Conference Abstracts

All Abstracts were presented at the Groundwater Conferences

Displaying 601 - 650 of 795 results
Title Presenter Name Presenter Surname Area Conference year Sort descending Keywords

Abstract

The occurrence of emerging organic contaminants (EOCs) in the aquatic environment is of no surprise since these are applied for various purposes daily. This study investigated the changes in EOCs concentrations in the water between 2019 and 2020. During rainy seasons, samples were collected from dams and surrounding boreholes in the Eastern Basin of the Witwatersrand Goldfields. During the first and second laboratory analyses, 24 and 11 analytes were screened in the water samples. The findings indicated that in 2020, compounds such as caffeine, sulfamethoxazole, atrazine and metolachlor displayed detection frequency exceeding 2019. This indicates that the occurrence of these compounds in the aquatic system has increased within a year. Whilst carbamazepine was still traced in 12 sites as previously observed in 2019, compounds estradiol, estrone, bisphenol A and ibuprofen were traced in fewer sites than they were detected in 2019. Compounds 4-nonylphenol, methylparaben, caffeine and atrazine were detected in all the samples analysed for 2019 and 2020, respectively. Antiretrovirals (ARVs) were analysed once and were detected in most sites, with efavirenz registering the highest (12/18) detection frequency. Assessing the occurrence of EOCs in boreholes according to the depth indicated that bisphenol A and estrone were traced in greater concentrations in deep than shallow aquifers, whilst the opposite was observed for atrazine. This study showed groundwater susceptibility to contamination by EOCs, with concentrations of most compounds increasing with time due to their high usage and improper sewer systems in the area.

Abstract

The interactions between groundwater and the sewerage networks of the Lens-Liévin urban communities, located in the north of France, locally lead to non-compliance in the operation of the network and the wastewater treatment plants, questioning the city’s economic development policy. Indeed, the infiltration of groundwater inflow in the sewerage network could be the cause. Based on the piezometric measurements carried out in 2022, the surface elevation of the groundwater table is carried out using a kriging approach. The comparison of altitudes between network position and piezometry made it possible to identify the pipes most at risk of the infiltration of groundwater inflow and correspond to those indicated as non-compliant by network managers according to the national decree. Outside this period, the network vulnerability indicators are defined based on simulated piezometry by a 3D hydrodynamic model of the chalky hydrosystem (MARTHE code) established in a transient state. For two past extreme situations, the network would have been flooded at 1.20% in the dry period (1997) and up to 8.30% in the wet period (2001), highlighting the existence of a part of the network systematically flooded. Using the hydrodynamic model according to different prospective scenarios makes it possible to anticipate the actions deployed on the network to guide management and adaptation solutions. However, a modelling methodology that considers the feedback between the dynamics of the groundwater and the flows passing through the networks remains to be developed.

Abstract

The serpentinization of ultramafic rocks is a process in which minerals of ferromagnesian nature (e.g., olivine) are transformed into serpentine and produce groundwater with a very high pH. In these settings, CH4 can be produced by combining H2 from serpentinization and CO2 from the atmosphere, soil, carbon-bearing rocks, or mantle, although the microbial generation of CH4, mediated by methanogens utilizing CO2, formate and/or acetate can be another source in these aquifers. In this sense, the hydrochemistry of hyperalkaline springs can provide valuable information about gas origin. The Ronda peridotites (Malaga province, Spain) are one of the world’s largest outcrops of the subcontinental mantle (~450 km2). Hyperalkaline springs (pH>10) emerging along faults present a permanent low outflow (<1 L/s), Ca2+- OH- facies and residence times exceeding 2,000 years. The fluids, poor in Mg2+ and rich in K+, Na+, Ca2+ and Cl-, also contain significant concentrations of dissolved CH4 and other hydrocarbons. Water samples have been collected from eight hyperalkaline springs and analyzed for major, minor and trace elements, including Platinum Group Elements (PGE) and Total Organic Carbon (TOC). The most mobile PGEs (Pd and Rh) are present in all the springs, indicating the existence of potential catalysts for the abiotic synthesis of CH4. High TOC concentrations are observed in some studied springs where previous analyses (i.e., bulk CH4 isotopes) have indicated a microbial CH4 origin.

Abstract

In the past decade, Southern Africa has experienced periods of extreme drought. This was especially true in the western Karoo in South Africa. Continuous drought and limited rainfall led to declining aquifer water levels that curtailed sustainable water supply for towns and livestock. The western Karoo is almost completely dependent on groundwater. Managed aquifer recharge (MAR) is being used to reduce the effects of droughts and mitigate climate change impacts. A good understanding of the geology and the behaviour of the aquifers is needed for implementing various MAR designs, including nature-based solutions, which are used to recharge aquifers with limited rainfall. This paper discusses 5 active MAR case studies in the Western Karoo. Here, site-specific MAR methods that use small rainfall events deliver reasonable results, whereas the implemented MAR options keep most aquifers functional. Observations at the MAR sites also showed improved water quality and less bacterial clogging. This improves the environment around the managed aquifer recharge sites. The MAR methods and designs discussed in this paper can be used on a larger scale for a town or a smaller scale for a farm. Maintenance costs are low, which makes these options cost-effective for less wealthy areas.

Abstract

This study focused on improving the understanding of flow regimes and boundary conditions in complex aquifer systems with unusual behavioural responses to pumping tests. In addition, the purpose was to provide a novel analysis of the hydrogeological properties of aquifers to deduce inferences about the general expected aquifer types to inform new practices for managing groundwater. In this paper, we report that using derivative analysis to improve understanding of complexities in aquifer flow systems is difficult and rarely used in groundwater hydraulics research work. Thus, we argue that if derivatives are not considered in the characterizing flow regime. The heterogeneity of aquifers, boundary conditions and flow regimes of such aquifers cannot be assessed for groundwater availability, and the decision to allocate such water for use can be impaired. A comprehensive database was accessed to obtain pumping tests and geological data sets. The sequential analysis approach alongside derivative analysis was used to systematically perform a flow dimension analysis in which straight segments on drawdown-log derivative time series were interpreted as successive, specific, and independent flow regimes. The complexity of using derivatives analyses was confirmed. The complexity of hydraulic signatures was observed by pointing out n sequential signals and noninteger n values frequently observed in the database. We suggest detailed research on groundwater flow systems using tracer methods like isotopes and numeric models must be considered, especially in multilayered aquifer systems such as the Heuningnes catchment.

Abstract

Unicef is the WASH sector lead globally and is, present at the country level, the main counterpart of government, especially regarding the component of the water balance utilised for potable safe water supplies. This mandate means that Unicef then has a role in looking at water resources nationally and not just as individual projects, and in doing so, contributes to good water governance as an integral part of system strengthening. Ensure this is done in partnership with other ministries and stakeholders that support them through advocacy for humanitarian and developmental access and support in technical areas such as groundwater assessments and monitoring. The focus on groundwater is especially linked with the fact that groundwater plays a major role due to its buffering capacity to climate variations, easier access and global coverage. Since groundwater is the most significant component of accessible freshwater resources, it is in the interest of UNICEF to make this resource more visible to meet both development and humanitarian goals, strengthen national systems and ultimately build resilience in mitigating water scarcity to scale or at the National level. Therefore, examples will be presented where Unicef has engaged on this journey with nations such as Afghanistan, Yemen, Mozambique and Rwanda to understand their water resources better. The overall objective at the National level is to adapt the capacity to withstand and recover as quickly as possible from external stresses and shocks or build resilience.

Abstract

Deploying a participatory approach for surveying the complex geohydrological system and defining the status of the groundwater resources in the Kunzila catchment area has crucial importance towards conjunctive use of its water and land resources for sustainable economic growth, social well-being, and environmental protection. Several initiatives are being undertaken to pilot the ‘Integrated Landscape Management and WASH’ project in this community to implement evidence-based approaches. A comprehensive hydrogeological study has been carried out to understand the hydrogeological system, propose ecosystem restoration measures, identify suitable locations for drilling boreholes and design a groundwater and surface water monitoring network.

