Conference Abstracts

All Abstracts were presented at the Groundwater Conferences

Displaying 101 - 150 of 795 results
Title Presenter Name Presenter Surname Area Sort descending Conference year Keywords

Abstract

Annually, UNICEF spends approximately US$1B in water, sanitation and hygiene programming (WASH), approximately half of which is spent in humanitarian contexts. In emergencies, UNICEF supports the delivery of water, sanitation and hygiene programming under very difficult programming contexts – interruptions to access, power supply and a lack of reliable data. Many of these humanitarian situations are in contexts where water scarcity is prevalent and where the demand and competition for water are increasing, contributing to tension between and within communities. While water scarcity is not new to many of these water-scarce areas, climate change is compounding the already grave challenges related to ensuring access to safe and sustainable water services, changing recharge patterns, destroying water systems and increasing water demand. Incorrectly designed and implemented water systems can contribute to conflict, tension, and migration. Ensuring a comprehensive approach to water security and resilient WASH services can reduce the potential for conflict and use water as a channel for peace and community resilience. This presents an enormous opportunity for both humanitarian and development stakeholders to design water service programmes to ensure community resilience through a four-part approach: 1. Groundwater resource assessments 2. Sustainable yield assessments (taking into consideration future conditions) 3. Climate risk assessments 4. Groundwater monitoring/early warning systems UNICEF promotes this approach across its WASH programming and the sector through technical briefs, support and capacity building.

Abstract

Modelling of groundwater systems and groundwater-surface water interaction using advanced simulation software has become common practice. There are a number of approaches to simulate Lake-aquifer interactions, such as the LAK Package integrated into MODFLOW, the high conductivity and fixed stage approaches. LAK and the high conductivity approaches were applied and compared in simulating Lake- aquifer interaction in the Lake Sibayi Catchment, north-eastern, South Africa using the finite difference three-dimensional groundwater flow model, Visual MODFLOW Flex under steady state conditions. The steady state model consisted of two layers: an upper layer consisting of the Sibayi, KwaMbonambi, Kosi Bay and Port Durnford Formations which have similar characteristics, and a lower model layer representing the karst, weathered and calcareous Uloa Formation. The bottom model boundary is constrained by the impermeable Cretaceous bedrock. The model area covers the surface and groundwater catchments of Lake Sibayi which is constrained in the east by the Indian Ocean. A no-flow boundary condition is assigned to the northern, western and southern sides and a constant head boundary is assigned to the eastern side. The Mseleni River and neighbouring plantations were modelled using the River and Evapotranspiration boundary conditions respectively. Input parameters for the various boundary conditions were obtained from the previously developed high resolution conceptual model, including recharge

Abstract

South Africa has committed to achieving the United Nations Sustainable Development Goals (SDG's) by 2030. But what does this mean and how does groundwater fit in to this? SDG 6 in particular focuses on ensuring universal access to safe and affordable drinking water for all by 2030. SDG 6 requires that the country protects and restores water-related ecosystems such as forests, mountains, wetlands, aquifers and rivers which are essential if we are to mitigate water scarcity. To accomplish this, South Africa has proceeded to align various plans, strategies, and policies to encompass the targets of the SDG's. This paper will focus on SDG sub-goal 6.3 which incorporates improvement of water quality and sub-goal 6.6 which involves protection and restoration of ecosystems. The methodology given by the UN for the groundwater in indicator 6.3.2 stipulates that countries are required to report on "proportion of water with good ambient water quality", in South Africa however we had to domesticate the indicator i.e. render it suitable for South African conditions so we changed the methodology to "proportion of water the conforms to the Water Quality Objectives (WQO's)" but there are virtually no WQO's developed for groundwater. Four core groundwater quality parameters (Electrical Conductivity, pH, Nitrate and Sulphate) are available through ZQM stations categorized through 65 hydrogeological (Vegter) regions. Groundwater water quality baseline is calculated as a reference period/range per hydrogeological region. For SDG 6.6, the indicator required for groundwater is "Quantity of groundwater within aquifers" The methodology received by the UN for "Quantity of groundwater within aquifers" required a baseline (average reference period of five years) in meters per hydrogeological region. This indicator is again domesticated for South Africa and based on the 40-60 percentiles of groundwater levels per hydrogeological region. There are a number of future indicators that can be included for aquifers under SDG 6.6, but the groundwater sector needs to come together and decide what is important to report on. These SDG targets reporting has given the Water and Sanitation sector a new look at data. It has forced us to critically think of concepts such as baseline and performance monitoring. We now know where our data gaps and targets are, and we have to provide an action plan to address these.

Abstract

The 'maintainable aquifer yield' can be defined as a yield that can be maintained indefinitely without mining an aquifer. It is a yield that can be met by a combination of reduced discharge, induced recharge and reduced storage, and results in a new dynamic equilibrium of an aquifer system. It does not directly or solely depend on natural recharge rates. Whether long-term abstraction of the 'maintainable aquifer yield' can be considered sustainable groundwater use should be based on a socio-economic-environmental decision, by relevant stakeholders and authorities, over the conditions at this new dynamic equilibrium.
This description of aquifer yields is well established scientifically and referred to as the Capture Principle, and the link to groundwater use sustainability is also well established. However, implementation of the Capture Principle remains incomplete. Water balance type calculations persist, in which sustainability is linked directly to some portion of recharge, and aquifers with high use compared to recharge are considered stressed or over-allocated. Application of the water balance type approach to sustainability may lead to groundwater being underutilised.
Implementation of the capture principle is hindered because the approach is intertwined with adaptive management: not all information can be known upfront, the future dynamic equilibrium must be estimated, and management decisions updated as more information is available. This is awkward to regulate.
This paper presents a Decision Framework designed to support implementation of the capture principle in groundwater management. The Decision framework combines a collection of various measures. At its centre, it provides an accessible description of the theory underlying the capture principle, and describes the ideal approach for the development operating rules based on a capture principle groundwater assessment. Sustainability indicators are incorporated to guide a groundwater user through the necessary cycles of adaptive management in updating initial estimations of the future dynamic equilibrium. Furthermore, the capture principle approach to sustainable groundwater use requires a socio-economic-environmental decision to be taken by wide relevant stakeholders, and recommendations for a hydrogeologists' contribution to this decision are also provided. Applying the decision framework in several settings highlights that aquifer assessment often lags far behind infrastructure development, and that abstraction often proceeds without an estimation of future impacts, and without qualification of the source of abstracted water, confirming the need for enhanced implementation of the capture principle.

Abstract

Implementation of a mining project in South Africa involved dewatering of a fractured rock aquifer at considerable depth below ground level. Groundwater quality within this aquifer is not suitable for domestic use due to high levels of salinity. Numerous geological investigations in the area indicate that the target aquifer is confined, with a different piezometric head to the shallower aquifers. However, regulators and other interested and affected parties expressed concern regarding the potential mixing of more saline groundwater from the deeper aquifer to be dewatered with groundwater from shallower aquifers, which are extensively used for farming and domestic purposes.
A large database of groundwater quality monitoring data collected over 16 years was available to investigate the degree of mixing between the deeper more saline and shallower freshwater aquifers. The groundwater chemistry of selected boreholes with known geological profile, depth and construction was used to develop groundwater fingerprinting criteria for each of the aquifers in the area. These fingerprinting criteria were then applied to private and exploration boreholes in the area in order to identify the main aquifer from which groundwater was being sourced. Once the boreholes were classified in terms of groundwater origin, an attempt was made to identify indicators of mixing with deeper, more saline groundwater from the aquifer being dewatered.
Groundwater fingerprinting allowed identification of impacts related to the mining operations. The data showed that there was no upward mixing of water related to dewatering operations, but rather that surface spillages and disposal schemes may have resulted in minor changes in shallow groundwater quality. {List only- not presented}

Abstract

Simple and cost-effective techniques are needed for land managers to assess and quantify the environmental impacts of hydrocarbon contamination. During the case study, hydrocarbon plume delineation was carried out using hydrogeological and geophysical techniques at a retail filling station located in Gauteng.

Laboratory and controlled spill experiments, using fresh hydrocarbon product, indicate that fresh hydrocarbons generally have a high electrical resistivity, whilst biodegraded hydrocarbons have a lower resistivity. This is attributed to the changes from electrically resistive to conductive behaviour with time due to biodegradation. As such, it should be possible to effectively delineate the subsurface hydrocarbon plume using two-dimensional (2D) Electrical Resistivity Tomography (ERT). As part of the case study, two traverses were conducted using an Electric Resistivity Tomography (ERT) survey with an ABEM SAS1000 Lund imaging system. The resultant 2D tomographs were interpreted based on the resistivity characteristics and subsurface material properties to delineate the plume. Localised resistivity highs were measured in both models and are representative of fresh hydrocarbons whereas areas of low resistivity represented areas of biodegraded hydrocarbons.

