Conference Abstracts

All Abstracts were presented at the Groundwater Conferences

Displaying 151 - 200 of 795 results
Title Presenter Name Presenter Surname Area Conference year Sort descending Keywords

Abstract

The Oudtshoorn Groundwater Project aims to target deep groundwater as a long-term option to augment the water supply to the greater Oudtshoorn Local Municipality. Located 15 km south of Oudtshoorn towards the Outeniqua Mountain range, the Blossoms Wellfield lies within a potentially high-yielding artesian basin. The Peninsula Formation (of the Table Mountain Group (TMG), hydrostratigraphically known as the Peninsula Aquifer, is exposed in the Outeniqua Mountains (high rainfall recharge area), and is deeply confined northwards by the overlying Bokkeveld Group.
The project is currently emerging from an exploration phase, with eight existing boreholes that target the deep confined Peninsula Aquifer, and three boreholes that monitor the shallower Nardouw (Skurweberg) Aquifer. Estimation of the aquifer's productive and sustainable groundwater potential involves determining its hydraulic properties by stressing the aquifer through flow and pumping tests and accurately monitoring flow rates, the potentiometric surface level (PSL) during flow, and PSL recovery thereafter. Free-flow and pumping tests were carried out on four boreholes between the 12th May 2014 and the 29th June 2014. The boreholes were all equipped with data-loggers to record pressure and flow-meters to determine the flow-rate. Recovery of the aquifer after the testing is still being continuously monitored.
Results from the month and a half flow-test show that there is no interaction between the deep confined Peninsula Aquifer and the shallower Nardouw Aquifer beneath the southern part of the wellfield. Because the water-use licence stipulates that there can be no negative impact from Peninsula Aquifer abstraction on the Nardouw Aquifer, which is utilised by farmers in the region, this issue is of paramount importance. The hydrochemical signature of the two aquifers is also different.
Recovery monitoring emphasised that the northern block is better inter-connected through fracture systems than the southern block, because those boreholes recovered to their original potentiometric surface almost immediately, whereas the southern boreholes took days for recovery. Two boreholes in the south are still recovering eight months later, which is most likely due to their being drilled into the limb of folded rock systems and not the more fractured hinge zone (as with the more connected boreholes).
Using the drawdown and recovery curves ('Horner plots'), the transmissivity and storativity of the aquifer is calculated analytically by the Theis equation. The results show a large variation in storativity (1.0E-1 to 1.46E-4) and transmissivity (9-20 m2/day) between the various boreholes, emphasising the heterogeneity of the aquifer. The aquifer properties gained from this testing are essential in better understanding the aquifer system, and developing numerical models for future wellfield testing and model simulation.

Abstract

Multi-data integration approach was used to assess groundwater potential in an area consisting crystalline basement and carbonate rocks that are located in the North West Province of South Africa. The main objective of the study is to evaluate the groundwater resource potential of the region based on a thorough analysis of existing data combined with field observation. Integration of six thematic layers was supplemented by a statistical analysis of the relationship between lineaments density and borehole yield. Prior to data integration, weighting coefficients were computed using principal component analysis.
The resulting thematic layer derived from integration of the six layers revealed a number of groundwater potential zones. The most probable groundwater potential zones cover ~14% of the entire study area and located within carbonate rocks consisting limestone and dolomite. The presence of pre-existing structures together with younger and coarse sedimentary rocks deposited atop the carbonate rocks played a significant role in the development of high well fields in the southern part of the area. Moderate-to-high groundwater potential zones within Ventersdorp lava coincide with maximum concentrations of fractures. The results of statistical correlation suggest that 62% of high borehole yield within the Ventersdorp lave can be attributed to fracture density. In general, the present approach is very effective in delineating potential targets and can be used as a sound scientific basis for further detailed groundwater investigation.
KEY WORDS:- Multi-data, thematic layers, groundwater, carbonate rocks, structures

Abstract

Groundwater is a vital source of water for many communities in South Africa and elsewhere. Besides the changing climate, rapidly spreading invasive alien plants with deep roots e.g. Prosopis spp, pose a serious threat to this water source. Dense impenetrable thickets of Prosopis occur in the drier parts of the country mainly along river channels in the Northern, Eastern and Western Cape Provinces. Few studies have quantified the actual water use by this species outside of the USA where it is native. Consequently the impacts of Prosopis invasions on groundwater resources are not well documented in South Africa. The aim of this study was to quantify the actual volumes of water used by Prosopis invasions and to establish the effects on groundwater. Because deep rooted indigenous trees that normally replace Prosopis once it has been cleared also use groundwater, we sought to quantify the incremental water use by Prosopis over and above that used by indigenous trees in order to determine the true impacts on groundwater. The study was conducted at a site densely invaded by Prosopis at Brandkop farm near the groundwater dependent town of Nieuwoudtville in the Northern Cape. One in seven trees at the site is the Vachellia karroo (formerly A. karroo) which is the dominant deep rooted indigenous tree species. Actual transpiration rates by five Prosopis and five V. karroo are being measured using the heat pulse velocity (HPV) sap flow technique. Additional HPV sensors were installed on the tap and lateral roots to study the water uptake dynamics of the trees. Groundwater levels are being monitored in four boreholes drilled across the site while sources of water used by the trees (i.e. whether soil or groundwater) is being determined using O/H stable isotopes. For similar size trees, V. karroo had higher transpiration rates than Prosopis because of the larger sapwood to heartwood ratio in V. karroo than in Prosopis. However, at the stand level Prosopis consumed significantly larger amounts of water than V. karroo. This is because Prosopis invasions had a much higher tree density than V. karroo. From August 2013 to July 2014, annual stand transpiration for Prosopis (~ 372 mm) was more than 4 times higher than that of V. karroo (~ 84 mm). Tree water uptake was correlated to changes in groundwater levels (R2 ~ 0.42) with groundwater abstractions of ~ 2600 m3/ha/y by Prosopis compared to ~ 610 m3/ha/y for V. karroo. In addition, Prosopis showed evidence of hydraulic redistribution of groundwater wherein groundwater was deposited in the shallow soil layers while V. karroo did not. Results of this study suggest that clearing of Prosopis to salvage groundwater should target dense stands while less dense stands should be prevented from getting dense. {List only- not presented}

