and wetlands. One such model is GSflow (United States Geological Survey), which we are applying to the Upper Vaal Catchment. This model integrates the surface water model PRMS (Precipitation-Runoff Modelling System) with MODFLOW (Modular Groundwater Flow model). The model is initially being calibrated at quaternary catchment scale, starting with the surface water components and later adding the groundwater system. The quaternary catchment is subdivided into smaller, topologically defined hydrological response units. This scaling allows for a better understanding of how well the characteristics of the units are represented in the physical processes incorporated into the model, so that ultimately the sensitivity analysis can incorporate these processes. The results will be compared to current work on recharge being carried out using GRACE data and previous work done in the same area. Once the entire model has been calibrated, there will be scope to calculate future scenarios, allowing for climate and land-use changes. A brief overview of existing work as well as methods and initial results and sensitivity analysis will be presented.

Abstract

 Seyler, H; Vahrmeijer, JT; Wiegmans FE

The Steenkoppies dolomite aquifer/compartment is situated 15 km north-west of Krugersdorp and has received great attention in March 2007 when the naturally discharging spring (known as “Maloney’s Eye”) reached the lowest flow on record, which was an incident that has drawn much attention. This incident caused major concern to the downstream users as the spring forms part of the Magalies River’s flow. At the time of this incident the flow measured at a record low of 1.58 Mm3 /a compared to an average flow rate since 1908 of 13.8 Mm3 /a. Coincidently in March 2016 exactly nine years after this time the record low flow of 1.58 Mm3 /a was again measured at the Eye. Continued drought conditions in 2016 resulted in the lowest flow recorded for five consecutive months. The flow rate of less than 2.2 Mm3 /a is a mere 38 % of the average flows of (5.7 Mm3 /a) recorded for the last 10 years. While the interest in exploiting groundwater from the Steenkoppies compartment dates back to the late 1890s it is only since the 1980s to 1990s when abstraction for irrigation became substantial. The volume of groundwater abstracted for irrigation increased more than 7.5 times since 1980. The crop area increased 2.6 fold since 1997, while the volume of water abstracted increased 1.6 fold.

Unfortunately, despite numerous conceptual reports, scientific papers, lawful water use verification studies and crop water use investigations, the Steenkoppies water users are still without a managing body and groundwater management/use plan. The lack of (adaptive) management has led to uncontrolled abstraction and issuing of new Water Use Licenses without the proper knowledge of the impact of additional water use on the system. The failed establishment of a water user association according to the National Water Act in 2013 dampened the hopes for any collaborated groundwater abstraction, -monitoring and -management plan.

The groundwater model developed for the Steenkoppies compartment should be seen as a prospective evaluation tool to determine the potential behaviour of the system with time, given a set of changing parameters. Numerical groundwater models are considered the best tools available to quantify/estimate groundwater, and the results can be used in management decisions.

Estimated groundwater abstraction per annum from the Steenkoppies compartment amount to between 25 Mm3 and 30 Mm3 , with a likely current rate of 28.5 Mm3 /a. Based on the modelled fluxes with average groundwater recharge (rainfall) conditions and induced recharge from irrigation return flows, it appears that 25 Mm3 is an optimal abstraction rate while maintaining a flow of around 5 Mm3 from the Maloney’s Eye. However, the Maloney’s Eye is sensitive to below average rainfall events leading to below average recharge conditions and resulting in lower volumes available for abstraction. Neglecting this fact for the past 30 years has resulted in the ‘unsustainable’ use of groundwater in the compartment

Abstract

Despite majority of the terrestrial fresh water resources being groundwater, there still exists a public perception that the only source of potable water is from surface water bodies. Due to this misperception, the general public is often ignorant about the importance of groundwater as a resource. This is evident in the lack of appreciation for the Upper and Lower Fountains in Pretoria as the main reason for various historical events in and around Pretoria, leading to it eventually becoming the capital of South Africa. This project, which introduces a broader Hydrological Heritage Overview programme, is intended to create awareness regarding the history and importance in the development of South Africa, and to improve public understanding of the important role that hydrology and hydrogeology is playing in our day to day lives. Additionally, scientific appraisal of historical data will aid the relevant managements to better manage these valuable resources, while making interesting and important archived data available to the scientific community in the form of trend analyses and conceptual models. The paper will showcase a 10-minute narrated video on the importance of groundwater in the history of Pretoria. As part of a water awareness programme to inform the general public about Pretoria's water supply from springs since its founding in 1855, the video depicts the development of the capital city around these springs from its founding to present.

Abstract

The Fountains East and Fountains West groundwater compartments (by means of the Upper and Lower Fountain springs) have been supplying the City of Pretoria with water since its founding in 1855. These adjacent compartments which are underlain by the Malmani dolomites of the Chuniespoort Group are separated by the Pretoria syenite dyke and are bounded to the north by the rocks of the Pretoria Group (Timeball Hill Formation). Inorganic chemistry data (2007-2012), as well as spring discharge volumes (2011-2012) for the Upper and Lower Fountain springs, supplied by the City of Tshwane Municipality, is being used to characterise the two compartments. This is done by means of piper diagrams, bar graphs and temporal plots. Interpretation of the combined chemical and discharge volume data as well as geotechnical and isotope data (in progress) will aid in understanding  the  karst  aquifer  and  the  controls  on  groundwater  system  within  and  possibly between these compartments.

Abstract

Groundwater in the Steenkoppies compartment of the Gauteng and North West dolomite aquifer is extensively used for agricultural practices that can potentially lead to groundwater storage depletion, threatening groundwater sustainability in the compartment. Groundwater levels represent the response of an aquifer to changes in storage, recharge, discharge, and hydrological stresses. Therefore, groundwater levels are useful for identifying limits and unacceptable impacts on an aquifer and using this information to implement sustainable groundwater management decisions. The use of machine learning techniques for groundwater modelling is relatively novel in South Africa. Conventionally, numerical techniques are used for groundwater modelling. Unlike traditional numerical models, machine learning models are data-driven and learn the behaviour of the aquifer system from measured values without needing an understanding of the internal structure and physical processes of an aquifer. In this study, Neural Network Autoregression (NNAR) was applied to obtain groundwater level predictions in the Steenkoppies compartment of the Gauteng and North West Dolomite Aquifer in South Africa. Multiple variables (rainfall, temperature, groundwater usage and spring discharge) were chosen as input parameters to facilitate groundwater level predictions. The importance of each of these inputs to aid the prediction of groundwater levels was assessed using the mutual information index (MI). The NNAR model was further used to predict groundwater levels under scenarios of change (increase or decrease in recharge and abstraction). The results showed that the NNAR could predict groundwater levels in 18 boreholes across the Steenkoppies aquifer and make predictions for scenarios of change. Overall, the NNAR performed well in predicting and simulating groundwater levels in the Steenkoppies aquifer. The transferability of the NNAR to model groundwater levels in different aquifer systems or groundwater levels at different temporal resolutions requires further investigation to confirm the robustness of the NNAR to predict groundwater levels.

Abstract

The argument in this paper is that improved understanding of science-policy integration, where physical bases of natural science is combined with practice in managing water resource challenges, becomes critical in translating scientific knowledge into effective and sustainability solutions linked to groundwater resource protection. Such hypothesis should be attested at locally relevant scale where water resources reside and where water utilization takes place. This paper provides a practical case-study of how science-policy integration can directly impacts groundwater resource protection practice from a local, and national perspective using strategies of groundwater resources directed measures.

