Conference Abstracts

All Abstracts were presented at the Groundwater Conferences

Displaying 201 - 250 of 795 results
Title Presenter Name Presenter Surname Area Conference year Keywords

Abstract

The devastating socioeconomic impacts of recent droughts have intensified the need for improved drought monitoring in South Africa (SA). This study has shown that not all indices can be universally applicable to all regions worldwide, and no single index can represent all aspects of droughts. This study aimed to review the performance and applicability of the Palmer drought severity index (PDSI), surface water supply index (SWSI), vegetation condition index (VCI), standardised precipitation index (SPI), standardised precipitation evapotranspiration index (SPEI), standardised streamflow index (SSI), standardised groundwater index (SGI), and GRACE (Gravity Recovery and Climate Experiment)-based drought indices in SA and provide guidelines for selecting feasible candidates for integrated drought monitoring. The review is based on the 2016 World Meteorological Organization (WMO) Handbook of Drought Indicators and Indices guidelines. The PDSI and SWSI are not feasible in SA, mainly because they are relatively complex to compute and interpret and cannot use readily available and accessible data. Combining the SPI, SPEI, VCI, SSI, and SGI using multi-index or hybrid methods is recommended. Hence, with best fitting probability distribution functions (PDFs) used and an informed choice between parametric and non-parametric approaches, this combination has the potential for integrated drought monitoring. Due to the scarcity of groundwater data, investigations using GRACE-based groundwater drought indices must be carried out. These findings may contribute to improved drought early warning and monitoring in SA.

Abstract

The use of radiogenic isotope tracers, produced through bomb testing (e.g. 3H and 14C), and the application of these isotopes is yet to be fully explored now that atmospheric abundances have returned to background levels. New isotope-enabled institutions and laboratories have recently been established in developing countries to apply isotopes in practical research. This study utilized several laboratories in South Africa and in Europe to compile a robust hydrochemical (major cations and anions) and isotope (d18O, d2H, 3H, 14C, 86Sr/87Sr) dataset of groundwater from 95 sample locations in the Maputo province of Mozambique. Groundwater is hosted in different aquifers and recharged through variable mechanisms ranging from direct infiltration of exposed alluvial soils to inter-aquifer transfer between fractured aquifer systems in the mountainous regions and the weathered bedrock in the lowlands. A combination of hydrochemistry and isotopes provided insight into the heterogeneous nature of recharge, mixing of modern and fossil groundwaters, and aquifer vulnerabilities when combined with other physical parameters in the region. However, it is also clear that grab sampling over a regional spatial extent and two sampling seasons (wet and dry) did not capture all the system variability, and more regular monitoring would uncover details in the system’s behaviour not captured in this study.

Abstract

 Predicting and quantifying the hydrogeological interference of big underground works is a complex effort. This is due to the considerable uncertainty in estimating the key geomechanical and hydrogeological parameters affecting the area of potential interference of the projects. Moreover, the pattern of involved groundwater flow systems is hardly identified, either in natural or disturbed conditions. Base tunnels through mountain ridges are particularly complex in their interactions with groundwater. Several approaches and tools have been published to predict the magnitude and distribution of water inflows inside tunnels and their impact on many receptors (springs, rivers, lakes, wells, groundwater-dependent ecosystems). The research, co-funded by Italferr Spa (Italian railway national company for tunnel design), deals with calibrating and validating these methods based on huge datasets. Main engineering companies provided data from completed base tunnel projects. In particular, in this study, the Drawdown Hazard Index (DHI) method has been calibrated with a dataset of a 15 km long sector of the Gotthard base tunnel drilled through a crystalline geological setting. The calibration involved only the Potential Inflow (PI) parameter to verify the matching between the probability of inflow and the actual output of the excavation, according to the available data in the preliminary stage of the project. An alternative tool based on a machine-learning approach was then applied to the same dataset, and a comparison was presented.

Abstract

Studies have examined the effects of groundwater pumping on nearby streams. Groundwater pumping affects streamflow, surface water rights, and aquatic ecosystems. This study investigates the impact of groundwater abstraction on surface water bodies. A secondary objective aims to develop a conceptual model to evaluate alternative approaches for streamflow depletion. The study area is a previous UFS/WRC test site along Modder River, Free State, South Africa. Streamflow depletion was simulated using four (4) analytical solutions, i.e., Jenkins (1968), Hantush (1964), Hunt (1999) and Hunt (2003). STRMDEPL08 analytical computer program tool is used to evaluate streamflow depletion. The aquifer parameters: distance of the boreholes to the stream; pumping periods analyzed in steady states conditions for a simulation period of 1 year; transmissivity with an average of 71 m/d; storativity of 0.02; specific yield of the aquitard range between 0.1 to 0.3; and abstraction rate of 2 l/s are defined for the hypothetical model. The average distances tested range from 10 m to 6,000 m. Pumping rate scenarios for an order of magnitude lower (0.2 l/s), 1 l/s; 4 l/s, and an order of magnitude larger (20 l/s) were simulated. Simulated graphs indicate that streamflow depletion rates are largest if the borehole is closer to the stream and decrease as the distance of the pumped borehole from the stream increases. Cumulative volume graphs for both analytical solutions decrease streamflow depletion volume

Abstract

Groundwater is a hidden resource, so as part of making it more visible, geophysical methods can be very useful in inferring the delineation of aquifers and/or more productive zones to target in fractured rock environments. The most commonly used techniques to assist groundwater studies or exploration are still resistivity profiles or sections known as ERT or electrical resistivity tomography and vertical electrical soundings or VES. One of the limiting factors with this technique is the scale of what surveys can be conducted, resulting in, at best, some kilometers per day. The Hydrogeophysics group of Aarhus University have developed the towed transient electromagnetic (tTEM) system as a cost-efficient tool for characterizing regional hydrological systems to depths of up to 70 m as an alternative to these more traditional methods - which is highly productive in that collection of 40- to-80-line kilometers of data per day is feasible. The system is based on the transient electromagnetic (TEM) method, which involves using a transmitter and receiver coil to measure the electrical resistivity of the subsurface. The hydrological value in electrical resistivity images stems from the ability to delineate different hydrogeological units based on their contrasting electrical properties. Consequently, 3D electrical resistivity images can infer the subsurface hydrogeology and enhance the success of installing productive boreholes. This work presents case studies from several African countries (e.g., South Africa, Zimbabwe, Ethiopia, Senegal, and Togo). It demonstrates how the tTEM method can identify reliable drinking water sources in these countries.

Abstract

Recharge is an important factor in Water Resources Management as it is often used as a measure for sustainable groundwater abstraction and resource allocation. The recharge estimation is, however, linked to a specific time, area and conditions and then generalised over seasons and years. Current climate change estimations predict a warmer and drier future for western parts of southern Africa. Groundwater recharge estimation methods do not consider changes in climate over the short term and do not consider the longer trends of a changing climate. This article looks at the various methodologies used in recharge estimations and their application in a changing world, where rainfall period, pattern and intensity have changed, where higher temperatures lead to higher actual evapotranspiration and where there is a greater need for water resources for use in agriculture, industry and domestic use. Our study considers the implications of current recharge estimation methods over the long term for water allocation and water resources management of groundwater resources from local and aquifer catchment scale estimations.

Abstract

In many countries, groundwater quality is measured against drinking water limit values or standards. While that makes sense from a water supply perspective, it is not a scientifically correct yardstick to use to classify groundwater resources or even to determine whether groundwater has been “polluted”. Using this incorrect anthropocentric yardstick has led in some cases to legal action against industries, with significant liability implications, whilst the industry’s activities did not at all influence the quality of the groundwater but were reflecting the conditions under which the lithology of the aquifer was deposited. A case study in KZN demonstrating this will be discussed. We are, therefore, in a situation where regulatory decisions regarding groundwater quality and the regulation of the potential impact of human activities on groundwater systems are unfair, not scientifically credible, and not legitimate. This situation hampers the effective management and regulation of groundwater use and the prevention of detrimental impacts on groundwater, even saline groundwater systems.

This paper argues that it is necessary to develop a groundwater quality classification system that will categorise aquifers based on their natural quality, not just from the perspective of their usefulness as a potable supply source but would recognise the important role that aquifers with more saline natural qualities play in maintaining ecosystems that require such salinity for its survival. It concludes by considering international approaches and proposing aspects to consider in developing such a system for groundwater regulation.