Abstract

The Saldanha / Langebaan area is expanding at a significant rate, increasing the water demand for the area. The expansion comes from the industrial, residential and tourism sector. In addition there are economically viable deposits of silica and phosphate in the area. Ecosystem functioning in the area is also to a degree dependent on groundwater. All of these factors require an improved understanding of the geohydrology of the area. The geology of the area consists of basement Cape Granite and Malmesbury Group rocks that underlie the sediments of the Sandveld Group. The unconsolidated formations present, are (in order of oldest to youngest) as follows: - Elandsfontyn Formation (oldest): This formation overlies the bedrock in depressions and palaeo-channels in the bedrock. This formation is about 40 m thick and is composed of upward fining quartz sediments. - Varswater Formation: This formation is composed of marine deposits and is restricted to the western (seaward) parts of a bedrock depression to the east of the Langebaan Lagoon and Saldanha. The formation is characterized by rounded quartz grains. - Langebaan Formation: This formation consists of calc-arenites. The sediments are generally grey to cream coloured and consist of quartz and shell fragments, the grain size ranges from coarse to fine and the consolidation is variable. - Witzand Formation (youngest). This formation consists of light-coloured, calcareous, coastal dune sand that can be distinguished from the underlying consolidated Langebaan Formation. The Elandsfontyn Aquifer System (EAS) and the Langebaan Road Aquifer System (LRAS) are the main aquifer systems in the area. These aquifer systems are defined by palaeo-channels that have been filled with gravels of the Elandsfontyn Formation and represent preferred groundwater flow paths. Within each of these aquifer systems (EAS and LRAS) two aquifer units are present. Namely, the confined Lower Aquifer Unit (LAU) geologically consisting of the basal gravels of the Elandsfontyn Formation and the Upper Aquifer Unit (UAU) composed of consolidated sands and calcrete. The two units are separated by a clay aquitard. A numerical model has been established for the area, and extends from the Berg River to the Langebaan Lagoon. Granite outcrop and river system define the other boundaries of the model. Extensive logging of groundwater levels by the Department of Water and Sanitation (DWS) has enabled the accurate establishment of a model. In addition extensive field work and a detailed hydrocensus, as well as the capture of a lot of historical information has resulted in a comprehensive GIS which assists with the refinement of the numerical model. The model provides a valuable tool in modelling potential impacts whether they been from planned groundwater abstraction or artificial recharge. {List only- not presented}

Abstract

The study characterized the hydrodynamic and hydrochemical properties of the quaternary porous aquifer which supplies the municipality of Pont-en-Ogoz (Department of Fribourg in Switzerland) with drinking water. The hydrostratigraphic series is composed of a thin overburden material, a porous aquifer composed of gravel and sand, a thin silt-clay layer and sandstone that forms the deeper aquifer. Pumping tests of a borehole nearby the well PSG1 and well PSG1 itself was used to calculate a mean hydraulic conductivity of the aquifer. The hydraulic conductivity from the test varies between 7.4?10-7 m/s and 2.4?10-5 m/s. The values of hydraulic conductivities are typical for sedimentary rocks as silt, fine sandstone and fine sand. The main physical and chemical parameters like concentration in cations and anions, as well the pH, the dissolved oxygen, the electrical conductivity and the alkalinity were measured and saturation indices were calculated. The analysis of the physical and chemical parameters shows that the type of water is Ca-HCO3 and that it contain mixture of old water coming from a regional groundwater flow system, probably from the deeper aquifer, and from recently infiltrated water as local groundwater flow system. The quality of water is generally good, but the effect of the purification of it through the thin overburden layer is limited. An initial one dimension steady state models based on the hypothesis of Dupuits for an unconfined and confined aquifer was used to calculate the mean recharge. This model gives us a recharge values from 24.8 cm/year and 12.1 cm/year, respectively. A second, two dimensional, confined, homogeneous and isotropic model has been calibrated in order to represent the spatial distribution of the piezometric surface. All the models have been calibrated as a steady state. Two groups of predictive scenarios were done to evaluate the drawdown in the well PSG1 using the 2D model. The maximum drawdown calculated was 40 m for the first group of scenarios and 3-4 m for the second group. The second group of scenarios considered from the deeper sandstone aquifer contributing to the well PSG1. The results of the second group of scenarios fit the field results better and the capture zone is much smaller than the one from the first model. The reality is probably between those two models. In order to lower the uncertainty, spatial variation should be added

Abstract

Quantification of groundwater is important as it should determine the maximum sustainable use of the resource. The SAMREC Code that is required for mineral resource quantification sets out minimum standards, guidelines and recommendations for public reporting of exploration results for mineral resources and reserves. The code serves as the basis for mineral asset valuation and provides quality assurance to the process and an understanding of the results. In groundwater far too often, various methods are used for resource quantification that leads to various results even should the same resource be investigated by two different hydrogeologists. In far too many cases, the resource is not quantified properly which leads to vast over or under estimations. The result is a lack of trust in groundwater resources. As has been done in the international arena, it is similarly proposed that a code be developed for South Africa to ensure that the sustainability of groundwater resources is determined and the impacts of utilization on the water Reserve and the environment be quantified at a minimum level and that basic hydrogeological principles are followed. A South African Groundwater Regulation Code for sustainable resource quantification and impact assessment (SAGREC) is developed that is proposed to guide groundwater investigations and development processes from planning to baseline assessments, drilling and aquifer testing to resource quantification and sustainability modeling. The aim is to ensure trust being built on groundwater as a resource due to projects that follow a formal process that quantifies the assurance of supply and determines the environmental impacts.

Abstract

In order to obtain a better understanding of a groundwater system, it is very important to understand the recharge mechanisms of such a system. Several intensive investigations have been done, documenting the different methodologies to derive recharge. Most of these studies have been centred on the detailed analysis and description of isotopes, which are either a characteristic of the water, the rock, or both. The isotopes of strontium, in particular the isotopic 87Sr/86Sr ratio, is one of such methodologies applied to drive the sources of recharge. The Oshivelo management area is part of the greater Owambo Basin, with no major rivers flowing through the project area, while the Omuramba Owambo, which crosses the area from east to west, bears water only rarely. This rural area therefore heavily relies on groundwater resources. Towards the end of the 20th century, through exploratory drillings an artesian aquifer in the southern part of the Owambo basin was discovered. Several investigation and water supply boreholes have been drilled, with the major findings summarised: - In the late 1990s DWA (DWA, 1999) drilled 12 exploration boreholes and six observation boreholes, showing high yields ranging between 40 and 200 m?/h. One of the boreholes yielded saline water, classified under the Oshivelo Artesian Aquifer and it was recognized that there may be a risk of saltwater intrusion when beginning to exploit the aquifer. It was assumed that the aquifer receives local recharge from the Etosha Limestone Member aquifer in the order of 3.75 MCM/a and additional unquantified recharge from the Otavi Dolomite Aquifer. - In the early 2000s KfW funded a study of the Tsumeb area, including the development of a groundwater flow model according to which an amount of 31 MCM/a would be leaving the Tsumeb area at the northern model boundary, i.e. flow into the Oshivelo Region. - The DWA plans to supply the north-western Oshikoto Region with water from the KOV2 aquifer via a pipeline in order to overcome water shortages there and to become more independent from surface water supplies from Angola. Though, through the groundwater model, a first estimate of groundwater resources availability has been established, the source of recharge is yet to be determined, including the flow mechanisms. Without, this vital piece of information, a valuable groundwater resource may be eventually utilized unsustainably. This presentation will focus primarily on the determination of groundwater recharge mechanisms, which would produce additional input to refine the existing groundwater flow model, concentrating on the Oshivelo Aquifer system. Upon the successful completion of this investigation, the next step would then be to evaluate the groundwater flow model and use it for a proper groundwater management plan. {List only- not presented}