The first results pointed out the central area of the catchment as holding the best potential for groundwater abstraction, a productive Late Quaternary basalt aquifer. As this area is in use by private floriculture farms, several other borehole locations were sited to meet the domestic and livelihood demand across the watershed. In addition to the drinking water supply goals, the project proposed catchment intervention for soil and water conservation based on the Landscape Approach and 3R measures implementation - Retain, Recharge, Reuse. Such measures include but were not limited to riparian vegetation restoration, terracing and contour bunds, agroforestry, controlled grazing, etc. A telemetric monitoring network has been designed and installed to support the conjunctive management of shallow and deep groundwater water resources, streams and Lake Tana, together with a functional dashboard for data registrations and sharing. The monitoring program gauges the impact of groundwater abstraction and the quality parameters.

Abstract

Given the challenging global water outlook due to climate change and urbanisation, there is a heightened necessity for greater water resilience at critical facilities to tackle water disasters or disasters that lead to water crises. In 2017, the Western Cape Province of South Africa experienced an extended drought with the risk of acute water shortages. The Western Cape Government (WCG) developed business continuity plans and implemented a programme to ensure water supply to certain critical service delivery facilities, utilising the strategy of developing localised groundwater supply systems. The case study research of the WCG program enabled the development of an evaluation framework that assessed this strategy’s effectiveness in improving water resilience levels at critical facilities. From the lessons learnt in the WCG programme, the research also crystallised the critical success factors in sustainably implementing this strategy. The research showed that this is an effective strategy for its purposes and provides both current and future disaster preparedness planners with an improved understanding of the levels of water resilience achievable through this strategy and the methodology to achieve it best.

Abstract

Sacred wells are found across the world yet are rarely studied by hydrogeologists. This paper will present the results of a 5-year hydrogeological study of holy wells in Ireland, a country with a relatively large number of these wells (perhaps as many as 3,000). It was shown that holy wells occur in all the main lithology and aquifer types but are more numerous in areas with extreme or high groundwater vulnerability. Water samples were collected from 167 wells and tested for up to 60 chemical parameters, including a large range of trace elements. Statistical analyses were performed to see if there were any statistically significant associations between the chemical constituents and the reputed health cures for the different well waters, and the results will be presented here. One of the issues in communicating the research findings to the general public is in explaining the small concentrations involved and the likely very small doses pilgrims at holy wells receive during their performances of faith. The spiritual dimension, including the therapeutic value of the landscape where the well is located, is likely an important aspect of the healing reputation.

Abstract

Having knowledge of spatiotemporal groundwater recharge is crucial for optimizing regional water management practices. However, the lack of consistent ground hydrometeorological data at regional and global scales has led to the use of alternative proxies and indicators to estimate impacts on groundwater recharge, enabling effective management of future water resources. This study explores the impact of land use changes and wildfires on groundwater recharge at a regional scale in Bolivia, using an alternative indicator to estimate variations in groundwater recharge rates. Based on a study by de Freitas L. in 2021, the methodology developed the annual groundwater recharge reduction rate (RAPReHS) utilizing remotely sensed data from the FLDAS and TERRACLIMATE datasets. The RAPReHS employs a simplified version of the water balance equation, estimating direct vertical groundwater recharge by considering the difference between precipitation, evapotranspiration, and runoff. The methodology was upscaled to improve data processing and analysis efficiency using an open-source cloud-computing platform (Google Earth Engine) over a 20-year period. The first results reveal a strong correlation between decreasing groundwater recharge rates and natural vegetation in the eastern region. By utilizing the RAPReHS index, forest preservation strategies can be prioritized. This study is in the framework of SDG 13 (Climate Action), which aims to mitigate the impacts of climate change on the environment and society. By exploring the impact of land use changes and wildfires on groundwater recharge at a regional scale in Bolivia, this research contributes to the inclusion of groundwater in policy guidelines for sustainable water management

Abstract

Groundwater quality and groundwater sample representativeness depend on the integrity of the water supply and monitoring wells. Well-integrity issues can occur by improper placement of grout seals behind the protective casing and/or by improper backfilling processes between ports. Multi-level monitoring systems are becoming common in the industry, providing depth-discrete groundwater samples and hydraulic head data from a single borehole. However, isolation between the monitoring intervals can be challenging when backfilled methods are used. No independent verification method exists to confirm seal placement for isolating monitoring intervals in such multi-level wells. A new approach using a hybrid fibre optic cable for adding heat, referred to as Active Distributed Temperature Sensing (A-DTS), is deployed in the annular space of a backfilled multi-level well. This new method is used to quantify the position of bentonite used as seals and sand packs that define the monitoring interval lengths and to identify issues associated with backfilling. A-DTS data from three boreholes with back-filled multilevel systems to 85 mbgs in a dolostone aquifer in Guelph, Ontario, Canada, demonstrates clear boundaries between backfill materials. In one interval, a deviation in the thermal data suggests a bridge in the bentonite seal, and this interval coincides with challenges in the backfilling from the field notes. The proposed method verifies well completion details, is repeatable and provides an efficient and effective way to assess well integrity impacting measurement uncertainty in a range of well types.

Abstract

The Lake Sibaya groundwater-dependent catchment in uMhlabuyalingana (KwaZulu-Natal) has been the focus of hydrological research since the 1970s. The continuous decline in lake water levels and groundwater stores has prompted recent efforts. To increase confidence in the relative attribution of known causes of declines, an existing MODFLOW groundwater model was updated based on reviewed and extended hydrological input datasets and more accurate land-use and land cover (LULC) change data. A novel approach was used in this study, which involved running the ACRU surface-water model in distributed mode to provide dynamic recharge outputs for the groundwater model. This approach considers LULC changes, improved spatial and temporal distribution of climatic data, and land-surface hydrological processes. The refined groundwater model provided satisfactory simulations of the water system in the Lake Sibaya catchment. This study reports on the advances and limitations discovered in this approach, which was used to reassess past to current status quo model simulations for the region. The model was then used, as part of a multidisciplinary project, to assess the response of the lake water system under various LULC preferences based on inputs from local communities under two future climate scenarios (warmer wetter and warmer drier) in the current ongoing WRC project. The ultimate goal is to advise water resources management in the catchment.

Abstract

Recharge is one of the most significant parameters in determining the sustainability volume of groundwater that can be abstracted from an aquifer system. This paper provides an updated overview and understanding of potential and actual groundwater recharge and its implications for informing decision-makers on efficiently managing groundwater resources. The paper argues that the issue of potential and actual recharge has not been adequately addressed in many groundwater recharge studies, and if not properly addressed, this may lead to erroneous interpretation and poor implementation of groundwater resource allocations. Groundwater recharge has been estimated using various methods, revised and improved over the last decade. However, despite numerous recharge methods, many studies still fail to distinguish that some assess potential recharge while others estimate actual recharge. The application of multiple recharge methods usually provides a wide range of recharge rates, which should be interpreted in relation to the type of recharge they represent; as a result, the wide range of recharge findings from different methods does not necessarily imply that any of them are erroneous. A precise distinction should, therefore, be made between the potential amount of water available for recharge from the vadose zone and the actual recharge reaching the water table. This study cautions groundwater practitioners against using “potential recharge values” to allocate groundwater resources to users. The results of this paper may be useful in developing sustainable groundwater resource management plans for water managers.

