Conference Abstracts

All Abstracts were presented at the Groundwater Conferences

Displaying 51 - 100 of 795 results
Title Presenter Name Presenter Surname Area Conference year Sort ascending Keywords

Abstract

Micro-electro-mechanical system (MEMs) technologies coupled with Python data analysis can provide in-situ, multiple-point monitoring of pore pressure at discrete and local scales for engineering projects. MEMs sensors are tiny, robust, inexpensive, and can provide wireless sensing measurements in many electrical and geomechanical engineering applications. We demonstrate the development of MEMs pressure sensors for pore pressure monitoring in open boreholes and grouted in piezometers. MEMs sensors with a 60 m hydraulic head range and centimetre vertical resolution were subject to stability and drawdown tests in open boreholes and in various sand and grouts (permeability 10-8 to 10-2 m/s). The resulting accuracy and precision of the MEMs sensors, with optimal calibration models, were similar to conventional pore pressure sensors. We also demonstrate a framework for estimating in-situ hydrogeological properties for analysis from vented pore pressure sensors. This framework method included Python code analysis of hourly pore pressure data at the millimetre vertical resolution, which was combined with barometric data and modelled earth tides for each borehole. Results for pore pressure analysis in confined boreholes (>50 m depth) included specific storage, horizontal hydraulic conductivity and geomechanical properties. Future improvements in the vertical resolution of MEMs pore pressure sensors and combined these two technologies will enable groundwater monitoring at multiple scales. This could include the deployment of numerous MEMs, at sub-meter discrete scale in boreholes and evaluating local site scale variations in pore pressure responses to recharge, groundwater pumping and excavations in complex sub-surface geological conditions.

Abstract

Underground coal gasification (UCG) is a high-temperature mining method that gasifies coal in situ to produce a synthetic gas that can be used as feedstock for industrial purposes. Coal conversion leads to mineral transformation in the gasifier, which ultimately interacts with the rebounding groundwater post-gasification. This poses a groundwater contamination risk, the biggest environmental risk from a UCG geo reactor. There is currently no model for UCG operators and regulators to assess the total risk of groundwater contamination from UCG operations. This study collates literature on groundwater contamination from UCG operations and presents a workable but comprehensive groundwater risk assessment model for a spent UCG chamber. The model follows the source-pathway-receptor arrangement where groundwater contamination sources are identified as ash, char, roof and floor. All possible pathways are assessed for hydraulic connections with the spent geo-reactor via acceptable geochemical tests, including stable isotopes, hydrochemistry and stratification analysis. Finally, the receptor aquifers (e.g. shallow aquifers) are monitored periodically to determine if contamination has occurred.

Abstract

Aquifer Thermal Energy Storage (ATES) is increasingly utilised to optimise the efficiency of Ground Source Heat Pump (GSHP) systems. However, the criteria for selecting ATES over Unidirectional GSHP is not well-defined. Inappropriate selection of AETS can adversely impact the long-term viability and the GSHP system itself, as well as regional hydraulic and thermal sustainability due to adverse groundwater levels and temperature change. This is a concern in urban aquifers, where GSHP systems are increasingly common. There is a perception that ATES is always the most efficient; however, there is no clear definition of efficiency and how it can be readily assessed at the GSHP design stage. It is proposed and demonstrated herein that GSHP efficiency can be assessed by modelling borehole pumping in lieu of complex Coefficient of Performance calculations for the whole GSHP system. Borehole pumping is a more readily definable modelling outcome for comparing options at an individual site but is also a suitable proxy for comparing efficiency at different sites when given as a flow per unit rate of pumping. Operational efficiencies for ATES versus Unidirectional systems are presented using the pumping rate criteria for modelled scenarios. Here, three model inputs are varied: 1) the balance of heating and cooling, 2) the configuration of a single borehole pair across a hydraulic gradient and 3) the hydraulic gradient itself. These were assessed using coupled groundwater flow and heat transport modelling in Feflow to refine the Goldilocks Zone, the perfect balance, for these variables.

Abstract

With the revision of the European Drinking Water Directive (Directive on the quality of water intended for human consumption 2020/2184) in December 2020, the preparation of Water Safety Plans (WSP) is foreseen according to the guidelines of WHO. Within the EU Interreg Adrion MUHA project, a decision support tool (DST) has been developed to provide a holistic approach to drinking water infrastructure risk analysis. The project mainly addresses four water-related risks: accidental pollution, floods, droughts and earthquakes. The core of the DST is the inventory of hazardous events (causes, their consequences and impacts) for each component of the drinking water supply chain: (1) drinking water source - catchment area, (2) water supply system, and (3) domestic distribution system. For each identified potential hazard, the type of hazard was determined (e.g., biological, chemical, radiological, or physical hazard (including turbidity), inadequate availability of water supplied to customers, safety to personnel, external harm to third parties, including liability). The DST was tested in the partner countries (Italy, Slovenia, Croatia, Serbia, Montenegro and Greece) to verify the resilience of the measures and elaborate the WSP.

In the end, the REWAS-ADRION strategy was elaborated, aiming to increase the resilience of drinking water supplies to floods, droughts, accidental pollution, and earthquake-related failures by improving the water safety planning mechanism based on the concept of inter-agency cooperation to support water utilities, civil protection organizations, and water authorities.

Abstract

Monitoring deep (~100 – 200 m) fresh-saline water interface is a challenge because of the low spatial density of deep boreholes. In this project, Vertical Electrical Soundings measurements were used to evaluate changes in the depth of the interface over various decades. Water quality monitoring is a well-known application of geo-electrical measurements but generally applies to the relatively shallow subsurface. In this case study, the saline groundwater interface is around 120 -200 m deep, and the time interval between the measurements is several tens of years. Several locations showing good-quality existing VES-measurements acquired in the last century were selected to see whether repeat measurements could be performed. The number of locations where a repeat measurement could be performed was limited due to the construction of new neighbourhoods and greenhouse complexes. When interpreting the measurements for the change in the depth of the fresh-salt interface, it is assumed that the transition from fresh to saline groundwater occurs over a small depth range and that the electrical conductivity of the fresh water above this interface has not changed. However, it turned out that the ion concentration of the groundwater in the layers above the fresh-saline interface had increased sharply at almost all locations. This complicated the approach, but still, useful results could be obtained. Based on the measurements, it can be said that the fresh-saline water interface has shifted downwards at 3 locations, and hardly any change has occurred at 5 locations.

Abstract

A conceptual water budget model is required to “make groundwater visible” in the shared transboundary area of Estonia and Latvia, which doesn’t face any significant water management issues. Despite having a water management agreement since 2003, it wasn’t until 2018 that cooperation on groundwater began. In the EU-WATERRES project, the water balance modelling of the ~9,500 km2 transboundary (TB) area with MODFLOW 6 was performed. Based on budget calculations, the area’s average precipitation is 203 m3 /s, with ~50% (102 m3 /s) of it discharging to the sea as surface water. The infiltration share (7%, 14.4 m3/s) is a small fraction of overall precipitation, but as an average, it forms ~14% of surface water flow, with 98% of infiltrated groundwater forming the baseflow. Modelling produced two main conclusions: surface water and groundwater form a joint system in the upper ~150 m cross-section depth, and there is no preferred regional TB flow direction due to flat topography. This makes cross-border flow highly dependent on pumping close to the border area. The results of recent studies provide valuable information on groundwater’s importance in EE-LV TB areas and a basis for simple conceptual models to make groundwater visible to the general audience and decision-makers. These findings are critical for specialists in managing water resources in the region and will inform decisions related to the use and protection of groundwater in transboundary areas.