Abstract

Changes to South African water law and policy since the mid-90s have promoted integrated water resource management (IWRM) and the wider application of the principle of subsidiarity (decentralization), underpinned by the Constitutional emphasis on equity, human rights and redress. New water management organisations aim to promote equity, universal access to water, economic prosperity and gender equality but the reality, especially for groundwater, is less inspiring. The Water Act of 1998 envisages new organisations including Catchment Management Agencies (CMAs), Water User Organisations (WUAs) and Water Service Authorities (WSAs), but in many cases these organisations have inadequate capacity or do not exist at all. Only two of the nine (formerly nineteen) CMAs have been formed in more than fifteen years, and neither is yet financially self-reliant. The onerous process necessary to found a WUA and other disincentives have meant that fully-fledged WUAs as envisaged by the Water Act are rare. Hydrogeologists are unusual at Water Service Authority level, and the Department of Water and Sanitation (DWS) still assesses most groundwater resources. This has stoked argument between DWS and WSAs over long-term sustainable municipal water supplies. Our mandated organisations are not delivering the outcomes for groundwater that policy makers envisaged. Municipalities campaign for surface water instead of groundwater, yet groundwater is still the mainstay of rural water supply and has the most promise for underserved areas. Intractable problems with operation and maintenance are wrongly blamed on the primary groundwater resource, or on "shortages" of one kind or another. There is a need to emphasise function and outcomes rather than trust that these will follow automatically once "the right" organisations are in place. A hybrid of top-down expertise with a genuine focus on local outcomes is called for. We currently pay a considerable opportunity cost for delays, turf-wars and finger pointing - including reputational damage to groundwater as well as less reliable water supplies for the poorest South Africans.

Abstract

The present study applied multivariate statistical analysis (MSA) to investigate the status of the hydrochemistry of groundwater Upper Berg River Catchment, Western Cape, South Africa. Factors that influence the quality of groundwater are well established. The aim of the present study was to characterize groundwater quality in the Upper Berg River Catchment, using multivariate statistical analysis methods in order to establish the evolution and suitability of such waters for agricultural use in addition to confirming major factors that explain groundwater quality in the study area. Principal Component Analysis (PCA) and Hierarchical Cluster Analysis (CA) were applied to groundwater physicochemical data that were collected from 30 boreholes. Data collection and analysis followed standard procedure. The use of a Piper Diagram showed that Na-Cl water types were the predominant groundwater facies. Furthermore, PCA extracted five major factors that explained 83.11 % of the variation in the physicochemical characteristics of groundwater. Using Varimax rotation, two main factors, namely, surface water recharge and rock-water interactions, were extracted which collectively explained 60.81% of the variation in the groundwater physicochemical data. The two factors indicate that the predominant factors affecting groundwater quality in the study area are natural (biochemical) processes in the subsurface as well as interactions between the rock matrix and passing water. Cluster Analysis extracted three major groundwater clusters based on dissimilarities in groundwater physicochemical characteristics in different sites. The first cluster included 7 borehole sites located in the Franschhoek Valley area and 14 borehole sites located in the Robertsvlei Saddle area as well as the upper catchment (behind the Berg River Dam). The second and third clusters collectively included 9 groundwater sites within the Franschhoek Valley area. These sites were located on agricultural land where extensive vineyard and orchid cultivation is done. Groundwater quality in the Upper Berg River Catchment mainly reflects the influence of natural process of recharge, rock-water interactions and microbial activity. The quality of groundwater fell within Target Water Quality Guidelines for agricultural water use published by the Department of Water and Forestry Affairs meaning such waters are suitable for agricultural use.

Key words: Dendrogram, Groundwater quality, Hierarchical Cluster Analysis, Principal Component Analysis, Physicochemical, Spatial.

Abstract

Inadequate characterization of petroleum release sites often leads to the design and implementation of inappropriate remedial systems, which do not achieve the required remedial objectives or are inefficient in addressing the identified risk drivers, running for lengthy periods of time with little benefit. It has been recognized that high resolution site characterization can provide the necessary level of information to allow for appropriate solutions to be implemented. Although the initial cost of characterization is higher, the long-term costs can be substantially reduced and the remedial benefits far greater. The authors will discuss a case study site in the Karoo, South Africa, where ERM has utilized our fractured rock toolbox approach to conduct high resolution characterization of a petroleum release incident to inform the most practical and appropriate remedial approach. The incident occurred when a leak from a subsurface petrol line caused the release of approximately 9 000 litres of fuel into the fractured sedimentary bedrock formation beneath the site. Methods of characterization included:
- Surface geological mapping of regionally observed geological outcrops to determine the structural orientation of the underlying bedding planes and jointing systems;
- A surface electrical resistivity geophysics assessment for interpretation of underlying geological and hydrogeological structures;
- Installation of groundwater monitoring wells to delineate the extent of contamination;
- Diamond core drilling to obtain rock cores from the formation for assessment of structural characteristics and the presence of hydrocarbons by means of black light fluorescence screening and hydrocarbon detection dyes;
- Down-borehole geophysical profiling to determine fracture location, fracture density, fracture dip and joint orientation; and
- Down-borehole deployment of Flexible Underground Technologies (FLUTe?) liners to determine the precise vertical location of light non-aqueous phase liquid (LNAPL) bearing joint systems and fracture zones, and to assist in determining the vertical extent of transmissive fractures zones.
ERM used the information obtained from the characterization to compile a remedial action plan to identify suitable remedial strategies for mitigating the effects of the contamination and to target optimal areas of the site for pilot testing of the selected remedial methods. Following successful trials of a variety of methods for LNAPL removal, ERM selected the most appropriate and efficient technique for full-scale implementation.
{List only- not presented}

Abstract

POSTER The Jeffreys Bay Municipal borehole field is located in the coastal town of Jeffreys Bay, Eastern Cape Province, South Africa. It is underlain by the Jeffreys arch domain which features the Skurveberg and Baviaanskloof formations of the Table Mountain Group. The Jeffreys arch has been subject to groundwater exploration, targeting its characteristic faults and folds. The investigation was intended to establish five (5) high yielding boreholes with good water quality. Geophysical surveys, drilling and pump tests were conducted in succession. Ground surveys were carried out across the study area using the electromagnetic method to identify subsurface geological structures through anomalies in the earth's magnetic field. The interpretation of the data revealed significant anomalies within an anticlinorium. Drilling through quartz and quartzitic sandstone posed considerable difficulties mostly along zones of oxidation. The main water strikes with airlift yields of 9 - 35 L/s were intersected within quartzitic sandstone at depths of about 120m and greater. Chemical sampling results revealed adherence of iron and manganese concentrations to the drinking water recommended limits as per SANS 241-1 (2011). Two (2) of the five (5) boreholes revealed higher than recommended of iron and manganese concentrations. The aquifer test data was processed using the Flow Characteristic programme, the recommended abstraction rates range between 4-17 L/s/24 hrs. Results observed during different exploration phases revealed high yields and good water quality with greater depths as compared to the existing shallow boreholes with high iron, conductivity and manganese concentrations. Treatment of borehole water with high concentrations is necessary. It is recommended that drilling for groundwater resources within the anticlinorium of the Jeffreys arch be done at great depths.