More conventional plume delineation techniques in the form of intrusive soil vapour and groundwater vapour surveys as well as hydrochemical anlayses of the on-site monitoring wells were used to compare the results and to construct the detailed Conceptual Site Model. During the investigation, four existing monitoring wells located on the site and additional two wells were installed downgradient of the Underground Storage Tanks (USTs) in order to determine the extent of the plume.

In conclusion, a comparison was found between the groundwater results and geophysical data obtained during the case study and it was concluded that ERT added a significant contribution to the Conceptual Site Model.

Abstract

Gold Mining activities the past 60 years at AngloGold Ashanti polluted the groundwater underlain by 4000 ha of land at the Vaal River and West Wits operations in South Africa. Sulphide material in Tailings Storage Facilities, Waste Rock Dumps and extraction plants produce Saline Mine Drainage with Sulphate, minor salts and metals that seep to the groundwater and ultimately into surface water resources. Water regulation requires mines to prevent, minimise/ reduce or eliminate pollution of water resources. The waste philosophy has matured from tolerate and transfer to treat and termination of pollution sources. The impact of the pollution was determined and possible technologies to treat the impact were evaluated. Source controls of proper water management by storm water management, clean dirty water separation, lined water conveyance structures and reduced deposition of water on waste facilities is crucial. The aquifer character determines the possible remediation technology. From the possible technologies phytoremediation, physical interception and re-use of this water was selected. In future possible treatment of the water would be considered. This paper explain the strategy and report on the phased implementation of these plans and the expected results. The establishment of 750 ha of woodlands as phytoremediation, interception trenches of 1250 m, 38 interception boreholes and infrastructure to re-use this water in 10 water management areas is planned. The total volume of 15 Ml/day would be abstracted for re-use from the boreholes and trenches. The woodlands can potentially attenuate and treat 5 ml/day. The established woodlands of 150 ha proof successful to intercept diffused seep over the area of establishment and reduce the water level and base flow. The 2 implemented trenches of 1000 m indicate a local decline in the water level with interception of shallow groundwater within 1-2 m from surface. The 2 production interception well fields abstracting 50 and 30 l/s respectively indicate a water level decline of between 2 to 14 m with regional cones of depression of a few hundred meters to intercept groundwater flow up to 20 meter. Predictions from groundwater modelling indicate that these schemes can minimise pollution during the operational phase and protect downstream water resources. Predictions from modelling indicate that the pollution sources need to be removed to ensure long term clean-up to return the land to save use. The gold and uranium prize is securing the removal of the sources through re-processing of the tailings and waste rock dumps. After removal of the sources of pollution the remediation schemes would have to be operated for 20 years to return the groundwater to an acceptable standard of stock watering and industrial water use. The water quality is observed by a monitoring network of approximately 100 observation boreholes.

Abstract

Millions of tons of coal ash are produced across the globe, during coal combustion for power generation. South Africa relies largely on coal for electricity generation. The current disposal methods of coal ash are not sustainable, due to landfill space limitations and operational costs. One way/means of disposing of coal ash that could provide environmental and financial benefits; is to backfill opencast mines with the ash. However, a limited number of studies have been conducted to assess the feasibility of this method in South Africa. Thus the aim of the experiment is to monitor bulk ash disposal under field conditions to improve the understanding of the geochemical and hydrogeological processes occurring during the actual deposition of coal ash in opencast coal mines. To achieve the aim (1) a gravity lysimeter will be built containing both mine spoils and coal ash representing field conditions; (2) the factors (CO2, water level and moisture content) affecting acid mine drainage will be monitored in the lysimeter and (3) the change in the quantity and quality of the discharge released from the lysimeter.

Abstract

The electrical resistivity tomography (ERT) method has become one of the most commonly used geophysical techniques to investigate the shallow subsurface, and has found wide application in geohydrological studies. The standard protocols used for 2D ERT surveying assume that the survey lines are straight; however, due to the presence of infrastructure and other surface constraints it is not always possible to conduct surveys along straight lines. Previous studies have shown that curved and angled survey lines could impact on the recorded ERT data in the following ways: 1) the true geometric factors may differ from the assumed geometric factors and thus affect the calculated apparent resistivities, 2) the depths of investigation may be overestimated, and 3) the recorded apparent resistivities may be representative of the subsurface conditions at positions laterally displaced from the survey line. In addition, previous studies have shown that although the errors in the apparent resistivities may be small even for large angles and curvatures, these errors may rapidly increase in magnitude during inversion. In this paper we expand on the previous work by further examining the influence of angled survey lines on ERT data recorded with the Wenner (?) array. We do this by: 1) calculating the changes in the geometric factors and pseudo-depths for angled survey lines, 2) forward and inverse modelling of ERT datasets affected by angled survey lines, and 3) examining the impact of angled survey lines on real ERT datasets recorded across different geological structures.

Abstract

Estimating groundwater recharge response from rainfall remains a major challenge especially in arid and semi-arid areas where recharge is difficult to quantify because of uncertainties of hydraulic parameters and lack of historical data. In this study, Chloride Mass Balance (CMB) method and Extended model for Aquifer Recharge and soil moisture Transport through unsaturated Hardrock (EARTH) model were used to estimate groundwater recharge rates. Groundwater chemistry data was acquired from the Department of Water and Sanitation (DWS) and Global Project Management consultants, while groundwater samples were collected to fill-in the identified gaps. These were sent to Council for Geoscience laboratory for geochemical analysis. Rainfall samples were also collected and sent for geochemical analysis. An average value of rainfall chloride concentration, average groundwater chloride concentration and mean annual precipitation (MAP) were used to estimate recharge rate at a regional scale. Local scale recharge was also calculated using chloride concentration at each borehole. The results were integrated in ArcGIS software to develop a recharge distribution map of the entire area. For EARTH model, long term rainfall and groundwater levels data were acquired from the South Africa Weather Services and DWS, respectively. Soil samples were collected at selected sites and analysed. These were used to determine representative values of specific yield to use on EARTH model. 60% of the groundwater levels data for 5 boreholes was used for model calibration while the remaining 40% was used for model validation. The model performance was evaluated using coefficient of determination (R2), correlation coefficient (R), Root Mean Square Error (RMSE) and Mean square error (MSE). Regional recharge rates of 12.1 mm/a (equivalent to 1.84% of 656 mm/a MAP) and 30.1 mm/a (equivalent to 4.6% MAP) were calculated using rainfall chloride concentrations of 0.36 and 0.9 mg/L, respectively. The estimated local recharge rates ranged from 0.9-30.2 mm/a (0.14 - 4.6%) and 2 - 75 mm/a (0.3 - 11.4%) using chloride concentration of 0.9 and 0.36 mg/L, respectively. The average recharge rate estimated using EARTH model is 6.12% of the MAP (40.1 mm/a). CMB results were found to fall within the same range with those obtained in other studies within the vicinity of the study area. The results of EARTH model and CMB method were comparable. The computed R2, R, RMSE and MSE ranged from 0.47-0.87, 0.68-0.94, 0.04-0.34, 0.16-3.16, and 0.50-0.79, 0.68-0.89, 0.07-0.68, 0.15-8.78 for calibration and validation, respectively. This showed reasonable and acceptable model performance. The study found that there is poor response of groundwater levels during rainy season which is likely to be due to lack of preferential flows between surface water and groundwater systems. This has resulted in poor relationship between estimated and observed groundwater levels during rainfall season.

Key words: ArcGIS, CMB, EARTH, Groundwater recharge, rainfall

Abstract

Inadequate characterization of contaminated sites often leads to the development of poorly constructed conceptual site models and consequently, the design and implementation of inappropriate risk management strategies. As a result, the required remedial objectives are not achieved or are inefficient in addressing the identified risks. Unfortunately, it is all too common to find remedial intervention strategies that run for lengthy periods of time at great cost while generating little environmental benefit due to inadequate characterization of site conditions. High resolution site characterization (HRSC) can provide the necessary level of information to allow for development of rigorous conceptual site models, which can be used to develop and implement appropriate risk management solutions for environmental problems. At the outset, the HRSC approach generally has comparatively higher costs than traditional state-of-the-practice assessment methods. However, the project lifecycle costs can be substantially reduced due to development of optimal risk management strategies. In developing countries where there is a lack of legislation relating to soil and groundwater contamination or, a lack of enforcement of legislation which is present, the long-term liabilities related to contaminated sites are often not immediately apparent to the parties responsible for the sites. This often creates a reticence to employ HRSC techniques due to their increased cost, especially when much of the technology must be imported on a project specific basis from either Europe or the United States. The Authors provide information from several case studies conducted in South Africa where HRSC techniques have been employed to gain a greater understanding of subsurface conditions. Techniques employed have included surface-based geophysical techniques such as electrical resistivity tomography (ERT) and multi-channel analysis of seismic waves (MASW), passive soil gas surveys, deployment of Flexible Underground Technologies (FLUTe?) liners, diamond core drilling, fluid electrical conductivity profiling, downhole geophysical logging tools, the Waterloo Advanced Profiling System (APS), and the use of field laboratories. Several of the techniques required importing equipment and personnel from Europe or the US, and in several case studies, were a first to be employed in South Africa, or the continent of Africa for that matter. The Authors present data obtained using the HRSC techniques from the case studies and elaborate on how the information obtained was used to drive effective decision making in terms of managing long term environmental risks at the various sites, which has been positively embraced by local clients. The authors also highlight key challenges in conducting HRSC investigations in an emerging market context.