A combination of literature surveys, and desktop record review methods were used for the purpose of data collection from published literature and publicly accessible national databases of the Department of Water and Sanitation (DWS). Collected data were analysed using document analysis, descriptive statistics, and case study analysis methods. Based on the analysis, three types of science-policy nexus theoretical models exist in practice, namely, 1) science-policy integration, 2) policy-science integration, and 3) mixed integration. From a national perspective, the analysis showed that South Africa is able to practically apply science-policy nexus in policy implementation practice for water resources protection, and that such practice depicts a mixed integration model of the nexus. Case study analysis of the Schoonspruit-Koekemoerspruit River Catchment provided insight on how localized operationalization of groundwater resource directed measures facilitates sustained groundwater resources protection for water availability and sustainable utilization. This study provides an exemplary for collaborations between researchers and/or scientists and policy makers to ensure that science research is answering policy-relevant questions and that results from scientific work are readily available for policy implementation. In addition, there is adequate evidence to indicate that science-policy nexus can be designed and prioritized to support sustainable development agenda on groundwater resilience, and visibility at various levels.

Abstract

The benefits of the commercial plantation forestry sector (income generation, job provision, etc.) come at considerable environmental costs, particularly the impact of the industry on water resources. Plantation forests exhibit higher evapotranspiration rates when compared to that observed in indigenous forests/grasslands. A reduction of the water yield in a catchment is one of the most frequently reported impacts of afforestation. Afforestation also significantly impacts groundwater, which is becoming an increasingly important resource for water supply in South Africa. Very few studies have however quantified in detail the impact of different commercial forests grown in South Africa on groundwater and the interactions with surface water. This study seeks to contribute to addressing this important knowledge gap. The main objective was to comprehending groundwater recharge dynamics in commercial plantation forests, i.e. an environment where evapotranspiration losses is a major component of the water balance. The HYDRUS-2D model was used to simulate the hillslope hydrological dynamics in a commercial plantation forest (Pinus radiata) during the period 8 July 2016 to 12 June 2017. The model was used to simulate the interaction between the vegetation, unsaturated zone and the saturated zone in order to better understand the groundwater recharge dynamics evident in the area. As a precursor to model application a detailed conceptual model of the recharge processes occurring in the study areas was developed. The model considered the prevailing geomorphological and hydrogeological conditions. HYDRUS-2D was able to adequately simulate the soil hydraulic properties characterising the study area. The hydrological dynamics of the simulation results also conform to the conceptual understanding of groundwater recharge processes evident in the study area. Over the entire simulation period (340 days), the model quantified potential groundwater recharge to be 31.5 mm. This primarily occurred during a 60 day period (20 September 2016 - 19 November 2016) in response to significant rainfall events of 76.96 mm (DOS 56 – 58) and 45.98 mm (DOS 71 – 72). This groundwater recharge dynamic conforms to the notion that groundwater recharge is driven by single or multiple events and not by annual averages. The results of the investigation are promising and provide motivation for the application of HYDRUS-2D to estimate groundwater recharge in environments which are deemed to be suitable for model application. The model provides the ability to study the dynamics of groundwater recharge at short time scales, as opposed to annual average responses which are derived from commonly applied techniques.

Abstract

To control the impact of nitrate and its sustainable mitigation in groundwater systems used for drinking water production, it is crucial to understand and quantify sources as well as biochemical processes which (permanently) remove nitrate.

In an alluvial aquifer in Germany (Hessian Ried) that serves as major drinking water recourse for the Frankfurt metropolitan area, water quality is challenged by nitrate contamination from intensive agricultural land use locally by far exceeding the drinking water limits of 50 mg/L.

In order to evaluate the capability of the aquifer for natural mitigation of the nitrate contamination, we investigated the denitrification potential with respect to the availability of electron donors and the predominant reduction pathways in different sections of the aquifer. The content of sedimentary sulfide and organic carbon was quantified by solid-phase analyses of drill core samples from aquifer sediments. Water samples from vertical profiles gave access to information on the isotope-hydrochemical composition of the groundwater (multi-parameter profiles, major ions, nitrate isotope signature, sulfate isotope signature). Using this hydrochemical and isotope information in concert with the results of a groundwater flow model allowed determining the nitrate input and the average nitrate reduction kinetics along the flow path upstream of selected groundwater monitoring wells. Batch and column experiments provided detailed information on prevailing reaction pathways and the associated isotope fractionation pattern enabling the recognition and quantification of processes on field scale. Our results suggest that litho-autotrophic denitrification using sedimentary sulfide as an electron donor is preferably responsible for the nitrate degradation in the aquifer. However, due to the low sulfide content (max. 123 mg-S/kg), the potential for autotrophic denitrification is very limited. Consequently, if no active measures reducing the input of fertilizer-derived nitrate will be implemented in the near future, the limited potential for autotrophic denitrification will ultimately exhaust and a severe deterioration of the groundwater quality can be expected.

Abstract

The current Grahamstown/Makhanda drought has once again highlighted the vulnerability of the local surface water resources. The two local dams supplying the western part of town (and the university) are fed by a typical Eastern Cape river which requires a very large amount of rainfall to generate runoff into the dam. Rainfall records since 1860 indicate that statistically, the current drought is not the worst drought the town has endured and there have been many similar droughts in the past, most recently in the mid-1990s, and early 1980s. The severe drought in the 1980s led to the municipality commissioning a groundwater feasibility study carried out by Dr Andrew Stone, employed by Rhodes University at the time. The study included the drilling and testing of 13 boreholes, as well as a report on incorporating groundwater into the town's water infrastructure. All but two of these boreholes are destroyed, and they, along with the report were forgotten about. Around 4 years ago, we discovered the report at the university and began building on the work undertaken by Andrew Stone by monitoring 31 of the town's boreholes and carrying out a detailed analysis of the towns local groundwater fed spring, which many of the town's residents rely on. The current drought reignited the interest in groundwater, particularly with the arrival of Gift of the Givers who drilled a further 15 boreholes in town. The renewed focus on groundwater development came with its own complexities since the western part of town that the university resides in and the historically white area, is the only part of town to yield good quality groundwater. The local synclinal fold structure has resulted in a bowl type landscape in which much of the town is situated. Resistant Witteberg quartzitic sandstone rocks are observed as high-lying ridges which border the south-western margin of the town. The less resistant Dwyka tillite and Witteberg shales are generally found in the low-lying areas. This paper discusses the current water crisis, and how groundwater could be used on an on-going basis to relieve the water deficit in drier times caused by the vulnerable local dams.

Abstract

The study on estimation of groundwater recharge was done in Grasslands Catchment, about 70 km south-east of Harare, Zimbabwe. The catchment is underlain by Archean Granitic rocks intruded by dolerite  dykes/sheets  and  form  part  of  the  Basement  Complex.  The  catchment  is  a  stream headwater wetland, at the source of Manyame River. The catchment comprises an upland region or interfluves of area 2.12 km2 and a dambo area of 1.21 km2. The study focused on the assessment of temporal and spatial variability of moisture fluxes based on solute profiling, and groundwater recharge and investigations of moisture transport mechanisms. The methodology involved the use of  both  hydrometric  and  hydrochemical  techniques.  Groundwater  recharge  rates  and  moisture fluxes were calculated using a chloride mass balance technique in comparison to the hydrograph separation technique. Groundwater recharge was estimated to be 185 mm/year using the chloride mass  balance  and  215 mm/year  using  the  hydrograph  separation  technique.  Mechanisms  of recharge were investigated using the bimodal flow model that comprised of diffuse flow and preferential flow. The results revealed that preferential flow contributes up to 95% of the recharge in the interfluves, whilst diffuse flow contributes up to 5% of the total recharge. The results reveal that the groundwater hydrograph technique results are in agreement with the chloride mass balance method. The study illustrated how routine observations can improve process understanding on groundwater recharge mechanisms. The techniques are not expensive, are easy to use and can be replicated elsewhere depending on availability of data.