Abstract

Worldwide, more than 400 transboundary aquifers (TBAs) have been identified. Only a small number of these aquifers have been assessed in detail. Consequently, little is known about (potential) transboundary impacts. Changes in transboundary groundwater fluxes can indicate potential transboundary impacts as groundwater abstractions can affect such fluxes, indicating potential risks of transboundary contamination. To our knowledge, a quantitative assessment of transboundary aquifer fluxes (TBAFs) is not available because national groundwater models (if existing) often lack a good interaction with surrounding countries. In recent years, a high-resolution global groundwater model (GGM) has been developed as part of the PCR-GLOBWB family of models, having a 5 arcmin (~10*10km2 ) resolution. PCR-GLOBWB has previously been used to quantify environmental flows, assess global droughts, and assess climate impacts on global water resources. Recently the 5 arcmin GGM has been updated to 30 arcsec (~1*1km2 ) using high performance computing (referred to as GLOBGM). We present an application of GLOBGM to assess TBAFs of major TBAs. Results show that even though hydrogeological data are often scarce, a rough order of magnitude of the TBAFs can be assessed. TBA fluxes are compared with groundwater recharge. Although GLOBGM cannot replace assessments of TBAs based on local hydrogeological information and information on groundwater use, the analysis provides valuable information. GLOBGM can be used to quantify the relevance of TBAFs in relation to other fluxes such as from rivers or (future) abstractions. TBAF analyses can also assist in prioritising scarce funds and capacity between TBAs

Abstract

The Kavango West and East regions are situated in a semi-arid area northeast of Namibia and bounded by the perennial Okavango River on the northern border. Groundwater in the area is the main source of water supply for the inhabitants living further from the river. In addition, most bulk water users along the river have boreholes for their water supply. With a semi-arid climate, drought in the regions is common and inflicts devastating effects on local communities. More drought relief boreholes are being drilled to sustain communities, increasing the dependency of the inhabitants on groundwater. The complexity of the behaviour and nature of the groundwater in the regions is poorly understood, and there are no strategies to manage these aquifers properly. As a result, an attempt was made to better understand the groundwater potential by examining several hydrogeological factors involved. A basic water-balance approach was used in determining the groundwater potential of the middle and lower Kalahari aquifers. The total resource potential for the entire region is estimated at 144 447.16 x 106 m3 /a, demonstrating great resource potential with significant storage space.

The greatest potential is shown in the middle Kalahari aquifers, comprising about 94% of the total resource. Groundwater recharge, as one of the hydrogeological factors, was determined using the chloride mass balance method, giving an average of 6.03 mm/a for the entire study area. If utilized sustainably, the Kalahari aquifers can sustain most communities within the two regions, especially those further from the Okavango River.

Abstract

In response to the Western Cape’s worst drought experienced during 2015-2018, the City of Cape Town implemented various projects to augment its water supply, including desalination, re-use and groundwater. The Cape Flats Aquifer Management Scheme (CFAMS) forms one of the groundwater projects that includes groundwater abstraction and managed aquifer recharge (MAR). The Cape Flats Aquifer (CFA) is a coastal, unconfined, primary aquifer within an urban and peri-urban environment. As such, it is well situated to take advantage of enhanced recharge using high-quality advanced treated effluent but also has challenges related to seawater intrusion (SWI) and risk of contamination. MAR is currently being tested and implemented with a three-fold purpose: (1) to create hydraulic barriers against seawater intrusion and other contamination sources, (2) to protect groundwater-dependent ecosystems harbouring biodiversity, and (3) to increase storage and improve water quality to enhance resilience to effects of drought. As no legislation for MAR exists in South Africa, international guidelines are used to determine water quality requirements related to clogging environmental and health concerns. Further consideration includes aquifer-scale design, the interaction of multiple abstraction and injection wellfields within an area, and the design of individual boreholes to enhance yield and limit clogging. We aim to present progress made to date that includes exploration, wellfield development, monitoring, numerical modelling, aquifer protection, and the lessons learnt.

Abstract

The research aims to reveal possible ways of formation of the chemical composition of mineral and fresh groundwater in Quaternary sediments of the coastal plain of Northern Sinai. Statistical assessment of the distribution of various hydrochemical indicators of mineral and fresh groundwater has been carried out according to the following data samples: 1) the general population for all Quaternary deposits (164 wells); 2) the central zone (74 wells); the eastern zone (25 wells); the western zone (65 wells). The following variables were assessed: total dissolved solids (TDS) (in ppm), concentrations of major components (in epm and % epm), pH value and the depth of the sampled well (ds) (in meters). The physicochemical equilibria between the groundwater and rock–forming carbonate and sulfate minerals were calculated using the PHREEQC software. Saturation indices (SI) for groundwater of three zones in relation to various rock-forming minerals were analyzed. Correlation relationships were obtained for TDS, major components and some genetic coefficients ((Requ=(Na++K+)/ (Ca2++Mg2+); Na+/Cl-; SO4 2-/Cl-; Ca2+/SO4 2-). It was concluded that the groundwater chemical composition is defined by infiltration recharge and/or intrusion of Mediterranean seawater.

Most likely, during short-term flood periods, the infiltration into aquifers significantly exceeds the evaporation. Despite the relatively high evaporation rate, the degree of groundwater metamorphization is below the saturation level in relation to sulfates and carbonates. The research is of great practical importance for assessing freshwater resources to provide potable water supply

Abstract

Two numerical simulations using Feflow® software were conducted to demonstrate the utility of geophysical data to accurately determine groundwater levels and provide additional data to the groundwater modelling community to improve the model’s accuracy. One simulation is based on regional piezometric data, and the other uses geophysical data acquired through transient electromagnetic (TEM), electrical resistivity (ERT), and ground-penetrating radar (GPR) surveys. After both numerical analyses, the root mean square errors (RMS) obtained from the piezometric data and the multiple geophysical techniques to confirm the correlation between observed and simulated water levels were similar at 3.81 m and 2.76 m, respectively. Through a discrete modelling approach, this study shows that groundwater levels estimated using geophysical tools and methods and those determined by direct observation are comparable. In addition, before the 3D numerical flow model, a 3D geological model was built to fully represent this highly complex, heterogeneous, and anisotropic hydrological environment of the Saint-Narcisse moraine glacial deposits in eastern Mauricie, Québec. This stratigraphic reconstruction with Leapfrog software was necessary to provide a more detailed and realistic representation of this complex aquifer system. This study illustrates how geophysical data can complement direct observations to provide additional hydraulic information to hydrologic modellers. Geophysical surveys provide an extensive set of soft data that can be leveraged to improve groundwater flow models and determine water-table heights, particularly in areas characterized by limited direct piezometric information.

Abstract

Technological advances in recent years provide a unique opportunity to adopt new instruments for groundwater monitoring to reduce operating costs, obtain higher measuring accuracy and reliability, and accomplish comprehensive real-time monitoring. Microelectromechanical system (MEMS) technology enables small and low-cost energy-saving microsensors and integration with IOT for real-time monitoring. This presentation will discuss the findings of the performance of a newly developed instrument based on a MEMS piezoresistive pressure sensor. We demonstrate a path forward for the expansion of this research. The sensor is designed to be applicable to both open and closed systems for measuring groundwater level and pore water pressure. Tests show that MEMs (0-689 kPa range) can obtain full-scale accuracy between 0.2-0.3% in groundwater level prediction. However, the measurement result mainly depends on the appropriateness of the calibration method. Regarding pore pressure measurement under sealed conditions by gravel sand and cement-bentonite grout, a full-scale accuracy between 0.3% and 0.725% is accessible, depending on the backfill material. However, it was evident that backfill materials have considerable effects on the response time and accuracy of measurement, in which a stiff and less permeable grout can increase inaccuracy and time lag in measurement. Overall, the initial results have shown a promising future for this technology in groundwater monitoring. However, more tests and analyses are still required to improve sensor design, energy consumption for IOT applications, wireless module, installation system and its specifications such as accuracy, conformance, precision, and stability.

Abstract

Conjunctive use of surface water and groundwater plays a pivotal role in sustainably managing water resources. An increase in population, especially in the cities, increases the demand for water supply. Additional infrastructure to meet the needs and treatment techniques to remove the pollutants should be updated from time to time. Closing the urban water cycle by recycling and reusing treated sewage in the water sector can significantly reduce excessive groundwater extraction. However, this method is being implemented in only a few cities in developed countries. In the closed urban water cycle, treated sewage is discharged to rivers or other surface water bodies and used for managed aquifer recharge (MAR). Bank filtration, soil aquifer treatment and infiltration ponds are available MAR methods that augment the groundwater resources and remove pollutants during the natural infiltration process. These cost-effective natural treatment methods serve as a pre-treatment technique before public water supply to remove turbidity, algal toxins, bulk dissolved organic carbon and pathogenic microorganisms. The successful performance of these treatment methods depends on the need and feasibility for MAR, suitable hydrogeological conditions, sub-surface storage capacity of the aquifers, availability of suitable areas for MAR, type of MAR, source of recharge water, quality criteria, assessing the past, present and future climatic conditions. Case studies on groundwater resources management and water quality assessment, including for organic micropollutants from a large urban catchment in India, are presented.