Abstract

Thailand has been grappling with a water scarcity problem every year, leading to insufficient water supply for consumption in many areas. To tackle this issue, groundwater is developed from large sources, making water allocation and economic analysis essential for measuring investments in water supply projects. This research study analyzes the water allocation for consumption and irrigation, including the water sent to hospitals, in two areas, Si Somdet & Roi Et Province and Nong Fai. The study uses the WUSMO program to analyze irrigation water and the EPANET program to analyze the entire water allocation system. The expected results include the appropriate allocation of water for maximum benefit, considering both delivery time and the amount of water to ensure adequate delivery. The study provides a guideline for effective and sustainable water allocation and management, including appropriate and sufficient water costs for managing the water distribution system in both areas. The results show that a water rate of 19 baht per cubic meter in Si Somdet & Roi Et Province results in a B/C value of 1.04 and an EIRR of 6.48%, while a water tariff of 15 baht per cubic meter in Nong Fai results in a B/C of 1.01 and an EIRR of 6.16%. The study highlights the importance of regular analysis of water allocation and cost-effectiveness of projects to ensure sustainable and efficient water management for the people.

Abstract

Nearly 1.9 billion people live in marginal environments, including drylands, semiarid, arid, and hyperarid environments. Obscure but ubiquitous circular pockmark depressions dot these lands. These circular depressions can range from a few meters to kilometers, and the depth of these depressions varies from a few centimeters to over 10 m. However, the genesis of the circles has been investigated among scientists for many years because of their obscure nature. Some researchers believe that termites cause fairy circles, while others believe they are caused by plants competing for water and nutrients. This study documented the Africa-wide prevalence and extent of the pockmarks for the first time, and it further classified the pockmarks according to their genesis and hydrological roles. We further investigated their relevance in serving as nature-based solutions to overcome water scarcity in dryland regions. So far, field evidence in Ethiopia and Somalia showed that these features potentially have water security significance in a) organizing surface water flows over arid/semi-arid landscapes, b) serving as the site of temporary surface water storage, and c) serving as the site of focused groundwater recharge into the underlying aquifers. This presentation will highlight the spatial prevalence, extent, and genesis model of the pockmarks across the drylands in Africa (South Africa, Namibia, Somalia, Ethiopia, Kenya, Chad, Senegal, Mali, Niger, etc.).

Abstract

Previous studies have shown that river-aquifer connectivity exists. However, an integrated approach that consists of multiple measuring methods to quantify and characterise such connectivity still needs improved scientific understanding due to the underlying principles and assumptions of such methods, mainly when such methods are applied in a semi-arid environment. Three techniques (hydrogeochemistry, stable water isotopes, and baseflow separations) were applied to quantify and characterize river-aquifer interactions. The study’s objective was to improve knowledge and understanding of the implications of the results from the three methods. Field measurement, laboratory assessment, and record review were used to collect primary and secondary data. Results showed that Na- HCO3 water type dominated the upper stream, discharging onto the surface and forming stream sources. Na-HCO3 water type was an outlier when the area’s geology and land use activities were assessed. The isotope results showed that the studied aquifer had 9% recently recharged water. Being the upstream, the freshwater in such a mountainous aquifer was expected. The baseflow index (BFI) results showed that the dependency of the total river flow to aquifer discharge contributed 7.24 % in the upper stream, 7.31% in the middle stream, and 7.32% in the lower stream. These findings provided empirical evidence that hydrochemistry, stable isotopes, and baseflow separation methods provide key insights into aquifer-stream connectivity. Such findings inform choosing appropriate and relevant measures for protecting, monitoring, and allocating water resources in the catchments.

Abstract

A groundwater monitoring network surrounding a pumping well (such as a public water supply) allows for early contaminant detection and mitigation where possible contaminant source locations are often unknown. This numerical study investigates how the contaminant detection probability of a hypothetical sentinel-well monitoring network consisting of one to four monitoring wells is affected by aquifer spatial heterogeneity and dispersion characteristics, where the contaminant source location is randomized. This is achieved through a stochastic framework using a Monte Carlo approach. A single production well is considered, resulting in converging non-uniform flow close to the well. Optimal network arrangements are obtained by maximizing a weighted risk function that considers true and false positive detection rates, sampling frequency, early detection, and contaminant travel time uncertainty. Aquifer dispersivity is found to be the dominant parameter for the quantification of network performance. For the range of parameters considered, a single monitoring well screening the full aquifer thickness is expected to correctly and timely identify at least 12% of all incidents resulting in contaminants reaching the production well. Irrespective of network size and sampling frequency, more dispersive transport conditions result in higher detection rates. Increasing aquifer heterogeneity and decreasing spatial continuity also lead to higher detection rates, though these effects are diminished for networks of 3 or more wells. Earlier detection, critical for remedial action and supply safety, comes with a significant cost in terms of detection rate and should be carefully considered when a monitoring network is being designed.

Abstract

This study presents a novel approach for developing geologically and hydrogeologically consistent groundwater models at large valley scales. Integrating geological, geophysical, and hydrogeological data into a single model is often challenging, but our methodology overcomes this challenge by combining the Ensemble Smoother with Multiple Data Assimilation algorithm (ESMDA) with a hierarchical geological modelling approach (ArchPy). The ESMDA framework assimilates geophysical and hydrogeological field data jointly. To diminish the computational cost, the forward geophysical and groundwater responses are computed in lower-dimensional spaces relevant to each physical problem, alleviating the computational burden and accelerating the inversion process. Combining multiple data sources and regional conceptual geological knowledge in a stochastic framework makes the resulting model accurate and incorporates robust uncertainty estimation. We demonstrate the applicability of our approach using actual data from the upper Aare Valley in Switzerland. Our results show that integrating different data types, each sensitive to different spatial dimensions enhances the global quality of the model within a reasonable computing time. This automatic generation of groundwater models with a robust uncertainty estimation has potential applications in a wide variety of hydrogeological issues. Our methodology provides a framework for efficiently integrating multiple data sources in geologically consistent models, facilitating the development of hydrogeological models that can inform sustainable water resource management.

Abstract

The occurrence of emerging organic contaminants (EOCs) in the aquatic environment is of no surprise since these are applied for various purposes daily. This study investigated the changes in EOCs concentrations in the water between 2019 and 2020. During rainy seasons, samples were collected from dams and surrounding boreholes in the Eastern Basin of the Witwatersrand Goldfields. During the first and second laboratory analyses, 24 and 11 analytes were screened in the water samples. The findings indicated that in 2020, compounds such as caffeine, sulfamethoxazole, atrazine and metolachlor displayed detection frequency exceeding 2019. This indicates that the occurrence of these compounds in the aquatic system has increased within a year. Whilst carbamazepine was still traced in 12 sites as previously observed in 2019, compounds estradiol, estrone, bisphenol A and ibuprofen were traced in fewer sites than they were detected in 2019. Compounds 4-nonylphenol, methylparaben, caffeine and atrazine were detected in all the samples analysed for 2019 and 2020, respectively. Antiretrovirals (ARVs) were analysed once and were detected in most sites, with efavirenz registering the highest (12/18) detection frequency. Assessing the occurrence of EOCs in boreholes according to the depth indicated that bisphenol A and estrone were traced in greater concentrations in deep than shallow aquifers, whilst the opposite was observed for atrazine. This study showed groundwater susceptibility to contamination by EOCs, with concentrations of most compounds increasing with time due to their high usage and improper sewer systems in the area.

Abstract

Salinization is one of the main threats to groundwater quality worldwide, affecting water security, crop productivity and biodiversity. The Horn of Africa, including eastern Ethiopia, northeast Kenya, Eritrea, Djibouti, and Somalia, has natural characteristics favouring high groundwater salinity. However, available salinity data are widely scattered, lacking a comprehensive overview of this hazard. To fill this gap, machine learning modelling was used to spatially predict patterns of high salinity with a dataset of 6300 groundwater quality measurements and various environmental predictors. Maps of groundwater salinity were produced for thresholds of 800, 1500 and 2500 μS/cm. The main drivers include precipitation, groundwater recharge, evaporation, ocean proximity, and fractured rocks. The combined overall model accuracy and area under the curve of multiple runs were both ~81%. The salinity maps highlight the uneven spatial distribution of salinity, with the affected areas mainly located in arid, flat lowlands.