Abstract

Groundwater is vulnerable to contamination from various anthropogenic sources. The degree of groundwater vulnerability can be assessed using various methods, which are grouped into three major categories: index-and-overlay methods, process-based computer simulations and statistical analyses. This study attempts to produce a groundwater vulnerability map of the eThekwini Metropolitan District Municipality using the index-and-overlay method of DRASTIC in a GIS environment for the first time. The advantage of this method is that it provides relatively simple algorithms or decision trees to integrate large amount of spatial information into maps of simple vulnerability class es and indices. The main objective of the study is to identify areas of high groundwater contamination potential based on hydrogeological conditions so that management interventions are undertaken timely. DRASTIC is a groundwater vulnerability assessment method based on the intrinsic property of groundwater systems to human or natural impacts. It uses seven hydrogeological parameters, namely, Depth to groundwater, net Recharge, Aquifer media, Soil media, Topography, Impact of the vadose zone and hydraulic Conductivity of the aquifer. These DRASTIC parameters characterize the hydrological setting and are known to control the vulnerability of aquifers to surface derived pollutants. Various studies show that depth to groundwater and impact to vadose zone impose larger impact on aquifer vulnerability followed by recharge, topography and soil media. The application of DRASTIC to the greater Durban area resulted in vulnerability index values in the range from 71 to 168. Based on these index values, greater Durban area is classified into zones of low, moderate and high vulnerability of groundwater to pollution. The low vulnerability areas (Drastic Index. DI: 71-114) are located in the northern region around Magangeni which are underlain by the intergranular and fractured aquifer due to essentially deep groundwater table (>25 m), vadose zone sediments, low hydraulic conductivity and recharge rate. The moderately vulnerable areas (DI: 114-127) cover more than 50% of the study area that is underlain by fractured and Intergranular, and fractured aquifers. The moderate vulnerability areas are located in the western region (Hammarsdale and Kloof), northern region (Mount Edgecombe and Tongaat) and southern region (Amanzimtoti). The moderate vulnerability pattern is mainly due to variation in the hydraulic conductivity of the aquifer and the vadose zone and less by the recharge and the depth to groundwater. The region around central Durban, the Bluff area, Yellowwood Park and areas along the coast that are underlain by intergranular aquifer are mapped as "hotspots" characterized by high vulnerability to groundwater pollution (DI: 127-168) and needs immediate management intervention.

Abstract

It has been claimed that Groenvlei, a shallow lacustrine wetland on the southern Cape coast of South Africa, is endorheic. This characterisation was based solely on the inward sloping topography immediately surrounding the wetland and an absence of any surface water outflow. However, four independent hydrogeological tools were used to confirm that water discharges from the wetland into the aquifer along its southern banks, thus invalidating the endorheic characterisation. These tools included contouring of groundwater levels, interpretation of the hydrochemical character of groundwater, electrical conductivity depth profiling and a comparison of natural environmental isotopes in surface and groundwater. This case study supports the need for an integrated approach when characterising and assessing water bodies.

Abstract

Define chemical signatures from river waters collected in the Crocodile (West) and Marico Water Management Areas, South Africa. Samples were analysed for anion complexes using Ion Chromatography (IC) and major and trace element chemistry using quadrupole Inductively Coupled Plasma-Mass Spectrometry (q-ICP-MS). Results are used to define the various chemical signatures resulting from activities within the study area which include mining, agriculture, industry, residential and domestic, and recreational usage and to differentiate the 'background' that arises from the natural geological heterogeneity. The aim of this characterisation is to fingerprint the chemical signatures of various anthropogenic activities irrespective of background. Results from this investigation have been mapped using GIS to visualise the data across the study area. Based on the results, the contamination sources within the area can be identified and ranked in terms of their contribution to the total effective contamination received at Hartebeespoort Dam. {List only- not presented}

Abstract

Cadmium is a highly mobile and bioavailable non-essential element that is toxic to plants, and is an animal and human carcinogen (affecting the kidneys and bones in vertebrates). Since the late-1970s the effects of cadmium on the environment have become a global issue of concern, and many countries have conducted evaluations on the exposure of their populations to cadmium in phosphate fertilizer (a major non-point source of anthropogenic cadmium). A scoping project, funded by the Water Research Commission, aimed to review cadmium contamination of South African aquifer groundwater systems (predominantly) via phosphate fertilizer use. Topics reviewed included fertilizer composition and types, metal speciation, metal mobility in soil and groundwater systems, metal bioavailability, health and environmental effects, and local South African contamination case studies. A preliminary study site, namely the greater Hermanus region, was identified for trace metal and groundwater quality studies (which incorporated urban and agricultural areas in various hydrogeological settings). Hermanus was selected due to: 1) the discovery of cadmium concentrations of 20 ?g/l (in comparison to the SANS 241-1:2011 cadmium limit of 3 ?g/l) in a golf estate irrigation borehole, during drilling and test-pumping of the borehole at the end of 2012

Abstract

This study describes a novel methodology for predicting spring hydrographs based on Regional Climate Model (RCM) projections to evaluate climate change impact on karstic spring discharge. A combined stochastic-analytical modelling methodology was developed and demonstrated on the Bukovica karst spring catchment at the Durmitor National Park, Montenegro. As a first step, climate model projections of the EURO-CORDEX ensemble were selected, and bias correction was applied based on historical climate data. The regression function between rainfall and peak discharge was established using historical data.

The baseflow recession was described using a double-component exponential model, where hydrograph decomposition and parameter fitting were performed on the Master Recession Curve. Rainfall time series from two selected RCM scenarios were applied to predict future spring discharge time series. Bias correction of simulated hydrographs was performed, and bias-corrected combined stochastic-analytical models were applied to predict spring hydrographs based on RCM simulated rainfall data. Simulated climate scenarios predict increasing peak discharges and decreasing baseflow discharges throughout the 21st century. Model results suggest that climate change will likely exaggerate the extremities regarding climate parameters and spring discharge by the end of the century. The annual number of drought days shows a large variation over time. Extremely dry years are periodic, with a frequency between 5-7 years. The number of drought days seems to increase over time during these extreme years. The study confirmed that the applied methodology can successfully be applied for spring discharge prediction

Abstract

Groundwater arsenic (As) distribution in alluvial floodplains is complex and spatially heterogeneous. Floodplain evolution plays a crucial role in the fate and mobilization of As in the groundwater. This study presents how groundwater As enrichment is controlled by the spatial disposition of subsurface sand, silt, and clay layers along an N-S transect across the Brahmaputra river basin aquifer. Six boreholes were drilled in the shallow aquifer (up to 60 m) along this transect, and 56 groundwater samples were collected and analysed for their major and trace elements, SO4, PO4, dissolved organic carbon (DOC), and dissolved oxygen (DO). Groundwater As ranges from 0.1 to 218 μg/L on the northern bank while from 0.2 to 440 μg/L on the southern bank of the Brahmaputra. Groundwater in the southern bank is highly reduced (Eh -9.8 mV) with low DO and low SO4 (2 mg/L), while groundwater in the north is less reduced (Eh 142 mV) with low DO and higher SO4 (11 mg/L). Subsurface lithologies show that the aquifer on the southern bank has a very thick clay layer, while the aquifer on the northern bank is heterogeneous and interlayered with intermediate clay layers. Depth comparison of the groundwater arsenic concentrations with subsurface lithological variations reveals that groundwater wells overlain by thick clay layers have higher arsenic, while groundwater wells devoid of clay capping have lesser arsenic. Detailed aquifer mapping could be decisive in exploring potentially safe groundwater from geogenic contamination.