Abstract

The Gravity Recovery and Climate Experiment (GRACE) satellites detect minute temporal variation in the earth's gravitational field at an extraordinary accuracy, in order to make estimation of the total water storage (TWS). GRACE provides a unique opportunity to study and monitor real time water variation in the hydrologic stores (snow, groundwater, surface water and soil moisture) due to increases or decreases in storage. The GRACE monthly TWS data are being used to estimate changes in groundwater storage in the Vaal River Basin for a period (2002 to 2014). The Vaal River Basin has been selected, because it is one of the most water stressed catchments in South Africa; it is well-renowned for its high concentration of industrial activities and urbanized zones. Therefore, in order to meet future water demands, it is critical to monitor and calculate changes in groundwater storages as an important aspect of water management, where such a resource is a key to economic development and social development. Previous studies in the Vaal River Basin were mostly localised focusing mainly on groundwater quality and to a lesser extent groundwater assessment. Hydrological models have been generated for the whole of South Africa, but many of these models do not take into account the groundwater component. Thus, there is a significant gap in the understanding of surface and ground water dynamics in the Vaal River Basin. The paucity of data and monitoring networks are often the limitation in calculating changes in water storage over a large area, particularly in Africa. In this scenario GRACE is a good approach to estimate changes in hydrological storages as it covers large areas and generates real time data. It does not require information on soil moisture, which is often difficult to measure. The accuracy of calculating change in groundwater storage lies in the processing of GRACE data and smoothing radii. For this study, smoothing radii of 1500, 900, 500, 300, 150 and 1 km are used. Currently the associated error with different smoothing radii is unknown. The preliminary results indicate that the study area experienced a loss in TWS of -31.58 mm equivalent water height over a period of 144 months in TWS at 300 km smoothing radius. The change in groundwater storage is calculated by incorporating hydrologic components to the TWS (work in progress). The results obtained from this study will be compared to existing hydrological models and results generated from models applicable to the semi-arid region of South Africa. It is anticipated that this satellite observation technique, GRACE, will provide an accurate estimate of change in groundwater storage. Furthermore, it will show the usefulness of satellite based techniques for improving our understanding of groundwater dynamics, which will improve water management practices.

Abstract

Mt. Fuji is the iconic centrepiece of a large, tectonically active volcanic watershed (100 km2 ), which plays a vital role in supplying safe drinking water to millions of people through groundwater and numerous freshwater springs. Situated at the top of the sole known continental triple-trench junction, the Fuji watershed experiences significant tectonic instability and pictures complex geology. Recently, the conventional understanding of Mt. Fuji catchment being conceptually simple, laminar groundwater flow system with three isolated aquifers was challenged: the combined use of noble gases, vanadium, and microbial eDNA as measured in different waters around Fuji revealed the presence of substantial deep groundwater water upwelling along Japan’s tectonically most active fault system, the Fujikawa Kako Fault Zone [1]. These findings call for even deeper investigations of the hydrogeology and the mixing dynamics within large-scale volcanic watersheds, typically characterized by complex geologies and extensive networks of fractures and faults. In our current study, we approach these questions by integrating existing and emerging methodologies, such as continuous, high-resolution monitoring of dissolved gases (GE-MIMS [2]) and microbes [3], eDNA, trace elements, and integrated 3-D hydrogeological modelling [4]. The collected tracer time series and hydraulic and seismic observations are used to develop an integrated SW-GW flow model of the Mt. Fuji watershed. Climate change projections will further inform predictive modelling and facilitate the design of resilient and sustainable water resource management strategies in tectonically active volcanic regions

Abstract

The current study investigated the subsurface of aquifers in Heuningnes Catchment focusing on aquifer characteristics for groundwater resource assessments. Surface geophysical resistivity method was adapted for mapping the shallow subsurface layers and hydrogeologic units at selected sites within the catchment. The aim was to provide a preliminary overview of the subsurface nature of aquifers within the study area, by establishing features such as geological layers, position of weathered zones, faults and water bearing layers. The multi-electrode ABEM SAS 1000 resistivity meter system, using the Wenner array, was used to obtain 2D resistivity data of the subsurface. The acquired data was processed and interpreted using Res2DINV software to produce the 2D resistivity models. The analysis of the resistivity models of the subsurface reveals maximum of four layers; sandstone, shale, poor clayed and brackish water saturated layer. On comparing the model results with the surficial geological formation of the catchment geological map, the identified layers were found to correspond with the geology of the area. The findings i) provide insights on sites that can be drilled for groundwater exploration, ii) show possible water-type variations in the subsurface. Although the results are not conclusive but they provide basis for further research work on quality and flow dynamics of groundwater.

{List only- not presented}
Key words: aquifer properties, hydrogeologic units, geo-electric model, electrical-resistivity method

Abstract

For a long time, professionals regarded social media as a superficial, unprofessional platform where internet users would submerge themselves in a virtual world, detached from real-life issues. Slowly, the myths and stigmas surrounding the use of social media has faded as more and more professionals and scientists have realized that these social platforms could be positively exploited in a professional manner which could be beneficial. In a digital age where information at our fingertips is the norm, professionals should co-evolve and ensure that their work is just as accessible and appealing, without the unnecessary jargon. Currently, science is mostly restricted to a very particular audience and conveyed in one direction only. Using a social media platform such as Twitter-which limits messages to only 140 characters-challenges scientists to convey their work in a very concise manner using simpler terminology. Furthermore, it dismisses the usual one-way form of communication by opening dialogue with fellow Twitter users. At conferences, Twitter can serve as a useful tool for active engagement which will not only "break the ice" between delegates but also ensure that important information is communicated to a much wider audience than only those in attendance. This idea was tested at the 2014 Savanna Science Network Meeting held in Skukuza, Kruger National Park, where the hashtag #SSNM was used. More than 63% of the Twitter users who participated in the #SSNM hashtag were actually not present at the conference. These external "delegates" were interested individuals from five different continents and in different professions besides Science. This highlights how social media can be exploited at conferences to ensure that key messages are conveyed beyond the immediate audience at the event.

Abstract

Groundwater modelling at the mine sites involves assumptions from the geological model, mining stages, parametrization, and fractures, among others. Modelling work mainly focuses on calibrating against historical measurements before operations (pre-mining) or afterwards (transient calibration). Calibration is carried out mainly with gradient-based algorithms. However, the majorlimitation is the number of model runs, since the number of parameters can easily reach hundreds or more. PEST has become the common tool for parameter estimation. The Jacobin calculation required for the Levenberg Marquardt algorithm requires several model runs. This, a limited factor for the calibration and, subsequently, uncertainty quantification. The next generation of PEST, named PESTPP, is gained popularity in the groundwater community. The great advantage of PESTPP,, compared to the classical PEST, is its new module, Iterative Ensemble Smoother (IES). PESTPP-IES covers both parameter estimation and uncertainty quantification in one goal. Its empirical formulation of the Jacobian matrix reduces the number of runs; thus, the numerical bottleneck can be significantly reduced. PESTPP-IES has been extensively tested in an open-pit mine at the geological complex conditions in the Peruvian Andes. The work involves the task of model simplification, e.g., from a regional model to a detailed local pit model, calibration and uncertainty quantification of pit dewatering volumes. Detailed model was kept calibrated based on hydraulic-head measurements, and dewatering volumes were predicted. All these consider transient changes in the mining plan within the same FEFLOW model. Results validate the methodology and practicability in mining applications.

Abstract

Slightly more out of the box idea is the use of anthropogenic aquifers as storage and chemical conditioners.  This concept was first introduce by Eland Platinum Mine(EPM) and reported on in previous papers.  At EPM water is used through a serious of natural aeration and aerobic storage facilities to reduce nitrate levels.  In 2013 another group introduced pilot studies by virtue of abstraction in support of the water conservation and demand management strategy; which has proven that it could enable the operations to overcome water shortage periods and reduce pressure on Rand Water (RW). The pilot sites would deliver water into the dirty water circuit, but within five to ten years it may further be used to overcome months with zero potable water supply. .  In platinum mines the more the aquifers are used the cleaner the water becomes, simply because introduced pollutants are not constant sources and country rock is mostly inert.  In the future these aquifers have the potential to become larger storage facilities protected from floods and limited evaporation losses. It is foreseen that some of the mines in the western belt may have more water stored in primary aquifers than water stored within major water dams. Yields from these aquifers for individual aquifers may be up to 450 m3/hour and storage of 18 Mm3.  . Why then this paper if we are already using it?  The issue is that the true value of these aquifers an only be unlocked when they are  used as recharging aquifers and thereby actively storing dirty water within a dirty water aquifer.  Once we are able to undertake this the positive environmental gains such of environmental overflows, condition dirty water, reduction of pollution and significant reduction of the use of potable water from RW. {List only- not presented}

Abstract

Globally, cumulative plastic production since 1950 is estimated to have reached 2500 Mt of plastic. It is estimated up 60% of this plastic is either resting in landfills or the natural environment, including groundwater settings. Microplastics are small pieces of plastic ranging between 1μm – 5mm in size and have been found in every ecosystem and environment on the planet. Much of the available literature on microplastics is focused on marine environments with few in comparison focused on freshwater environments, and even fewer on groundwater settings.