Abstract

The Transboundary Groundwater Resilience (TGR) Network-of-Networks project brings together researchers from multiple countries to address the challenges of groundwater scarcity and continuing depletion. Improving groundwater resilience through international research collaborations and engaging professionals from hydrology, social science, data science, and related fields is a crucial strategy enabling better decision-making at the transboundary level. As a component of the underlying data infrastructure, the TGR project applies visual analytics and graph-theoretical approaches to explore the international academic network of transboundary groundwater research. This enables the identification of research clusters around specific topic areas within transboundary groundwater research, understanding how the network evolved over the years, and finding partners with matching or complementary research interests. Novel online software for analysing co-authorship networks, built on the online SuAVE (Survey Analysis via Visual Exploration, suave.sdsc.edu) visual analytics platform, will be demonstrated. The application uses OpenAlex, a new open-access bibliographic data source, to extract publications that mention transboundary aquifers or transboundary groundwater and automatically tag them with groundwater-specific keywords and names of studied aquifers. The analytics platform includes a series of data views and maps to help the user view the entire academic landscape of transboundary groundwater research, compute network fragmentation characteristics, focus on individual clusters or authors, view individual researchers’ profiles and publications, and determine their centrality and network role using betweenness, eigenvector centrality, key player fragmentation, and other network measures. This information helps guide the project’s data-driven international networking, making it more comprehensive and efficient.

Abstract

Groundwater is a vital freshwater source, and its role in meeting water demands will become pivotal under future climate change and population growth. However, groundwater supply to meet this demand is at risk as aquifers can be rapidly contaminated, and the cost of aquifer rehabilitation and/or sourcing alternative water supplies can be high. The development of groundwater protection schemes is required to ensure long-term protection of groundwater quality and sustainable groundwater supply. A groundwater protection scheme is a practical and proactive means to maintain groundwater quality and forms an additional methodology for groundwater resource management/protection. There are no legislative guidelines on establishing groundwater protection schemes in water-scarce South Africa, despite groundwater being used extensively. Three groundwater protection schemes were designed and implemented to protect abstraction from a fractured aquifer in an undeveloped natural mountain catchment and two primary aquifers within different urban settings. The approach incorporated protection zone delineation (comprising four zones), aquifer vulnerability mapping/ ranking using the DRASTIC method (with the primary and fractured aquifer systems having varying vulnerabilities), and identification of potentially contaminating activities (which also vary significantly between the urban areas overlying the two primary aquifers, and the generally undeveloped natural mountain catchment fractured aquifer is situated within). Additionally, a protection response was established to determine monitoring frequencies. Practical insights into the design and implementation of these three groundwater protection schemes can serve as a model for implementation in other African aquifer systems.

Abstract

Coastal groundwater is a vulnerable resource, estimated to sustain the water needs of about 40% of the world’s population. The Roussillon aquifer is a regional aquifer near Perpignan (southern France). It covers over 800 km2 of land and is used for irrigation, drinking water, and industrial purposes. The aquifer has experienced significant piezometric lowering in the last decades, weakening the regional resource. An important aspect of modelling the hydrodynamic of this aquifer is the need to integrate data from agriculture and drinking water abstraction, natural and anthropogenic recharge, and account for the aquifer’s complex sedimentary arrangement. An ensemble of groundwater models has been constructed to understand the spatial evolution of the saline/freshwater interface and evaluate the impact of groundwater abstraction.

Three sets of physical parameter modelling approaches were used. The first is based on the direct interpolation of pumping tests. The second uses sequential indicator simulations to represent the geological uncertainty. The third is based on a detailed conceptual geological model and multiple-point statistics to represent the detailed geological structure. These models provide parameter fields that can be input for the transient state hydrodynamic simulations. Overall, the ensemble approach allowed us to understand the Roussillon plain’s hydrological system better and quantify the uncertainty on the possible evolution of the main groundwater fluxes and water resources over the last 20 years. These models can help to inform management decisions and support sustainable water resource development in the region.

Abstract

Groundwater quantity and quality of shallow aquifers have deteriorated in recent years due to rapid development that has created an increased demand for drinking water, which is increasingly being fulfilled by groundwater abstraction. The study evaluates the hydrogeological framework of the Quaternary aquifer of the Kabul basin, Afghanistan, and the impact of urbanization on the groundwater resources around the Kabul city plain. Time series of Landsat satellite LCLU images indicate that the urban area increased by 40% between 2000 and 2020, while the agricultural area decreased by 32% and bare land decreased from about 67% to 52% during this period. The assumed groundwater overdraft 2019 was 301.4×103 m3 /day, while the recharge was 153.4×103 m3 /day, meaning a negative balance of about 54 million cubic meters (MCM) this year. Due to the long-term decline of water levels at 80 90 cm/year, and locally (Khairkhana, Dasht-e-Barchi) 30-50m during 2005-2019, a considerable groundwater drawdown is shown. Groundwater quality, on the other hand, reveals that chloride concentrations and salinity increased throughout the aquifer between 2005 and 2020. The nitrate concentration decreased in most Kabul Plain places over the period. In conclusion, the quantity and quality situation of urban groundwater in Kabul is worrying; urgent scientific and sustainable solutions and measures should be considered to manage this situation.

Abstract

Case studies illustrate a conceptual framework for shallow groundwater flow systems’ temporal and spatial variability with groundwater-surface water interactions in the Boreal Plains of Canada. The framework was developed using a twenty-year hydrometric dataset (e.g., climatological and streamflow data, hydraulic heads, vertical hydraulic head gradients, geochemical and isotopic signatures). The region is characterized by low-relief glacial landscapes, with a mosaic of forestlands and peatlands, and a subhumid climate, resulting in spatially heterogeneous storage and transmission properties, variable recharge and evapotranspiration potentials, and highly complex patterns of water movement. Two primary spatiotemporal scales were examined to create a holistic, variable-scale conceptual model of groundwater movement: the large scale (e.g., glacial landforms, regional topography, decadal climate cycles) and the small scale (e.g., individual landcover, local hummocks, annual moisture deficits). Water table behaviour, evapotranspiration rates, and runoff were controlled by a hierarchy of interactions between hydrological processes occurring at different spatiotemporal scales; however, the specific order of controls depends on the hydrogeological setting. The case studies, supported by empirical and numerical modelling, demonstrate that smaller-scale heterogeneities in geology and recharge can dominate over topographic controls, particularly in areas with high conductivity or hummocky terrain, where the climate, geology, and topographic relief are similar. Many hydrogeological studies rely on surface topography as a first‐order control; however, with field observations and modelling, this conceptual framework demonstrates the need to consider the potential dominance of subsurface characteristics and processes, plus climate, especially in landscapes with low recharge and low relief.

Abstract

The intermediate vadose zone underlies the plant root zone and comprises soil and rock. Different soils have different hydraulic and mechanical properties, and the vertical and spatial distributions are variable at a small scale. In South Africa, except for the Cenozoic and Quaternary deserts and coastal deposits, rock forms most of the vadose zone, and the rock fractures exacerbate the complexity. The vadose zone is observed at a small scale and dictates what happens in large scale, as adhesion to mineral surfaces happens first, and cohesion between water molecules is next. The original consideration of the intermediate vadose zone was a black box approach measuring what goes in from the surface and what goes out as groundwater recharge, not accounting for the movement of the vast majority of the freshwater supplied through precipitation. That doesn’t address the preferential flow, velocity, and pore water changes in the medium. Soil science addresses the soil or plant root zone very well. This zone governs the vertical movement of water and controls the ecosystems and biodiversity. However, all evapotranspiration disappears below this zone, and capillarity and gravity both move water into and through the intermediate vadose zone. Movement is no longer solely vertical and will be affected by soil types, intergranular porosity in soil and rock, changing water content, and secondary fractures with different properties in rock. This presentation will cover concepts and advances in this field, emphasising how and why water moves in the intermediate vadose zone.