These novel and high-resolution hazard maps (1 km2 resolution) further enable estimating the population potentially exposed to hazardous salinity levels. This analysis shows that about 11.5 million people (~7% of the total population) living in high-salinity areas, including 400,000 infants and half a million pregnant women, rely on groundwater for drinking. Somalia is the most affected country, with an estimated 5 million people potentially exposed. The created hazard maps are valuable decision-support tools for government agencies and water resource managers in helping direct salinity mitigation efforts

Abstract

The recent uncertainties in rainfall patterns have resulted in shortages in the availability of water resources, posing significant risk to the sustainability of all living organisms, livelihoods and economic prosperity. The fact that hidden groundwater resources in semi-arid regions present a challenge to understanding and managing the resources. Various groundwater studies have been undertaken; however, the quantification is generally over-simplified due to a limited understanding of the groundwater flow regime and consideration being mostly given to water supply. Thus, the data is often not comprehensive enough and generally limited in determining how much groundwater is available to supply rural areas. The Komati catchment area is dominated by coal mining in the upper reaches and irrigation and agriculture in the lower reaches, with human settlements competing for these water resources. Five significant dams in the Komati catchment are constructed to deal with the increasing water demand for commercial agriculture in the region. However, given uncertain weather patterns, the water mix approach is imperative. This study focused on understanding the groundwater potential, characterised the aquifer system, delineated the groundwater resource units, quantified baseflow and calculated the groundwater balance that can be used as a guide for the groundwater management protocol for the catchment area. The box model approach (surface-groundwater interaction) was used to characterize the groundwater regime and understand the spatial distribution of the aquifer types, water quality and significant aquifers of interest to protect this important resource.

Abstract

Test-pumping drawdown curves do not always sufficiently indicate aquifer characteristics and geometry and should never be analysed in isolation. Using derivative analysis and flow dimension theory, inferring the regional geometries and flow characteristics of fractured aquifers that are otherwise unknown or inconclusive is possible. As the drawdown and/or pressure front propagates through the aquifer, it reaches various hydrogeological objects that influence flow regimes and imprints a sequence of signatures in the drawdown derivative curve. The conjunctive interpretation of these flow regime sequences and hydrogeological data results in a robust, well-informed conceptual model (in terms of both local groundwater flow and the aquifer), which is vital for sustainable groundwater resource management. Derivative and flow regime analysis was applied to the test-pumping data of confined and unconfined Nardouw Aquifer (Table Mountain Group) boreholes within Steenbras Wellfield (Western Cape). Major NE-SW trending folding and transtensional Steenbras-Brandvlei Megafault Zone, in association with cross-cutting faults/fractures and younger False Bay Suite dykes, make the Nardouw Aquifer (and deeper Peninsula Aquifer) hydrogeologically complex. The sequential flow regime analyses reveal domains of conceptual flow models, including open vertical fractures, T-shaped channels, double (triple) porosity models, and leaky/recharge boundary models, amongst others. Appropriate analytical flow models (type curve fitting) are then applied for accurate aquifer parameter estimations, which are used to evaluate recommended long-term yields through predictive pumping scenarios. The outcome is an improved hydrogeological understanding and enhanced conceptual model of the aquifer, which informs numerical modelling, ecological protection, and groundwater resource management.

Abstract

A mapping series was generated using the Vanrhynsdorp aquifer system to illustrate an improved standardization groundwater monitoring status reporting, that includes a progressive conceptual site model linked with spatial and temporal groundwater monitoring network assessment on an aquifer scale. The report consists of 4 segments: Base map provides a conceptual site model of a groundwater resource unit (GRU) delineating an area of 1456 km2 representing the geology and geological structures that make up the Vanrhynsdorp aquifer system.

The Groundwater Availability Map illustrated over a long-term trend analysis, the measured water levels indicate an 83% decreasing trend over an average period of 21.83 years, the water levels have declined by an average linear progression of 11.54 m (ranging 0.48-35.76 m) or 0.64 m per year, which equates to an estimated decline in storage of 218 Tm3 - 21 Mm3 within the GRU. The Groundwater EC map illustrated over the long-term analysis of an average period 24 years the average EC ranged between 57 - 791 mS/m, with certain areas tracking at a constant increasing trend beyond 1200 mS/m. The Groundwater Quality Characterization map provides EC contours and spatial Stiff diagram plots. The Stiff diagrams illustrate three aquifer water types namely, Na-Cl (Table Mountain Group Sandstones), Na-Cl with high SO4 concentration (Blouport and Aties Formation) and Na-Cl-HCO3 (Widouw Formation). These four segments of information products inform Resource Quality Objectives and the need for surveillance monitoring in conjunction with annual compliance monitoring and enforcement groundwater use audits.

Abstract

To explore the sources of pollution and health risk profile of heavy metal elements in groundwater,41 sets of representative groundwater samples from the southwest subbasin of the Shiqi River were examined for 10 heavy metal elements, correlation analysis and principal component analysis were used to resolve the possible sources of heavy metal contamination in groundwater. The concentration characteristics and health risk levels of the 10 heavy metals were assessed using the single factor contamination index (Pi), the Nemerow comprehensive contamination index (PN) and the health risk model. The results show that: 1) The average values of heavy metal elements of the groundwater in the study area all met the limit of class III water standard in the quality standard for groundwater; only the maximum value of Al was exceeded, followed by a large variation in the concentrations of Al, Mn and Cr. The heavy metal element with the largest average contribution was Al (65.74%). 2) The results of the single factor contamination index evaluation show that only the heavy metal element Al exceeds the level, and the results of the Nemerow comprehensive contamination index evaluation show that the study area is basically at low pollution levels and the quality of groundwater is good. 3) The results of the multivariate statistical analysis show that Zn, Co and Mn are mixed sources of geological formation and domestic waste, Al, As, and Cu are agricultural sources, Cd, Cr and Ni are industrial sources, and Hg comes from long-range atmospheric transport.

Abstract

Diverse tools exist to study the transfer of contamination from its source to groundwater and related springs. A backward approach, i.e. sampling spring water to determine the origin of contamination, is more complex and requires multiple information. Microbial source tracking (MST) using host-specific markers is one of the tools, which, however, has shown to be insufficient as a stand-alone method, particularly in karst groundwater catchments. A karst spring in the Swiss Jura Mountains was studied concerning the occurrence and correlation of a set of faecal indicators, including classical parameters and bacteroidal markers. Sporadic monitoring proved the impact on spring water quality, mainly during high water stages. Additional event-focused sampling evidenced a more detailed and divergent pattern of individual indicators. A multiple-tool approach, complementing faecal indicator monitoring with artificial tracer experiments and measuring natural tracers, could specify the origin of ruminant and human faecal contaminations. Natural tracers allowed for distinguishing between water components from the saturated zone, the soil/epikarst storage, or freshly infiltrated rainwater. Additionally, the breakthrough of injected dye tracers and their remobilization during subsequent recharge events were correlated with the occurrence of faecal markers. The findings hypothesize that human faecal contamination is related to septic tanks overflowing at moderate rainfall intensities. Linkage with vulnerability assessment and land-use information can finally better locate the potential point sources. Such a toolbox provides useful basics for groundwater protection and catchment management and insight into general processes governing the fate and transport of faecal contaminants in karst environments.

Abstract

Surface water has traditionally been the primary resource for water supply in South Africa. While relatively easy to assess and utilise, the surface water resource is vulnerable to climatic conditions, where prolonged periods of drought can lead to an over-exploitation and eventually water shortness and supply failure. Following the drought in 2018, more focus has been given to the groundwater resource to supplement the water supply in South Africa.

In the Saldanha Bay municipality the water supply is based on a combination of surface water and groundwater, with plans to supplement this with desalination and managed aquifer recharge (MAR) in the future. For an efficient and sustainable utilisation of the different water resources, a Water Supply Management System is developed that can be used to manage water mix from multiple resources. The system builds on top of a flexible WaterManager system developed for operation of complex water supply infrastructures, which in the study is extended by implementing operational rules for optimal management.

