Fly Ash Leaching Dynamics And Implication On Groundwater Contamination

South Africa utilizes coal for energy and chemical feedstock thereby generating millions of tons of ash every year. The ash is stockpiled in surface waste facilities where it poses a risk of leaching and contaminating groundwater. This study utilizes standard leaching tests, TLCP and SPLP, to evaluate and predict the mobility of different elements that leach from fly ash. Two different fly ash samples (Ash M and Ash T) were used in the study. A QEMSCAN analysis was also performed on the samples as well as the coal to determine the elementary and mineralogical compositions. Both Ash samples were generated from bituminous coals and had similar physical properties. Both ash samples were mixed respectively with the two different leachates one more acidic (Leachate A) the other more basic (Leachate B). Trace elements are present in ash in small amounts, but still at lower levels still pose threat to the environment and human health. Only three trace elements were found present in both ash samples. The detected trace elements in an increasing concentration order are: Manganese>Chromium>Copper. It appears the leaching behaviour of these trace elements is similar to the other metals, being insoluble at near neutral and alkaline pH range while dissolvable at low pH ranges. The results show that Leachate B was found to extract more material than Leachate A on a milligrams per gram of ash basis. The risk to groundwater contamination can be minimized by understanding the leaching dynamics and water retention of fly ash dumps as the results show.

Presenter Name
Nadine
Presenter Surname
Swartz
Conference year
2019