Abstract

Groundwater is an important resource for multiple uses in South Africa. Hence, setting limits to its sustainable abstraction while assuring basic human needs is required. Due to prevalent data scarcity related to groundwater replenishment, which is the traditional basis for estimating groundwater availability, the present article presents a novel method for determining allocatable groundwater in quaternary catchments through information on streamflow. Using established methodologies for assessing baseflow, recession flow, and instream ecological flow requirement, the methodology develops a combined stepwise methodology to determine annual groundwater storage volume using linear reservoir theory, essentially linking low flows proportionally to upstream groundwater storages. The approach was trialled for twenty-one perennial and relatively undisturbed quaternary catchments with longterm and reliable streamflow records. Using the Desktop Reserve Model, maintenance low instream flow requirements necessary to meet present ecological state of the streams were determined, and baseflows in excess of these flows were converted into allocatable groundwater storages on an annual basis. Results show that groundwater development potential exists in nineteen of the catchments, with upper limits to allocatable groundwater volumes (including present uses) ranging from 0.02 to 2.60 Mm3/a over the catchments. With a secured availability of these volumes 75% of the years, variability between years is assumed to be manageable. A significant (R2 = 0.86) correlation between baseflow index and the drainage time scale for the catchments underscores the physical basis of the methodology and also enables the reduction of the procedure by one step, omitting recession flow analysis. The method serves as an important complementary tool for the assessment of the groundwater part of the Reserve and the Groundwater Resource Directed Measures in South Africa.

Abstract

Data acquisition and Management (DAM) is a group of activities relating to the planning, development, implementation and administration of systems for the acquisition, storage, security, retrieval, dissemination, archiving and disposal of data. Data is the life blood of an organization and the Department of Water and Sanitation (DWS) is mandated by the National Water Act (No 36 of 1998) as well as the Water Services Act (No 108 of 1997), to provide useful water related information to decision makers in a timely and efficient manner. In 2009 the DWS National Water Monitoring Committee (NWMC) established the DAM as its subcommittee. The purpose was to ensure coordination and collaboration in the acquisition and management of water related data in support of water monitoring programs. The DAM subcommittee has relatively been inactive over the years and this has led to many unresolved data issues. The data extracted from the DWS Data Acquisition and Management Systems (DAMS) is usually not stored in the same formats. As a result, most of the data is fragmented, disintegrated and not easily accessible, making it inefficient for water managers to use the data to make water related decisions. The lack of standardization of data collection, storage, archiving and dissemination methods as well as insufficient collaboration with external institutions in terms of data sharing, negatively affects the management water resources. Therefore, there is an urgent need to establish and implement a DAM Strategy for the DWS and water sector, in order to maintain and improve data quality, accuracy, availability, accessibility and security. The proposed DAM Strategy is composed of the six main implementation phases, viz. (1) Identification of stakeholders and role players as well as their roles and responsibilities in the DWS DAM. (2) Definition of the role of DAM in the data and information management value chain for the DWS. (3) Development of a strategy for communication of data needs and issues. (4) Development of a DAM life Cycle (DAMLC). (5) Review of existing DAMS in the DWS. (6) Review of current data quality standards. The proposed DAM Strategy is currently being implemented on the DWS Groundwater DAM. The purpose of this paper is to share the interesting results obtained thus far, and to seek feedback from the water sector community.

Abstract

Groundwater provides an important buffer to climate variability in Africa. Yet, groundwater irrigation contributes only a relatively small share of cultivated land, approximately 1% (about 2 mill. ha) as compared to 14% in Asia. While groundwater is over-exploited for irrigation in many parts in Asia, previous assessments indicate an underutilized potential in parts of Africa. As opposed to previous country-based estimates, this paper derives a continent-wide, distributed (0.5 degrees spatial resolution) map of groundwater irrigation potential, indicated in terms of fractions of cropland potentially irrigable with renewable groundwater. The method builds on an annual groundwater balance approach using 41 years of hydrological data, allocating only that fraction of groundwater recharge that is in excess after satisfying other present human needs and environmental requirements, while disregarding socio-economic and physical constraints in access to the resource. Due to high uncertainty of groundwater environmental needs, three scenarios, leaving 30, 50 and 70% of recharge for the environment, were implemented. Current dominating crops and cropping rotations and associated irrigation requirements in a zonal approach were applied in order to convert recharge excess to potential irrigated cropland. Results show an inhomogeneously distributed groundwater irrigation potential across the continent, even within individual countries, mainly reflecting recharge patterns and presence or absence of cultivated cropland. Results further show that average annual renewable groundwater availability for irrigation ranges from 692 to 1644 km3 depending on scenario. The total area of cropland irrigable with renewable groundwater ranges from 44.6 to 105.3 mill. ha, corresponding to 20.5 to 48.6% of the cropland over the continent. In particular, significant potential exists in the semiarid Sahel and eastern African regions which could support poverty alleviation if developed sustainably and equitably. The map is a first assessment that needs to be complimented with assessment of other factors, e.g. hydrogeological conditions, groundwater accessibility, soils, and socio-economic factors as well as more local assessments.

Abstract

Different biological and chemical transport results are evaluated in this study. Ecoli and PDR1 were selected as the biological tracers with salt and rhodamine as chemical tracers. The transport experiments were evaluated through the primary aquifer material found at the University of the Western Cape research site. A series of controlled experiments under laboratory and field conditions was conducted. Each provides a different kind of data and information. The results from laboratory studies could be used to better design the field studies. In both cases, the data collected was to provide information on fate and transport of microbes in groundwater. The field design phase of the experiment was an up-scaling of the laboratory phase of this project. The amount injected into the aquifer was increased in proportion to the size of the research site. Tracer tests using chemical and microbial tracers were carried out simultaneously. Results of laboratory tests show a 5 times slower transport of microbes, compared to salts.. The salts at field scale show a breakthrough occurring after 2 days whereas the microbes never managed to breakthrough with the experiment stopped after 45 days. A new borehole was drilled closer to reduce distance/ travel time, but this had no effect on field results for the microbes. {List only- not presented}

Abstract

In this paper we present results of a field study that focused on the characterisation of submarine groundwater discharge (SGD) into False Bay (Western Cape) with emphasis on its localisation. SGD is defined here as any flow of water from the seabed to the ocean. Thus, it includes (1) advective flow of fresh terrestrial groundwater as well as (2) seawater that is re-circulated across the ocean / sediment interface. Groundwater discharge into the coastal sea is of general interest for two reasons: (i) it is a potential pathway of contaminant and nutrient flux into the ocean, and (ii) it may result in the "loss" of significant volumes of freshwater. In our investigation we applied environmental aquatic tracers, namely radionuclides of radon (222-Rn) and radium (223-Ra, 224-Ra), as well as physical water parameters (salinity and temperature). The concentrations of radon and radium can be used as tracers for groundwater discharge since radon and radium are highly enriched in groundwater relative to seawater. We conducted discrete point measurements of seawater and of terrestrial groundwater as well as continuous radon time-series measurements of near-coastal seawater. A large-scale survey was performed along the entire shoreline of False Bay and revealed distinct positive anomalies of radon in the area of Strand/Gordons Bay and a rather diffuse anomaly along the Cape Flats, which is indicating possible groundwater discharge in these areas. The location of these anomalies remained constant to a large extent throughout several surveys that were performed during different seasons, although these anomalies varied with regard to their magnitude and clearness. Further detailed studies were undertaken in the area of Strand/Gordons Bay including radon time-series measurements in the coastal sea at a fixed location in order to estimate the quantity of SGD and its variability on a tidal time scale. The results indicate that groundwater discharge rates are significantly elevated during low tide. Furthermore, the distribution of radium isotopes (224-Ra/223-Ra ratios) in the Strand/Gordons Bay area indicate a "groundwater" residence time of less than 10 days within a distance of 5 km from the shore. In summary, we found spatially considerable constant SGD locations during different field campaigns. Additionally, we gained a rough understanding of the SGD dynamics on a tidal time scale, its magnitude and groundwater residence time within the inner bay after discharge. These results can be beneficial to trace back contamination in near-coastal waters or to find potential locations for groundwater abstraction.