Abstract

The 16th Lum Nam Jone reservoir is located in Chachoengsao Province, Thailand. Since 2019, water has become highly acidic with a pH of 2.5-3.5 and contaminated by heavy metals. The groundwater plume is associated with high concentrations of Iron (60 – 3,327 mg/L), Manganese (38 – 803 mg/L), Copper (5 –500 mg/L), Zinc (11 –340 mg/L), and high Total Dissolved Solids (2,600 –23,000 mg/L). The hydrogeochemical assessment confirmed that the contamination is related to the molybdenum ore processing plant located upgradient. The industrial wastewater was illegally discharged underground and flowed to the reservoir due to a hydraulic gradient. The main objective of this research is to evaluate the efficiency of different reactive materials for In-situ remediation using a permeable reactive barrier (PRB). The experiment column setup showed that marl has the highest efficiency in elevating pH by 3.6 units. The Fe, Cu, and Zn removal rates by crushed shells were 100, 98, and 60%, respectively. The Fe, Cu, and Zn removal rates by limestone were 100, 73, and 32%, respectively. The Fe, Cu, and Zn removal rates by marl were 100, 100, and 48%, respectively. Regarding the laboratory-scale experiment, the pilot PRB was installed upstream of the reservoir. The PRB was filled with marl at the bottom, overlain by limestone, and then covered with the uppermost rice straw layer. The pH increased by 2.6 units inside PRB (from pH 3.1 to 5.7). A reduction of about 50% in Fe, 85% in Cu, and 50% in Zn had been achieved.

Abstract

Aquifer storage and recovery (ASR) can play a vital role in sustaining water availability to cope with increasing weather extremes. In urban areas, ASR systems may provide flooding risk mitigation and support urban greenery. However, such systems are often relatively small and therefore, their recovery performance depends more strongly on site-specific storage conditions such as dispersion and displacement by ambient groundwater flow. In this study, we evaluated the impact of these factors by adapting and developing analytical solutions and numerical modelling, with recently established Urban ASR systems as a reference for a wide range of realistic field conditions. We validated the accuracy and usefulness of the analytical solutions for performance anticipation. Results showed that a simple, analytically derived formula describing dispersion losses solely based on the dispersion coefficient (α) and the hydraulic radius of the injected volume (Rh) provided a very good match for all conditions tested where α/Rh<0.2. An expansion of the formula to include the development of recovery efficiency with subsequent cycles (i) was also derived and in keeping with simulation results. Also, displacement losses were found to be significant at groundwater flow velocities that are typically considered negligible, particularly as displacement and dispersion losses disproportionally enforced each other. For specific conditions where the displacement losses are dominant, using a downgradient abstraction well, effectively resulting in an ASTR system, might be beneficial to increase recovery efficiencies despite increased construction costs and design uncertainty.

Abstract

Italian urban areas are characterized by centuries-old infrastructure: 35% of the building stock was built before 1970, and about 75% is thermally inefficient. Besides, between 60% and 80% of buildings’ energy consumption is attributed to space heating. Open-loop Groundwater Heat Pumps (GWHPs) represent one of the most suitable solutions for increasing the percentage of energy consumption from Renewable Energy Sources (RES) in cities such as Turin city (NW Italy). However, allowing the diffusion of GWHPs cannot be disregarded by the knowledge about hydrogeological urban settings. As the thermally affected zone (TAZ) development could affect energetically adjacent systems, the TAZ extension must be well-predicted to guarantee the systems’ long-term sustainable use. Different buildings of the Politecnico di Torino are cooled during the summer by 3 different GWHP systems. To investigate possible interactions with other neighbouring plants and to preserve the water resource by capturing its positive and productive aspects from an energy point of view, a complex urban-scale numerical model was set up for comprehensively analysing the impact of the geothermal plants on the shallow aquifer. Different simulation scenarios have been performed to define possible criteria for improving the energy functionality of the groundwater resource. Besides, the extent of the TAZ generated was defined as a function of the specific functioning modes of the different GWHP systems. Numerical simulations, legally required by competent authorities, represent a fundamental tool to be applied for defining hydrogeological constraints derived from the GWHPs diffusion in Italian cities.

Abstract

The National Park Plitvice Lakes (NPPL) in the Republic of Croatia was declared in 1949 due to its exceptional natural beauty. However, in addition to its attraction, the NPPL also encompasses an area of significant karstic water resources in the Dinaric karst region, on the border between the Black Sea and the Adriatic Sea catchment. In some parts, groundwater connections to the Klokot Spring and Una River in Bosnia and Herzegovina have been assumed by hydrogeological research and proven by tracing tests, which confirm transboundary aquifer. Assessing transboundary aquifer systems already presents challenges in managing this area, considering not only the well-defined physical catchment. Therefore, comprehensive protection is necessary, which must reconcile people’s aspirations for spatial development with the sustainability of natural systems. Protecting karstic water resources can be achieved through separate analyses of the natural vulnerability of surface and groundwater and their integration into a comprehensive protection system. Protection should be layered through three levels: (1) protecting the area from the impact of the upstream catchment, (2) protecting surface water in the catchment that is most affected by anthropogenic influences, and (3) protecting the surrounding area from the impact of the NPPL, which with numerous visitors every year and tourist facilities, also represents significant pressure on downstream catchments. The ultimate goal is a scientifically based proposal for sustainable development of the protected area, in line with the needs of protection and spatial use, and based on an assessment of the overall risk to water resources.

Abstract

The Ordovician aquifer of the Izhora deposit is widely used for drinking by the population of St. Petersburg and its suburbs. Carbonate Ordovician rocks are intensively karstified. The water is fresh (0,5-0,8 g/l), bicarbonate-calcium on the predominant ions, pH 7.6; calcium content is 50-80 mg/l, magnesium content is 30-60 mg/l and the total hardness is 7,6-8,0 mg-equ./l. Western, northern and northeastern boundaries of the Izhora deposit go along the Baltic Klint, which is evident on the relief. Its southern boundary is along the zone of the dip of Ordovician limestone beneath the Devonian sandstone. The territory of the Izhora plateau belongs to the areas of intensive economic activity. Often, objects of human economic activity are located near drinking water intakes. Almost all sites are marked by excess sanitary norms of chemical elements. Pollution of groundwater in the Ordovician aquifer has been identified in some areas. Priority substances have been identified for assessing the quality of groundwater: total hardness, Fe, Mn, Ba, and B. According to hydrochemical modelling data, Ordovician groundwater is saturated with calcite over most territory. There are many springs of underground water along the Baltic Klint, for example, near the village of Lopukhinka, Duderhof springs and others. The springs waters have natural radioactivity (due to the contact of groundwater with dictyonema shales), which makes their use hazardous to human health.

Abstract

Stable isotopes of the water are widely used in volcanic contexts to identify the recharge area, thanks to a strong orographic effect. Such data help improve the study areas’ conceptual model, especially to identify flow paths through the volcanic edifice. The most common pattern considered is a high to medium-elevation recharge area on a flank of the volcano, feeding both local perched aquifers and a deep basal aquifer. This is quite common for “shield volcanoes”, with the flank comprising a thick accumulation of lava flows. On composite volcanoes, especially in a volcanic arc context, the large diversity of lithologies (effusive/ destructive events dynamics) along the flanks may create a compartmented aquifers system. The Arjuno-Welirang-Ringgit volcanic complex (East Java) has been studied to elaborate a hydrogeological conceptual model. Stable isotopes of the water show significant results in identifying the recharge areas of several aquifers that are outflowing at a similar range of elevation. These results help to propose a water flow pattern from the recharge areas to the main springs with juxtaposed and superposed aquifers. This also leads to constraining the geometry of the aquifers and concluding that one volcanic complex with several recharge areas can feed juxtaposed aquifers. These results also highlight the need to adapt the study scale to each “point of interest” in the volcanic context, as each spring shows a different flowing pattern, preferential recharge elevation, and surface area. These are mandatory data to propose an adapted groundwater management.

