Thermal energy storage in old flooded mines: how to tackle the hydrogeological issues

Groundwater in flooded abandoned mines could be used for geothermal purposes using heat pumps and an open loop involving pumping and re-injection. Hydraulic conductivity values of the mined rock zones have been artificially increased. However, long-term efficiency and the possible impacts of geothermal doublets must be studied involving a series of hydrogeological challenges. Hot water would be pumped from the deep parts of the mine works, and cold water would be re-injected in a shallower gallery or shallow fractured rocks, with a seasonal flow inversion for building cooling during the hot season. Indeed, a ‘short-cut’ groundwater flow is to be avoided between the mine’s deep and shallow parts. The true geometry of the interconnected network of open galleries and shafts can be highly complex and must be conceptualized realistically to ensure that the model is feasible and reliable.

This model must involve groundwater flow and heat transport, with temperature-dependent density and viscosity, in a complex 3D heterogeneous domain of highly fractured rocks and partially collapsed exploitation zones, galleries, and shafts. Such a model is nevertheless widely recommended to design and optimize the short--, mid-, and long-term efficiency of the geothermal system and assess possible environmental impacts. An example of simulations on a synthetic case will be used for illustration and preparation work before further application in a real case study.

Presenter Name
Alain
Presenter Surname
Dassargues
Area
Belgium
Conference year
2023