Abstract

In Java Island, Indonesia, andesitic volcanic aquifers are the main water resource for domestic, agricultural, and industrial use. To guarantee sustainable management, a hydrogeological conceptual model is key. Electrical resistivity tomography (ERT) survey is one tool to characterize aquifer structures and extension, specifically in the medial facies of the Arjuno Welirang volcano. Fadillah et al. (2023) proposed a hydrogeological interpretation of the aquifers in the central to proximal-medial transition zone of the Arjuno Welirang volcano. This interpretation was based on geology, hydrogeology, and ERT and focused on major springs and boreholes. Nine additional ERT profiles and borehole data were collected downstream to enhance the medial facies’ understanding further. Seven ERT lines were conducted throughout the midstream part of the watershed. The results confirm the presence of two superimposed aquifers, a first unconfined aquifer made of volcanic sandstone and breccia with a vertical extension of 25 meters and a confined aquifer from 35 to 120 meters (maximum depth of investigation). This last one consists of tuffaceous breccia and volcanic sandstone and includes lava layers as well. A clayey layer with an average thickness of 10 meters constitutes the aquiclude/aquitard between those two aquifers. Furthermore, two ERT lines were conducted in the vicinity of the major spring located in the distal part of volcanic deposits, highlighting the development of a multi-layer alluvial aquifer system.

Abstract

The Limpopo River Basin (LRB) is highly vulnerable to recurrent floods and droughts, significantly threatening its water and food security. Sustainable groundwater management is necessary to improve resilience. Scientists and stakeholders must collaborate to evaluate management scenarios that can identify sustainable practices. A transboundary basin-scale management instrument was developed using a multisector collaborative modelling approach to identify the role of groundwater in building resilience. The approach used an integrated hydro(geo)logical model, co-created through stakeholder workshops. The model assessed management scenarios identified during a series of local, national and transboundary stakeholders workshops, focusing on improving groundwater storage during wet periods for use during dry periods in a context of population growth and increasing groundwater reliance across the basin. Management scenarios: (1) increasing groundwater abstraction; (2) deforestation; (3) afforestation; and (4) managed aquifer recharge (MAR) using injection wells capturing excess water from major dams, rainwater harvesting through local ponds/ wells, and small water reservoirs. Analysis of scenario outputs suggested that local groundwater storage techniques, especially water harvesting and storage through small-scale water well recharge, were the most effective strategy in reducing the risk and impact of floods and drought at the basin scale. Upscaling this strategy can significantly increase groundwater levels across the basin, supporting increasing groundwater reliance. The study showed that the multisector collaborative modelling approach effectively co-creates management strategies and identifies appropriate and inclusive strategies to improve resilience in data-limiting conditions. The proposed modelling outcomes are useful in making informed decisions regarding water management and transboundary cooperation in the LRB.

Abstract

The current understanding of groundwater within the larger Bushveld Complex (BC) is evaluated to gauge the potential for deep groundwater, specifically emphasising the lesser investigated eastern limb. From the review of publicly available literature and data, geohydrological databases and statistical analyses are presented as a collation of the current understanding of groundwater in the eastern limb of the BC. Unfortunately, information on deep groundwater (> 300 m) is scarce due to the cost associated with deep drilling, mining exploration holes often neglecting hydrogeological data collection, or lack of public access to this information. Nevertheless, the conceptual model developed from the available information highlights deep groundwater’s variable and structurally controlled nature and the uncertainty associated with groundwater characterisation of the deeper groundwater systems. This uncertainty supports the need for research-based scientific drilling of the deeper fractured lithologies in the eastern limb of the Bushveld Complex. The Bushveld Complex Drilling Project (BVDP) established an opportunity to perform such research-based drilling and was funded by the International Continental Scientific Drilling Program (ICDP). While the main focus of the BVDP is to produce a continuous vertical stratigraphic sequence of the BC, there is a sub-component to collect geohydrological information. The planned borehole, 2 500 m deep, will provide an opportunity to collect information from the deeper systems within the Bushveld Complex and the underlying Transvaal Supergroup, which will inform on the connection between shallow and deeper groundwater.

Abstract

Recent advances in groundwater dating provide valuable information about groundwater recharge rates and groundwater velocities that inform groundwater sustainability and management. This talk presents a range of groundwater residence time indicators (85Kr, CFCS 14C, 81Kr, 36Cl and 4 He) combined with analytical and numerical models to unravel sustainability parameters. Our study site is the southwestern Great Artesian Basin of Australia where we study an unconfined confined aquifer system that dates groundwater from modern times up to 400 kyr BP. The study area is arid with a rainfall of <200 mm/yr and evaporation in the order of 3 m/yr. Despite these arid conditions we observe modern recharge rates in the order of 400 mm/yr. This occurs via rapid ephemeral recharge beneath isolated riverbeds where the sandstone aquifer directly outcrops. Groundwater dating and stable isotopes of the water molecule indicates that this recharge comes from monsoonal activity in the north of the continent that travel some 1500 kms. Furthermore, this is restricted to recharge in the Holocene.as we move down the hydraulic gradient groundwater “ages” increase and recharge rates dramatically decrease by orders of magnitude. We conclude that there has been a significant decline in monsoonal precipitation and hence recharge in the deserts of central Australia over this time. We present a couple environmental numerical model that describes how to estimate temporal recharge rates and estimates of hydraulic conductivity from groundwater age data that can be used for groundwater management.

Abstract

This research aims to evaluate the carbon storage function of a Mediterranean peatland in changing climate conditions. The scientific strategy relies on a seasonal geochemical survey sourcing the carbon origin by considering the hydrosphere, lithosphere, biosphere, and atmosphere. This unprecedented research on a Mediterranean peatland reveals the seasonality of dissolved carbon inputs from primary production, organic matter oxidation, and time-changing recharge components within the catchment (rainwater, river water, shallow groundwater, deep groundwater). Based on the mixing proportions of all recharge water components, the study applies a reverse end-member mixing analysis to define the theoretical peat water d13CDIC value and compare it to the measured ones. The model explains 65 % of the data, demonstrating the water flow influence on peatland carbon content. In 35% of the cases, peatland processes such as primary production and organic matter oxidation drive the peat water’s carbon content. Peat organic and inorganic properties, d13CTOC, and d13CCO2 data demonstrate the role of groundwater as a CO2 source and the dominance of in situ primary production that argues in favour of carbon storage within such Mediterranean peatland. This research proves the relevance of geochemistry and isotope hydrology tools to disentangle and rank peatland water and carbon processes within peatland hydro-ecosystems. Overall, it reveals the necessity to take into account the interactions between water and carbon cycle processes, with particular consideration for groundwater as a CO2 source at the peatland-atmosphere interface, to build better models for the future evolution of the global climate.

Abstract

A mapping series was generated using the Vanrhynsdorp aquifer system to illustrate an improved standardization groundwater monitoring status reporting, that includes a progressive conceptual site model linked with spatial and temporal groundwater monitoring network assessment on an aquifer scale. The report consists of 4 segments: Base map provides a conceptual site model of a groundwater resource unit (GRU) delineating an area of 1456 km2 representing the geology and geological structures that make up the Vanrhynsdorp aquifer system.