The aim of this study is therefore to investigate the attenuation process responsible for influencing microplastic transport in saturated sands. This research will adapt colloid transport theory and experiments to better understand the movement of microplastics through sandy media. Saturated aquifer conditions will be set up and simulated using modified Darcy column experiments adapted from Freeze & Cherry (1979). Modified microplastics will be injected into the columns as tracers and the effluent concentrations measured by Fourier-transform infrared spectroscopy (FTIR). Breakthrough curves will then be plotted using the effluent concentrations to determine the attachment efficiency (α). It is expected the attachment efficiency will vary by microplastic type and size range. The Ionic strength of the solution flowing through the column and the surface charges of both microplastics and sandy surfaces are likely to influence the degree of attenuation observed. The relationship between different types of microplastics and collector surfaces from a charge perspective and their influence on the degree of attenuation will be evaluated.

Given the lack of literature, its ubiquitous presence and postulated effects on human health, this research is significant. Through this research, the transport and attenuation of microplastics through sandy aquifers can be better understood, and in the process inform future research and water resource management.

Abstract

The so-called apparent increase of transmisivity (T) or hydraulic conductivity (K) with scale is an artifact and does not exist in the field. The reason for the apparent increasing of T with scale is due to the use of the "not applicable" random log Gaussian stochastic models that are used by geohydrologists. In the petroleum field, which uses deterministic methods, the apparent increase of T with aquifer volume does not occur. Groundwater practitioners have to change their view and use models that do not show this effect.

By using intuitive inspection of geological, fracture and connectivity data as well as real pumping test data, this paper shows that up-scaling must be performed with an exponential decaying function, where T always decreases with scale
.
Two types of heterogeneities exists namely a.) horizontal and b.) vertical. Connectivity between fractures is extremely important in both cases, but it is only in semi-confined and watertable aquifers that the vertical heterogeneities are really important (typical case of fracture dewatering)
{List only- not presented}

Abstract

When considering how to reduce contamination of petroleum hydrocarbons in shallow aquifers, it is important to recognize the considerable capacity of natural processes continuously at work within the secondary sources of contamination. This natural processes are technically referred to as Monitored Natural Attenuation (MNA), a process whereby petroleum hydrocarbons are deteriorated naturally by microbes. This approach of petroleum hydrocarbon degradation relies on microbes which utilise oxygen under aerobic processes and progressively utilises other constituents (sulphates, nitrates, iron and manganese) under anaerobic processes. MNA process is mostly evident when light non-aqueous phase liquids (LNAPLs) has been removed while the dissolved phase hydrocarbon compounds are prominent in the saturated zone. The case studies aim at determining feasibility and sustainability of Monitored Natural Attenuation process at different sites with varying geological setting.

Abstract

The mitigation of groundwater impacts related to gold mining tailings disposal within the Orkney-Klerksdorp region was assessed and presented as a case study. The most pressing concern for the facility owners is the potential for pollution of water resources in the vicinity of the mines, especially after mine closure. The key focus of this paper is to describe how methods were applied to characterise the aquifer and keeping the source-pathway-receptor principles in mind. Characterisation also involves lessons learn by comparing pre-tailings deposition and post-tailings deposition aquifer bahviour. Ultimately the process followed in this paper has led to the development of a logical approach to estimate groundwater liability costs in a typical tailings environment. The link between hydrogeology, geotechnical engineering and civil engineering was identified as a critical foundation for the development of a successful groundwater management strategy

Abstract

Preventing the spread of seepage from tailings storage facilities (TSF's) in groundwater is necessary as it often contains toxic contaminants. Experience has shown that seepage from TSFs is inevitable and that zero seepage remains difficult even with complex liner systems. Multiple seepage control methods are often required to minimise seepage to ensure that environmental regulations are met. Control methods can be grouped into either barrier or collection systems. Barrier systems are used to hinder seepage whereas collection systems are used to intercept seepage. A blast curtain, which is the focus of this article, is a type of collection system that is still at a conceptual level but has seen little or no application worldwide. It works in principle, similarly to a curtain drain, but is typically extended to greater depths depending on the aquifer vulnerability. Numerical modeling has shown that this mitigation measure could add another line of defence for seepage control. The depth and effectiveness of the curtain can be optimized with a numerical model to ensure optimal interception of contaminated seepage around the TSF. Depths of up to 30 m in fractured aquifers have been simulated in this study. A blast curtain is constructed by drilling a set of boreholes around a TSF in close proximity to one another and then fracturing the rock using either explosives or fracking methods to create a more permeable zone. This is then combined with a series of scavenger wells or natural seepage to abstract the contaminated water. Numerical simulation has shown that blast curtains are effective especially if groundwater flow is horizontal. The effectiveness decreases if the vertical flow component is significant. A blast curtain can result in the lowering of the water table, however, local depression is a less of a concern than potential groundwater contamination. {List only- not presented}

Abstract

Water management is a difficult and complex business requiring appropriate institutional arrangements as well as guidance and support from government, which is often unable to act effectively to address day-to-day water resource management (WRM) issues. Theoretically, water as a 'common pool resource' is best managed by users self-organised at a local level and within a basin framework. Water users and other stakeholders have detailed and up-to-date local knowledge as well as an interest in ensuring effective management to share water equitably between different users and to control pollution. This approach is supported by South Africa's National Water Act (NWA), which provides for the establishment of Catchment Management Agencies (CMAs) to perform a range of WRM activities within the framework of a National Water Resource Strategy (NWRS).
Hence, water resource management in general and conjunctive use in particular requires cross sector and cross level cooperative governance. Relevant institutions include the DWA at national and regional level, the CMA, if established, provincial departments that might impact on the water resources, water user associations, water services authorities, water services providers, water boards, and individual water users. These institutions are responsible for various activities and often require some level of inter- and intra-institutional cooperation. Ideally, multiple organisations, policies, legislation, plans, strategies and perspectives should be involved in water-related decision-making, which in turns creates complex leadership challenges. Globally, the lack of sustainable groundwater management can be ascribed to poor governance provisions. These include, but are not limited to, institutional arrangements and political will, including fragmented and overlapping jurisdictions and responsibilities, competing priorities, traditional approaches, rights and water pricing systems, diverging opinions, incomplete knowledge, data as well as uncoordinated information systems. Adding the poor operational and maintenance issues, decision-makers often view groundwater as an unreliable resource and are hesitant to make significant investments in groundwater infrastructure and capacity.
The recent Worldbank and WRC report on groundwater governance in South Africa revealed that the technical, legal, institutional and operational governance provisions were found to be reasonable at the national level but weak concerning cross-sector policy coordination. At the local level, basic technical provisions such as hydrogeological maps and aquifer delineation with classified typology are in place but other governance provisions such as institutional capacity, provisions to control groundwater abstraction and pollution, cross-sector policy coordination and the existence and implementation of groundwater management action plans are weak or non-existent.
It appears from this review that the major hindrances for sustainable groundwater governance and more so for integrated water resource management and conjunctive use scenarios are the discrepancy between groundwater and surface water provisions in the relevant legislation, associated guidelines and their implementation at regional and local, and the lack of skills and clear responsibilities for implementing water resource management actions at municipal level. This is demonstrated with several case studies.

Abstract

Two ventilation shafts were proposed to be excavated to depths of 100 and 350 m to intersect an underground mine, in the Bushveld Complex. The area is made up of fractured aquifers and the assignment was to identify the exact positions of the permeable zones within the shafts profiles as well as estimate the groundwater inflow rates at every 5 m interval along the shafts profiles. The project was budget and time constrained and therefore the preferred hydrogeological characterisation techniques, particularly the percussion drilling, aquifer testing and numerical modelling could not be conducted. The study was completed by conducting packer tests in HQ sized holes drilled at the exact positions of the proposed shafts. The packer test data was then interpreted using Thiem equation, a modification of Darcy Equation for radial flow, to estimate the steady state inflow rates into the shafts. Transient state flow is more challenging to calculate analytically, as it is time and aquifer storage dependent. However, transient state flow in shafts exists for the first 10 - 15 days only and is short lived. Thereafter, a steady state flow occurs where the rate is nearly fixed for the rest of the life of mine, unless new external stresses, such as mine dewatering, takes place within the radius of influence. Six months later the shafts were excavated and the permeable zones were encountered at the exact positions as predicted using the packer testing. In addition, the inflow rates calculated using analytical modelling was successful in estimating the inflow rates recorded after the shafts were excavated. The packer testing and analytical modelling was therefore effective in assisting the mine to plan the necessary pumps and management plans within the allocated budget and timeframe.