Abstract

The interaction between dryland hydrological fluxes and the high spatial and seasonal climate variability is inherently complex. Groundwater recharge is episodic, and rivers are ephemeral. When flow occurs in the river network, water is lost through the riverbed, giving rise to focused recharge, which could be a significant part of total recharge. We have used the integrated and physically based MIKE SHE modelling system to analyze the hydrological processes and fluxes in the 7,715 km2 Hout-Sand catchment in the South African part of the Limpopo River Basin. The discharge hydrograph measured at the outlet station is highly episodic, with a small baseline flow component superimposed by high flow events in response to intense rainfall. Likewise, the groundwater hydrographs from the area are characterized by rapid increases in groundwater levels in response to high rainfall events with recurrence intervals of several years. Due to the scarcity of basic measurements and information, we used data products from satellite platforms to supplement the information on rainfall, evapotranspiration, soil moisture, land use and irrigated areas. We applied MIKE SHE to test different conceptual flow models of the catchment by calibrating the different models against direct measurements of river discharge and groundwater levels and indirect estimates of evapotranspiration and soil moisture from satellite products. By analyzing the simulated model dynamics and the resulting values for the calibration parameters, we identified the most plausible conceptual model, which then forms the basis for water resources assessment and management recommendations for the Hout-Sand catchment.

Abstract

Per and Polyfluoroalkyl substances (PFAS) are ubiquitous on our planet and in aquifers. Understanding PFAS transport in aquifers is critical but can be highly uncertain due to unknown or variable source conditions, hydrophobic sorption to solid organic aquifer matter, ionic sorption on mineral surfaces, changing regulatory requirements, and unprecedentedly low drinking water standards. Thus, a PFAS toolkit has been developed to enable decision makers to collect the hydrogeologic data necessary to understand and better predict PFAS transport in aquifers for the purpose of managing water resources. This toolkit has been tested at a significant alluvial aquifer system in the western United States, which provides water for 50,000 people. Here, the toolkit has provided decision makers with the data necessary to optimize water pumping, treatment and distribution systems. The toolkit describes (1) the design and implementation of a sentinel well network to measure and track PFAS concentrations in the alluvial aquifer over time in response to variable pumping conditions, (2) data collection used to empirically derive input parameters for groundwater fate and transport models, which include the collection of paired aquifer matrix and groundwater samples, to measure PFAS distribution coefficients (Kds) and modified borehole dilution tests to measure groundwater flux (Darcy Velocity) and (3) the use of data collection techniques to reduce cross contamination, including PFAS-free, disposable bailers and a triple-rinse decontamination procedure for reusable equipment. The PRAS transport toolkit has the potential to assist decision makers responsible for managing PFAS contaminated aquifers.

Abstract

This study focuses on the coastal agricultural area of El-Nil River (Algeria), where anthropogenic activities heavily impact groundwater resources. A multi-tracer approach, integrating hydrogeochemical and isotopic tracers (δ2HH2O, δ18OH2O, δ15NNO3 and δ18ONO3), is combined with a hydrochemical facies evolution diagram and a Bayesian isotope mixing model (MixSIAR) to assess seawater contamination and distinguish the nitrate sources and their apportionment. A total of 27 groundwater samples and 7 surface water samples distributed over the entire study area were collected. Results show classic inland intrusion combined with an upstream seawater impact through the river mouth connected to the Mediterranean Sea. Results from nitrate isotopic composition, NO3 and Cl concentrations, and the MixSIAR model show that nitrate concentrations chiefly originate from sewage and manure sources. Nitrate derived from sewage is related to wastewater discharge, whereas nitrate derived from manure is attributed to an excessive use of animal manure to fertilise agricultural areas. The outcomes of this study are expected to help decision-makers prepare suitable environmental strategies for effective and sustainable water resources management in the study area.

Abstract

Global warming affects atmospheric and oceanic energy budgets, modifying the Earth’s water cycle with consequent changes to precipitation patterns. The effects on groundwater discharge are still uncertain at a global and local scale. The most critical step to assess future spring flow scenarios is quantifying the recharge-discharge connection. This research aims to predict the long-term effects of climate change on the discharge of seven main springs with long hydrologic series of discharge values located in different hydrogeological settings along the Apenninic chain (Italy). The investigated springs are strategic for either public water supply or mineral water bottling. The Apennines stretch along the Italian peninsula in a Northwest-Southeast direction, crossing the Mediterranean area that represents a critical zone for climate change due to a decreased recharge and increased frequency and severity of droughts over the last two to three decades. In this communication, the data of one of the chosen springs, called Ermicciolo (42°55’25.8”N, 11°38’29.5”E; 1020 m ASL), discharging out from the volcanic aquifer of Mount Amiata, are presented. Statistical and numerical tools have been applied to analyse the time series of recharge-related parameters in the spring’s contribution area and the spring discharge from 1939 to 2022. To estimate the impact of climate change on the Ermicciolo’s outflow, a regional atmospheric circulation model has been downscaled to the spring catchment area and used to derive the expected discharge at the 2040-2060 time span, according to the build-up data-driven model of the recharge-discharge relationship in the past.

Abstract

To increase the security of groundwater resources, managed aquifer recharge (MAR) programs have been developed and implemented globally. MAR is the intentional recharge and storage of water in an aquifer, which will be recovered later. It was previously known and implemented as Artificial Recharge (AR). In South Africa, the documented practice dates back 40 years. There are five main MAR methods: Well-Shaft-Borehole, Spreading-induced bank infiltration, In-channel modifications, and Runoff harvesting. Two regional-scale MAR suitability maps for the Spreading Method (SM) and the Well-Shaft-Borehole (WSB) Method were compiled for South Africa, using the Geographic Information System combined with Multi-Criteria Decision Analysis (GIS-MCDA) methodology. Parameters used to compute the maps included the nature of the different aquifers, groundwater level, water quality (EC), distance to river, terrain slope, mean annual rainfall, land cover, soil moisture availability and clogging (Fe-iron content). To create a suitability map, the parameters were combined using the weighted overlay method and the Analytic Hierarchy Process (AHP – specifically the pairwise comparison). The site suitability maps indicated that most areas in South Africa are suitable for the Spreading and Well-Shaft-Borehole methods. The results were verified with the location of existing MAR schemes and were found to agree. However, these maps are not applicable for siting projects at a local scale but can serve as a guide and screening tool for site-specific studies looking for highly suitable or target areas for MAR implementation

Abstract

The results of a full field application of a DNA-based nano tracer in an arenitic aquifer are presented along with the comparison with the breakthrough of a classical tracer injected in parallel. DNA is encapsulated into amorphous silica spheres (nanoparticles), protecting the molecule from chemical and physical stresses. The main advantages of using DNA with classical tracers, like ionic or fluorescent, are the lower detection concentration and the chance to perform multi-tracer tests with many distinct signatures of injection. To the authors’ best knowledge, this is the first tracing adopting nano-particles on full field conditions in a sedimentary fractured aquifer. Preliminary tests in the lab were performed adopting either deionized water or groundwater collected at the experimental site: a set of nanoparticles at a known concentration was dissolved by adding a buffered fluoride solution, and DNA was then quantified by qPCR reaction (SYBR green). The hydrogeological setting is represented by a Miocenic marine arenitic aquifer (Pantano formation) outcropping extensively in Northern Apennines (Italy) and the main groundwater reservoir for public water supply through the uptake of many perennial springs. The main purpose of the tracing was to verify the transmissive capacity of fractures with high aperture (15-20 cm) identified by optical and acoustic televiewers inside an 80 m deep borehole. The injection was performed inside the borehole, and the tracer’s recovery was between 5-15 m, both in the uptake points of two perennial springs and in another borehole drilled nearby.

Abstract

Since 2018, the North China Plain has started a large-scale ecological water replenishment project for rivers and lakes, with 17.5 billion cubic meters total from the South–North Water Transfer Project and other water sources. It is a key question of how much water infiltration into aquifers will affect groundwater and how to characterize and evaluate this effect quantitatively. The groundwater numerical model of the Beijing-Tianjin- Hebei region as the main part of the North China Plain was established using a numerical simulation method, and the groundwater level variation under the replenishment condition was simulated and predicted. By comparing the two scenarios, the relative rise method of groundwater level was proposed to characterize the influence of river water infiltration on groundwater level, and the unstructured grid method was used to refine cells near the river to improve simulation accuracy. Simulation results show that the groundwater level around some rivers has risen significantly in the past four years, especially in the alluvial fan regions with better infiltration properties. Accordingly, at the Piedmont alluvial fan region, there is also a large influence range on groundwater level. The maximum influence distance is more than 10km (0.1m relative rise of groundwater level was taken as the influential boundary). According to the prediction, if the water replenishment project continues, the range of influence can continue to expand, but the expansion rate will slow down due to the reduction of the hydraulic gradient.