Abstract

Conjunctive use of surface water and groundwater plays a pivotal role in sustainably managing water resources. An increase in population, especially in the cities, increases the demand for water supply. Additional infrastructure to meet the needs and treatment techniques to remove the pollutants should be updated from time to time. Closing the urban water cycle by recycling and reusing treated sewage in the water sector can significantly reduce excessive groundwater extraction. However, this method is being implemented in only a few cities in developed countries. In the closed urban water cycle, treated sewage is discharged to rivers or other surface water bodies and used for managed aquifer recharge (MAR). Bank filtration, soil aquifer treatment and infiltration ponds are available MAR methods that augment the groundwater resources and remove pollutants during the natural infiltration process. These cost-effective natural treatment methods serve as a pre-treatment technique before public water supply to remove turbidity, algal toxins, bulk dissolved organic carbon and pathogenic microorganisms. The successful performance of these treatment methods depends on the need and feasibility for MAR, suitable hydrogeological conditions, sub-surface storage capacity of the aquifers, availability of suitable areas for MAR, type of MAR, source of recharge water, quality criteria, assessing the past, present and future climatic conditions. Case studies on groundwater resources management and water quality assessment, including for organic micropollutants from a large urban catchment in India, are presented.

Abstract

In this study, petroleum hydrocarbon contamination assessment was conducted at a cluster of petroleum products storage and handling facilities located on the Southern African Indian ocean coastal zone. The Port Development Company identified the need for the assessment of the soil and groundwater pollution status at the tank farms in order to develop a remediation and management plan to address hydrocarbon related soil and groundwater contamination. Previous work conducted at the site before consisted out of the drilling and sampling of a limited number of boreholes. The current investigation was triggered by the presence of free phase product in the coal grading tippler pit located ~350 m down gradient and south-east and east of the tank farms, rendering the operation thereof unsafe. The assessment intended identifying the source of product, distribution and mobility, the extent of the contamination, and the human health risks associated with the contamination. To achieve these, the investigation comprised site walkover and interviews, drilling of 76 hand auger and 101 direct push holes to facilitate vertical soil profile VOC screening and sampling (soil and groundwater) as well as granulomeric analysis to understand grain size distribution within the soil profile. The highest concentrations were associated with the coarse sand layers with the highest permeability. Free phase hydrocarbons product was found in holes adjacent to the pipeline responsible for the distribution of the product form the jetty to the different tanks farms. Of the 57 soil samples, 21 had high values of GRO and DRO, with 22 below Detection Limit and 14 can be described having traces of hydrocarbon. Both TAME and MTBE were detected in most of the water samples taken, including from wells located far down gradient. The groundwater sink, adjacent to the pipeline running from west to east, resulted in the limited lateral spread of MBTE in this area, with limited movement towards the sea. The depth of the soil contamination varies over the sites. Based on the site assessment results it was concluded that most of the groundwater contamination, which is a mixture of different product types, is associated with the pipeline responsible for transporting product from the jetty to the different petroleum companies. {List only- not presented}

Abstract

In Java Island, Indonesia, andesitic volcanic aquifers are the main water resource for domestic, agricultural, and industrial use. To guarantee sustainable management, a hydrogeological conceptual model is key. Electrical resistivity tomography (ERT) survey is one tool to characterize aquifer structures and extension, specifically in the medial facies of the Arjuno Welirang volcano. Fadillah et al. (2023) proposed a hydrogeological interpretation of the aquifers in the central to proximal-medial transition zone of the Arjuno Welirang volcano. This interpretation was based on geology, hydrogeology, and ERT and focused on major springs and boreholes. Nine additional ERT profiles and borehole data were collected downstream to enhance the medial facies’ understanding further. Seven ERT lines were conducted throughout the midstream part of the watershed. The results confirm the presence of two superimposed aquifers, a first unconfined aquifer made of volcanic sandstone and breccia with a vertical extension of 25 meters and a confined aquifer from 35 to 120 meters (maximum depth of investigation). This last one consists of tuffaceous breccia and volcanic sandstone and includes lava layers as well. A clayey layer with an average thickness of 10 meters constitutes the aquiclude/aquitard between those two aquifers. Furthermore, two ERT lines were conducted in the vicinity of the major spring located in the distal part of volcanic deposits, highlighting the development of a multi-layer alluvial aquifer system.

Abstract

Water stewardship is achieved through a stakeholder’s inclusive process. It aims to guarantee long-term water security for all uses, including nature. Various actions can occur in the watershed’s recharge area, such as land cover restoration and artificial recharges. To measure the effectiveness of these actions, it is crucial to quantify their impact on water and communities. The common method for assessing the benefits of water stewardship activities is the volumetric water benefit accounting (VWBA) method. It allows for comparing the positive impact on water to the extracted groundwater volume for operations. We present the validation of the Positive Water Impact of DANONE Aqua operation at the Lido Site in West Java, Indonesia, within the VWBA framework. Different methods were used to evaluate three main water impact activities: (1) land cover restoration with reforestation, (2) artificial recharge with infiltration trenches and wells, and (3) water access. The curve number of the SWAT model was used to measure the reduced runoff impact of the land conservation action. The water table fluctuation method was employed to assess artificial recharge volume. The volume of pump discharge rates was used for water access. Results highlight the water impact at the Lido site, with the volumetric accounting of the three main activities. The discrepancy in the final calculation can be related to the variation in the field’s validated activities. VWBA framework is useful to validate water stewardship activities’ impact and plan further impactful actions.

Abstract

On the slopes of Mount Bromo, East Java (Indonesia), the land use of the Rejoso watershed is dominated by rice fields and sugarcane ( lowland area ), agroforestry (midstream) and horticulture and pine plantation in the upstream part. During the last three decades, some land changes driven by socio-economic development, with conversion of agroforests to rice fields, tree monoculture and horticulture, and the development of urban areas nearby, increased pressure on the watershed. Intensive irrigated rice cultivation is using groundwater from free-flowing artesian wells. Due to a lack of management, the hydraulic head and discharge of the major spring are decreasing. Rejoso watershed, like others in urban and rural areas in Indonesia, is facing challenges to guarantee sustainable integrated water resources management. Collective solutions have been implemented between 2016 and 2022 within this watershed. In the downstream, sustainable paddy cultivation and wells management with local stakeholders, aiming at improving water efficiency, have been piloted on 65 ha with 184 farmers. Water governance at the district level was re-activated and strengthened thanks to the project. Various capacity-building tools were used via radio talk shows and workshops. Members of the watershed forum of Pasuruan took some actions to reshape the structure and set up a roadmap. The implementation of collective solutions in the field was a real catalyst and serves all levels of water governance, as it is replicable. This example will be explained and illustrated after the presentation of the socio-hydrogeological context.