The operational rules provide recommendations for the day-to-day management, but also consider seasonal and long-term utilisations. To achieve this, the rules will rely on real-time monitoring data combined with results from hydrological modelling, providing estimated system response to selected scenarios to which the water supply must be resilient. In the present study the combined Water Supply Management System is developed and tested using synthetic data, which will be presented in the paper.

Abstract

The frequency, intensity, and duration of droughts are increasing globally, putting severe pressure on water supply systems worldwide. The Western Cape Province suffered from a period of severe water shortages that began around January 2015 and lasted until about July 2018. During this recent drought, there was a forced reduction in water use, predominantly from the agricultural sector. Citizens also reduced water use and increasingly tapped into groundwater for their needs irrespective of whether the hydrogeology was considered favourable or not. Unmonitored and unregulated abstraction of groundwater, especially under unstable climatic conditions, poses a significant risk to the future water security of the Western Cape.
We hypothesize that groundwater enabled the municipalities, residents, and industries of the Western Cape to survive the recent drought. Our aim is to evaluate the change in groundwater storage during the 2015 to 2018 drought and its subsequent recovery. To achieve this, we must gain a comprehensive understanding of the dynamics of separate components of the water cycle, as well as the overall water balance.

While there is data on surface water use during the drought, the impact on groundwater resources has yet to be evaluated. However, the accurate assessment of groundwater use is difficult, especially in data-scarce regions, such as South Africa. In our study, we combine remote sensing from NASA’s Gravity Recovery and Climate Experiment (GRACE), the Global Land Data Assimilation Systems, groundwater level measurements from the National Groundwater Archive, and ancillary datasets from the City of Cape Town’s weekly water dashboard to assess the total change in groundwater storage in the Cape Town Metropolitan area and surrounding cities over an 8-year period, from 2012 to 2020. Preliminary results from GRACE data analysis show a steady decline in aquifer saturated thickness over the drought, indicative of an increase in groundwater use.

Abstract

The main purpose of this paper is to present a case study where soil moisture and rainfall data were evaluated for engineered tree plantations, to understand the potential impact on vertical groundwater recharge. Soil moisture for probes within the tree plantation root zones and reference sites within the same soil types were evaluated, in context to site rainfall patterns. Water transfer from shallow to deeper soil zones for a dataset of 2 years are presented. Observations in terms of water movement in the root zone are made. A water balance is presented in the effort to conceptualise the impact on water transfer through the upper vadose zone and to quantify the significance in terms of potential vertical groundwater recharge reduction.

Abstract

A map is a symbolic or diagrammatic representation of an area of land or sea, showing physical features and the relationship between these elements. It often reduces a three-dimensional world to two dimensions. Maps are generally static – fixed to paper or some other medium. Maps are produced for different reasons, leading to different types of maps, e.g., roadmaps, topo-cadastral maps and the groundwater maps – with the latter the topic of this article. There is a lot of work going into maps. This includes collecting all the data, doing evaluation and analysis of the data and selecting the data to use on the map. It is not possible to present all the information on a map and maps are often a generalisation. Different kinds of groundwater maps include availability, quality, vulnerability and protection. The selection of symbols to represent the information and the rendering of the maps are important in producing understandable, useful maps, but need explanations.

The success in representing the information on a map will determine the usefulness of a map, but it is still often misused. At the end of this long and tedious process where conflict management skills were well developed, you may find that the information on the map is outdated before the ink on the map is dried properly. The production of maps should be an iterative process, where new data can be incorporated as soon as it becomes available. It is an expensive process and cannot be repeated too often. This article will look at the processes that helped to shape the current series of hydrogeology maps of South Africa, and how to use it optimally while mindful of limitations. It will also briefly touch on recent research that aims to help with the production of improved groundwater maps for South Africa.

Abstract

Israel, S

Thousands of pharmaceuticals, pesticides and microplastics are consumed and disposed of directly or indirectly into various waterbodies globally. They are collectively termed “contaminants of emerging concern” or CECs. Contaminants of emerging concerns are defined as micropollutants that are present in the environment that are not regulated and that can pose a risk to the health of both humans and wildlife. The spread of these CEC’s in water systems is not isolated to a specific place and is on the rise all over the world. This study aims to investigate the spatial and temporal distribution pattern of pharmaceuticals in Cape Town’s water network, in order to assess the occurrence, concentration levels and distribution of pharmaceuticals in various water bodies. The study focuses on the occurrence of eight pharmaceuticals which are most frequently used and occurs in various water bodies around the world, namely acetaminophen, diclofenac, carbamazepine, naproxen, rifampicin, tenofovir, progesterone, sulfamethoxazole. The research sites include six waste water treatment plants in Cape Town with receiving rivers and borehole sites nearby and downstream from the waste water treatment works. Liquid chromatography combined with mass spectrometry is the selected method used to analyse the analytes of interest in the collected samples. Preliminary results obtained during the summer period (January 2021) showed that pharmaceuticals had indeed spread from waste water treatment plants into receiving water bodies with concentrations ranging from 0.8 to ≤ 6400 ng/L in both surface and groundwater due to the inefficient removal of these compounds. Continued research will conclusively address the concentration levels as a function of time, and consider the spatial distribution and its seasonality. It can be concluded from the preliminary results, that pathways of contamination from waste water discharge points to surface water and groundwater do indeed exist for the 8 pharmaceuticals considered.

Abstract

Surface water resources are under threat of depletion and quality deterioration due to various factors such as climate change, urbanization, and population expansion. Managed aquifer recharge (MAR) is a technique that has been successfully implemented over the last 4 decades to sustain the balance between water demand and availability. The unsaturated zone, where source water is introduced during infiltration, plays a major role in the reduction of contaminants present in water before it naturally percolates and reaches the aquifer. This research aims to evaluate the removal efficiency of contaminants by the unsaturated zone. Three objectives to be accomplished are; to determine and classify the chemical composition of the source water. Secondly, to determine the hydraulic properties of the soil in the area of interest. Lastly to evaluate the contaminants removal efficiency, by tracing the quality of water at the point of recharge and discharge. The Atlantis water resource management scheme in the Western Cape will be used as a case study, in order to assess the relationship between the unsaturated zone and the reduction of contaminants.

The current study argues that during the artificial recharge of aquifers, contaminants present in the source water filter through the unsaturated zone, where natural processes, as well as resident microbes, reduce their concentrations to acceptable levels. Assessing the ability of the unsaturated zone to reduce contaminants, will allow for the early warnings of contamination potential and the execution of informed prevention strategies that can be used in decision making of the management and protection of water resources. Additionally, the advanced understanding of the role that the unsaturated zone plays in eliminating contaminants can be used to account for satisfactory groundwater quality in areas where groundwater is not constantly monitored and artificial remedies are not applied.

Abstract

Test-pumping drawdown curves are not always sufficiently indicative of aquifer characteristics and geometry. In fact, drawdown curves should never be analysed and interpreted alone. The derivative analysis (Bourdet et al., 1983) and flow dimension theory (Barker, 1988) make it possible to infer the regional geometries and flow characteristics of fractured aquifers which are otherwise often unknown or inconclusive when interpreting point-source borehole logs. The propagation of the drawdown and/or pressure front through the aquifer reaches distal hydrogeological objects which influence the flow regime and imprints signatures in the drawdown derivative curves. The conjunctive interpretation of these flow regime sequences and geological data results in a robust, well-informed conceptual model which is vital for resource management.

A methodology similar to that of A. Ferroud, S. Rafini and R. Chesnaux (2018) was applied to the test-pumping data of 14 confined and unconfined Nardouw Aquifer boreholes in the Steenbras area, Cape Town, which has been under exploratory investigation since the early 2000’s. The Steenbras wellfield was developed following the major 2017-2018 Western Cape drought. The NE-SW trending open folds and dextral strike-slip Steenbras-Brandvlei Megafault Zone (with crosscutting faults and dykes) make the aquifer hydrogeologically complex. It is due to these complexities that the sequential flow regime analysis was undertaken to enhance the current conceptual understanding.