Abstract

Electromagnetic (EM) techniques were used to map groundwater salinity and clay layers in the Netherlands. The EM method used the so-called time domain system, is towed behind an ATV and is therefore called towed TEM. The results revealed a detailed 3-dimensional insight into the subsurface’s sequence of clay and sandy layers. Also, shallow saline groundwater, far from the coast, has been detected related to a subsurface salt dome. The rapid, non-destructive data acquisition makes the tTEM a unique tool. Electromagnetic (EM) techniques detect electrical conductivity contrasts in the subsurface with depth. EM data can often be interpolated into a 3D model of electrical conductivity. Expert knowledge of the regional geohydrologist, together with existing (borehole) data, is paramount for the interpretation. The towed Transient Electro-Magnetic system (tTEM) is developed to acquire data up to 60-80m depth by driving a transmitter and a receiver behind an ATV. With a speed of 10-15 km/h, measurements are collected every 5m. On fields, the distance between lines is typically 20m, resulting in a dense network of data that is inverted into 1D resistivity models, showing the variation of conductivity with depth. Interpolating 1D resistivity models into a 3D model allows for further interpretation in terms of geology, lithology, and groundwater quality. The tTEM technique bridges the gap between point measurements and more expensive and lower-resolution airborne EM data collection. The technique is sensitive to disturbance by man-made conducting infrastructure.

Abstract

In many countries, groundwater quality is measured against drinking water limit values or standards. While that makes sense from a water supply perspective, it is not a scientifically correct yardstick to use to classify groundwater resources or even to determine whether groundwater has been “polluted”. Using this incorrect anthropocentric yardstick has led in some cases to legal action against industries, with significant liability implications, whilst the industry’s activities did not at all influence the quality of the groundwater but were reflecting the conditions under which the lithology of the aquifer was deposited. A case study in KZN demonstrating this will be discussed. We are, therefore, in a situation where regulatory decisions regarding groundwater quality and the regulation of the potential impact of human activities on groundwater systems are unfair, not scientifically credible, and not legitimate. This situation hampers the effective management and regulation of groundwater use and the prevention of detrimental impacts on groundwater, even saline groundwater systems.

This paper argues that it is necessary to develop a groundwater quality classification system that will categorise aquifers based on their natural quality, not just from the perspective of their usefulness as a potable supply source but would recognise the important role that aquifers with more saline natural qualities play in maintaining ecosystems that require such salinity for its survival. It concludes by considering international approaches and proposing aspects to consider in developing such a system for groundwater regulation.

Abstract

Water budget assessment and related recharge in karstified and fractured mountainous aquifers suffer a large uncertainty due to variable infiltration rates related to karst features. The KARMA project (karma-project.org), funded by the European Commission, has addressed this knowledge gap. The increase in human withdrawals and the effect of climate change can modify the recharge rate and, consequently, the spring discharge. The regional aquifer of Gran Sasso mountain, Central Italy, has been investigated by monitoring spring discharge isotope composition and calculating the inflow using a GIS approach on 100x100 m cells, considering local conditions, including karst features. The results for the 2000-2022 period highlight the preferential recharge area of the endorheic basin of Campo Imperatore (up to 75% of precipitation) and a mean infiltration of about 50% of rainfall. Different methods applied for recharge evaluation (Turc, Thornthwaite and APLIS) agree with a recharge rate close to 600 mm/year. This amount roughly corresponds to the spring discharge, evidencing: i) a “memory effect” in spring discharge, which is higher than previewed during dry years; ii) a variation in discharge due to rainy and drought year distribution, frequently recorded at springs with delay (1-2 years); iii) no significant trends of spring depletion since last 20 years; iv) the risk of lowering of snow contribution to recharge due to the temperature rise. The results provide updated information to the drinking water companies and the National Park Authority for sustainable management of the available groundwater resources.

Abstract

Thailand has been grappling with a water scarcity problem every year, leading to insufficient water supply for consumption in many areas. To tackle this issue, groundwater is developed from large sources, making water allocation and economic analysis essential for measuring investments in water supply projects. This research study analyzes the water allocation for consumption and irrigation, including the water sent to hospitals, in two areas, Si Somdet & Roi Et Province and Nong Fai. The study uses the WUSMO program to analyze irrigation water and the EPANET program to analyze the entire water allocation system. The expected results include the appropriate allocation of water for maximum benefit, considering both delivery time and the amount of water to ensure adequate delivery. The study provides a guideline for effective and sustainable water allocation and management, including appropriate and sufficient water costs for managing the water distribution system in both areas. The results show that a water rate of 19 baht per cubic meter in Si Somdet & Roi Et Province results in a B/C value of 1.04 and an EIRR of 6.48%, while a water tariff of 15 baht per cubic meter in Nong Fai results in a B/C of 1.01 and an EIRR of 6.16%. The study highlights the importance of regular analysis of water allocation and cost-effectiveness of projects to ensure sustainable and efficient water management for the people.

Abstract

The City of Cape Town (CCT) initiated its “New Water Programme” in 2017 (during the major 2015-2018 “Day Zero” drought) to diversify its bulk water supply, thereby improving longterm water security and resilience against future droughts. This includes bulk groundwater abstraction from the major fractured Peninsula and Nardouw Aquifers of the Table Mountain Group (TMG) in the mountain catchments east of the CCT. The TMG aquifers are essential in sustaining groundwater-dependent ecosystems associated with the Cape Floral Kingdom – a global biodiversity (but also extinction) hotspot with exceptional endemic diversity. A strong geoethical, “no-regrets” approach is therefore required to develop TMG wellfield schemes for the CCT (and other towns/cities in the Western/Eastern Cape) to reduce the risk of any negative ecological and environmental impacts while still enhancing the drought resilience of the city, providing water for future urban growth, and meeting Sustainable Development Goals 6 and 11.

To this extent, the CCT has developed an extensive regional (and local, in terms of Steenbras Wellfield) environmental monitoring network, incorporating a range of in-situ and remote sensing-based measurements across the Earth’s “Critical Zone” – this includes current groundwater, surface water, ecological, soil and meteorological monitoring stations, and future seismo-geodetic monitoring. An ongoing ambition is to include this CCT TMG monitoring network into the “Greater Cape Town Landscape”, which is currently in development as one of six national South African landscapes under the “Expanded Freshwater and Terrestrial Environmental Observation Network” (EFTEON) platform being hosted by the South African Environmental Observation Network.

Abstract

The devastating socioeconomic impacts of recent droughts have intensified the need for improved drought monitoring in South Africa (SA). This study has shown that not all indices can be universally applicable to all regions worldwide, and no single index can represent all aspects of droughts. This study aimed to review the performance and applicability of the Palmer drought severity index (PDSI), surface water supply index (SWSI), vegetation condition index (VCI), standardised precipitation index (SPI), standardised precipitation evapotranspiration index (SPEI), standardised streamflow index (SSI), standardised groundwater index (SGI), and GRACE (Gravity Recovery and Climate Experiment)-based drought indices in SA and provide guidelines for selecting feasible candidates for integrated drought monitoring. The review is based on the 2016 World Meteorological Organization (WMO) Handbook of Drought Indicators and Indices guidelines. The PDSI and SWSI are not feasible in SA, mainly because they are relatively complex to compute and interpret and cannot use readily available and accessible data. Combining the SPI, SPEI, VCI, SSI, and SGI using multi-index or hybrid methods is recommended. Hence, with best fitting probability distribution functions (PDFs) used and an informed choice between parametric and non-parametric approaches, this combination has the potential for integrated drought monitoring. Due to the scarcity of groundwater data, investigations using GRACE-based groundwater drought indices must be carried out. These findings may contribute to improved drought early warning and monitoring in SA.