Abstract

Model calibration and scenario evaluations of 2D and 3D groundwater simulations are often computationally expensive due to dense meshes and the high number of iterations required before finding acceptable results. Furthermore, due to the diversity of modelling scenarios, a standardised presentation of modelling results to a general audience is complicated by different levels of technical expertise.

Reducing computational time
In this presentation we look briefly at the use of Reduced Order Models (ROM's), which is one of the recent developments in groundwater modelling. The method allows significant speed-up times in model calibration and scenario evaluation studies. In saturated flow for example, these approaches show speed-up times of >1000 when compared to full models created with Finite Element of Finite Difference methods. These methods are demonstrated to a case study in the Table Mountain Group, in which we show a simplified parameter calibration and scenario evaluation study.

Standardising presentation
In order to present the results to as wide an audience as possible, the use of a web-browser as a GUI is proposed, where the web-page is coupled to a geo-spatial database and data is presented in a spatial and numeric format. The use of the spatial database manager PostgreSQL with PostGIS is proposed. Through a browser interface, users can run modelling scenarios using the ROM, which is evaluated in near real-time. Following the evaluation of the model, we show how PostGIS can spatially present data on a base-map such as google maps. In keeping with the current trends in online map customisation, viewers can interactively choose to overlay the base-map with a data-type (such as pressure or hydraulic head contours or flow direction) that is most intuitive for their level of familiarity with the data.

Conclusion
In using advanced modelling techniques and a simplified browser based presentation of results, high-level decisions in water resource management can be significantly accelerated with the use of interactive scenario evaluations. Furthermore, by reaching a broader audience, public participation will be significantly enhanced.

Abstract

Coastal wetlands are complex hydrogeological systems in which groundwater have a significant influence on both its water balance and hydrochemistry. Differences in groundwater flow and groundwater chemistry associated with complex hydrogeologic settings have been shown to affect the diversity and composition of plant communities in wetland systems. A number of wetlands can be found across the flat terrain of the Agulhas Plain, of which the most notable is the Soetendalsvlei and the Vo?lvlei. Despite the ecological and social importance of the Vo?lvlei, the extent to which local, intermediate and regional groundwater flow systems influences the Vo?lvlei is poorly understood. The aim of this work is to characterize the spatial and temporal variations in surface water and groundwater interactions in order to demonstrate the influence of groundwater flow systems on the hydrology of the Vo?lvlei. The specific objectives of the study are; 1) to establish a geological framework of the lake sub-surface, 2) to determine the physical hydrological characteristics of the Vo?lvlei and 3) to determine the physical-chemical and isotopic characteristics of groundwater and surface water. Data collection will be done over the period of a year. Methods to be used will include the use of geophysical (electrical resistivity) to determine high water bearing areas surrounding the wetland, a drilling investigation (the installation of piezometers at 5-10m depths and boreholes at 30m depth, sediment analysis (grain size analysis, colour and texture), hydraulic (slug testing to determine hydraulic properties; hydraulic conductivity and transmissivity), hydrological (to estimate groundwater discharge; Darcy flux and hydraulic head difference between groundwater level and lake level), physical-chemical (electrical conductivity, temperature and pH) and stable environmental isotopic (oxygen and hydrogen) analysis of surface water and groundwater, to determine flow paths and identify processes. Thus far, results obtained for the geophysical survey has revealed that the sub-surface of this wetland system is highly variable. Three traverses were done on the South-Western, South-Eastern and Northern side of the wetland (See Figure 1). In VOEL1 (South west), the upper couple of meters show areas of very low resistivity, which is associated with clays, poor water quality and water which has high dissolved salts. The changing of medium to high resistivity values on the North-eastern side is usually indicative of weathered sandstone (Table Mountain Group). VOEL2 (South eastern), indicates that the subsurface is of low resistivity. These low values are the result of noticeable salt grains in the sand. VOEL3 (Northern), indicated upper layers of low resistivity, while the lower depth indicate areas of high resistivity. It is expected that the results of this study will provide a conceptual understanding of surface water-groundwater interactions and the processes which control these interactions, in order to facilitate the effective management and conservation of this unique lacustrine wetland.

Abstract

It is estimated that the three coal layers in the Springbok Flats contain about 5 TCF of coal bed methane (CBM). Two sedimentary basins, namely the southern Tuinplaas basin and the northern Roedtan basin, exist with coal layers with a total thickness of 7m which occurs mainly in three mayor seams. The coal layers are located between 20 m to more than 600m.
Farmers in the Flats are concerned about the environmental impact of fracking the coal beds. They are mostly worried about the risk of groundwater pollution; the drawdown of the water table and the producing of a bad quality water during the mining process. They set up an EPA for the Springbok Flats in 2010 and until now, they have stopped more than 6 companies to conducted exploration (stopped strictly on account of the different laws in SA that were not adhered too).
On average, 1000 liters of water is produced for every 2000 cubic feet coal bed methane mined in the USA. The quality of the produced water is not good (with typical Na values of more than 5 000 mg/l) and cannot be used for irrigation purposes.
It is thus expected that about 500 million m3 of bad quality water will be produced for every 1 TCF mined in the Flats. This groundwater will be removed from the system and it is expected that a drawdown of up to 30m will be evident at places in the Springbok Flats. There are also a large number of dykes and faults in the Flats which imply that the upward movement of methane and water will be very probable after abandonment of each coal methane well.

Abstract

Vapour intrusion (VI) is recognized to drive human health risk at numerous sites that have been contaminated by petroleum products and other volatile contaminants. The risks related to VI are typically evaluated using direct measurement (vapour sampling) or modelling methods. ERM has developed a toolbox approach using a combination of exclusion distance criteria, direct measurement and modelling methods to assess risks and achieve closure. For direct measurement, samples of vapour are taken beneath the floor slab of buildings (sub-slab sampling) or from the air inside the buildings (indoor air sampling). Modelling methods are often used to estimate the partitioning of volatile contaminants from soil or groundwater sources into the vapour phase and the subsequent transport of vapours from the subsurface environment into habitable buildings. A limitation of modelling approaches is that they are designed to be conservative to be adequately protective of sensitive receptors. VI models also do not typically take into account the degradation of hydrocarbon vapours in the presence of oxygen, which has been found to be a significant process for petroleum hydrocarbons. The authors have compiled a dataset of petroleum vapour and groundwater results from over 50 petroleum release sites in southern Africa. These data were used to develop exclusion distance criteria for vapours emitted from contaminated groundwater sources (i.e. distance from the source at which sufficient aerobic attenuation has occurred for the VI risk to be negligible). A standard "lines of evidence" approach has been applied to the assessment of VI risk by firstly applying the exclusion distance criteria to sites with groundwater contaminant plumes beneath buildings, and if these are met, the sites are considered to have no unacceptable VI risk. Where exclusion screening criteria are not met, risk is estimated using modelling, and if a potential risk is predicted, then direct sub-slab measurements are taken to more accurately assess the risk. Lastly, where sub-slab assessment predicts a potential VI risk, indoor vapour measurement are taken to evaluate actual risk, taking into account interferences from other sources and background levels of contaminants. Mitigating measures can then be applied as appropriate. Various case studies will be presented including direct measurements at industrial and residential sites overlying contaminant plumes and modelling methods at residential properties adjacent to service station sites. A risk-based approach to the assessment of contaminated land provides a sustainable and cost effective methodology, and also avoids unnecessary remediation. The results show that VI risks can be adequately addressed with a toolbox approach using multiple lines of evidence.

Abstract

There are various software packages used by hydrogeologists for a variety of purposes ranging from project management, database management, data interpretation, conceptual and numerical modelling and decision making. Software is either commercial (produced for sale) or open source (freely available to anyone and for any purpose).

The objective of this paper is to promote open source software that can be used by the hydrogeological community to reduce expenses, enhance productivity and maximise efficiency.

Free software was previously associated as being inferior in quality in the corporate world. Companies often use commercial software at a hefty price, but little do they know that open source is often equal to, or superior to their commercial counterparts. The source code of open source software can freely be modified and enhanced by anybody. Open source software is a prominent example of open collaboration as it is developed by users for the user community. Companies using open source software do not need to worry about licensing and do not require anti-piracy measures such as product activation or a serial number.

However, the decision of adopting open source software should not just be taken just on the basis of the low-cost involved. It should entail a detailed analysis and understanding of the requirements at stake, before switching to open source to achieve the full benefits it offers and to understand what the down side is. There are plenty of open source products that can be used by hydrogeologists. The packages considered in this article are those that are frequently used by the author and do not necessarily mean that they are the best available. Software gets updated or abandoned with time and what is considered powerful today may be obsolete in a few years.