Abstract

The intangible nature of groundwater provides challenges when trying to understand and quantify the role of groundwater in the hydrology of lakes and wetlands. This task is made even more difficult by the frequent absence of data. However, by adopting a scientific approach, it is possible to assess the hydrogeological contribution

Abstract

Noble gases are used in this study to investigate the recharge thermometry and apparent groundwater residence time of the aquifers on the eastern slope of the Wasatch Mountains in the Snyderville Basin of Summit County, Utah. Recharge to and residence time for the basin aquifer in the Salt Lake Valley, Utah, from the western slope of the Wasatch Mountain range by 'mountain-block recharge' (MBR), is a significant source of subsurface flow based on noble gas and tritium (3H) data. The Snyderville Basin recharge thermometry from 15 wells and 2 springs indicates recharge temperatures fall within the temperature "lapse space" defined by the recharge thermometry determined in the study of MBR for the Salt Lake Valley and the mean annual lapse rate for the area. Groundwater residence times for the Snyderville Basin were obtained using tritium and helium-3 (3He). The initial 3H concentrations calculated for the samples were evaluated relative to the 3H levels in the early 1950s (pre-bomb) to categorize the waters as: (1) dominantly pre-bomb; (2) dominantly modern; or (3) a mixture of pre-bomb and modern. Apparent ages range from almost 6 years to more than 50 years. Terrigenic helium-4 (4He) is also used as a groundwater dating tool with the relationship between terrigenic 4He in Snyderville Basin aquifers and age based on the apparent 3H/3He ages of samples containing water from only one distinct time period. The 4He is then used to calculate groundwater residence times for samples that are too old to be dated using the 3H/3He method. The mean groundwater residence times calculated with both methods indicate the water yielded by wells and springs in the Snyderville Basin generally ranges from 6 to more than 50 years. In addition, the calculated terrigenic 4He age for the pre-bomb component of many samples was found to exceed 100 years. While terrigenic 4He residence times are not as definitive as those calculated with the 3H/3He method, or chlorofluorocarbons (CFCs), age dating with terrigenic 4He allows initial estimates to be made for groundwater residence times in the Snyderville Basin, and is an important tool for establishing groundwater residence times greater than 50 years. Historic water levels from production wells indicate a declining water table. This trend in conjunction with precipitation data for the area illustrates the decline in the water levels to be a function of pumping from the aquifers. Groundwater residence times in the Snyderville Basin and declining water levels support the need for a groundwater management program in the Snyderville Basin to effectively sustain the use of groundwater resources based on groundwater age. {List only- not presented}

Abstract

This study intent to share the legal and institutional analysis of the UNESCO IHP project "Groundwater Resources Governance in Transboundary Aquifers" (GGRETA) project for the Stampriet Transboundary aquifer. The Intergovernmental Council (IGC) of the UNESCO International Hydrological Programme (IHP) at its 20th Session requested the UNESCO-IHP to continue the Study and Assessment of Transboundary Aquifers and Groundwater Resources and encouraged UNESCO Member States to cooperate on the study of their transboundary aquifers, with the support of the IHP. The GGRETA project includes three case studies: the Trifinio aquifer in Central America, the Pretashkent aquifer in central Asia and the Stampriet aquifer in southern Africa. This study focuses on the Stampriet Transboundary Aquifer System that straddles the border between Botswana, Namibia and South Africa. The Stampriet system is an important strategic resource for the three countries. In Namibia the aquifer is the main source of water supply for agricultural development and urban centers in the region, in Botswana the aquifer supplies settlements and livestock while in South Africa the aquifer supplies livestock ranches and a game reserve. The project methodology is based on UNESCO's Shared Aquifer Resources Management (ISARM) guidelines and their multidisciplinary approach to transboundary aquifers governance and management, addressing hydrogeological, socio-economic, legal, institutional and environmental aspects. The GGRETA builds recognition of the shared nature of the resource, and mutual trust through joint fact finding and science based analysis and diagnostics. This began with collection and processing of legal and institutional data at the national level using a standardized set of variables developed by the International Groundwater Resources Assessment Center (IGRAC). This was followed by harmonization of the national data using common classifications, reference systems, language, formats and derive indicators from the variables. The harmonized data provided the basis for an integrated assessment of the Stampriet transboundary aquifer. The data assisted the case study countries to set priorities for further collaborative work on the aquifer and to reach consensus on the scope and content of multicountry consultation mechanism aimed at improving the sustainable management of the aquifer. The project also includes training for national representatives in international law applied to transboundary aquifers and methodology for improving inter-country cooperation. This methodology has been developed in the framework of UNESCO's Potential Conflict Cooperation Potential (PCCP) program. The on-going study also includes consultation with stakeholders to provide feedback on proposals for multicountry cooperation mechanisms. It is anticipated that upon completion of the study, a joint governance model shall have been drawn amongst the three countries sharing the aquifer to ensure a mutual resource management.

Abstract

Since the first decant of acid mine drainage in the West Rand in 2002, a great deal of effort has gone into researching the challenges which it poses there and in the adjacent Central Rand and East Rand Gold Fields. Short-term interventions have been implemented to maintain water at conservatively-determined safe levels and remove the worst contaminants from the water pumped from the mined. A feasibility study, looking at the long-term options has proposed treatment of water to a much higher standard, identifying a number of potential end-users of the treated water and highlighted the extremely high costs involved in responsible management. During the second half of 2010, a team of experts was convened to assess problems related to acid mine drainage in the Witwatersrand and propose solutions. A number of recommendations were made and the most urgent - the need for a short-term intervention to bring things under control and the the feasibility study for long-term management of the problems were undertaken. Nevertheless, despite the intense focus on the problem, a number of questions have remained unanswered. Throughout the period of min flooding, no detailed systematic monitoring of surface water flow has been undertaken, preventing the detailed apportionment of pollution between underground and surface sources. Ingress control measures have been proposed, but funding mechanisms, regulatory hurdles and challenges relating to long-term management have not all been comprehensively addressed. On a more positive note, the installation and operation of pumps to control the water level in the Western and Central Basins will start to provide valuable data regarding the response of the flooded mine workings to pumping, assisting in the characterisation of the hydraulic properties and behaviour of the large voids. This will facilitate the optimisation of pumping strategies and the refinement of environmental critical levels and assist in the development of more sustainable management options.