Abstract

Groundwater is a critical resource in Namibia, particularly in the Kunene and Omusati Regions, which are among the driest in Sub-Saharan Africa. Hydrogeological mapping is essential to ensure this resource’s sustainable use and management. The hydrogeological map of Namibia was updated recently (2021). However, the details of a 1:1M map are too coarse for regional groundwater management. An ongoing study of groundwater potential assessment in the two regions required downscaling the information to 1:250 000. This work made use of geological maps 1:250 000 from the Geological Survey of Namibia, about 430 selected wells including 20 recent boreholes, 117 reinterpreted pumping tests, some existing reports from private companies, academic works including a PhD thesis, interviews with local water resource experts and statistical analysis of 6 500 wells from the National Groundwater Database (GROWAS II) maintained by the Ministry of Agriculture, Water and Land Reform (MAWLR). The regional hydrogeological map obtained was then associated with the recharge evaluated in a separate task of the same project to assess the available groundwater sustainability. By assessing abstraction costs and water demand, the work gives insights into areas where groundwater abstraction can be increased or restricted to ensure sustainable use. As conscientious and serious as this study may be, it does not replace a master plan but allows a global vision of the development potential of groundwater at a regional scale. This study was financed by the French Agency for Development (AFD) under a tripartite agreement (MAWLR-MEFT-AFD).

Abstract

A groundwater monitoring network surrounding a pumping well (such as a public water supply) allows for early contaminant detection and mitigation where possible contaminant source locations are often unknown. This numerical study investigates how the contaminant detection probability of a hypothetical sentinel-well monitoring network consisting of one to four monitoring wells is affected by aquifer spatial heterogeneity and dispersion characteristics, where the contaminant source location is randomized. This is achieved through a stochastic framework using a Monte Carlo approach. A single production well is considered, resulting in converging non-uniform flow close to the well. Optimal network arrangements are obtained by maximizing a weighted risk function that considers true and false positive detection rates, sampling frequency, early detection, and contaminant travel time uncertainty. Aquifer dispersivity is found to be the dominant parameter for the quantification of network performance. For the range of parameters considered, a single monitoring well screening the full aquifer thickness is expected to correctly and timely identify at least 12% of all incidents resulting in contaminants reaching the production well. Irrespective of network size and sampling frequency, more dispersive transport conditions result in higher detection rates. Increasing aquifer heterogeneity and decreasing spatial continuity also lead to higher detection rates, though these effects are diminished for networks of 3 or more wells. Earlier detection, critical for remedial action and supply safety, comes with a significant cost in terms of detection rate and should be carefully considered when a monitoring network is being designed.

Abstract

atural water-rock interaction processes and anthropogenic inputs from various sources usually influence groundwater chemistry. There is a need to assess and characterise groundwater quality monitoring objectives and background values to improve groundwater resource monitoring, protection and management. This study aims to determine monitoring objectives and characterise monitoring background values for all monitoring points within the Soutpansberg region. This study used long-term groundwater quality monitoring data (1995- 2022) from 12 boreholes and 2 geothermal springs. Monitoring objectives were determined from land-use activities, allocated groundwater use, and water use sectors. Monitoring background values were determined from the physio-chemical parameters from each of the 14 monitoring points. This study determined monitoring objectives and background values of all monitoring points and all physio-chemical parameters in the Soutpansberg region. This study recommends reviewing the determined monitoring objectives and background values every 5 to 10 years to assess any change in land use, groundwater use and sector and monitoring data trends.

Abstract

Studies have examined the effects of groundwater pumping on nearby streams. Groundwater pumping affects streamflow, surface water rights, and aquatic ecosystems. This study investigates the impact of groundwater abstraction on surface water bodies. A secondary objective aims to develop a conceptual model to evaluate alternative approaches for streamflow depletion. The study area is a previous UFS/WRC test site along Modder River, Free State, South Africa. Streamflow depletion was simulated using four (4) analytical solutions, i.e., Jenkins (1968), Hantush (1964), Hunt (1999) and Hunt (2003). STRMDEPL08 analytical computer program tool is used to evaluate streamflow depletion. The aquifer parameters: distance of the boreholes to the stream; pumping periods analyzed in steady states conditions for a simulation period of 1 year; transmissivity with an average of 71 m/d; storativity of 0.02; specific yield of the aquitard range between 0.1 to 0.3; and abstraction rate of 2 l/s are defined for the hypothetical model. The average distances tested range from 10 m to 6,000 m. Pumping rate scenarios for an order of magnitude lower (0.2 l/s), 1 l/s; 4 l/s, and an order of magnitude larger (20 l/s) were simulated. Simulated graphs indicate that streamflow depletion rates are largest if the borehole is closer to the stream and decrease as the distance of the pumped borehole from the stream increases. Cumulative volume graphs for both analytical solutions decrease streamflow depletion volume

Abstract

The current understanding of groundwater within the larger Bushveld Complex (BC) is evaluated to gauge the potential for deep groundwater, specifically emphasising the lesser investigated eastern limb. From the review of publicly available literature and data, geohydrological databases and statistical analyses are presented as a collation of the current understanding of groundwater in the eastern limb of the BC. Unfortunately, information on deep groundwater (> 300 m) is scarce due to the cost associated with deep drilling, mining exploration holes often neglecting hydrogeological data collection, or lack of public access to this information. Nevertheless, the conceptual model developed from the available information highlights deep groundwater’s variable and structurally controlled nature and the uncertainty associated with groundwater characterisation of the deeper groundwater systems. This uncertainty supports the need for research-based scientific drilling of the deeper fractured lithologies in the eastern limb of the Bushveld Complex. The Bushveld Complex Drilling Project (BVDP) established an opportunity to perform such research-based drilling and was funded by the International Continental Scientific Drilling Program (ICDP). While the main focus of the BVDP is to produce a continuous vertical stratigraphic sequence of the BC, there is a sub-component to collect geohydrological information. The planned borehole, 2 500 m deep, will provide an opportunity to collect information from the deeper systems within the Bushveld Complex and the underlying Transvaal Supergroup, which will inform on the connection between shallow and deeper groundwater.

Abstract

Groundwater modelling at the mine sites involves assumptions from the geological model, mining stages, parametrization, and fractures, among others. Modelling work mainly focuses on calibrating against historical measurements before operations (pre-mining) or afterwards (transient calibration). Calibration is carried out mainly with gradient-based algorithms. However, the majorlimitation is the number of model runs, since the number of parameters can easily reach hundreds or more. PEST has become the common tool for parameter estimation. The Jacobin calculation required for the Levenberg Marquardt algorithm requires several model runs. This, a limited factor for the calibration and, subsequently, uncertainty quantification. The next generation of PEST, named PESTPP, is gained popularity in the groundwater community. The great advantage of PESTPP,, compared to the classical PEST, is its new module, Iterative Ensemble Smoother (IES). PESTPP-IES covers both parameter estimation and uncertainty quantification in one goal. Its empirical formulation of the Jacobian matrix reduces the number of runs; thus, the numerical bottleneck can be significantly reduced. PESTPP-IES has been extensively tested in an open-pit mine at the geological complex conditions in the Peruvian Andes. The work involves the task of model simplification, e.g., from a regional model to a detailed local pit model, calibration and uncertainty quantification of pit dewatering volumes. Detailed model was kept calibrated based on hydraulic-head measurements, and dewatering volumes were predicted. All these consider transient changes in the mining plan within the same FEFLOW model. Results validate the methodology and practicability in mining applications.