The analyses reveal domains of flow models which include open vertical fracture, T-shaped channel, double(triple) porosity model, and leaky/recharge boundary amongst others. Poor data quality and noise issues are also highlighted. The outcomes of the sequential flow regime analysis allow for identification of applicable flow models for type curve fitting to avoid erroneous aquifer parameter estimations; improvement of the hydrogeological understanding of the aquifer; enhancements of the current conceptual model in order to inform on subsequent numerical modelling, groundwater resource management and ecological protection.

Abstract

Imrie, S.

Groundwater in South Africa has great potential to supplement our country’s water demands. Currently, studies show that less than 10% by volume of the Average Groundwater Exploitation Potential is abstracted on an annual basis. The 2017 drought has aided in creating awareness of the importance of this resource towards building water resilience. If managed correctly, groundwater is commonly viewed as a sustainable source. Oftentimes, the ‘sustainability’ of a groundwater resource is an ‘open-ended’ definition based on the hydrogeologist’s interpretation of aquifer pumping test data alone. This approach often discounts the cumulative impact of environmental factors (including drought and climate change) and other users on groundwater. The use of numerical groundwater models to support and inform the conceptual models provides the mechanism to bridge this gap.

This paper discusses various approaches and examples of where numerical modelling plays a key role in supporting groundwater usage in a sustainable and informed manner. In particular, this includes:

•Inclusion of impact from other anthropogenic activities and groundwater users, with model scenarios that show the potential impact of each on the other, as well as the combined result to groundwater (levels and water quality)

•Consideration of extreme climatic events (e.g. 1 in 100-year drought and/or flood), including the use of uncertainty analysis and consideration of dynamic groundwater management, such as the possible varying of sustainable pumping rates to suit the prevailing conditions

•Identification of groundwater receptors and appropriate assessment of potential impacts to those receptors from groundwater usage, including “target-audience” thinking in the post-processing and reporting of numerical model results, so as to convey clear messages to the interested and effected parties and stakeholders

•Use of multiple methods and technologies to calculate and model surface water / groundwater interaction and recharge, including uncertainty analysis, and intelligent challenging of traditional methods of estimating groundwater recharge

Abstract

Vermaak, N; Fourie, F; Awodwa, A; Metcalf, D; Pedersen, PG; Linneberg, MS; Madsen, T

The Strategic Water Sector Cooperation (SSC) between Denmark and South Africa is a long-term bilateral cooperation, which amongst others are contributing to the South African water sector by demonstrating and testing different Danish groundwater mapping methodologies in South Africa in order to add long term value to the South African work on optimizing the utilization of groundwater and to increase the resilience against drought. One key aspect is to develop a South African groundwater mapping methodology, based on the detailed Danish methodology and South African specialized knowledge of the South African hydrogeology. In this case, the SSC has contributed to the work done by Umgeni Water in The District Municipality of uThukela in the KwaZulu-Natal (KZN) province of South Africa. The methodology that has been used is integrated modelling using 3-geological models built in GeoScene3D and groundwater modelling, which was based on existing data from Umgeni Water and Department of Water and Sanitation (DWS). Based on the outcome of the 3-D geological voxel model both known aquifers where the boundary has been adjusted, as well as new aquifers has been outlined. Good places for drilling production boreholes have been identified, followed by groundwater modelling of sustainable abstraction rates from existing and new potential well fields. Finally, recommendations were made for new data collection and how to modify the Danish mapping approach for use in South Africa, taking the differences in geology and water management into consideration. The Danish methodology for groundwater mapping is adaptable to South African conditions but it requires Danish and South African experts works closely together. The project has also shown that integrated 3-D geological modeling and hydrological modelling can contribute to a sustainable development of groundwater in South Africa, as well as the Danish methodology for modelling and monitoring sustainable abstraction rates.4

Abstract

The argument in this paper is that improved understanding of science-policy integration, where physical bases of natural science is combined with practice in managing water resource challenges, becomes critical in translating scientific knowledge into effective and sustainability solutions linked to groundwater resource protection. Such hypothesis should be attested at locally relevant scale where water resources reside and where water utilization takes place. This paper provides a practical case-study of how science-policy integration can directly impacts groundwater resource protection practice from a local, and national perspective using strategies of groundwater resources directed measures.

A combination of literature surveys, and desktop record review methods were used for the purpose of data collection from published literature and publicly accessible national databases of the Department of Water and Sanitation (DWS). Collected data were analysed using document analysis, descriptive statistics, and case study analysis methods. Based on the analysis, three types of science-policy nexus theoretical models exist in practice, namely, 1) science-policy integration, 2) policy-science integration, and 3) mixed integration. From a national perspective, the analysis showed that South Africa is able to practically apply science-policy nexus in policy implementation practice for water resources protection, and that such practice depicts a mixed integration model of the nexus. Case study analysis of the Schoonspruit-Koekemoerspruit River Catchment provided insight on how localized operationalization of groundwater resource directed measures facilitates sustained groundwater resources protection for water availability and sustainable utilization. This study provides an exemplary for collaborations between researchers and/or scientists and policy makers to ensure that science research is answering policy-relevant questions and that results from scientific work are readily available for policy implementation. In addition, there is adequate evidence to indicate that science-policy nexus can be designed and prioritized to support sustainable development agenda on groundwater resilience, and visibility at various levels.

Abstract

This paper describes the calibration and testing processes of three methods of measuring hydraulic conductivity (slug test, mini disk infiltrometer and particle size distribution (sieves)) across varying scales (field and lab). The methods used in the field are the slug test and sieves which were used in four different wells of the Rietvlei wetland in Cape town and the mini disk infiltrometer was used in a grid developed in one of the Nelson Mandela University Reserve salt pans. The mini disk infiltrometer and the slug test are used to determine the saturated hydraulic conductivity (Ks) of altered or unaltered soil samples under controlled conditions in a laboratory, and that is a key parameter to understand the movement of water through a porous medium. The mini disk infiltrometer requires a small volume of water and has a compact size which makes it convenient for laboratory soil specimens, especially when studying vertical infiltration. Infiltration shows a dependence on the compaction and saturation of soil while hydraulic conductivity increases with depth in a simulated aquifer.

Abstract

Pope Gregory defined the seven deadly sins in order to guide the Catholic Church in the 6th century. The past 20 odd years in the industry has shown that there are several mistakes that are repeatedly made by numerical modelers. Although we all acknowledge that any numerical model is a non-unique solution, and that there exists and infinite number of solutions, there are several sins that will prevent the model from giving an accurate representation. This paper will provide the most common mistakes made in a format that is accessible to numerical modelers as well as other practitioners. Issues covered will include boundary conditions, model complexity and recharge.

Abstract

Kanyerere, T

Groundwater contribution towards improved food security and human health depend on the level of contaminants in the groundwater resource. In rural areas, many people use groundwater for drinking and irrigation purposes without treatment and have no knowledge of contaminants levels in such waters. The reason for such lack of treatment and knowledge is due to the parachute type of research which emphasizes on scientific knowledge and records only and do not develop skills and outputs on groundwater quality for improved human health and food security in communities. This study argued that parachute research type exposes groundwater users to health hazards and threaten food security of communities. Concentration levels of contaminants were measured to ascertain suitability of groundwater for drinking and irrigation use. 124 groundwater quality samples from 12 boreholes and 2 springs with physiochemical data from 1995 to 2017 were assessed. This study found high concentration levels of contaminants such F-, NO3-, Cl- and TDS in certain parts of the studied area when compared to international and national water quality standards. In general, groundwater was deemed suitable for drinking purposes in most part of the studied area. Combined calculated values of SAR, Na%, MH, PI, RSC and TDS determined that groundwater is suitable for irrigation purposes. The discussion in this paper showed that scientific knowledge generated on groundwater quality is not aimed at developing skills and outputs for improved human health and food security but rather for scientific publication and record keeping leaving communities where such knowledge has been taken devoid of knowledge and skills about the groundwater quality. In this study, it was recommended that skills and outputs on groundwater quality should be developed and shared with groundwater users through various initiatives as it will enhance the achievement of SDG’s.