The Groundwater Availability Map illustrated over a long-term trend analysis, the measured water levels indicate an 83% decreasing trend over an average period of 21.83 years, the water levels have declined by an average linear progression of 11.54 m (ranging 0.48-35.76 m) or 0.64 m per year, which equates to an estimated decline in storage of 218 Tm3 - 21 Mm3 within the GRU. The Groundwater EC map illustrated over the long-term analysis of an average period 24 years the average EC ranged between 57 - 791 mS/m, with certain areas tracking at a constant increasing trend beyond 1200 mS/m. The Groundwater Quality Characterization map provides EC contours and spatial Stiff diagram plots. The Stiff diagrams illustrate three aquifer water types namely, Na-Cl (Table Mountain Group Sandstones), Na-Cl with high SO4 concentration (Blouport and Aties Formation) and Na-Cl-HCO3 (Widouw Formation). These four segments of information products inform Resource Quality Objectives and the need for surveillance monitoring in conjunction with annual compliance monitoring and enforcement groundwater use audits.

Abstract

Test-pumping drawdown curves do not always sufficiently indicate aquifer characteristics and geometry and should never be analysed in isolation. Using derivative analysis and flow dimension theory, inferring the regional geometries and flow characteristics of fractured aquifers that are otherwise unknown or inconclusive is possible. As the drawdown and/or pressure front propagates through the aquifer, it reaches various hydrogeological objects that influence flow regimes and imprints a sequence of signatures in the drawdown derivative curve. The conjunctive interpretation of these flow regime sequences and hydrogeological data results in a robust, well-informed conceptual model (in terms of both local groundwater flow and the aquifer), which is vital for sustainable groundwater resource management. Derivative and flow regime analysis was applied to the test-pumping data of confined and unconfined Nardouw Aquifer (Table Mountain Group) boreholes within Steenbras Wellfield (Western Cape). Major NE-SW trending folding and transtensional Steenbras-Brandvlei Megafault Zone, in association with cross-cutting faults/fractures and younger False Bay Suite dykes, make the Nardouw Aquifer (and deeper Peninsula Aquifer) hydrogeologically complex. The sequential flow regime analyses reveal domains of conceptual flow models, including open vertical fractures, T-shaped channels, double (triple) porosity models, and leaky/recharge boundary models, amongst others. Appropriate analytical flow models (type curve fitting) are then applied for accurate aquifer parameter estimations, which are used to evaluate recommended long-term yields through predictive pumping scenarios. The outcome is an improved hydrogeological understanding and enhanced conceptual model of the aquifer, which informs numerical modelling, ecological protection, and groundwater resource management.

Abstract

Basin-scale studies addressing the transfer of pollutants among groundwater and surface water bodies are essential to support local authorities in the sustainable management of freshwater resources. This work revealed that, in the hydro-system of the Oglio River basin (Northern Italy), nitrate pollution in groundwater, originated by overfertilization, is transferred downstream to surface water bodies via outflow through lowland springs and baseflow to gaining rivers. Downstream groundwater is unaffected due to reducing conditions that facilitate denitrification. It follows that efficient measures to reduce nitrate pollution in surface water bodies should not be applied solely to rivers/streams but, instead, they should include the upstream groundwater body. The work aimed at understanding nitrate pollution dynamics in an intensively irrigated hydro-system, focusing on the role played by the complex interaction among irrigation water, surface water and groundwater. The study relied on nitrate concentration, Cl/Br ratio, stable isotopic composition of water, nitrate and boron in groundwater, river, lake, spring, and rainwater samples. Results highlighted a well-defined spatial distribution of nitrate concentrations in groundwater, mainly driven by irrigation practices: (1) where groundwater-fed irrigation is done, return flow promotes high nitrate concentrations (>50 mg/L) due to groundwater recirculation; (2) where intensive surface-water-irrigation is practised, fed by low-nitrate river water, return flow generates lower nitrate concentrations (<50 mg/L) due to dilution. This work highlighted the importance of a holistic approach jointly investigating surface water, groundwater, and irrigation water when nitrate pollution is examined at a basin scale.

Abstract

Hydrogeology and hydrology are commonly overlooked aspects of geoheritage, despite strong geological links. Water in all its forms has played a critical role in the development of Earth, and the shaping of its landforms (in addition to sustaining all life on the planet), and access to water has been the core reason for the establishment of numerous human settlements. The evolution of a settlement’s water supply tracks its development history across the Holocene, providing an excellent tool for teaching the public about human interactions with the Earth and our shared future going forward in a changing climate. To this extent, two self-guided trails (with associated guidebooks and mobile apps) have been developed in areas of the Western Cape province of South Africa with rich water supply histories and hydro-geoheritage – the Table Mountain Dams Trail in Cape Town and the Hermanus Water Walk in the Overberg region. The surface and groundwater supply systems that both trails cover have an inherently unique link with the Ordovician-Devonian Table Mountain Group fractured aquifer systems (including the complex tectonic and geomorphic evolutionary history that has led to the present landscapes), which most residents and international visitors are generally unaware of (despite being major tourist regions in South Africa). It is envisioned that through these guides/trails, the reader/walker will gain a better understanding of/appreciation for the value of water, a greater feeling of ownership for the natural history of the city/region they reside in, and will strive to preserve associated hydro-geoheritage for future generations.

Abstract

The current study investigates the spatial patterns and temporal dynamics of the groundwater and surface water interactions for integrated water resource management practices. This follows the results of the groundwater flow conceptual and numerical models developed for the Middle Letaba sub-catchment, indicating that groundwater and surface water interactions play a fundamental role in determining the hydrological water balance. The study area is an example of a fully allocated surface water resource in the northeastern part of South Africa, extensively developed for domestic use and agricultural farming. As a result of the semi-arid nature of the climate, limited surface water resources and increasing water demand, the situation has contributed to groundwater as the only dependable source of water supply for various uses. However, in the last few decades, periodic water level measurements in several boreholes indicated a continuous drop in the piezometric surface over time. This study utilised HydroGeoSphere to simulate water flow processes in a fully integrated and physically based model.

The results of the steady-state groundwater flow simulation indicated that recharge from the rainfall and river leakages are the most important components of the inflows that control the availability of groundwater. Water resources management scenarios suggest a continuous decline in water level, which strongly influences the groundwater flow dynamics and future availability of fresh water. Regular monitoring and management of groundwater level and abstraction are required to avoid overexploitation and possible groundwater contamination due to the strong interaction between surface water and groundwater.

Abstract

Across Africa, given the pressing challenges of climate change and widespread water, food and livelihood insecurity and poverty, there is an ever-increasing expanding role for groundwater in resilience building, especially in borderland communities. This situation is being investigated in several projects and geographies. This paper’s groundwater management analysis was based on literature reviews, key informant interviews (KIIs), and focus group discussions (FGDs) in selected case study areas throughout sub-Saharan Africa. The KIIs included representatives of water management institutions, community leaders, international development partners, the private sector and non-governmental organisations (NGOs) involved in the use or management of groundwater. The FGDs occurred in borderland communities in Ethiopia, Kenya, and Somalia (with these three countries sharing borders) and Mozambique, South Africa and Zimbabwe (with these three also sharing borders). The findings show that informal institutions such as clan, tribal or ethnic affiliations dictate access to natural resources such as groundwater in borderlands. These same Institutions also play a significant role in conflict resolution in the borderland areas. In addition, informal institutions play an essential role in groundwater management and should also be recognised – in engagements and formal water policies and legislation. Formal organisations, institutions and government structures should strengthen their focus on ensuring that discussions and decisions include informal role players. Further developing and enforcing conventions, land-use plans, and bylaws governing access to and use of groundwater should ensure engagement and co-creation of solutions towards effective water resource management.

Abstract

The joint application of water supply system security, groundwater modelling, and multicriteria analysis (MCA) indicated the potential of Managed Aquifer Recharge (MAR) to increase water supply security in Eastern Botswana substantially. Botswana faces increased water stress due to decreased water availability as climate change exacerbates variability in rainfall and increases evaporation losses and water demand. The water supply for Eastern Botswana is based on the bulk water supply system of the North-South Carrier (NSC) connecting dams in the northeast to the main demand centres, including Gaborone. The potential of MAR to increase the water security of the NSC by storing water that otherwise would have been lost to spillover and evaporation and contribute to the provision of water during droughts was studied. Large-scale MAR in the Ntane sandstone aquifer at a wellfield by the NSC was evaluated in terms of hydrogeology and national water supply perspective. Comprehensive hydrogeological surveys and assessments included borehole injection tests and hydrogeological and geochemical modelling to evaluate risks of losing recharged water and clogging of boreholes. Probabilistic water supply system modelling analysed the impact of different MAR scenarios on the water supply security of the NSC, and an MCA tool assessed the sustainability of the different scenarios. The analysis showed that large-scale MAR is feasible, and a scheme with a capacity of 40,000 m3 /d is the most sustainable from technical, social, economic and environmental perspectives and could potentially reduce the number of months with water shortage by 50% in Gaborone.