Abstract

Many aquifer systems worldwide are subject to hydrochemical and biogeochemical reactions involving iron, which limit the sustainability of groundwater schemes. This mainly manifests itself in clogging of the screen and immediate aquifer with iron oxyhydroxides resulting in loss of production capacity. Clogging is caused by chemical precipitation and biofouling processes which also manifests in South African well-fields such as in Atlantis and the Klein Karoo. Both well-fields have the potential to provide a sufficient, good quality water supply to rural communities; however, clogging of the production boreholes has threatened the sustainability of the schemes as quality and quantity of water is affected. Rehabilitation of the affected boreholes using techniques such as the Blended Chemical Heat Treatment method does not provide a long-term solution. Such treatments are costly with varying restoration of original yields achieved and clogging recurs with time. Currently the research,  management  and  treatment  options  in  South  Africa  have  focused  on  the  clogging processes which are complex and site-specific, making it extremely difficult to treat and rectify. This project attempts to eliminate elevated concentrations of dissolved iron, the cause of the clogging. High iron concentrations in groundwater are associated with reducing conditions in the aquifer allowing for the dissolution of iron from the aquifer matrix. These conditions can be natural or human-induced. Attempts to circumvent iron clogging of boreholes have focussed on increasing the redox potential in the aquifer, by injection of oxygen-rich water into the system, to prevent dissolution and to facilitate fixation of iron in the aquifer matrix. Various in situ treatment systems have  been  implemented  successfully  overseas  for  some  time.  In  South  Africa  thus  far  in  situ treatment of iron has only been proposed as a solution for production borehole clogging. Based on experience from abroad the most viable option to research the elimination of ferrous iron in South African aquifer systems would be through the in situ iron removal treatment. Different techniques of increasing the dissolved oxygen concentration in the injected water to intensifying the redox change in the aquifer can be applied; however, the use of ozone as the oxidant is a new approach. Its effectiveness is evaluated by the results in iron removal in surface water treatment for drinking water supply.

Abstract

Households in many rural areas worldwide rely on septic tanks, simple pit latrines or other means of wastewater disposal. Many such households are not served by a piped mains water supply, but rather obtain their water supplies from local wells. Sampling studies of private wells in Ireland and elsewhere have shown many wells to be contaminated, with sources of microbial contamination known to include domestic wastewater treatment systems, as well as practices associated with intensive agricultural production. While the microbial quality of private well water is commonly assessed using faecal indicator bacteria (FIB), such as E. coli, FIB are not source-specific, and provide no information as to the origin of the contamination. A range of chemical and microbiological fingerprinting techniques has been investigated in an attempt to identify a robust method for apportioning private well contamination to a specific source. Fingerprinting methods evaluated include ionic ratios, fluorescent whitening compounds, faecal sterol profiles, artificial sweeteners, caffeine, pharmaceuticals and human specific Bacteroidales 16S rRNA genetic markers. A total of 212 Irish households that depend on private wells and domestic wastewater treatment systems, commonly septic tanks, were evaluated by site assessment surveys. A once-off sampling and analysis campaign of these wells found that 15% were contaminated with E. coli. Subsequent monitoring of 24 selected wells found 45% to be contaminated with E. coli on at least one occasion. The application of fingerprinting techniques to these monitored wells found that ionic ratio analysis, specifically the use of chloride/bromide and potassium/sodium ratios, is a useful low-cost fingerprinting technique capable of identifying impacts from human wastewater and organic agricultural contamination, respectively. The artificial sweetener acesulfame was detected on several occasions in a number of monitored wells, indicating its conservative nature and potential use as a fingerprinting technique for human wastewater. However, fluorescent whitening compounds, faecal sterols and caffeine were not detected in any wells, suggesting low suitability. Whilst human specific Bacteroidales genetic markers were detected, further work is required to identify how the culture-independent nature of the method relates to faecal contamination.

Abstract

Sacred wells are found across the world yet are rarely studied by hydrogeologists. This paper will present the results of a 5-year hydrogeological study of holy wells in Ireland, a country with a relatively large number of these wells (perhaps as many as 3,000). It was shown that holy wells occur in all the main lithology and aquifer types but are more numerous in areas with extreme or high groundwater vulnerability. Water samples were collected from 167 wells and tested for up to 60 chemical parameters, including a large range of trace elements. Statistical analyses were performed to see if there were any statistically significant associations between the chemical constituents and the reputed health cures for the different well waters, and the results will be presented here. One of the issues in communicating the research findings to the general public is in explaining the small concentrations involved and the likely very small doses pilgrims at holy wells receive during their performances of faith. The spiritual dimension, including the therapeutic value of the landscape where the well is located, is likely an important aspect of the healing reputation.

Abstract

Drywells are extremely useful for coping with excess surface water in areas where drainage and diversion of storm flows are limited, facilitating stormwater infiltration and groundwater recharge. Drywells have been used for stormwater management in locations that receive high precipitation volumes, naturally or due to climate change; however, to date, they have not been developed in urban areas overlying karst landscapes. To test the performance of karst drywells, we constructed a pilot system for collecting, filtering, and recharging urban stormwater through drywells in karst rock. The study site is in the Judaean Mountains, an urban residential area in Jerusalem, Israel. The infiltration capacity of the drywells was evaluated using continuous and graduated water injection tests, and its effective hydraulic conductivity (K) was estimated. Drywells’ infiltration capacity was up to 22 m3 /hour (the maximum discharge delivered by a nearby fire hydrant), while monitored water levels in the drywells were relatively stable. Calculated hydraulic conductivities were in the range of K=0.1-100 m/ day, and generally, K was inversely proportional to the rock quality designation (RQD) index (obtained from rock cores during the drilling of the drywells). The pilot system performance was tested in the recent winter: during 9 days with a total rainfall of 295 mm, a cumulative volume of 45 m3 was recharged through the drywell, with a maximum discharge of 13 m3 / hour. High-conductivity karst drywells and adequate pre-treatment filtration can be valuable techniques for urban flood mitigation and stormwater recharge.

Abstract

The geochemical study of deep aquitard water in the southern Golan-Heights (GH), Israel, reveals the complex paleo-hydrological history affected by the intensive tectonic activity of the Dead Sea Rift (DSR). The sampled water collected from new research boreholes exhibits relatively high salinities (2,000-10,000 mg Cl/L), low Na/Cl ((HCO3 +SO4 )). δ18OV-SMOW and δDV-SMOW values are relatively depleted (~-7‰ and ~-42‰, respectively), while 87Sr/86Sr ratios are enriched compared to the host rocks. Lagoonary brines with similar characteristics (excluding the water isotopic compositions) are known to exist along the DSR. These brines formed 10-5 Ma ago from seawater that transgressed into the DSR and subsequently underwent evaporation, mineral precipitation and water-rock interactions. These hypersaline brines intruded into the rocks surrounding the DSR and based on the current study, also extended as far as the southern GH. Further, following their subsurface intrusion into the GH, the brines have been gradually diluted by isotopically depleted freshwater, leaving only traces of brines nowadays. The depleted isotopic composition suggests that the groundwater system is recharged at high elevations in the north. It is also shown that variable hydraulic conductivities in different formations controlled the dilution rates and subsequently the preservation of the entrapped brines. The paleo-hydrological reconstruction presented here shows that the flow direction has reversed over time. Brines that initially intruded from the rift have since been gradually flushed back to the rift by younger fresh groundwater.