Abstract

POSTER The Department of Water and Sanitation (DWS) is the custodian of South Africa's water and thus is imperative that it reports on its state as the National Water Act of 1998 requires regular reporting to Parliament by the Minister. Hence, the annual compilation of report entitled "The National State of Water in South Africa." This report aims to give an overview of the status and trends of water quality and quantity, further assisting with international water reporting obligations to SADC Region, African Continent, and Globally e.g. the United Nations Commission on Sustainable Development. This information empowers the public and provides knowledge to water managers for informed decision-making. The main purpose is to enhance quality, accessibility and relevance of data and information relating to the goal of Integrated Water Resource Management towards attaining holistic Integrated Water Management, and Integrated Water Cycle Management in future. Three distinct requirements for collecting data by DWS are: (i) assessing and comparing the status and trends for both quantity and quality; (ii) monitoring for water use and (iii) monitoring for compliance to licence conditions. Such information is further used to assess the effectiveness of policies implemented and identify the existing gaps. Various challenges to the country's water demand proper integrated water resources planning and management. The report is divided into Themes such as, Resource Management, Water Services/Delivery, Water Development and Finance, based on selected indicators. The indicators are strategically selected to provide a representative picture of the state, as well as the changes over time to the drivers, pressures, impacts and responses related to the chosen themes. These Indicators include: Climatic Conditions, Water Availability, Water Use, Water Protection, Water Quality, Water Service Delivery, Water Infrastructure, Water Finance, and Sanitation. The report for Hydrological Year 2013/2014 has been completed and it shows that the amount of water available varies greatly between different places and seasons, and from one year to another. The average total storage was around 85% of full supply capacity in September 2014. Surface water quality is generally facing a threat from eutrophication and microbial pollution emanating mainly from mismanaged water (and waste) treatment plants and related landuse activities. Groundwater quality is generally good except in some localised areas where mining and industrial activities are prevalent. With regards to infrastructure; vandalism, lack of maintenance & management skills reflect on/as non-revenue water, highlighting the need for more funding towards maintenance, especially in groundwater which is normally wrongly deemed as an unreliable resource. In the past 20 years, water services delivery to communities has improved as the Millennium Development Goals have been met and surpassed, while the sanitation access goals were likely to be met.

Abstract

Vapour intrusion (VI) is recognized to drive human health risk at numerous sites that have been contaminated by petroleum products and other volatile contaminants. The risks related to VI are typically evaluated using direct measurement (vapour sampling) or modelling methods. ERM has developed a toolbox approach using a combination of exclusion distance criteria, direct measurement and modelling methods to assess risks and achieve closure. For direct measurement, samples of vapour are taken beneath the floor slab of buildings (sub-slab sampling) or from the air inside the buildings (indoor air sampling). Modelling methods are often used to estimate the partitioning of volatile contaminants from soil or groundwater sources into the vapour phase and the subsequent transport of vapours from the subsurface environment into habitable buildings. A limitation of modelling approaches is that they are designed to be conservative to be adequately protective of sensitive receptors. VI models also do not typically take into account the degradation of hydrocarbon vapours in the presence of oxygen, which has been found to be a significant process for petroleum hydrocarbons. The authors have compiled a dataset of petroleum vapour and groundwater results from over 50 petroleum release sites in southern Africa. These data were used to develop exclusion distance criteria for vapours emitted from contaminated groundwater sources (i.e. distance from the source at which sufficient aerobic attenuation has occurred for the VI risk to be negligible). A standard "lines of evidence" approach has been applied to the assessment of VI risk by firstly applying the exclusion distance criteria to sites with groundwater contaminant plumes beneath buildings, and if these are met, the sites are considered to have no unacceptable VI risk. Where exclusion screening criteria are not met, risk is estimated using modelling, and if a potential risk is predicted, then direct sub-slab measurements are taken to more accurately assess the risk. Lastly, where sub-slab assessment predicts a potential VI risk, indoor vapour measurement are taken to evaluate actual risk, taking into account interferences from other sources and background levels of contaminants. Mitigating measures can then be applied as appropriate. Various case studies will be presented including direct measurements at industrial and residential sites overlying contaminant plumes and modelling methods at residential properties adjacent to service station sites. A risk-based approach to the assessment of contaminated land provides a sustainable and cost effective methodology, and also avoids unnecessary remediation. The results show that VI risks can be adequately addressed with a toolbox approach using multiple lines of evidence.

Abstract

Collecting groundwater information close to the ocean often raises the question whether a tidal effect could be influencing the data. Sometimes this issue leads to speculation that is counterproductive and sometimes it is overlooked thereby causing judgement errors when interpreting data. This paper looks at the theoretical background of tidal influences in coastal aquifers to identify the screening factors to consider when deciding whether a contaminated site assessment needs to take tidal influences into account. The rising and falling of the tides cause a standing wave with varying frequency that is dampened by the neighbouring aquifer as the wave travels into it. Unconfined aquifers generally tend to be affected over a short distance, while the pressure wave can travel significant distances in a confined aquifer. There are indications that the rise and fall of the tides prevent discharge of the LNAPL, but it could cause lateral spreading due to the head changes in the aquifer. The tidal fluctuation also causes uncertainties in the LNAPL measurements. The case study presents data from a site where tidal variation directly influences the distribution of LNAPL in monitoring holes, while the variation in total fluid level is slight. In this specific case the tidal variation has to be accounted for, otherwise skewed measurement data will be collected.

Abstract

South Africa is facing a water supply crisis caused by a combination of low rainfall, high evaporation rates, and a growing population whose geographical demands for water do not conform to the distribution of exploitable water supplies. This situation is particularly critical in the river systems comprising the Limpopo River basin where every tributary river has been exploited to the limits possible by conventional engineering approaches. These attempts to meet society's demands for water for domestic, irrigation, mining and industrial uses have caused a progressive deterioration of the water resources as well as the aquatic ecosystems in these rivers. In addition to the pressure exerted by scarce water resources and deteriorating water quality, South Africa is facing a critical shortage of electrical power. There is an urgent need to address the country's electricity shortage through the building of new coal mines and coal fired power and the Waterberg area has been identified for these purposes. All of these new operations will be accompanied by a rapid growth in population which will put further stress on the water resources as well as the existing sewage plants. The Waterberg region is part of the Bushveld which can be classified as a hot and an arid region. Due to irrigation that currently exist in the region, which stems from the climate conductive to agriculture production and its current mining development, based on the vast mineral deposits present, the current water availability and water use in the Waterberg region is relatively in balance. Meaning that the available water resources in the Limpopo basin will not be able to meet the domestic and industrial demands for water that the new developments will pose and the flows in several rivers have already changed from perennial to seasonal and episodic. In order to satisfy the demand of water that will be required by the above mentioned projects, the Mokolo Crocodile Water Augmentation Project will supply additional water to the region. However, this area still contains a relatively high number of natural or near-natural ecosystems, and it is important that this natural capital is not significantly eroded in the development process. This is possible with effective environmental planning to limit and mitigate negative social, ecological and economic impacts.

This project promotes science-based environmental assessment and planning by developing an understanding of key aquatic ecological indicators and their associated thresholds. The project vision is to promote improved outcomes for stream and river ecosystem health, and ultimately human health and well-being in the Waterberg area. The outcomes of the study will be used to detect existing processes of change in aquatic ecosystems and estimate the likely future changes that increased coal mining, human population and water transfers will cause.