Abstract

This study aims to contribute to the conceptual and methodological development of units of joint management in transboundary aquifers (TBAs) to prevent and mitigate cross-border groundwater impacts (GWIs) in quantity and/or quality. Joint management units are a relatively new but growing topic in the field of TBAs, and their conceptualisation and appropriate identification are still at an early stage. By reviewing the literature on the subject and elaborating on its terminology, main features, and current methodological progress, a comparison of the existing methodologies for identifying such units is analysed. On this basis, trends and recommendations for further research and application of such methodologies to the joint management of TBAs are presented. The literature on this issue is scarce and has been published mainly in the last five years. These publications lack consistency in the use of concepts and terminology. The above has led to miscommunication and semantic issues in the concept behind such units and in comprehending the particular challenges of identifying them. Still, some directions and methodologies for identifying or directly delineating these management units have been proposed in the literature. However, no analysis from these methodological attempts has been conducted; thus, there are no lessons to be learned about this progress. This research looks forward to closing these gaps and making headway toward dealing with cross-border GWIs in TBAs, thus helping countries meet international law responsibilities and maintaining stable relationships among them.

Abstract

The recent uncertainties in rainfall patterns have resulted in shortages in the availability of water resources, posing significant risk to the sustainability of all living organisms, livelihoods and economic prosperity. The fact that hidden groundwater resources in semi-arid regions present a challenge to understanding and managing the resources. Various groundwater studies have been undertaken; however, the quantification is generally over-simplified due to a limited understanding of the groundwater flow regime and consideration being mostly given to water supply. Thus, the data is often not comprehensive enough and generally limited in determining how much groundwater is available to supply rural areas. The Komati catchment area is dominated by coal mining in the upper reaches and irrigation and agriculture in the lower reaches, with human settlements competing for these water resources. Five significant dams in the Komati catchment are constructed to deal with the increasing water demand for commercial agriculture in the region. However, given uncertain weather patterns, the water mix approach is imperative. This study focused on understanding the groundwater potential, characterised the aquifer system, delineated the groundwater resource units, quantified baseflow and calculated the groundwater balance that can be used as a guide for the groundwater management protocol for the catchment area. The box model approach (surface-groundwater interaction) was used to characterize the groundwater regime and understand the spatial distribution of the aquifer types, water quality and significant aquifers of interest to protect this important resource.

Abstract

In the context of climate change, this work aims to model the piezometric levels of the foothill aquifer located in the middle-high Brenta river plain (Veneto, Italy) to support managing a groundwater system that provides drinking water for most of the Veneto Region. Using a Data-Driven approach, predictive Multiple Linear Regression Models were developed for the piezometric level at different wells, and scenarios of groundwater level evolution were achieved under dry periods. Results highlighted the high sensitivity of the aquifer to climate extremes, as well as the need to plan actions for mitigating the effects on such a strategic water supply system. Groundwater hosted in the foothill aquifer represents an important resource. However, these systems are highly sensitive to the variation of Meteo-climatic regimes. At the same time, the exploitations can lead to excessive groundwater drawdown and consequent threats of water scarcity. The Data-Driven approach adopted using long time series of meteorological, hydrometric and piezometric data can represent a valid example in these terms. The groundwater level evolution has been well-reproduced by these models. The equations describing models show the close dependence of groundwater from the Brenta River and the high sensitivity of the aquifer to meteo-climate regimes. Given this sensitivity, the forecast of groundwater level evolution under a dry period, similar to 2022, was performed. Results point out a progressive drawdown of groundwater level. These predictive models can be useful for local authorities to maintain these levels over specific critical values.

Abstract

One-third of the world faces water insecurity, and freshwater resources in coastal regions are under enormous stress due to population growth, pollution, climate change and political conflicts. Meanwhile, several aquifers in coastal regions extending offshore remain unexplored. Interdisciplinary researchers from 33 countries joined their effort to understand better if and how offshore freshened groundwater (OFG) can be used as a source of potable water. This scientific network intends to 1) estimate where OFG is present and in which volumes, 2) delineate the most appropriate approaches to characterise it, and 3) investigate the legal implications of sustainable exploitation of the offshore extension of transboundary aquifers. Besides identifying the environmental impact of OFG pumping, the network will review existing policies for onshore aquifers to outline recommendations for policies, action plans, protocols and legislation for OFG exploitation at the local to international levels. Experienced and early-career scientists and stakeholders from diverse disciplines carry out these activities. The Action leads activities to foster cross-disciplinary and intersectoral collaboration and provides high-quality training and funded scientific exchange missions to develop a pool of experts to address future scientific, societal, and legal challenges related to OFG. This interaction will foster new ideas and concepts that will lead to OFG characterisation and utilisation breakthroughs, translate into future market applications, and deliver recommendations to support effective water resource management. The first exchange mission explored the Gela platform carbonate reservoir (Sicily), built a preliminary 3D geometrical model, and identified the location of freshened groundwater

Abstract

Globally, rivers, lakes and groundwater face complex anthropogenic water quality alterations posing risks to human health, food security and ecosystems. The World Water Quality Alliance (WWQA) forms an open, global consortium, pooling expertise on water quality science and technology innovation and providing a participatory platform for water quality assessments and co-designing tailored and demand-driven services. It addresses priority topics relevant to water governance, scalable water solutions and emerging issues in water management. The African Use Cases provided an initial testbed that puts the quality of surface water and groundwater into the context of the local 2030 Agenda and its multiple linkages across the Sustainable Development Goals. Central to the initial Africa Use Cases was the integration of in-situ, remote sensing-based earth observation and modelling data to derive the best possible current state of water quality (baseline). Of the three African Use Cases, “Cape Town’s Major Aquifer Systems” focused mainly on groundwater quality in an urban environment. One of the success factors for the Cape Town Aquifer Use Case was the ability of the team to integrate the three different data types of the triangle approach on a sub-catchment scale. This required understanding the complex surface and groundwater systems and their interaction (flow paths and fluxes) in the urban environment. A robust stakeholder engagement process and the introduction of transformative art also drove the success of the Cape Town Use Case. The outcomes of this process will be presented and discussed in this presentation.

Abstract

Urban karst terrains can experience geotechnical issues such as subsidence or collapse induced/accelerated by groundwater withdrawal and civil works. Sete Lagoas, Brazil, is notable for overexploiting a karst aquifer, resulting in drying lakes and geotechnical issues. This study aims to evaluate the progression of geotechnical risk areas from 1940 to 2020 and to simulate future scenarios until 2100. Historical hydraulic head data from the 1940s (when the first pumping well was installed) to the 2000s, a 3D geological model, and a karst-geotechnical risk matrix for defining risk levels were employed to develop a calibrated Feflow numerical model. The results indicate that, before the first well in 1942, the groundwater flow direction was primarily towards the northeast. In the 1980s, due to the concentration of pumping wells in the central area, a cone of depression emerged, causing the flow directions to converge towards the centre of the cone, forming a zone of influence (ZOI) of approximately 30 km². All 20 geotechnical events recorded between 1940 and 2020 have occurred in high or considerable-risk zones where limestone outcrops or is mantled in association with the ZOI. For future scenarios, if the current global well pumping rate (Q = 144,675 m³/d) from 2020 remains constant until 2100, the high and considerable geotechnical risk zones will continue to expand. A 40% decrease in the global rate (Q = 85,200 m³/d) is necessary to achieve a sustainable state, defined by reduced and stabilized risk zones.

Abstract

Groundwater is a hidden resource, so as part of making it more visible, geophysical methods can be very useful in inferring the delineation of aquifers and/or more productive zones to target in fractured rock environments. The most commonly used techniques to assist groundwater studies or exploration are still resistivity profiles or sections known as ERT or electrical resistivity tomography and vertical electrical soundings or VES. One of the limiting factors with this technique is the scale of what surveys can be conducted, resulting in, at best, some kilometers per day. The Hydrogeophysics group of Aarhus University have developed the towed transient electromagnetic (tTEM) system as a cost-efficient tool for characterizing regional hydrological systems to depths of up to 70 m as an alternative to these more traditional methods - which is highly productive in that collection of 40- to-80-line kilometers of data per day is feasible. The system is based on the transient electromagnetic (TEM) method, which involves using a transmitter and receiver coil to measure the electrical resistivity of the subsurface. The hydrological value in electrical resistivity images stems from the ability to delineate different hydrogeological units based on their contrasting electrical properties. Consequently, 3D electrical resistivity images can infer the subsurface hydrogeology and enhance the success of installing productive boreholes. This work presents case studies from several African countries (e.g., South Africa, Zimbabwe, Ethiopia, Senegal, and Togo). It demonstrates how the tTEM method can identify reliable drinking water sources in these countries.