Abstract

Saldanha Bay is partially dependent on groundwater as part of their bulk water supply, as surface water resources in the area are extremely limited and fully allocated. Due to this, there is lots of pressure on the groundwater resources by industrial development and residential growth. Despite studies being conducted on these aquifer systems since 1976, they are still poorly understood especially with regards to their recharge and discharge processes. This study aimed at providing better insight and understanding on the natural groundwater recharge and discharge processes in order to assist in the better management of groundwater resources in Saldanha Bay. Recharge investigations included a Time Domain Electromagnetic airborne geophysical survey, the assessment of groundwater levels, infiltration tests, hydrochemical analyses as well as stable and radioactive isotope analyses. These methods allowed for the delineation of the geological layers and extent, determination different water quality spatially across the aquifer, determination of flow paths through the saturated and unsaturated zones, identification of inter-aquifer flow as well as different recharge processes in the area. The results of this study showed that is highly likely that the Saldanha Bay Aquifers are mainly recharged via deep flow paths from the Aurora Mountain Range and Moorreesburg region. Investigations also showed that it is unlikely that the Aquifer Systems are recharged by local rainfall due to thick unsaturated sands and low annual rainfall, except for runoff at the foot of granite hills through focused recharge processes. The Berg River, Langebaan Lagoon and the Atlantic Ocean were identified as being the main discharge zones for the area. It is recommended that further hydrogeological investigations are conducted in the Moorreesburg region in order to get a fuller picture of the regional groundwater recharge processes and flow to Saldanha Bay.

Abstract

Imrie, S

“Monitoring rounds”, “logging”, “quality checking”, “data collation” and “reporting” are terms all too familiar to groundwater field specialists. Yet, a full understanding of the true worth and the full lifecycle of data is often not appreciated. Field data form critical “ingredients” to groundwater conceptual and numerical models. Unfortunately, if can often be the case that the quality of field data is only tested once it has been processed and input to the model, which may be many years following collection. This case study highlights the time-consuming, budget-consuming and groundwater management difficulties that can arise from poor quality data, such as poor monitoring network designs, inconsistent data capturing, erroneous logging, poor borehole construction and gaps in data. The study area is an industrial complex with a highly contaminated groundwater system. The site is located on fractured sandstone and tillite, with major cross-cutting fault zones. The objectives of the numerical groundwater model are to assess the efficacy of the current remediation measures, likelihood of seepage due to artificial (contaminated) recharge, and prediction of the future potential contaminant plume footprint. Setbacks were encountered in the early stages of building the model. Although the site has a monitoring network of over 300 boreholes, less than 50 of these boreholes could be considered for model calibration, with those remaining including data with high uncertainty and multiple assumptions. The poor data resulted in lower calibration statistics which translated into lower model confidence levels. The modelling exercise proved useful for informing updates to the monitoring programme and identification of critical gaps where future drilling and testing will be focussed. However, the lack of reliable monitoring data led to a model of low confidence and high uncertainty, subsequently impacting the level of groundwater management, and thus impeding remediation efforts and future protection of our precious groundwater resource.

Abstract

On a global scale, groundwater is seen as an essential resource for freshwater used in both socioeconomic and environmental systems; therefore forming a critical buffer when droughts occur. Due to its location in a dry and semi-arid part of South Africa, Beaufort West relies on groundwater as a crucial source of fresh water. Thus, proper management of their groundwater resources is vital to ensure its protection and preservation for future generations. Although fluctuations have occurred over the years, groundwater levels in the area have progressively dropped due to abstraction in well fields. However, in 2011, an episodic flooding event resulted in extreme groundwater recharge with groundwater levels North-East of Beaufort West recovering tremendously. This led to the overall groundwater levels of Beaufort West becoming relatively higher. The general flow of groundwater in the town, which is from the Nuweveld Mountains in the North to the town dyke in the South, is dictated by dykes occurring in the area.

This study aims to expand on the understanding of episodic groundwater recharge around extreme climatic conditions of high precipitation events in a semi-arid region. This was done by analyzing historical data for the Gamka Dam spanning over 30 years; estimating recharge in the Beaufort West well fields caused by the flooding event; as well as studying the hydrogeological setting and lineaments in the area. It was found that sufficiently elevated recharge around the observed flooding event only occurred in areas where the correct climatic (precipitation, evaporation), geological and geographical conditions were met. Ultimately, gaining a better understanding of these recharge events should aid in the assessment of the groundwater development potential of Beaufort West.

Abstract

A Case study done in the heterogeneous Tygerberg shales underlying the northern section of the Cape flats aquifer. A well field consisting of five boreholes within a 1.6 Ha area was test pumped to determine aquifer parameters and sustainable yields for the well field. The wellfield located in a highly heterogeneous geological setting, proved to be an interesting scenario for wellfield analysis and determination of sustainable borehole yields. A variety of analytical methods were used to analyse the test pumping data including the Advance FC analysis and the Cooper Jacob Wellfield analysis, both producing different results. Through the test pumping data analysis, the wellfield could be divided into sub wellfield clusters based on drawdown interconnectivity during testing. Sub wellfield clusters were confirmed using groundwater chemistry, providing higher confidence in limiting uncertainty in long term cluster connectivity.

Abstract

Tamilo, T; Webb, S.J.

The Vredefort Dome 120 km southwest of Johannesburg is a meteorite impact crater that formed at approximately 2 Ga. The region hosts farmland, and the town of Parys is situated in the northwestern part of the dome. The dome is the location of the annual Wits University/AfricaArray Geophysical Field School. The aim of the field school is to teach geoscience students several geophysical techniques while conducting scientific research in the area.

A geophysical survey during the 2019 field school over an open field just outside of Parys revealed a buried fracture that hosts ground water. A 150 m long magnetic profile over the fractures shows a magnetic low (approximately 500 nT) that correlates with a low resistivity region on the inverted electrical resistivity data (dipole-dipole method). Euler deconvolution depth estimates and magnetic modelling estimate an overburden thickness of around 10 m and a similar fracture thickness. The magnetic low of the fracture is due to weathering and removal of any magnetic material in the granites in the region.

Two existing boreholes that lie 618m due south and at a 10 m lower elevation have water levels of around 6.4 m. Both boreholes lie near a riverbed and vegetation, and appear to lie along an extension to the fracture. This fractures detected using geophysical methods seems to form part of a larger fracture system within the Vredefort Dome, that is linked to the formation of the dome. These fractures provide a vital source of water for the local farming community.

Abstract

South Africa is currently considering unconventional oil and gas (UOG) extraction as an additional energy resource to improve the country’s energy security. In a water-scarce country such as South Africa, which has experienced more frequent and more intense climate extremes due to climate change, the water-related impacts of UOG extraction is a concern. The South African government is however determined to proceed with UOG development as soon as regulations to protect natural resources have been drafted. The country’s intricate governance system can however not enforce such regulations effectively, as it experiences repeated inter-departmental miscommunication, fails to collaborate with stakeholders effectively, and lacks human and financial resources for enforcement. A lack of transparency in fracking operations and between stakeholders is another challenge for enforcing UOG extraction regulations. Poor regulatory enforcement presents an obstacle for the protection of groundwater resources if fracking were to commence.

This study, therefore, focuses on addressing the enforcement challenges of UOG regulations aimed at protecting groundwater resources. It proposes the use of civic informatics on a technology platform, specifically via a mobile application (FrackSA), to assist with on-the-ground enforcement of these regulations. While many UOG mobile applications are used internationally, they mostly focus only on UOG related aspects (news, information, pricing, geological information, and fracking well information). FrackSA uses civic informatics to address both groundwater monitoring and management as well as UOG extraction operations in a single platform, to enable regulators to protect groundwater resources more effectively during UOG extraction, while simultaneously enhancing transparency in the UOG industry.