Abstract

The Galápagos Archipelago (Ecuador), traditionally considered a living museum and a showcase of evolution, is increasingly subject to anthropogenic pressures affecting the local population who has to deal with the challenges of accessing safe and sustainable water resources. Over the years, numerous national and international projects have attempted to assess the impact of human activities on both the water quality and quantity in the islands. However, the complexity of the stakeholders’ structure (i.e., multiple agents with competing interests and overlapping functions) and the numerous international institutions and agencies temporarily working in the islands make information sharing and coordination particularly challenging. A comprehensive assessment of water quality data (physico-chemical parameters, major elements, trace elements and coliforms) collected since 1985 in the Santa Cruz Island revealed the need to optimise monitoring efforts to fill knowledge gaps and better target decision-making processes. Results from a participatory approach involving all stakeholders dealing with water resources highlighted the gaps and potentials of water resources management in complex environments. Particularly, it demonstrated the criticalities related to data acquisition, sustainability of the monitoring plan and translation of scientific outcomes into common ground policies for water protection.

Shared procedures for data collection, sample analysis, evaluation and data assessment by an open-access geodatabase were proposed and implemented for the first time as a prototype to improve accountability and outreach towards civil society and water users. The results reveal the high potential of a well-structured and effective joint monitoring approach within a complex, multi-stakeholder framework.

Abstract

Global warming affects atmospheric and oceanic energy budgets, modifying the Earth’s water cycle with consequent changes to precipitation patterns. The effects on groundwater discharge are still uncertain at a global and local scale. The most critical step to assess future spring flow scenarios is quantifying the recharge-discharge connection. This research aims to predict the long-term effects of climate change on the discharge of seven main springs with long hydrologic series of discharge values located in different hydrogeological settings along the Apenninic chain (Italy). The investigated springs are strategic for either public water supply or mineral water bottling. The Apennines stretch along the Italian peninsula in a Northwest-Southeast direction, crossing the Mediterranean area that represents a critical zone for climate change due to a decreased recharge and increased frequency and severity of droughts over the last two to three decades. In this communication, the data of one of the chosen springs, called Ermicciolo (42°55’25.8”N, 11°38’29.5”E; 1020 m ASL), discharging out from the volcanic aquifer of Mount Amiata, are presented. Statistical and numerical tools have been applied to analyse the time series of recharge-related parameters in the spring’s contribution area and the spring discharge from 1939 to 2022. To estimate the impact of climate change on the Ermicciolo’s outflow, a regional atmospheric circulation model has been downscaled to the spring catchment area and used to derive the expected discharge at the 2040-2060 time span, according to the build-up data-driven model of the recharge-discharge relationship in the past.

Abstract

Italian urban areas are characterized by centuries-old infrastructure: 35% of the building stock was built before 1970, and about 75% is thermally inefficient. Besides, between 60% and 80% of buildings’ energy consumption is attributed to space heating. Open-loop Groundwater Heat Pumps (GWHPs) represent one of the most suitable solutions for increasing the percentage of energy consumption from Renewable Energy Sources (RES) in cities such as Turin city (NW Italy). However, allowing the diffusion of GWHPs cannot be disregarded by the knowledge about hydrogeological urban settings. As the thermally affected zone (TAZ) development could affect energetically adjacent systems, the TAZ extension must be well-predicted to guarantee the systems’ long-term sustainable use. Different buildings of the Politecnico di Torino are cooled during the summer by 3 different GWHP systems. To investigate possible interactions with other neighbouring plants and to preserve the water resource by capturing its positive and productive aspects from an energy point of view, a complex urban-scale numerical model was set up for comprehensively analysing the impact of the geothermal plants on the shallow aquifer. Different simulation scenarios have been performed to define possible criteria for improving the energy functionality of the groundwater resource. Besides, the extent of the TAZ generated was defined as a function of the specific functioning modes of the different GWHP systems. Numerical simulations, legally required by competent authorities, represent a fundamental tool to be applied for defining hydrogeological constraints derived from the GWHPs diffusion in Italian cities.

Abstract

The results of a full field application of a DNA-based nano tracer in an arenitic aquifer are presented along with the comparison with the breakthrough of a classical tracer injected in parallel. DNA is encapsulated into amorphous silica spheres (nanoparticles), protecting the molecule from chemical and physical stresses. The main advantages of using DNA with classical tracers, like ionic or fluorescent, are the lower detection concentration and the chance to perform multi-tracer tests with many distinct signatures of injection. To the authors’ best knowledge, this is the first tracing adopting nano-particles on full field conditions in a sedimentary fractured aquifer. Preliminary tests in the lab were performed adopting either deionized water or groundwater collected at the experimental site: a set of nanoparticles at a known concentration was dissolved by adding a buffered fluoride solution, and DNA was then quantified by qPCR reaction (SYBR green). The hydrogeological setting is represented by a Miocenic marine arenitic aquifer (Pantano formation) outcropping extensively in Northern Apennines (Italy) and the main groundwater reservoir for public water supply through the uptake of many perennial springs. The main purpose of the tracing was to verify the transmissive capacity of fractures with high aperture (15-20 cm) identified by optical and acoustic televiewers inside an 80 m deep borehole. The injection was performed inside the borehole, and the tracer’s recovery was between 5-15 m, both in the uptake points of two perennial springs and in another borehole drilled nearby.

Abstract

In 2021-23, northern Italy suffered a severe drought due to the absence of rainfall, which strongly affected the pre-alpine lake levels, affecting energy production, agriculture and sustainable river flows. This led to harsh consequences on agriculture, which in the Lombardy region almost completely relied on flooding irrigation methods using water from lakes through Ticino and Adda rivers. As part of the INTERREG Central- Europe project “MAURICE”, which focuses on Integrated Water Resources Management, the winter irrigation practice is proposed as a climate change adaptation strategy. The main project idea is to store surface water in aquifers in periods of exceedance (autumn/winter) using the very dense channels irrigation network as a “natural” infiltration system. The underground storage would increase the groundwater levels, bringing two main advantages during the spring/summer seasons: a good flow rate at plain springs and, in periods of water scarcity, the possibility to extract groundwater for agricultural purposes. Relying on the slow groundwater velocity (about 350 m/y), this practice keeps water stored in the subsoil just below the irrigated areas where the water is needed.

In the early project stage, a basin-scale numerical model is presented to test the potentiality of such practice. A specified water volume was distributed on the crop fields during the winter period, and the effects of such managed recharge were evaluated, also considering the possible problems deriving from the groundwater levels increase. The model demonstrates the adaptation measure feasibility, which will be tested at a field scale in a Pilot Area.

Abstract

This paper presents the results of groundwater flow modelling studies that were conducted within the scope of the PRIMA RESERVOIR project. The project’s main goal is to develop an innovative methodology to mitigate land subsidence due to excessive groundwater exploitation in water-stressed Mediterranean watersheds. This objective is achieved by integrating earth-observation-derived land subsidence rates with a coupled implementation of numerical groundwater flow and geomechanical modelling. MODFLOWbased 3-D transient flow models were constructed for the four pilot sites (the coastland of Comacchio in Italy, the Alto Guadalentín aquifer in Spain, the Gediz River basin alluvial aquifer in Turkiye and the Azraq basin in Jordan) that have different hydrogeological properties and pose different challenges concerning water management. Models were calibrated and run for similar simulation periods (2013-2021) to obtain hydraulic head drawdowns and changes in groundwater storage. Land subsidence at these sites was evaluated using Advanced Differential Radar Interferometry (A-DInSAR) on image stacks from the Sentinel-1 satellite. Subsidence rates were then compared to hydraulic head drawdown rates to identify groundwater pumping-induced subsidence areas. The comparison for all study areas suggested that locations of maximum displacements do not necessarily coincide with areas that display the largest head drawdown calculated by the flow models. Other triggering factors, such as the thickness of compressible materials, are also related to high subsidence areas.