Abstract

In the social sciences, there has been a ‘posthuman’ turn, which seeks to emphasise the role of non-human agents as co-determining social behaviours. In adopting a ‘more-than-human’ approach, the academy seeks to avoid claims of human exceptionalism and extend the social to other entities. In this paper, we explore the extent to which the more-than-human approach might be applied to groundwater and aquifers and the implications that this may have for groundwater science. The role of groundwater in complex adaptive socio-ecological systems at different scales is increasingly well-documented. Access to groundwater resources positively influences societal welfare and economic development opportunities, particularly in areas where surface waters are scarce. The potential adverse effects of human activities on the quantity or quality of groundwaters are also widely reported. Adopting a ‘properties’ approach, traditional social science perspectives typically describe aquifers as structuring the agency of human actors. To what extent might aquifers also have agency, exhibited in their capacity to act and exert power? Drawing on insights from 5 cities across sub-Saharan Africa, we argue for the agency of aquifers in light of their capacity to evoke change and response in human societies. In doing so, we draw on the concept of the more-than-human to argue for a more conscious consideration of the interaction between the human and non-human water worlds whilst acknowledging the critical role played by researchers in shaping these interactions.

Abstract

Degradation of chloroethene in groundwater primarily occurs via microbially-mediated reductive dechlorination (RD). Anaerobic organohalide-respiring bacteria (OHRB) use chloroethenes as electron acceptors to gain energy. They produce reductive dehalogenase enzymes (RDases) to perform this function by transcription of functional genes into mRNA and translation to proteins (metabolic regulation). However, how hydrodynamics and hydrogeochemistry control the metabolic efficiency of OHRB in biodegrading chloroethene is essential for effective bioremediation design yet an under-investigated topic. For this reason, we implemented a virtual experiment (1D reactive transport model) to investigate the effects of site conditions on transcription-translation and, hence, biodegradation processes within chloroethene plumes. In the model, RD was simulated using Enzyme-Based Kinetics, explicitly mimicking the production of RDases via metabolic regulation, calibrated on microcosm experimental data gained from literature. Features of an actual contaminated site (Grindsted, Denmark) were then used to set up the virtual experiment. Here, chloroethene leaked from a former pharmaceutical factory migrates through a sandy aquifer and gets discharged into the Grindsted stream. Preliminary results show that substrate (electron donors) limiting conditions caused by competing electron acceptors and dispersion and high flow rates represent the key factors controlling biodegradation via RDase production.

Abstract

Groundwater level monitoring is essential for assessing groundwater’s availability, behaviour and trend. Associated with a modelling tool, groundwater level fluctuations can be predicted in the short to middle term using precipitation probabilities or meteorological forecasts. This is the purpose of the MétéEAU Nappes tool implemented by BRGM for the City of Cape Town (CoCT) in the Table Mountain Group Aquifer (TMGA). This case study shows how near real-time groundwater level monitoring can support the municipality in managing its future groundwater withdrawals. The TMGA is an important source of groundwater in the Western Cape region of South Africa. The upper Nardouw Sub-Aquifer of the TMGA is an unconfined aquifer recharged by rainfall. It had been monitored in the Steenbras area for over 10 years before CoCT started groundwater production from the Steenbras wellfield in 2021. The MétéEAU Nappes forecasting tool is already implemented on many observation wells of the French national piezometric network, where it is used for decision-making by the French administration. It allows, in particular, to anticipate several threshold levels of drought and take appropriate measures. It combines real-time water cycle measurement data with a groundwater level lumped model (e.g. Gardenia model) and extrapolates observations for the next 6 months from statistical meteorological scenarios completed with abstraction scenarios. This tool can help protect the Steenbras wellfield as a critical water source for CoCT in the TMGA. This study was financed by the French Agency for Development (AFD).

Abstract

Prevention of threats to the quality and quantity of groundwater supply is critical to ensure its sustainability. Several African studies have shown that contamination of aquifers is primarily caused by improper placement of land-based human activities. Therefore, adequate preventative measures are required to safeguard the water quality of African aquifers to avoid long-term deterioration. Spatially explicit, 3D numerical groundwater modelling is a common methodology to assess contaminant transport. However, model development is time-consuming and complex. Contrastingly, DRASTIC-L is a 2D, GIS-based aquifer vulnerability mapping technique. The method is simple to apply, but analyses are qualitative and subjective. The study aims to compare both methods and to combine their strengths using GIS overlay. Overall, aquifer vulnerability was determined using the DRASTIC-L method, while wellhead protection areas were delineated using steady-state numerical modelling. This study focuses on the Cape Flats area due to its rapid development and growing municipal water supply supplementation needs. DRASTIC-L mapping revealed that aquifers in the Cape Flats are highly vulnerable to contamination due to the region’s unconfined hydrogeological properties, shallow water table and high-risk land use types. Moreover, groundwater vulnerability mapping combined with the delineation of wellhead protection areas allows for reduced uncertainty in the contamination potential of delineated groundwater protection zones. As a result, this study highlights the need for overall resource protection of the Cape Flats aquifers and provides insights into mapping out potential source protection areas of existing water supply wells.

Abstract

Emerging contaminants (e.g. pharmaceuticals or pesticides) are increasingly detected in aquatic environments. The most apparent contamination source of river water pollution by pharmaceuticals is sewage treatment plant stations that discharge treated sewage effluent to the rivers. The river bank filtration systems (RBF) can effectively remove these contaminants. The two RBF sites were examined for pharmaceuticals: Śrem and Gorzów waterworks. The water samples for pharmaceuticals investigation were taken from the river and four continuously pumped wells at each site. Two wells near the river were chosen at each site (40-50 m) and two at a greater distance from the river (70 m in Śrem and 110 m in Gorzów). A visible increase in pharmaceutical concentrations was observed along the river. The sum of pharmaceuticals concentration is 8151 ng/l in Śrem (upstream), while in Gorzów (downstream) concentration is 9142 ng/l. A very big differentiation in pharmaceutical occurrence was observed. In Śrem, the sum of pharmaceuticals concentration is between 657 and 3290 ng/l, while in Gorzów, despite the higher concentrations of pharmaceuticals in the river, these substances were detected only in one well located at a close distance from the river (two substances at a concentration of 92 ng/l).

The research proves a very big differentiation of pharmaceutical concentration even on sites located at similar hydrogeological conditions and demonstrates the necessity of its monitoring, especially in groundwater strongly influenced by river water contamination (like at RBF sites). This work has received funding from the National Science Centre Poland (grant no. 2021/41/B/ST10/00094).

Abstract

The Geneva aquifer is internationally recognized for its transboundary resource management agreement between Switzerland and France, described as the first groundwater management agreement in the world. Signed in 1978 and renewed in 2008, this agreement on managing a shared underground resource has long been an example for establishing other agreements worldwide, particularly by UNESCO and its hydrological program via the TBA commission of the IAH. Like many countries worldwide, Switzerland and France experienced a critical summer of 2022 concerning the use of water resources, both surface and underground. The system applied in the cross-border agreement for using the aquifer involves French participation in the costs of managing aquifer recharge (MAR), depending on the total pumping. It shows that the French part, having consumed more water to compensate for the extreme drought of 2022, has seen its bills increase considerably. Development plans show that the population of Greater Geneva will increase considerably by 2030-2040, requiring significant medium-term water availability (30% additional water). Therefore, the French institutions’ political leaders have formally asked the authorities of the canton of Geneva to review the conditions linked to the quotas and calculation methods included in the 2008 agreement. A new agreement could be a real example of positive cross-border coordination for decision-makers finding themselves in a blocked or even conflicting situation due to differences in managing a shared resource revived by the effects of climate change.