Abstract

Xu,Y; Kanyerere, T

Currently, there is little understanding of the nature and extent of groundwater-dependent ecosystems (GDEs) at catchment or aquifer scale globally, making it difficult to protect and incorporate them in integrated groundwater resources management plans. Groundwater levels fluctuations could alter groundwater accessibility patterns to GDEs, potentially resulting in groundwater quality deterioration too. The understanding of groundwater-ecosystems interactions is generally poor since most historical research has been skewed to surface water-related ecosystems. There exists a research need towards the understanding of groundwater processes that control the maintenance of GDEs at local level, through conceptual modelling. A study has been initiated in the Tuli-Karoo transboundary aquifer (TBA) – shared between Botswana, South Africa and Zimbabwe in the Limpopo Basin - to address this scientific knowledge gap because of possible cross-border negative impacts on respective groundwater resources attributed to interlinked aquifer systems’ nature between riparian countries. Ecosystems’ protective measures here are country-specific, disregarding neighbouring countries activities and based on low-flow requirements through baseflow, largely excluding terrestrial GDEs. Groundwater resource co-management agreements are also non-existent among sharing countries, warranting a collaborative approach to research. Potential GDEs in this TBA include riparian vegetation along the main stem Limpopo River and its major tributaries (Shashe and Mzingwane); terrestrial vegetation of Mopane bioregion of the Savanna Biome; and seasonal and permanent wetlands, pans and springs. Isotope analysis have ascertained dependency partly in one country and therefore extended to cover the TBA. Tuli-Karoo is characterized by shallow unconfined alluvium aquifer systems of the Karoo sandstones and basalts of shallow to medium depths. A conceptual model developed will demonstrate interactions between groundwater, surface water and ecosystems; allowing for assessments of impacts on GDEs to ensure resilience. Although TBA focused, the findings will be applicable to similar national aquifers in terms of lithology, geology, geohydrology and ecosystems types.

Abstract

In response to the drought which started in 2017, the Western Cape Government set about securing water supplies to key facilities across the province, including the Knysna Hospital. Drilling and testing of two boreholes at the facility indicated it to be viable to establish a groundwater supply of 66 KL/d from the underlying Table Mountain Group Aquifer. Iron concentrations were low and the initial water chemistry analyses pointed to concentrations below the SANS 241 aesthetic limit. However, further to the implementation and operationalization of the groundwater supply schemes, significantly elevated iron concentrations of up to 6 mg/L were observed. This contributed to the difficulty in getting the Knysna Hospital’s alternative water supply operational. Best practice requires that as little oxygen as possible gets introduced into the groundwater system; and this can be achieved by pumping the borehole continuously at the lowest rate possible. It is not always possible to do this under operational conditions when the water demand varies. To counter the iron problem in the potable water and to prevent or retard an increase in the iron concentration in the abstracted groundwater, iron treatment was added to the treatment train and a dual pumping regime was adopted. Using the variable speed drives that had been installed with the pumps, two pumping rates were adopted – with the rate controlled by the level in the treated water storage tank. When the tank level is low, the borehole is pumped at a rate of 0.9 L/s. However, when the level fills to 70%, the pumping rate is reduced to 0.35 L/s and continues pumping even if the tank is full. The modified system was brought into operation in August 2019 and has continued to meet the water demand of the hospital.

Abstract

The South African government is actively pursuing unconventional oil and gas (UOG) extraction to augment energy supplies in South Africa, but it risks damaging water quality. The Department of Water Resources and Sanitation recently released regulations to protect water resources during UOG extraction for public comment.

Regulations are one of the main tools that can be used to minimise UOG extraction impacts on water resources and enhance an environmentally sustainable economy. This tool must however be used correctly. Many states in the US and Canada have extensive regulations to protect water resources during UOG extraction but they are often ineffective, either because they were poorly drafted or because they are not properly enforced. Since South Africa is a water-scarce, groundwater-dependent country, we asked South African groundwater experts what regulations are needed and how to enforce them. Focusing on the interface between science and public policy, we critically analyse and recommend the most appropriate fracking regulations to protect groundwater resources. Additionally, we consider the enforcement mechanisms required to ensure the proper regulation of fracking.

The results from this study can assist the government in ensuring that regulations that they are currently drafting and finalising, are appropriate to protect groundwater resources, and that they would be able to enforce them effectively.

Abstract

Unconventional gas development in South Africa consists of but not limited to shale gas extraction commonly known as “fracking”, Underground Coal Gasification (UCG), Coalbed Methane (CBM), to extract natural gas from geological formations is a new, rapidly expanding industry in the world and in South Africa. However, there are general concerns that these operations could have large negative impacts such as groundwater contamination. This article maps out the development of regulations for unconventional gas operations, according to Section 26(1) (9) of the National Water Act, 1998 (NWA) and read together with Government Notice 999 (Government Gazette No.: 39299, of 16 October 2015). The objectives of the published DWS regulations include, augmenting the NWA and its existing regulatory framework, providing for a step-wise process for authorising all unconventional gas operations to allow for informed decision making, to set prohibitions and restrictions for protection of water resources, and requirements for disclosure on chemicals to be used during the operations. The objectives of DWS regulations are aligned to the NEMA, and MPRDA requirements for exploration and production of these operations, and are further supplemented by the minimum information requirements for water use licensing application and as part of integrated water resource management. In conclusion, DWS proposes thoroughly consulted and fit-for-purpose regulatory framework that seeks to propose water use law and requirements for unconventional gas operations based on the National Water Act (1998). With these proposed regulations DWS ensures that it plays its critical role in the development of a regulatory framework for unconventional gas operations.

Abstract

Iron biofouling in boreholes drilled into the Table Mountain Group has been documented, with groundwater abstracted for the Klein Karoo Rural Water Supply Scheme and irrigation in the Koo Valley hampered by clogged boreholes, pumps and pipes. A similar phenomenon has been experienced at some boreholes drilled and operationalised by the Western Cape Government in response to the onset of the crippling drought in 2017. Monitoring of groundwater levels and pumping rates has yielded data showing a gradual decrease in groundwater level as the pumping rate reduced in response to the pump becoming biofouled, with possibly the same negative impact on the borehole itself. Methods are available to rehabilitate the boreholes (mechanical scrubbing, chemical treatment and jetting), but it seems difficult to destroy the bacteria and re-occurrence of biofouling appears inevitable. In the absence of better solutions, current experience suggests an annual borehole maintenance and rehabilitation budget of R 100 000 per borehole is required. This paper presents three case studies of boreholes drilled into the Malmesbury Group and Table Mountain Group and explores possible triggers of biofouling and its manifestation in the monitoring data.

Abstract

The EKK-TBA is significant in anchoring Gross Domestic Product growth and development in both countries is heavily reliant on groundwater. Recently a transboundary diagnostic analysis (TDA) and a strategic action plan (SAP) for the EKK-TBA was completed. The analysis resulted in a three-fold expansion of the EKK-TBA boundary. The new EKK-TBA boundary overlaps part of the Okavango and Zambezi River Basins and now also includes major wellfields in Botswana and Zimbabwe (Nyamandlovu and Epping Forest) as well as the Makgadikgadi Pans which act as the surface water and groundwater discharge zone.

An analysis of institutional arrangements was carried out to enhance effective and efficient management of the EKK-TBA. Noting the complexity of the EKK-TBA. the initial institutional response could potentially be the development of a bilateral agreement between Botswana and Zimbabwe for cooperation and coordination to support the management of the TBA. This agreement would seek to establish a Joint Permanent Technical Committee (JPTC) that would also co-opt in members from the two shared watercourse commissions. Such a JPTC would enable improved coordination across the varying transboundary dimensions and would align with the precepts of the Revised Protocol on Shared Watercourses. This would include such principles including sustainable utilization, equitable and reasonable utilisation and participation, prevention, and co-operation, as well as aspects of data and information exchange and prior notification.

Abstract

The western part of South Africa is experiencing a prolonged drought. In many cases, the effects of drought have been noticed since 2011, putting the western part of the Northern Cape under severe stress to provide water to the communities. In the past 10 years, rainfall has also decreased, and in most cases, the catchments did not receive rain to help with the recharge of groundwater. Various lessons were learned from the change in the climate and environment. But a lot can be done to minimise the impact of these changes on the water supply to communities. This paper addresses what we are noticing in the environment that impacts the way we think groundwater behaves. The changes include the change in rainfall: patterns, lines, and type of rainfall. The collapsing of boreholes with water strikes closing when being over-pumped occurs more often in the last 3 years. Pump test recommendation changes with water level change – deployment output. A combination of the factors mentioned puts more stress on groundwater resources, and a mindset change is needed to give assurance of future supply to the communities.