Some of the well-known open source packages recommended for hydrogeologists include: OpenLibre for project management, Blender 3D or Sketchup for 3D conceptual modelling, QGIS for GIS mapping and database management, SAGA GIS for interpolation and ModelMuse for numerical modelling (comprising of Modflow for finite difference, Sutra for finite element and Phast for geochemical modelling). In addition, there are a number of free software packages developed by the USGS, various universities and consultants across the globe that can be used for aquifer test interpretation, borehole logging and time-series data analysis. A saving of more than R250,000 can be made per hydrogeologist by utilising such open source packages, while maintaining high quality work that is traditionally completed using commercial software.

Abstract

The groundwater quality in semi-arid aquifers can be deteriorated very rabidly due to many factors. The most important factor affecting the quality of groundwater quality in Gaza Strip aquifer is the excess pumping that resulting from the high population density in the area. The goal of this study to investigate the future potential deterioration in groundwater salinity using scenario analysis modeling by artificial neural networks (ANN). The ANN model is utilized to predict the groundwater salinity based on three future scenarios of pumping quantities and rates from the Gaza strip aquifer. The results shows that in case the pumping rate remains as the present conditions, chloride concentration will increase rapidly in most areas of the Gaza Strip and the availability of fresh water will decrease in disquieting rates by year 2030. Results proved that groundwater salinity will be improved solely if the pumping rate is reduced by half and it also will be improved considerably if the pumping rate is completely stopped. Based on the results of this study, an urgent calling for developing other drinking water resources to secure the water demand is the most effective solution to decrease the groundwater salinity.

Abstract

Hydrogeological environments are commonly determined by the type of underlying geology; these environments may have a tremendous effect on the mobility and recovery of LNAPLs.  Hydrogeological environment include intergranular sediments and bedrocks of contrasting permeability and porosity. This paper synthesizes several case studies and conceptual models of different hydrological environments and illustrates how they affect the flow characteristics and rebound of LNAPLs.

Abstract

POSTER The Department of Water and Sanitation (DWS) is the custodian of South Africa's water and thus is imperative that it reports on its state as the National Water Act of 1998 requires regular reporting to Parliament by the Minister. Hence, the annual compilation of report entitled "The National State of Water in South Africa." This report aims to give an overview of the status and trends of water quality and quantity, further assisting with international water reporting obligations to SADC Region, African Continent, and Globally e.g. the United Nations Commission on Sustainable Development. This information empowers the public and provides knowledge to water managers for informed decision-making. The main purpose is to enhance quality, accessibility and relevance of data and information relating to the goal of Integrated Water Resource Management towards attaining holistic Integrated Water Management, and Integrated Water Cycle Management in future. Three distinct requirements for collecting data by DWS are: (i) assessing and comparing the status and trends for both quantity and quality; (ii) monitoring for water use and (iii) monitoring for compliance to licence conditions. Such information is further used to assess the effectiveness of policies implemented and identify the existing gaps. Various challenges to the country's water demand proper integrated water resources planning and management. The report is divided into Themes such as, Resource Management, Water Services/Delivery, Water Development and Finance, based on selected indicators. The indicators are strategically selected to provide a representative picture of the state, as well as the changes over time to the drivers, pressures, impacts and responses related to the chosen themes. These Indicators include: Climatic Conditions, Water Availability, Water Use, Water Protection, Water Quality, Water Service Delivery, Water Infrastructure, Water Finance, and Sanitation. The report for Hydrological Year 2013/2014 has been completed and it shows that the amount of water available varies greatly between different places and seasons, and from one year to another. The average total storage was around 85% of full supply capacity in September 2014. Surface water quality is generally facing a threat from eutrophication and microbial pollution emanating mainly from mismanaged water (and waste) treatment plants and related landuse activities. Groundwater quality is generally good except in some localised areas where mining and industrial activities are prevalent. With regards to infrastructure; vandalism, lack of maintenance & management skills reflect on/as non-revenue water, highlighting the need for more funding towards maintenance, especially in groundwater which is normally wrongly deemed as an unreliable resource. In the past 20 years, water services delivery to communities has improved as the Millennium Development Goals have been met and surpassed, while the sanitation access goals were likely to be met.

Abstract

Quantification of groundwater is important as it should determine the maximum sustainable use of the resource. The SAMREC Code that is required for mineral resource quantification sets out minimum standards, guidelines and recommendations for public reporting of exploration results for mineral resources and reserves. The code serves as the basis for mineral asset valuation and provides quality assurance to the process and an understanding of the results. In groundwater far too often, various methods are used for resource quantification that leads to various results even should the same resource be investigated by two different hydrogeologists. In far too many cases, the resource is not quantified properly which leads to vast over or under estimations. The result is a lack of trust in groundwater resources. As has been done in the international arena, it is similarly proposed that a code be developed for South Africa to ensure that the sustainability of groundwater resources is determined and the impacts of utilization on the water Reserve and the environment be quantified at a minimum level and that basic hydrogeological principles are followed. A South African Groundwater Regulation Code for sustainable resource quantification and impact assessment (SAGREC) is developed that is proposed to guide groundwater investigations and development processes from planning to baseline assessments, drilling and aquifer testing to resource quantification and sustainability modeling. The aim is to ensure trust being built on groundwater as a resource due to projects that follow a formal process that quantifies the assurance of supply and determines the environmental impacts.

Abstract

It has become increasingly apparent that understanding fractured rock mechanics as well as the interactions and exchanges between groundwater and surface water systems are crucial considering the increase in demand of each in recent years. Especially in a time where long term sustainability is of great importance for many water management agencies, groundwater professionals and the average water users. Previous callow experience has shown that there is a misunderstanding in the correct interpretation and analyses of pumping test data. The fracture characterisation (FC) method software provides a most useful tool in the overall understanding of a fractured rock aquifer, quantification of the aquifer’s hydraulic (flow regime and flow boundary conditions) and physical properties, only if the time-drawdown relationships are correctly interpreted and when the theoretical application principles are applied. Interpretation is not simply a copy and paste of the aquifer test data into the software to get a quick answer (especially when project time constraints are considered), however, recent experiences with numerous field examples, required intricate understanding of the geological environment, intended use and abstraction schedules coupled with the academic applications on which the software was based for correct interpretation.

Through the application of correct interpretation principles, a plethora of flow information becomes available, of which examples will be provided in the presentation itself. By achieving this, flow can be conceptualised for inputs into a conservative scale three-dimensional numerical flow model and calibrated based on measurable data in a fraction of the time of a conventional regional model. Although higher confidence levels are achieved with these practical solutions, monitoring programmes are still required to provide better insight of the aquifer responses to long-term abstraction and recovery.

Abstract

The intangible nature of groundwater provides challenges when trying to understand and quantify the role of groundwater in the hydrology of lakes and wetlands. This task is made even more difficult by the frequent absence of data. However, by adopting a scientific approach, it is possible to assess the hydrogeological contribution

Abstract

In the wake of the ongoing water restrictions in South Africa, the issue of groundwater potential for drought relief has been debated on many environmental and socio-economic platforms, nationally. Consequently, the development of groundwater and its related vulnerabilities has become a key topic to the decision makers and stakeholders. Currently, the recruitment of water professionals into government and private water sectors adds substantial value to understanding the importance of protecting this precious resource. This has allowed the monitoring of groundwater to gain ever increasing momentum. Groundwater monitoring has become an essential scientific tool for role-players to achieve robust and verifiable data used for modelling aquifer potential and vulnerability to pollution and over-abstraction. The data is generally sourced from various hydrogeological and environmental investigations which include groundwater development, vulnerability assessment and remediation projects. Groundwater and environmental consulting firms are tasked with imperative roles for implementing groundwater monitoring programmes to the ever growing industrial, commercial, agricultural and public sectors in South Africa. However, groundwater monitoring data, especially in the private sector, are reliable but remains mostly inaccessible due to confidentiality clauses. This does limit our accuracy and comprehensive understanding for determining aquifer potential and vulnerability risks at large. The conceptualisation and modelling of vast monitoring datasets has been recognised as an important contributing factor to enhance groundwater sustainability. This research emphasises the significance of groundwater monitoring for development, protection and remediation of aquifers. Comparing monitoring results from typical sites and methods, provides scientific validation to support good governance of water. Deterioration of groundwater potability in the sight of an existing drought can have irreversible environmental and economic implications for South Africa.