Abstract

There is a transboundary groundwater reservoir on the Polish–Ukrainian borderlands, which is of key importance in shaping strategic groundwater resources. Due to the particular importance of this reservoir, the two neighbouring countries are obliged to undertake joint actions to protect it. One of the main difficulties in building a common platform for the management of TBAs in the Polish-Ukrainian border area is the differences in the approach to the identification of GWB, monitoring methodologies and assessment of the condition of GWB, and the inconsistent hydrogeological databases between the two countries. A transboundary numerical groundwater flow model was developed to support internationally integrated management. The model research helped diagnose potential problems by determining the scope of the area with cross-border flows and quantifying the flows between Poland and Ukraine. In addition, the numerical model was used to define the optimal cross-border management unit and the conditions needed to exploit the Lublin–Lviv Reservoir sustainably. Abstraction on a current level slightly increased the transboundary groundwater flow from Poland to Ukraine and minimally reduced the flow in the opposite direction but did not reverse the direction of water flow at the border. The simulated drawdowns do not have a transboundary range, but negative effects on surface water resources are noticeable. Joint management should focus on a broader legal consensus, improvement of institutional relations, and integration of monitoring and groundwater status assessment systems.

Abstract

West of the world-renowned conservation site, Kruger National Park, lies the larger extent of the Greater Kruger National Park within the Limpopo province. Boreholes have been drilled for decades to provide water to game lodges, large resorts, and watering holes for game viewing and livestock. The area contains both primary and secondary aquifers classified as having yields between 0.5 and 5.0 l/s, based on the geological setting, which consists of gneiss intruded by dolerite dyke swarms. A geohydrological assessment revealed that groundwater quality within the project area has an EC of 100 - 350 mS/m, linked to borehole proximity to surface water systems. The Makhutswi Gneiss and Doleritic Dyke swarms are the major controlling geology of the area, with higher-yielding boreholes close to dykes and major structural lineaments (faulted / weathered zones). A concern identified through geohydrological assessment observations is that boreholes frequently dry up after a few years, requiring deeper drilling/redrilling or drilling a new borehole. Aggressive calcium hardness in the water frequently damages equipment and increases maintenance costs. This project investigated the feasibility of increasing recharge to the aquifer with seasonal flooding/rainfall events by constructing artificially enhanced recharge locations overlaying doleritic dykes. This is expected to decrease the groundwater’s salinity and hardness, reducing operational costs. This pre-feasibility assessment has been completed, and the project has continued through a gradual implementation phase.

Abstract

he Namphu and Rangbua subdistricts in Ratchaburi province, in western Thailand, are affected by groundwater contamination. According to site characterization results, the aquifer has been contaminated with volatile organic compounds and heavy metals since 2014. Membrane filtration technology is an alternative method for treating groundwater to produce safe drinking water for household use. Nanofiltration membrane is a relatively recent development in membrane technology with characteristics that fall between ultrafiltration and reverse osmosis (RO). This study aimed to determine the hydrochemistry of contaminated groundwater and examine the efficiency of nanofiltration membranes for removing pollutants in groundwater and the potential implementation of the membrane. The membrane module used in this study is cylindrical in shape of 101.6 cm long and 6.4 cm in diameter, and the membrane surface charge is negative with monovalent rejection (NaCl) of 85-95%.

The filtration experiments were conducted at a pressure of 0.4-0.6 MPa, which yielded flow rates of approximately 2 L/min. To examine the nanofiltration membrane efficiency, groundwater samples were extracted from four monitoring wells and were used as feed water. According to laboratory results, the nanofiltration maximum removal efficiencies for 1,2-dichloroethylene, vinyl chloride, benzene, nickel, and manganese were 97, 99, 98, 99, and 99%, respectively. However, the treatment efficiency depends on several factors, including pretreatment requirements, influent water quality and the lifespan of the membrane. Further research should be conducted to determine the maximum concentration of VOCs and heavy metals in the feed water before applying this treatment method to a large scale.

Abstract

Drywells are extremely useful for coping with excess surface water in areas where drainage and diversion of storm flows are limited, facilitating stormwater infiltration and groundwater recharge. Drywells have been used for stormwater management in locations that receive high precipitation volumes, naturally or due to climate change; however, to date, they have not been developed in urban areas overlying karst landscapes. To test the performance of karst drywells, we constructed a pilot system for collecting, filtering, and recharging urban stormwater through drywells in karst rock. The study site is in the Judaean Mountains, an urban residential area in Jerusalem, Israel. The infiltration capacity of the drywells was evaluated using continuous and graduated water injection tests, and its effective hydraulic conductivity (K) was estimated. Drywells’ infiltration capacity was up to 22 m3 /hour (the maximum discharge delivered by a nearby fire hydrant), while monitored water levels in the drywells were relatively stable. Calculated hydraulic conductivities were in the range of K=0.1-100 m/ day, and generally, K was inversely proportional to the rock quality designation (RQD) index (obtained from rock cores during the drilling of the drywells). The pilot system performance was tested in the recent winter: during 9 days with a total rainfall of 295 mm, a cumulative volume of 45 m3 was recharged through the drywell, with a maximum discharge of 13 m3 / hour. High-conductivity karst drywells and adequate pre-treatment filtration can be valuable techniques for urban flood mitigation and stormwater recharge.

Abstract

In recent years, practical applications of vector and raster multi-layers overlay analysis to enhance outcomes of conventional hydrogeological methods for allocation of productive boreholes have been applied in arid and semi-arid lands and is currently being tested in Ethiopia, Kenya, Somalia and Angola in cooperation with UNICEF. Advanced Remote Sensing (RS) and Geographic Information Systems (GIS) techniques combined with traditional geological, hydrogeological and geophysical methods are being used for improved access to sustainable drinking water supply boreholes in the scope of a WASH program. Identifying suitable areas with a good potential for sustainable groundwater resources exploitation mainly depends on a) consistent/reliable aquifer recharge and b) favourable hydrogeological conditions for groundwater abstraction. Multi-layer analyses and attribution of layer scores to the hydrogeological information layers – aquifer recharge, aquifer class, lineaments, slope, land cover, and presence of streams – combine into a qualitative Groundwater Suitability Map, using pairwise comparison (weights) to determine their relative importance with the Analytic Hierarchy Process (AHP). Additionally, traditional field methods enhance the quality of outputs and delineate Target Areas for detailed investigations: validation of hydrogeological conceptual models, hydrogeological assessment, groundwater sampling and finally, geophysical methods. Downscaling the remote sensed information of the groundwater suitability map with field verifications is required to recommend borehole drilling sites. The engagement of stakeholders is vital for the data collection and validation of the weighting criteria analyses (AHP method), as well as for the cooperation on the ground, validation of the Target Areas selection and implementation.

Abstract

The largely groundwater-dependent Sandveld region’s water resources have been put under severe strain due to increased agricultural and town development and recent increased interest in mineral exploration within these catchments. The area known locally as the Sandveld consists of the coastal plain along the west coast of South Africa, bordered by the Olifants River to the north and east, the Berg River to the south and the Atlantic Ocean coastline to the west. Groundwater is considered an essential source of fresh water for the town and agricultural supply. It also plays a major role in maintaining the functionality of the natural environment, especially concerning the coastal wetlands, such as the Verlorenvlei Wetland, designated as a Wetland of International Importance (Ramsar Site). Monitoring boreholes displayed a general drop in water levels, and a decrease in surface water flow has been reported. This has resulted in the drying up of wetland areas within the catchments. This investigation focused on conceptualising the geohydrological setting and defining the groundwater-surface water interactions and interdependencies. The assessment entailed a complete review and analyses of available hydrogeological and hydrochemical data and reports obtained through Stellenbosch University, the Department of Water and Sanitation and the private consulting sector. The priority groundwater areas were delineated, and recommendations on the regional management of these aquifers were made. The research characterised the geohydrological setting and outlined the Sandveld surface water systems’ dependency on groundwater baseflow and spring flow.