Abstract

Globally, losses of excess nitrogen (N) from agriculture are affecting our air and water quality. This is a well-known environmental threat and is caused by food production for an ever-growing population. Since the 1980s, many European countries, such as Denmark, have successfully combatted N pollution in the aquatic environment by regulating and introducing national agricultural one-size-fits-all mitigation measures. However, further reduction of the N load is still required to meet the demands of, e.g., the EU water directives. Scientifically and politically, implementing additional targeted N regulation of agriculture is a way forward. A comprehensive Danish groundwater and modelling concept has been developed to produce high-resolution groundwater N retention maps showing the potential for natural denitrification in the subsurface. The concept’s implementation aims to make future targeted N regulation successful environmentally and economically. Quaternary deposits, formed by a wide range of glacial processes and abundant in many parts of the world, often have a very complex geological and geochemical architecture. The results show that the subsurface complexity of these geological settings in selected Danish catchments results in large local differences in groundwater N retention. This indicates a high potential for targeted N regulation at the field scale. A prioritization tool is presented that has been developed for cost-efficient implementation at a national level to select promising areas for targeted N regulation.

Abstract

The use of radiogenic isotope tracers, produced through bomb testing (e.g. 3H and 14C), and the application of these isotopes is yet to be fully explored now that atmospheric abundances have returned to background levels. New isotope-enabled institutions and laboratories have recently been established in developing countries to apply isotopes in practical research. This study utilized several laboratories in South Africa and in Europe to compile a robust hydrochemical (major cations and anions) and isotope (d18O, d2H, 3H, 14C, 86Sr/87Sr) dataset of groundwater from 95 sample locations in the Maputo province of Mozambique. Groundwater is hosted in different aquifers and recharged through variable mechanisms ranging from direct infiltration of exposed alluvial soils to inter-aquifer transfer between fractured aquifer systems in the mountainous regions and the weathered bedrock in the lowlands. A combination of hydrochemistry and isotopes provided insight into the heterogeneous nature of recharge, mixing of modern and fossil groundwaters, and aquifer vulnerabilities when combined with other physical parameters in the region. However, it is also clear that grab sampling over a regional spatial extent and two sampling seasons (wet and dry) did not capture all the system variability, and more regular monitoring would uncover details in the system’s behaviour not captured in this study.

Abstract

 Predicting and quantifying the hydrogeological interference of big underground works is a complex effort. This is due to the considerable uncertainty in estimating the key geomechanical and hydrogeological parameters affecting the area of potential interference of the projects. Moreover, the pattern of involved groundwater flow systems is hardly identified, either in natural or disturbed conditions. Base tunnels through mountain ridges are particularly complex in their interactions with groundwater. Several approaches and tools have been published to predict the magnitude and distribution of water inflows inside tunnels and their impact on many receptors (springs, rivers, lakes, wells, groundwater-dependent ecosystems). The research, co-funded by Italferr Spa (Italian railway national company for tunnel design), deals with calibrating and validating these methods based on huge datasets. Main engineering companies provided data from completed base tunnel projects. In particular, in this study, the Drawdown Hazard Index (DHI) method has been calibrated with a dataset of a 15 km long sector of the Gotthard base tunnel drilled through a crystalline geological setting. The calibration involved only the Potential Inflow (PI) parameter to verify the matching between the probability of inflow and the actual output of the excavation, according to the available data in the preliminary stage of the project. An alternative tool based on a machine-learning approach was then applied to the same dataset, and a comparison was presented.

Abstract

This study assessed aquifer-river interaction using a combination of geological, hydrological, environmental stable isotope, and hydrochemical data in a non-perennial river system in the Heuningnes catchment. Results showed the depth to groundwater levels ranging from 3 to 10 m below ground level and aquifer transmissivity values of 0.17 to 1.74 m2 /day. The analytical data indicated that Na-Cl-type water dominates most groundwater and river water samples. Environmental stable isotope data of river samples in upstream areas showed depleted δ18O (-4.3 to -5.12 ‰) and δ2H (-22.9 to -19.3 ‰) signatures similar to the groundwater data, indicating a continuous influx of groundwater into the river water. Conversely, high evaporative enrichment of δ18O (1.13 to 7.08 ‰) and δ2H (38.8 to 7.5 ‰) were evident in downstream river samples.

It is evident from the local geological structures that the fault in the northeastern part of the study area passing Boskloof most likely acts as a conduit to groundwater flow in the NE-SW direction, thereby supplying water to upstream river flow. In contrast, the Bredasdorpberge fault likely impedes groundwater flow, resulting in hydraulic discontinuity between upstream and downstream areas. Relatively low conductive formation coupled with an average hydraulic gradient of 8.4 × 10−4 suggests a slow flow rate, resulting in less flushing and high groundwater salinisation in downstream areas. The results underscore the significance of using various data sets to understand groundwater-river interaction, providing a relevant water management platform for managing non-perennial river systems in water-stressed regions.

Abstract

Modern societies rely heavily on subsurface resources and need open access to accurate and standardized scientific digital data that describe the subsurface’s infrastructure and geology, including the distribution of local and regional aquifers up to a depth of five kilometres. These data are essential for assessing and reducing climate change’s impact and enabling the green transition. Digital maps, 3D and 4D models of the subsurface are necessary to investigate and address issues such as groundwater quality and quantity, flood and drought impacts, renewable geo-energy solutions, availability of critical raw materials, resilient city planning, carbon capture and storage, disaster risk assessment and adaptation, and protection of groundwater-dependent terrestrial and associated aquatic ecosystems and biodiversity. For over a decade, EuroGeoSurveys, the Geological Surveys of Europe, has been working on providing harmonized digital European subsurface data through the European Geological Data Infrastructure, EGDI.

These data are invaluable for informed decision-making and policy implementation regarding the green transition, Sustainable Development Goals, and future Digital Twins in earth sciences. The database is continuously developed and improved in collaboration with relevant stakeholders to meet societal needs and facilitate sustainable, secure, and integrated management of sometimes competing uses of surface and subsurface resources.

Abstract

Carbon Capture and Storage (CCS) in deep saline aquifers is a viable option for Green House Gas (GHG) mitigation. However, industrial-scale scenarios may induce large-scale reservoir pressurization and displacement of native fluids. Especially in closed systems, the pressure buildup can quickly elevate beyond the reservoir fracture threshold and potentially fracture/ reactivate existing faults on the cap rock. This can create pathways, which could act as conduits for focused leakage of brine and/or CO2 up-dip and mobilization of trace elements into capture zones of freshwater wells. Careful pressure management can ensure the reservoir’s hydraulic integrity. This can theoretically be achieved through simulation with appropriate mathematical tools. This research aims to quantify pressure buildup at a CO2 injection well by applying fractional derivatives to the pressure diffusivity Differential Equation (PDE). A numerical solution has been developed to (1) predict and assess the consequence of pressure buildup within the storage formation on groundwater flow in shallow aquifers and (2) assess the impact of pressure-mobilized contaminants (CO2 , brine and/or trace elements) on the quality of usable groundwater, if there is a leakage. The efficiency of each derivative is shown to depend on the type of reservoir heterogeneity. The Caputo derivative captured the long tail dependence characteristic of fracture flow, while the ABC derivative was able to model the cross-over from matric into the fracture flow. The numerical tools presented here are useful for successful risk assessments during geo-sequestration in basins with freshwater aquifers.