Abstract

The Natural Background Level (NBL) of contaminants in groundwater is typically determined using regional-scale monitoring networks or site-specific studies. However, regional scale values are limited in their ability to capture natural heterogeneities that affect contaminant mobility at smaller scales, potentially leading to local over- or underestimation of the natural contaminant concentration. Conversely, site-specific studies can be expensive and time-consuming, with limited use outside the specified case study. To overcome this issue, a study was conducted in a 2600 km2 area, analyzing arsenic concentration values from monitoring networks of sites under remediation as an alternative source of information. The main drawbacks of the alternative dataset were the lack of information on monitoring procedures at the remediation sites or potential anthropogenic influences on the concentration data. However, these limitations were adequately managed with a thorough data pre-treatment procedure informed by a conceptual model of the study area. The NBLs estimated with the alternative dataset were more reliable than that from the regional monitoring network, which, in the worst case (i.e., in the area with the highest geological and geochemical heterogeneity), the NBL of one order of magnitude was underestimated. As a future step, the project seeks to incorporate geological and geochemical heterogeneities as secondary variables in a geostatistical analysis to produce a continuous distribution of arsenic concentrations at the mesoscale. This would provide a useful tool for managing contaminated sites and a reproducible protocol for NBL derivation in different areas, overcoming the scale issue.

Abstract

Groundwater (GW) is a target of climate change (CC), and the effects become progressively more evident in recent years. Many studies reported the effects on GW quantity, but of extreme interest is also the assessment of qualitative impacts, especially on GW temperature (GWT), because of the consequences they could have. This study aims to systematically review the published papers dealing with CC and GWT, to determine the impacts of CC on GWT, and to highlight possible consequences. Scopus and Web of Science databases were consulted, obtaining 144 papers. However, only 45 studies were considered for this review after a screening concerning eliminating duplicate papers, a first selection based on title and abstract, and an analysis of topic compatibility through examination of the full texts. The analysed scientific production from all five continents covers 1995-2023 and was published in 29 journals. As a result of the review, GWT variations due to CC emerged as of global interest and have attracted attention, especially over the past two decades, with a multidisciplinary approach. A general increase in GWTs is noted as a primary effect of CC (especially in urban areas); furthermore, the implications of the temperature increase for contaminants and groundwater-dependent ecosystems were analysed, and various industrial applications for this increase (e.g. geothermy) are evaluated. It’s evident from the review that GWT is vulnerable to CC, and the consequences can be serious and worthy of further investigation.

Abstract

Basin-scale studies addressing the transfer of pollutants among groundwater and surface water bodies are essential to support local authorities in the sustainable management of freshwater resources. This work revealed that, in the hydro-system of the Oglio River basin (Northern Italy), nitrate pollution in groundwater, originated by overfertilization, is transferred downstream to surface water bodies via outflow through lowland springs and baseflow to gaining rivers. Downstream groundwater is unaffected due to reducing conditions that facilitate denitrification. It follows that efficient measures to reduce nitrate pollution in surface water bodies should not be applied solely to rivers/streams but, instead, they should include the upstream groundwater body. The work aimed at understanding nitrate pollution dynamics in an intensively irrigated hydro-system, focusing on the role played by the complex interaction among irrigation water, surface water and groundwater. The study relied on nitrate concentration, Cl/Br ratio, stable isotopic composition of water, nitrate and boron in groundwater, river, lake, spring, and rainwater samples. Results highlighted a well-defined spatial distribution of nitrate concentrations in groundwater, mainly driven by irrigation practices: (1) where groundwater-fed irrigation is done, return flow promotes high nitrate concentrations (>50 mg/L) due to groundwater recirculation; (2) where intensive surface-water-irrigation is practised, fed by low-nitrate river water, return flow generates lower nitrate concentrations (<50 mg/L) due to dilution. This work highlighted the importance of a holistic approach jointly investigating surface water, groundwater, and irrigation water when nitrate pollution is examined at a basin scale.

Abstract

 Predicting and quantifying the hydrogeological interference of big underground works is a complex effort. This is due to the considerable uncertainty in estimating the key geomechanical and hydrogeological parameters affecting the area of potential interference of the projects. Moreover, the pattern of involved groundwater flow systems is hardly identified, either in natural or disturbed conditions. Base tunnels through mountain ridges are particularly complex in their interactions with groundwater. Several approaches and tools have been published to predict the magnitude and distribution of water inflows inside tunnels and their impact on many receptors (springs, rivers, lakes, wells, groundwater-dependent ecosystems). The research, co-funded by Italferr Spa (Italian railway national company for tunnel design), deals with calibrating and validating these methods based on huge datasets. Main engineering companies provided data from completed base tunnel projects. In particular, in this study, the Drawdown Hazard Index (DHI) method has been calibrated with a dataset of a 15 km long sector of the Gotthard base tunnel drilled through a crystalline geological setting. The calibration involved only the Potential Inflow (PI) parameter to verify the matching between the probability of inflow and the actual output of the excavation, according to the available data in the preliminary stage of the project. An alternative tool based on a machine-learning approach was then applied to the same dataset, and a comparison was presented.

Abstract

South Africa is a country at the forefront of the solar energy revolution. Each solar energy plant implementation results in further supply of clean renewable energy to the South African electric grid, thus playing a part in helping South Africa meet its renewable energy targets, in addition to stimulating long-term economic development and creating new jobs. Active solar techniques include the use of photovoltaic systems, concentrated solar power and solar water heating to harness the energy. Particular focus has recently been on the use of concentrated solar power technology which is better able to address the issues of scalability and electric storage. The process includes the use of a liquid salt solution and also requires a reliable water source. When applying for a new solar energy plant, a geohydrological assessment is required to inform the Environmental Impact Assessment. SolarReserve South Africa (Pty) Ltd responsibly take this one step further by requesting detailed geohydrological assessments including drilling and field testing, numerical modelling and simulations, and detailed impact analysis. Of particular consideration in these assessments is the potential for groundwater to meet the plants water needs, as well as the assessment of risk and potential groundwater contamination impact from failure in the lining of the evaporation ponds. This paper describes the 'best practice' approach that has been formulated and undertaken for some previously proposed sites, and is now recommended for future use in the groundwater impact assessment of future proposed solar energy plants in South Africa. It makes use of a SolarReserve case study example, located at the farm Kalkaar near Jacobsdal in the Free State Province, to explain the main steps in the process and how the results of using this approach are important inputs in the assessment of impacts, decision-making regarding go/no-go, technology used, infrastructure and site layout, and responsible management and monitoring of the groundwater in the future.

Abstract

Groundwater is connected with the earth’s interior, atmosphere, ocean sphere, and human sphere. Fluid, heat, and dissolved materials are crossed over the boundaries of adjacent spheres with different time scales in dynamics. These different time scales include event scales such as earthquakes and Tsunami, seasonal scales such as precipitation seasonality, a decade or longer scales such as climate change, and human scales such as groundwater pumping, land cover/use changes, and social revolutions such as industrialization, green revolution, urbanization, and globalization in Anthropocene. This study shows two examples of groundwater connected with different time scales. The first is thermal signals preserved in groundwater by earthquake, climate change, and anthropogenic impacts with different time scales. Thermal signals in groundwater from the Kumamoto earthquake in 2016 revealed evidence of fluid flow from the earth interior and Aso mountain. The thermal signal in groundwater in Kumamoto also showed the impacts of global warming and urbanization, as well as changes in precipitation and land use. The second example is the connectivity between residence time of groundwater and groundwater consumption in social revolutions such as industrialization and urbanization in the Anthropocene, as well as World War II as an example of groundwater for emergency situations.