Abstract

An understanding of the movement of moisture fluxes in the unsaturated zone of waste disposal sites play a critical role in terms of potential groundwater contamination. Increasing attention is being given to the unsaturated or vadose zone where much of the subsurface contamination originates, passes through, or can be eliminated before it contaminates surface and subsurface water resources. As the transport of contaminants is closely linked with the water ?ux in through the unsaturated zone, any quantitative analysis of contaminant transport must ?rst evaluate water ?uxes into and through the this region. Mathematical models have often been used as critical tools for the optimal quantification of site-speci?c subsurface water ?ow and solute transport processes so as to enable the implementation of management practices that minimize both surface and groundwater pollution. For instance, numerical models have been used in the simulation of water and solute movement in the subsurface for a variety of applications, including the characterization of unsaturated zone solute transport in waste disposal sites and landfills. In this study, HYDRUS 2D numerical simulation was used to simulate water and salt movement in the unsaturated zone at a dry coal ash disposal site in Mpumalanga, South Africa. The main objective of this work was to determine the flux dynamics within the unsaturated zone of the coal ash medium, so as to develop a conceptual model that explains solute transport through the unsaturated zone of the coal ash medium for a period of approximately 10 year intervals. Field experiments were carried out to determine the model input parameters and the initial conditions, through the determination of average moisture content, average bulk density and the saturated hydraulic conductivity of the medium. A two dimensional finite-element mesh of 100m x 45m model was used to represent cross section of the ash dump. Two dimensional time lapse models showing the migration of moisture fluxes and salt plumes were produced for the coal ash medium. An explanation on the variation of moisture content and cumulative fluxes in the ash dump was done with reference to preexisting ash dump data as well as the soil physical characteristics of the ash medium.
{List only- not presented}

Abstract

Coastal groundwater is a vulnerable resource, estimated to sustain the water needs of about 40% of the world’s population. The Roussillon aquifer is a regional aquifer near Perpignan (southern France). It covers over 800 km2 of land and is used for irrigation, drinking water, and industrial purposes. The aquifer has experienced significant piezometric lowering in the last decades, weakening the regional resource. An important aspect of modelling the hydrodynamic of this aquifer is the need to integrate data from agriculture and drinking water abstraction, natural and anthropogenic recharge, and account for the aquifer’s complex sedimentary arrangement. An ensemble of groundwater models has been constructed to understand the spatial evolution of the saline/freshwater interface and evaluate the impact of groundwater abstraction.

Three sets of physical parameter modelling approaches were used. The first is based on the direct interpolation of pumping tests. The second uses sequential indicator simulations to represent the geological uncertainty. The third is based on a detailed conceptual geological model and multiple-point statistics to represent the detailed geological structure. These models provide parameter fields that can be input for the transient state hydrodynamic simulations. Overall, the ensemble approach allowed us to understand the Roussillon plain’s hydrological system better and quantify the uncertainty on the possible evolution of the main groundwater fluxes and water resources over the last 20 years. These models can help to inform management decisions and support sustainable water resource development in the region.

Abstract

Artesian boreholes are a common feature worldwide in confined aquifers, but the hydraulic testing of these boreholes, and estimation of aquifer properties from such tests, still poses a challenge for hydrogeologists. Common hydraulic tests, such as step-drawdown or constant-discharge rate tests require a static water level at the start of the test, and the measurement of drawdown (increasing over time) and abstraction rate (fixed for a period of time). Usually, when undertaking a pumping test in an artesian borehole, the drawdown is measured from ground level, and the drop in hydraulic head between static pressure and ground level is often ignored. This procedure also implies that the starting time of the test is not at the static water level. A constant-head test, set at ground level, is the other option. However, the decrease in flow rate is not only dependent on the hydraulic properties of the aquifer, but also masked by pipe hydraulic effects within the well. This kind of test would also limit the available drawdown to be utilized for the test. Hence, it was required to develop a method for undertaking hydraulic tests in strong artesian boreholes, allowing for the drawdown to fluctuate between levels both above and below ground and avoiding the pitfalls described above. The solution is a specially designed and constructed wellhead for the installation of the pump and monitoring equipment prior to the hydraulic test. The standard tests are slightly modified and are only undertaken after sealing the wellhead and reaching static hydraulic pressure. The recommended wellhead construction and subsequent hydraulic tests were implemented at a strong artesian borehole in the Blossoms Wellfield, south of Oudtshoorn in the Western Cape province of South Africa.

 

Abstract

This paper describes the characteristics of the deep aquifer systems in South Africa as derived from the available data. The study formed part of the larger WRC project K5/2434 (Characterisation and Protection of Potential Deep Aquifers in South Africa). A review of the available literature relevant to potential deep aquifers in South Africa was done to allow characterisation of these aquifer systems. In addition, data obtained from the geological logs of the SOEKOR and KARIN boreholes were considered.

This paper focuses on deep aquifers in 1) the Karoo Supergroup, 2) the basement and crystalline bedrock aquifers, 3) the Table Mountain Group, 4) the Bushveld Igneous Complex and 5) the dolomites of the Transvaal Supergroup. From the available data the deep aquifer systems are described in terms of the following characteristics: lithology, occurrence, physical dimensions, aquifer type, saturation level, heterogeneity and degree of isotropy, formation properties, hydraulic parameters, pressurisation, yield, groundwater quality, and aquifer vulnerability.

The results of the study show that the deep aquifer systems of South Africa are generally fractured hard-rock aquifers in which secondary porosity was developed through processes such as fracturing and dissolution. The primary porosity of most of the rocks forming the aquifers is very low. Apart from the dolomite aquifers, most of the water storage occurs in the rock matrices. Groundwater flow predominantly takes place along the fractures and dissolution cavities which act as preferential pathways for groundwater migration. The aquifers are generally highly heterogeneous and anisotropic.

The deep aquifers are generally confined and associated with positive hydraulic pressures. The groundwater quality generally decreases with depth as the salinity increases. However, deep dolomite aquifers may contain groundwater of good quality. Due to the large depths of occurrence, the deep aquifer systems are generally not vulnerable to contamination from activities at surface or in the shallow subsurface. The deep dolomite aquifers are a notable exception since they may be hydraulically linked to the shallower systems through complex networks of dissolution cavities. The deep aquifers are, however, very vulnerable to over-exploitation since low recharge rates are expected.

Abstract

A review from international literature discredits the capability of MODFLOW to simulate mine water rebound, due to the nonstandard hydrogeology of underground mine systems. The conceptual understanding is that, after cessation of dewatering, mine water inflow rates and hydraulic heads are related to the void-volume, the differences in head between the water in the mine void and head dependent source, plus natural recharge to the mine voids. The flooded mine voids in the study area are partially underlain by a dolomitic aquifer. The other head dependent source of inflow into the mine voids are the surrounding and overlying Karoo aquifers. Head independent inflow rates into the mine voids, using the long term decant rates, was estimated to be 0.2% of rainfall. During mining, dewatering occurred at approximately 3 to 6 Ml/d. The objective of the model was therefore to simulate the changes head-dependent inflow rates during the rebound period. Analysis of the water level recovery data depicted that once the mine filled up with water, the hydraulic head of the mine rose with the elastic storage coefficient value of the mine void and not the specific retention as conditions changed from unconfined to confined. A three layer model was setup, to represent the two seams mined, separated by a deep Karoo aquifer. The presence of the dolomite on the mine floor was incorporated using the general head boundary package. Head dependent influx from overlying shallow and intermediate Karoo aquifers were simulated using the river package. All model layers were simulated as confined, initially to avoid model convergence issues. The confined setup proved to be the core in simulating mine water rebound with MODFLOW. The modelling exercise showed that storage during rebound is a boundary condition. This simply means that the complexity of mine water rebound can only be achieved in MODFLOW by proper time stepping and dividing the model into different stress periods to represent the changes in storage. Rebound in the study area, modelled with 21 stress periods produced a perfect water level recovery data for the different mine compartments. This was achieved by applying storage capacities of between 0.3 to 0.006 to simulate rebound during unconfined conditions, and values of between 10-4 and 10-5 when the mine void is flooded. The results showed that the inflow from the dolomitic aquifer steadily decreased from 4121 m3/d to 0 m3/d as the mine hydraulic head increased and rose over the head in the dolomitic aquifer. During the same period, inflow from the surrounding Karoo aquifers decreased from 2422 m3/d to less than 10 m3/d. The results of the model were very important in determining the volumes of water to be abstracted from the mine voids for ash-backfilling. {List only- not presented}

Abstract

The generation of acid mine drainage (AMD), as a result of mining activities, has led to the degradation of groundwater quality in many parts of the world. Coal mining, in particular, contributes to the production of AMD to a large extent in South Africa. Although a vast number of remediation methods exist to reduce the impacts of AMD on groundwater quality, the use of a coal fly ash monolith to act as a reactive and hydraulic barrier has not been extensively explored. This study, therefore, aims to investigate how different ways of packing ash affect the hydraulic conductivity of ash and influence leachate quality when acid-mine drainage filters through the ash. Coal ash is highly alkaline due to the existence of free lime on the surface of the ash particles. Previous studies that investigated alternative uses of coal ash, particularly in AMD treatment, suggest that coal ash has the potential to neutralise pH in acid water and remediate acidic soils. To test the effects of different packing methods of coal ash on the hydraulic conductivity and quality of acid mine leachate flowing through it, several Darcy column tests will be conducted. During the course of these experiments, the following parameters will be measured, electrical conductivity, pH discharge, lime (CaCO3) and selected elements of environmental concern.