Abstract

Hydrogeological environments are commonly determined by the type of underlying geology; these environments may have a tremendous effect on the mobility and recovery of LNAPLs.  Hydrogeological environment include intergranular sediments and bedrocks of contrasting permeability and porosity. This paper synthesizes several case studies and conceptual models of different hydrological environments and illustrates how they affect the flow characteristics and rebound of LNAPLs.

Abstract

Vapour intrusion (VI) is the term used to define the encroachment of vapour phase contaminants from subsurface sources into structures such as buildings and basements. It is widely recognized that VI often forms the principal risk of exposure to receptors at petroleum release sites. Petroleum VI (PVI) generally occurs where a release of petroleum hydrocarbon product migrates from its source (e.g. from a leaking underground storage tank) to the groundwater table at which point, given favourable conditions, the hydrocarbon plume may migrate laterally beneath an adjacent building or structure. Subsequent volatilisation of the petroleum product results in the upward diffusion of vapours towards the surface where the vapours may enter into the building or structure at concentrations which may be harmful to human health. The subject of PVI with regards to its fate and transport mechanisms, as well as associated mitigation measures is rapidly gaining attention on a global scale, although to date this exposure pathway remains largely un-assessed in South Africa, with no regulatory guidance currently available. In the late 1990's and early 2000's focus was placed on the development of VI screening criteria by which sites could be screened with respect to their hydrogeological conditions and contamination status so as to determine whether VI could be a potential exposure pathway of concern, with much of the early work being completed by the United States Environmental Protection Agency. For the past decade the majority of the available screening criteria and guidance has had a partially incomplete understanding of hydrocarbon vapour fate and transport processes associated with VI, which has led to doubt over the application of such screening criteria in many cases. Furthermore, recent research conducted abroad has highlighted the importance of the role of oxygen in the vadose zone in the natural attenuation of petroleum hydrocarbon vapours as they diffuse through the soil profile. This research is pointing towards the notion that currently applied screening criteria may be overly conservative, leading to many unnecessary PVI investigations being conducted to the disruption of occupants of the buildings, and at great cost. Over the last two years ERM has compiled a dataset of PVI results from numerous investigations it has conducted throughout Southern Africa and in this paper the authors present data that supports the growing global trend towards recognizing the role that oxygen plays in attenuating petroleum hydrocarbon vapours in the vadose zone. The data also supports the notion that confirmed cases of PVI into buildings have generally been found to be the exception to the rule and not the norm.

Abstract

Pollution of underground water is fast becoming a global problem and South Africa is not immune to this problem. The principal objective of this paper is to investigate the effectiveness of laws and policies put in place to mitigate underground water pollution. The paper also seeks to examine the causes and types of underground water pollution followed by a closer look into the laws and policies in place to mitigate the pollution levels. Finally, the paper seeks to ascertain whether the current policies are properly implemented. The paper follows content analysis (desk research) to achieve the objectives. Policy recommendations are given based on the findings. {List only- not presented}

Abstract

The mineral rich basin of the West African region has vast reserves of gold, diamond as well as iron ore deposits. Throughout the regional geological setting characterised by structural variations and intrusive belts with metamorphic mineral rich sequences covered by saprolite soils, one common chemical constituent remains a constant in the water reserves. Arsenic is in high concentrations throughout the region with chemical ranges commonly above the various country guidelines as well as international IFC and WHO standards. The aqueous chemical species is associated with arsenopyrite rich mineralogy of the regional greenstone belts and highly weathered soils. This conference article and presentation investigates the natural source of the arsenic through baseline data as well as the effect of mining on the already high concentrations of arsenic in both the groundwater and surface water. Natural levels of various chemical species in the regional area are already high at baseline level. One of the main research questions is thus whether mining and other anthropogenic activities will have an impact on the environment or will the changes to concentrations be so insignificant to allow the ecosystems and water users to continue in their current ways without any effect. Various case studies in Burkina Faso, Liberia, Sierra Leone and other countries have been combined to investigate the arsenic-rich resources of the West African region through groundwater specialist investigative methods with emphasis on geochemical modelling of the fluid-rock and fluid-fluid interactions leading to the water quality in the region.

Abstract

The Gravity Recovery and Climate Experiment satellites detect minute temporal variation in the earth’s gravitational field at an unprecedented accuracy, in order to make estimation of the total water storage (TWS). GRACE provides a unique opportunity to study and monitor real time water variation in the hydrologic stores( snow, groundwater, surface water and soil moisture) due to increase or decrease in storage. The GRACE monthly TWS data are used to estimate changes in groundwater storage in the Vaal River Basin. The Vaal River Basin has been selected because it is one of the most water stressed catchment in South Africa; it is well-renowned for its high concentration of industrial activities and urbanized zones. Therefore, in order to meet future water demands it is critical to monitor and calculate changes in groundwater dynamics as an important aspect of water management, where such a resource is a key to economic development and social development.

Previous studies in the Vaal River Basin, where mostly localized focusing largely on groundwater quality and to a lesser extent groundwater assessment. Hydrological models have been generated for the whole of South Africa, many of this models does not take into account the groundwater. Thus, there is a significant gap in our understanding of surface and ground water dynamics in the Vaal River Basin. The paucity of data and monitoring networks is often the limitation in calculating changes in water storage over a large area, particularly in Africa. In this scenario GRACE is the only approach to estimate changes in hydrological stores as it covers large areas and generate real time data. It does not require information on soil moisture, which is often difficult to measure. The preliminary results indicate that the change in TWS anomaly derived from GRACE data is - 12.85 mm of vertical column of water at 300 km smoothing radius. The change in groundwater storage is calculated by incorporating hydrologic components to the TWS (work in progress). The results obtained from this study will be compared to existing hydrological models and results generated from models applicable to the semi-arid region of South Africa. It is anticipated that this satellite observation technique, GRACE, will provide an accurate estimate of change in groundwater storage. Furthermore, it will show the usefulness of satellite based techniques for improving our understanding of groundwater dynamic, which will improve water management practices.

Abstract

POSTER Water resources are not just lakes, glaciers and polar ice caps and rivers; however one of the largest water resources is underground water well-known as Groundwater. Groundwater is one of the most important source of water as it the huge reservoir for freshwater. Groundwater can be defined as water existing underneath the earth surface in rock bodies known as aquifers. Approximately 140 communities in South Africa depend on groundwater as the source of water (Department of water affairs and forestry, 1998). Nevertheless groundwater is vulnerably to pollutants resulting from surrounding environmental effects which lead to poor groundwater quality. Numerous environmental effects have a huge impact in polluting groundwater such as pesticides, seawater encroachment, sewage effluent discharges to the ground and storage tanks underground; hence one need to identify, evaluate and come up with solutions on eradication of all these environmental effects that lead to groundwater pollution ( Hearth 1983).