Abstract

Pietersen, KC; Musekiwa, C; Chevallier, L

Groundwater plays an integral role in the fresh water supply for both rural and urban populations of the Southern African Development Community (SADC). However, the sustainable use of groundwater is negatively impacted by persistent and recurring droughts in the region. Understanding the characteristics of drought and the risk to groundwater, will contribute towards better planning and management of water supply in the region. In this study, a novel approach is demonstrated, that uses data from the Gravity Recovery and Climate Experiment (GRACE) to map and characterise the risk to groundwater storage from drought, across the SADC region. In addition, this study also demonstrates and evaluates the inclusion of this new feature, groundwater storage sensitivity, as an additional input into a revised Groundwater Drought Risk Mapping and Management System (GRiMMS), in-order to update the SADC groundwater drought risk map developed in 2013. Specifically, the GRACE Groundwater Drought Index is calculated and used to characterise the total length, average intensity and trend, in groundwater storage drought conditions. These three factors are then combined into a new layer, groundwater storage sensitivity, and validated through comparison with groundwater level data. The groundwater storage sensitivity, which represents the risk to groundwater drought associated with groundwater storage deviations, is then included at the modular level in the GRiMMS algorithm. The inclusion of the GRACE derived groundwater storage sensitivity further highlights regions of known hydrological drought, emphasising the impact groundwater storage plays in mitigating drought risk. In conclusion, GRACE provides a unique tool that can be used to map the impact of drought across the SADC region.

Abstract

The Rietvlei Wetland, located in the Western Cape of South Africa is well recognised for harbouring numerous bird species, and is ranked the 6th most important coastal wetland in the South-western Cape. Researchers perceive that the wetland could be threatened by the growing drought hazards, and increased water demand in Cape Town. The extent of the effects is however unquantified and unknown. This therefore calls for extensive research and novel approaches to understand and quantify wetland hydrodynamics, to shape wetland management frameworks. Conducting thorough field work to understand wetland processes, and the use of numerical models for future prediction of black swan events are well recommended. Thus, the study aims to develop a conceptual hydrogeological model for Rietvlei Wetland, and to develop a numerical model to quantify the wetland’s groundwater budget. To achieve this, historical data was gathered, and field work which included groundwater monitoring, collection of sediment profiles and water quality analysis was undertaken. Preliminary results show that the wetland is underlain by an unconsolidated aquifer, largely overlain by different types of sand, mixed with clay and silt, and precipitation is the main source of groundwater into the wetland. A distinct relationship is seen between elevation, soil type and soil structure, such that during the peak rainy season, groundwater tends to be above the ground surface in the low-lying salt pans, dominated by clayey layers on their surfaces. These surfaces tend to crack during the dry season, facilitating preferential flow pathways at onset of rain. This information, and other historical data will be used to develop a numerical model using MODFLOW-NWT and ModelMuse. The numerical model is perceived to be the basis of groundwater modeling using open-source software for Rietvlei Wetland, and may be used for predicting the impacts of drought and increased groundwater abstraction on the wetland’s hydrodynamics.

Abstract

Clogging of existing boreholes due to natural well ageing is the most common cause of decreasing yield worldwide, also in South Africa. Maintenance plans based on systematic monitoring are required including inspection, service and rehabilitation to lengthen production times and to slow down ageing processes. Therefore a prerequisite of economical well operation is to apply the most efficient measures to secure their production capacity at the lowest possible cost. Rehabilitations by mechanical, hydraulic or impulse methods do often not lead to acceptable yield increases. Acids of all kinds have been applied to remove iron(III) and manganese(III,IV) clogging, although pH values of < 1.0 are required before any significant dissolution takes place. This treatment does not only affect substances in adjacent geology but also well construction materials and technical equipment. Alternatives for acidization were researched and developed at the Technical University of Aachen (RWTH) in 1990’s by Prof. Dr. Treskatis and Dr. Houben. Since then iron(III) and manganese(III,IV) are removed by pH-neutral reductants with 50 times greater dissolving capacity than hydrochloric acid at pH 1.0 in identical molar concentration. The closed-circuit injection technique was proved to be the only method to transfer chemical agents as far as the borehole wall in a study by Dresdner Groundwater Center on behalf of German Gas and Water Association in 2003. Low pressure circulation based on large volume flow is accomplished by means of state-of-the-art gravel washers. The application of pH-neutral dissolvers by closed-circuit injection has proved its effectiveness not only in Germany, but also in Switzerland, Austria, Netherlands, Spain, UK, UAE and Peru. Our case study documents its successful introduction in Finland 2020. Until then stand-by acidization had been the only means of battling well ageing. Research funds enabled rehabilitations in different parts of the country resulting in unexpected high yield increases.

Abstract

Groundwater in the Steenkoppies compartment of the Gauteng and North West dolomite aquifer is extensively used for agricultural practices that can potentially lead to groundwater storage depletion, threatening groundwater sustainability in the compartment. Groundwater levels represent the response of an aquifer to changes in storage, recharge, discharge, and hydrological stresses. Therefore, groundwater levels are useful for identifying limits and unacceptable impacts on an aquifer and using this information to implement sustainable groundwater management decisions. The use of machine learning techniques for groundwater modelling is relatively novel in South Africa. Conventionally, numerical techniques are used for groundwater modelling. Unlike traditional numerical models, machine learning models are data-driven and learn the behaviour of the aquifer system from measured values without needing an understanding of the internal structure and physical processes of an aquifer. In this study, Neural Network Autoregression (NNAR) was applied to obtain groundwater level predictions in the Steenkoppies compartment of the Gauteng and North West Dolomite Aquifer in South Africa. Multiple variables (rainfall, temperature, groundwater usage and spring discharge) were chosen as input parameters to facilitate groundwater level predictions. The importance of each of these inputs to aid the prediction of groundwater levels was assessed using the mutual information index (MI). The NNAR model was further used to predict groundwater levels under scenarios of change (increase or decrease in recharge and abstraction). The results showed that the NNAR could predict groundwater levels in 18 boreholes across the Steenkoppies aquifer and make predictions for scenarios of change. Overall, the NNAR performed well in predicting and simulating groundwater levels in the Steenkoppies aquifer. The transferability of the NNAR to model groundwater levels in different aquifer systems or groundwater levels at different temporal resolutions requires further investigation to confirm the robustness of the NNAR to predict groundwater levels.

Abstract

Delineation of groundwater resources of a given area is importance for management of groundwater resources. This is often done manually by combining various geo-scientific datasets in Geographic Information System (GIS) environment, which is time consuming and is prone to subjective bias and also suffers from other human induced uncertainties and difficult to cope with increasing volumes of data. The explosive growth of data leading to ‘rich data, but poor knowledge’ dilemma yet we have challenges to be solved. Artificial Intelligence (AI) has been successfully used in fields such as robotics, process automation in engineering, industry, medical and domestic households. Artificial Intelligence tool have the able to bridge this gap by augmenting the human capabilities in understand science far better than before. Incorporating AI into groundwater potential mapping greatly improves computation speed, reduces the subjectivity nature of manual mapping and lessens human induced uncertainties. The software platform includes artificial intelligence algorithms such as artificial neural networks, support vector machines, random forest, index-overlay and fuzzy logic.

The software platform is semi-automatic to allow the user to control some of the processes yet automating the other processes. The possible inputs to the AI for training includes; aquifer types, topographic slope, lineament and drainage density, land-use / land-cover (LULC), distance to lineaments, distance to streams and soil clay content. Yield values of selected boreholes are used as training outputs.

The software was tested using data gathered for the area surrounding Maluti-a-Phong in the Free State Province of South Africa. The area was chosen because of recent drought which has hit the country and local municipalities are searching for groundwater resources for building wellfields to supply local communities with fresh water. The groundwater potential map of the area was validated using borehole yield values of boreholes which were not used for modelling. Good correlation values as high as 0.85 was obtained between model values and borehole yield. The final groundwater potential map was divided into four zones; very good, good, poor and very poor. Based on this study, it is concluded that the high groundwater potential zones can be target areas for further hydrogeological studies.

The usage of the software proved to be efficient in minimising the time, labour and money needed to map large areas. The results of which can be used by local authorities and water policy makers as a preliminary reference to narrowed down zones to which local scale groundwater exploration can be done. AI should be viewed as augmented intelligence as it aid the decision-making process rather than replacing it. Data-driven approaches should also be knowledge-guided for efficient results.