Abstract

Springs are examples of groundwater discharges. This paper reports on findings from cold springs groundwater discharges that have served as important water sources for sustaining domestic and agricultural supply. This study assessed the hydrogeology of springs to inform practical measures for the protection, utilization, and governance of such discharges. The research assessed the hydrogeology of springs in terms of conditions in the subsurface responsible for occurrences of springs spatially and their flow paths to the surface. Spring locations were mapped and validated for spatiotemporal assessment. The study examined the flow dynamics and hydrogeochemistry of spring discharges. In-situ and laboratory measurements of spring discharges were carried out using standard methods. Results showed that shallow and deep circulating systems of springs existed in the study area, being controlled by lithology and faults. All springs had fresh water of Na-Cl type, and rock-water interaction was the dominant geochemical process that influenced spring water chemistry. Radon-222 analysis showed high values detected in spring waters that confirmed recent groundwater seepage on the surface. The drum-and-stopwatch technique was used to estimate yield from spring discharges because it’s only effective and reliable for yields of less than 2 l/s. Results suggest that some springs were locally recharged with some regionally recharged. Based on results from estimated yield and quality, it was concluded that spring waters had low discharges. A comprehensive assessment of spring discharges should be conducted to generate large datasets to inform practical measures for protection, utilization, and governance.

Abstract

Access to safe water is not yet universal in Burkina because 30% of Burkinabes do not yet have access to drinking water. The objective of universal access to drinking water (ODD 6.1) is difficult to achieve in the context of population growth and climate change. Basement rocks underline 80% of Burkina Faso. However, about 40% of the boreholes drilled in the Burkina Faso basement rocks do not deliver enough water (Q < 0.2l/s) and are discarded. This study focuses on determining the appropriate hydrogeological target that can be searched to improve the currently low drilling success rate.

We set up a well-documented new database of 2150 boreholes based on borehole drilling, pumping tests, geophysical measurements, and geological analysis results. Our first results show that the success rate at 0.2l/s (i.e. 700 l/h) is 63% at the end of the drilling against 54% at the end of borehole development: the yield of 8% of the boreholes lowers significantly after only a few hours of development. We also found that the yield of the water intakes encountered during the drilling process slightly decreases with depth; beyond 60m, it is rare (only 15% of cases) to find water occurrences. We found clear relationships between the productivity of the borehole (yield after drilling and transmissivity obtained from the pumping test) and the thickness of the weathering rocks, indicating that the appropriate target to obtain a productive borehole is a regolith of about 35 meters thick.

Abstract

Mt. Fuji is the iconic centrepiece of a large, tectonically active volcanic watershed (100 km2 ), which plays a vital role in supplying safe drinking water to millions of people through groundwater and numerous freshwater springs. Situated at the top of the sole known continental triple-trench junction, the Fuji watershed experiences significant tectonic instability and pictures complex geology. Recently, the conventional understanding of Mt. Fuji catchment being conceptually simple, laminar groundwater flow system with three isolated aquifers was challenged: the combined use of noble gases, vanadium, and microbial eDNA as measured in different waters around Fuji revealed the presence of substantial deep groundwater water upwelling along Japan’s tectonically most active fault system, the Fujikawa Kako Fault Zone [1]. These findings call for even deeper investigations of the hydrogeology and the mixing dynamics within large-scale volcanic watersheds, typically characterized by complex geologies and extensive networks of fractures and faults. In our current study, we approach these questions by integrating existing and emerging methodologies, such as continuous, high-resolution monitoring of dissolved gases (GE-MIMS [2]) and microbes [3], eDNA, trace elements, and integrated 3-D hydrogeological modelling [4]. The collected tracer time series and hydraulic and seismic observations are used to develop an integrated SW-GW flow model of the Mt. Fuji watershed. Climate change projections will further inform predictive modelling and facilitate the design of resilient and sustainable water resource management strategies in tectonically active volcanic regions

Abstract

Water balance partitioning within dryland intermittent and ephemeral streams controls water availability to riparian ecosystems, the magnitude of peak storm discharge and groundwater replenishment. Poorly understood is how superficial geology can play a role in governing the spatiotemporal complexity in flow processes. We combine a new and unusually rich set of integrated surface water and groundwater observations from a catchment in semi-arid Australia with targeted geophysical characterisation of the subsurface to elucidate how configurations of superficial geology surrounding the stream control the variability in streamflow and groundwater responses. We show how periods of stable stream stage consistently follow episodic streamflow peaks before subsequent rapid recession and channel drying. The duration of the stable phases increases in duration downstream to a maximum of 44±3 days before reducing abruptly further downstream. The remarkable consistency in the flow duration of the stable flow periods, regardless of the size of the preceding streamflow peak, suggests a geological control. By integrating the surface water, groundwater and geological investigations, we developed a conceptual model that proposes two primary controls on this behaviour which influence the partitioning of runoff: (1) variations in the permeability contrast between recent channel alluvium and surrounding deposits, (2) the longitudinal variations in the volume of the recent channel alluvial storage. We hypothesise optimal combinations of these controls can create a ‘Goldilocks zone’ that maximises riparian water availability and potential for groundwater recharge in certain landscape settings and that these controls likely exist as a continuum in many dryland catchments globally.

Abstract

The geochemical study of deep aquitard water in the southern Golan-Heights (GH), Israel, reveals the complex paleo-hydrological history affected by the intensive tectonic activity of the Dead Sea Rift (DSR). The sampled water collected from new research boreholes exhibits relatively high salinities (2,000-10,000 mg Cl/L), low Na/Cl ((HCO3 +SO4 )). δ18OV-SMOW and δDV-SMOW values are relatively depleted (~-7‰ and ~-42‰, respectively), while 87Sr/86Sr ratios are enriched compared to the host rocks. Lagoonary brines with similar characteristics (excluding the water isotopic compositions) are known to exist along the DSR. These brines formed 10-5 Ma ago from seawater that transgressed into the DSR and subsequently underwent evaporation, mineral precipitation and water-rock interactions. These hypersaline brines intruded into the rocks surrounding the DSR and based on the current study, also extended as far as the southern GH. Further, following their subsurface intrusion into the GH, the brines have been gradually diluted by isotopically depleted freshwater, leaving only traces of brines nowadays. The depleted isotopic composition suggests that the groundwater system is recharged at high elevations in the north. It is also shown that variable hydraulic conductivities in different formations controlled the dilution rates and subsequently the preservation of the entrapped brines. The paleo-hydrological reconstruction presented here shows that the flow direction has reversed over time. Brines that initially intruded from the rift have since been gradually flushed back to the rift by younger fresh groundwater.

Abstract

The Kalahari iron manganese field (KIMF) in the Northern Cape, South Africa, was historically exploited by only three mines, with Hotazel the only town and the rest of the area being largely rural, with agricultural stock/ game farming the major activity. Since 2010, mining activities have increased to more than 10 operational mines with increased water demand and environmental impacts on groundwater. The area is within catchments of the Matlhwaring, Moshaweng, Kuruman and Gamogara rivers that drain to the Molopo River in the Northern Cape. All the rivers are non-perennial, with annual flow occurrence in the upstream areas that reach this downstream area once every 10 years. The area is semi-arid, with annual evaporation nearly five times the annual precipitation. The precipitation is less than 300mm, with summer precipitation in the form of thunderstorms. Vegetation is sparse, consisting mainly of grasslands, shrubs and some thorn trees, notably the majestic camel thorns. The Vaal Gamagara Government Water Supply Scheme imports 11 Ml/d or 4Mm3 /a water for mining and domestic purposes in the KIMF section. The area is covered with Kalahari Group formation of 30 to 150 m thick with primary aquifers developed in the basal Wessels gravels and Eden sandstones for local use. The middle Boudin clay forms an aquitard that isolates and reduces recharge. Water levels range from 25 to 70m, and monitoring indicates local dewatering sinks and pollution. This study will report on the water uses, monitoring and observed groundwater impacts within the current climatic conditions.