Abstract

Floods result in significant human and economic losses worldwide every year. Urbanization leads to the conversion of natural or agricultural land covers to low-permeability surfaces, reducing the infiltration capacity of the land surface. This amplifies the severity and frequency of floods, increasing the vulnerability of communities. Drywells are subsurface structures built in the unsaturated zone that act as managed aquifer recharge facilities to capture stormwater runoff. They are particularly well-suited for the urban environment because of their low land occupancy. In this study, we utilized an integrated surface-subsurface flow modelling approach to evaluate the effectiveness of dry wells in reducing urban runoff at a catchment scale. We developed a 3D model with HydroGeoSphere, characterizing a synthetic unconfined aquifer covered by a layer of low-permeability materials. Sensitivity analyses of land surface conditions, aquifer properties, dry well designs, and rainfall conditions were performed. Model results indicated that dry wells are more effective in reducing runoff when the land surface has a higher Manning roughness coefficient or the aquifer material has a higher hydraulic conductivity. Dry wells should be situated beneath drainage routes with high runoff flux to achieve optimal performance. Increases in dry well radius or depth enhance the infiltration capacity, but deeper dry wells can contaminate groundwater through infiltrating stormwater. Dry well performance declines with higher rainfall intensity, emphasizing the need for local rainfall intensity–duration–frequency (IDF) data to inform the design level of dry wells in specific catchments.

Abstract

The water quality in the crystalline rocks of the Johannesburg and its environs has been severely altered by the mining activity. Due to freshwater scarcity and dependency of the people on the groundwater, it is important to understand the extent of hydrogeochemical footprint in the area. The water quality characteristic has been thoroughly assessed in the crystalline aquifers based on the input from hydrogeochemical characteristics and environmental isotopes. The results show that the calculated dilution factor for acid-mine decant is in the range of 68% as a result of interaction with surrounding fresh water. The SO4/Cl ratio has a wide range of values that falls between 0 an306.37, while that of Fe/Ca ratio falls between 0 and 5.59. High SO4/Cl values potentially indicate thinterference of acid-mine decant with the groundwater system traced through sulphate concentration. Similarly, a high Fe/Ca ratio also indicates the impact of acid-mine decant on the groundwater system where iron is traced with respect to calcium concentration. In this regard the ratios above 0,25 (with the assumption of 1 to 4 natural abundance for Fe:Ca in water in the area) could potentially represent acid-mine decant source.The results confirm that most of the water- supply wells have heterogeneous chemistry with distinctive hydrogeochemical footprint represented by abnormally high Fe, SO4 and Si as a result of acid-mine decant.

Abstract

Underground coal gasification (UCG) is a high-temperature mining method that gasifies coal in situ to produce a synthetic gas that can be used as feedstock for industrial purposes. Coal conversion leads to mineral transformation in the gasifier, which ultimately interacts with the rebounding groundwater post-gasification. This poses a groundwater contamination risk, the biggest environmental risk from a UCG geo reactor. There is currently no model for UCG operators and regulators to assess the total risk of groundwater contamination from UCG operations. This study collates literature on groundwater contamination from UCG operations and presents a workable but comprehensive groundwater risk assessment model for a spent UCG chamber. The model follows the source-pathway-receptor arrangement where groundwater contamination sources are identified as ash, char, roof and floor. All possible pathways are assessed for hydraulic connections with the spent geo-reactor via acceptable geochemical tests, including stable isotopes, hydrochemistry and stratification analysis. Finally, the receptor aquifers (e.g. shallow aquifers) are monitored periodically to determine if contamination has occurred.

Abstract

Groundwater recharge is of strategic importance in groundwater research both globally and locally in South Africa as it ensures that the development of groundwater does not exceed the systems rate of renewal, protecting the integrity of these resources. The Table Mountain Group (TMG) system is considered to a potential source of future bulk water supply with a recharge potential ranging from 7 to 23% of Mean Annual Precipitation (MAP). However, estimation of true groundwater recharge is challenging as groundwater recharge is affected by many factors which influence the ability of water to reach the water table. Various studies have been carried out within the Jonkershoek Nature Reserve which investigated the response of a catchment’s hydrological functioning and biodiversity to land use management and disturbance regimes such as fires. Previous studies assessed the effect of fire on the hydrology of the catchment, highlighting the associated increase in streamflow components and hydrological response of catchments due to the development of soil water repellency which generated rapid runoff but do not discuss the possible effects on the recharge potential to the groundwater system. The present study investigated the possible effects of wildfire disturbances on local groundwater recharge system of the TMG aquifer system in Jonkershoek Valley, Western Cape Province of South Africa using baseflow as a proxy for groundwater recharge. The possible effects of wildfire disturbance on groundwater recharge processes were determined through review of literature, lithological logs and geological maps. Baseflow separation of hydrographs was conducted using the Recursive Digital Filter Method. It was found that the baseflow response to rainfall events following the March 2015 fire remained unchanged for the Tierkloof sub-catchment of Jonkershoek whereas Langrivier experienced a decline in baseflow response following the winter rainfall period later that 2015. The findings suggest that wildfire to some extent influences groundwater recharge but not all times thereby providing insight on the extent of influence of a vegetation cover on groundwater recharge and confirming findings from previous studies. The present study recommends long term studies on the influence of wildfire on groundwater recharge and the use of both direct and indirect methods for investigating groundwater response to fires. 

Abstract

In many countries, groundwater quality is measured against drinking water limit values or standards. While that makes sense from a water supply perspective, it is not a scientifically correct yardstick to use to classify groundwater resources or even to determine whether groundwater has been “polluted”. Using this incorrect anthropocentric yardstick has led in some cases to legal action against industries, with significant liability implications, whilst the industry’s activities did not at all influence the quality of the groundwater but were reflecting the conditions under which the lithology of the aquifer was deposited. A case study in KZN demonstrating this will be discussed. We are, therefore, in a situation where regulatory decisions regarding groundwater quality and the regulation of the potential impact of human activities on groundwater systems are unfair, not scientifically credible, and not legitimate. This situation hampers the effective management and regulation of groundwater use and the prevention of detrimental impacts on groundwater, even saline groundwater systems.

This paper argues that it is necessary to develop a groundwater quality classification system that will categorise aquifers based on their natural quality, not just from the perspective of their usefulness as a potable supply source but would recognise the important role that aquifers with more saline natural qualities play in maintaining ecosystems that require such salinity for its survival. It concludes by considering international approaches and proposing aspects to consider in developing such a system for groundwater regulation.

Abstract

The proposed underground copper mine is one of the first Greenfield developments in the Kalahari Copper Belt. Groundwater resources in the region are scare and saline mainly due to minimal recharge. Management and simulations of groundwater inflows formed an integral part of the new mine design to reduce production losses caused by the inflows and to ensure a safe mining environment. The mine is located is a complex hydrogeological setting characterised by folding and deep water levels. Multiple fractured aquifers are associated with the mining area. Groundwater numerical modelling was performed in Groundwater Modelling System (GMS) using MODFLOW-NWT. Results of the scenarios were used as a management tool to aid in the potential inflow predictive simulations and dewatering management. The numerical model was calibrated by using field measured aquifer parameters and piezometric heads. Numerical simulations assisted in estimating average groundwater inflows at certain stages of the proposed mine development. The simulated mine groundwater inflow volumes were used as input into the design of the dewatering measures to ensure a safe mining environment.