Abstract

Degradation of chloroethene in groundwater primarily occurs via microbially-mediated reductive dechlorination (RD). Anaerobic organohalide-respiring bacteria (OHRB) use chloroethenes as electron acceptors to gain energy. They produce reductive dehalogenase enzymes (RDases) to perform this function by transcription of functional genes into mRNA and translation to proteins (metabolic regulation). However, how hydrodynamics and hydrogeochemistry control the metabolic efficiency of OHRB in biodegrading chloroethene is essential for effective bioremediation design yet an under-investigated topic. For this reason, we implemented a virtual experiment (1D reactive transport model) to investigate the effects of site conditions on transcription-translation and, hence, biodegradation processes within chloroethene plumes. In the model, RD was simulated using Enzyme-Based Kinetics, explicitly mimicking the production of RDases via metabolic regulation, calibrated on microcosm experimental data gained from literature. Features of an actual contaminated site (Grindsted, Denmark) were then used to set up the virtual experiment. Here, chloroethene leaked from a former pharmaceutical factory migrates through a sandy aquifer and gets discharged into the Grindsted stream. Preliminary results show that substrate (electron donors) limiting conditions caused by competing electron acceptors and dispersion and high flow rates represent the key factors controlling biodegradation via RDase production.

Abstract

POSTER Aquifer stress arising from urbanization and agricultural activities, these two factors affect aquifer properties when prolonged. Increase in urbanization especially those situated on top unconfined or semi-confined aquifer results in pressure on natural resources, this includes water resources, and changes of land use for agricultural purposes with high economic benefits has an effect on groundwater quality to due to application of Nitrogen- fertilizers during crop rotation and this is largely experienced in developing countries. The effects ranges from groundwater quality to aquifer storage as prolonged aquifer withdrawals due to irrigation, construction, manufacturing affects groundwater storage. Assessment of urbanization and agricultural effects on groundwater requires a complex analysis as integration approaches needs to be discovered for a better analysis of the two more specially when assessing groundwater pollution. The study was conducted to assess the impacts of urbanization and agricultural activities on aquifer storage and groundwater quality: by (a) determining the relationship between the occurrence of contamination due to urbanization by assessing contaminants present in the study area (b) develop groundwater protection, and if any offer recommendation for groundwater management. Multiple-well tests were conducted observing the behavior of drawdown and recovery for assessing groundwater storage. Two aquifer properties were observed to yield information about any changes in aquifer storage (transmissivity and storage coefficient) and groundwater quality lab test focusing on TDS, nitrate and pH were conducted. Historical results reflect that before industrial and urban revolution the groundwater contained small amounts of TDS compared with the present results. Increase in nitrate and pH concentrations observed in location closer to agricultural areas. Prolonged aquifer withdrawals increases expansion of cone of depression and therefore increases aquifer vulnerability and the risk of aquifer being polluted, and this increases storage coefficient. This study can be used to formulate protection zones for water resources and practice towards groundwater management.

Abstract

Stringent drinking water standards for constituents like chromium, arsenic, and nitrates, combined with continually higher demand for groundwater resources have led to the need for more efficient and accurate well characterization. Many boreholes are screened across multiple aquifers to maximize groundwater production, and since these aquifers can have different water qualities, the water produced at the wellhead is a blend of the various water qualities. Furthermore, the water entering a well may not be distributed equally across the screened intervals, but instead be highly variable based on the transmissivity of the aquifers, the depth of the pump intake, the pumping rate, and whether any perforations are sealed off due to physical, chemical, or biological plugging. By identifying zones of high and low flows and differing water qualities, well profiling is a proven technology that helps optimize operational groundwater production from water supply boreholes or remediation systems. This frequently results in increased efficiencies and reduced treatment costs. By accurately defining groundwater quantity and quality, dynamic profiling provides the data needed to optimize well designs. Conventional exploration methods frequently rely on selecting well screen intervals based on performing and analyzing drill stem tests for one zone at a time. Using dynamic flow and water quality profiling, the transmissivity and water quality can be determined for multiple production zones in a matter of one to two days. It also allows the location and size of the test intervals to be adjusted in the field, based on real-time measurements.

In this paper we discuss dynamic well profiling techniques with project case examples of characterization different types groundwater boreholes for a variety of applications and industries resulting in significant cost saving and sustainable water abstraction.

Abstract

Groundwater quantity and quality of shallow aquifers have deteriorated in recent years due to rapid development that has created an increased demand for drinking water, which is increasingly being fulfilled by groundwater abstraction. The study evaluates the hydrogeological framework of the Quaternary aquifer of the Kabul basin, Afghanistan, and the impact of urbanization on the groundwater resources around the Kabul city plain. Time series of Landsat satellite LCLU images indicate that the urban area increased by 40% between 2000 and 2020, while the agricultural area decreased by 32% and bare land decreased from about 67% to 52% during this period. The assumed groundwater overdraft 2019 was 301.4×103 m3 /day, while the recharge was 153.4×103 m3 /day, meaning a negative balance of about 54 million cubic meters (MCM) this year. Due to the long-term decline of water levels at 80 90 cm/year, and locally (Khairkhana, Dasht-e-Barchi) 30-50m during 2005-2019, a considerable groundwater drawdown is shown. Groundwater quality, on the other hand, reveals that chloride concentrations and salinity increased throughout the aquifer between 2005 and 2020. The nitrate concentration decreased in most Kabul Plain places over the period. In conclusion, the quantity and quality situation of urban groundwater in Kabul is worrying; urgent scientific and sustainable solutions and measures should be considered to manage this situation.

Abstract

This study focuses on the coastal agricultural area of El-Nil River (Algeria), where anthropogenic activities heavily impact groundwater resources. A multi-tracer approach, integrating hydrogeochemical and isotopic tracers (δ2HH2O, δ18OH2O, δ15NNO3 and δ18ONO3), is combined with a hydrochemical facies evolution diagram and a Bayesian isotope mixing model (MixSIAR) to assess seawater contamination and distinguish the nitrate sources and their apportionment. A total of 27 groundwater samples and 7 surface water samples distributed over the entire study area were collected. Results show classic inland intrusion combined with an upstream seawater impact through the river mouth connected to the Mediterranean Sea. Results from nitrate isotopic composition, NO3 and Cl concentrations, and the MixSIAR model show that nitrate concentrations chiefly originate from sewage and manure sources. Nitrate derived from sewage is related to wastewater discharge, whereas nitrate derived from manure is attributed to an excessive use of animal manure to fertilise agricultural areas. The outcomes of this study are expected to help decision-makers prepare suitable environmental strategies for effective and sustainable water resources management in the study area.

Abstract

Micro-electro-mechanical system (MEMs) technologies coupled with Python data analysis can provide in-situ, multiple-point monitoring of pore pressure at discrete and local scales for engineering projects. MEMs sensors are tiny, robust, inexpensive, and can provide wireless sensing measurements in many electrical and geomechanical engineering applications. We demonstrate the development of MEMs pressure sensors for pore pressure monitoring in open boreholes and grouted in piezometers. MEMs sensors with a 60 m hydraulic head range and centimetre vertical resolution were subject to stability and drawdown tests in open boreholes and in various sand and grouts (permeability 10-8 to 10-2 m/s). The resulting accuracy and precision of the MEMs sensors, with optimal calibration models, were similar to conventional pore pressure sensors. We also demonstrate a framework for estimating in-situ hydrogeological properties for analysis from vented pore pressure sensors. This framework method included Python code analysis of hourly pore pressure data at the millimetre vertical resolution, which was combined with barometric data and modelled earth tides for each borehole. Results for pore pressure analysis in confined boreholes (>50 m depth) included specific storage, horizontal hydraulic conductivity and geomechanical properties. Future improvements in the vertical resolution of MEMs pore pressure sensors and combined these two technologies will enable groundwater monitoring at multiple scales. This could include the deployment of numerous MEMs, at sub-meter discrete scale in boreholes and evaluating local site scale variations in pore pressure responses to recharge, groundwater pumping and excavations in complex sub-surface geological conditions.

Abstract

Having knowledge of spatiotemporal groundwater recharge is crucial for optimizing regional water management practices. However, the lack of consistent ground hydrometeorological data at regional and global scales has led to the use of alternative proxies and indicators to estimate impacts on groundwater recharge, enabling effective management of future water resources. This study explores the impact of land use changes and wildfires on groundwater recharge at a regional scale in Bolivia, using an alternative indicator to estimate variations in groundwater recharge rates. Based on a study by de Freitas L. in 2021, the methodology developed the annual groundwater recharge reduction rate (RAPReHS) utilizing remotely sensed data from the FLDAS and TERRACLIMATE datasets. The RAPReHS employs a simplified version of the water balance equation, estimating direct vertical groundwater recharge by considering the difference between precipitation, evapotranspiration, and runoff. The methodology was upscaled to improve data processing and analysis efficiency using an open-source cloud-computing platform (Google Earth Engine) over a 20-year period. The first results reveal a strong correlation between decreasing groundwater recharge rates and natural vegetation in the eastern region. By utilizing the RAPReHS index, forest preservation strategies can be prioritized. This study is in the framework of SDG 13 (Climate Action), which aims to mitigate the impacts of climate change on the environment and society. By exploring the impact of land use changes and wildfires on groundwater recharge at a regional scale in Bolivia, this research contributes to the inclusion of groundwater in policy guidelines for sustainable water management