The objectives of the report will be based on minimizing the groundwater pollution at the source and to restore groundwater quality to extent that the beneficial users recognise its suitability. Inspection in University of the Western Cape (UWC) campus site and Rawsonville site will be conducted by BSc Environment and Water Science students of UWC in June using various tools in order to identify and monitor surrounding environmental effects towards groundwater pollution. UWC campus research site is located on top of the Cape Flats primary aquifer (unconfined sand aquifer); Cape Flat aquifer is overlain by an impermeable bedrock Malmesbury (shale) secondary fractured aquifer. Generally this borehole test will be based on testing on how the surrounding environmental impacts with various aquifer properties affect the groundwater quality or whether the surrounding environment interrupts the groundwater quality in Cape flats aquifer and Rawsonville site. The UWC campus site has low infiltration compared with Rawsonville site as it is surrounded by vegetation that plays role in trapping water from infiltrating therefore this aquifer is less likely to be contaminated by pollutants from the land surface, however with it being surrounded by residential areas and industries it is likely to be polluted. Rawsonville on the other hand is located in the grape farm which makes it easier for the site to be contaminated by fertilisers used for agricultural practice. The pumping test will further enable one in knowing the quantity of groundwater in UWC campus site and Rawsonville site thus extraction levels for municipal works, irrigation and so forth will be monitored in a correct manner (Department of water affairs and forestry, 1998). Finally groundwater models will be used to further investigation on the behaviour of groundwater systems.

Abstract

Numerous environmental concerns have been raised with the possible exploration and development of shale gas in the Karoo. One such concern is that deep borehole drilling and the hydraulic fracturing process may create conduits through which deep-seated groundwater could migrate to shallow aquifers.This study set out to characterise deep Karoo groundwaters and identify indicators of deep flow. It was not possible to obtain groundwater samples from the deep-seated shales that are being considered for shale gas exploration and development because no suitable deep boreholes exist. Instead, samples from thermal springs and two deep boreholes that pass through the shales were obtained as the best approximation of deep-seated groundwaters in the Karoo. Deep and shallow groundwaters were characterised and determinands were identified to differentiate these waters. A provisional guide on the limits for these determinands was developed, and at this stage, this list can be used for guidance on differentiating deep form shallow waters. The determinands that appear to be most reliable in identifying deep groundwater were grouped and prioritised for future monitoring programmes.

Abstract

Lake Sibayi (a topographically closed fresh water lake) and coastal aquifers around the lake are important water resources, which the ecology and local community depend on. Both the lake and groundwater support an important and ecologically sensitive wetland system in the area.
Surface and subsurface geological information, groundwater head, hydrochemical and environmental isotope data were analysed to develop a conceptual model of aquifer-lake interaction which would later be integrated into the three dimensional numerical model for the area. Local geologic, groundwater head distribution, lake level, hydrochemistry and environmental isotope data confirm a direct hydraulic link between groundwater and the lake. In the western section of the catchment, groundwater feeds the lake as the groundwater head is above lake stage, whereas along the eastern section, the presence of mixing between lake and groundwater isotopic compositions indicates that the lake recharges the aquifer. Stable isotope signals further revealed the movement of lake water through and below the coastal dune cordon before discharging into the Indian Ocean. Quantification of the 9 year monthly water balance for the lake shows strong season variations of the water balance components. Based on lake volume and flow through rate, it was further noted that the average residence time for water in the lake was about 6 years.
A recent increase in the rate of water abstraction from the lake combined with decreasing rainfall and rapidly increasing plantations in the catchment may result in a decrease in lake levels. This would have dramatic negative effects on the neighbouring ecosystem and allow for potential seawater invasion of the coastal aquifer.

Abstract

The karst aquifer downstream of the actively decanting West Rand Gold Field (a.k.a. the Western Basin) has for decades been receiving mine water discharge. Evidence of a mine water impact in the Bloubank Spruit catchment can be traced back to the early-1980s, and is attributed to the pumping out of so-called "fissure water" encountered during active underground mining operations for discharge on surface. Rewatering of the mine void following the cessation of subsurface mining activities in the late-1990s resulted in mine water decant in 2002. The last five hydrological years (2009?'10 to 2013?'14) have experienced the greatest volume and worst quality of mine water discharge in the 45-year flow and quality monitoring record (since 1979?'80) of the Bloubank Spruit system, causing widespread alarm and concern for the receiving karst environment. The focus of this attention is the Cradle of Humankind World Heritage Site, with earlier speculation fuelled by an initial dearth of information and poor understanding of the dynamics that inform the interaction of surface and subsurface waters in this hydrosystem.

Oblivious to these circumstances, the natural hydrosystem provides an invaluable beneficial function in mitigating adverse impacts on the water resources environment at no cost to society. The hydrologic and hydrogeologic framework that informs this natural benefaction is described in quantitative physical and chemical terms that define the interaction of allogenic and autogenic water sources in a subregional context before highlighting the regional benefit. The subregional context is represented by the Bloubank Spruit catchment, a western tributary of the Crocodile River, which receives both mine water and municipal wastewater effluent and therefore bears the brunt of poor quality allogenic water inputs. The regional context is represented by the Hartbeespoort Dam catchment, which includes major drainages such as the Crocodile River to the south and its eastern tributaries the Jukskei and Hennops rivers, and the Magalies River and its southern tributary the Skeerpoort River to the west. Each of these drainages contribute to the quantity and quality of water impounded in the dam, and an analysis of their respective contributions therefore provides an informative measure of the temporal mine water impact in a regional context.

The result indicates that amongst other metrics, the total dissolved solids (TDS) load delivered by the Bloubank Spruit system in the last five hydrological years amounted to 11% of the total TDS load delivered to Hartbeespoort Dam in this period, ranking third behind the Jukskei River (49%) and the Hennops River (30%), and followed by the Magalies River (5%), Crocodile River (4%) and Skeerpoort River (1%). By comparison, the long-term record reflects changes only in the contributions of the impacted Bloubank Spruit (10%) and pristine Skeerpoort River (2%). The difference is attributed mainly to the intervention of Mother Nature.

Abstract

Work is being conducted in Limpopo province following a large volume spill of petroleum hydrocarbons that took place from a leaking underground pipeline, resulting in significant volume of groundwater contamination. This is by far the largest spillage to date in South Africa.10 million litres of jet fuel leaked for a 15 year period from an underground pipeline until its detection 13 years ago. The leak has since been repaired and bailing was the first method proposed and applied to the recovery of the free product, but due to its ineffectiveness the "quicker"pump-and-treat method replaced it. Due to complications caused by pum-and-treat, the process was stopped in 2007 and is about to be reinstated again in 2013. A village to the north of the spillage depends mostly on groundwater. Immediate remediation actions have to be established before the contaminant reaches their abstraction boreholes. This project aims to model the areal extent of this contaminant and eventually design a life cycle of remediation. This will be based on comparison between existing models dated 2002 and 2012 respectively for background information and to address the influence of ten years' bailing, pumping and natural attenuation. The new model will focus around implementing remedial measures to prevent further migration of the free phase or dissolved plumes in order to protect the water supply to the surrounding villages. The progress will be presented in this paper.

Abstract

At a regional scale, groundwater recharge is often calculated using surface water models. Precipitation and surface water runoff are easier to measure than groundwater recharge, and evapotranspiration can be estimated with relative accuracy using indirect methods. In modelling, surface water measurements can be used for calibration, and groundwater is the residual term in the water balance of the catchment. This can give a good indication of regional trends, but provides limited scope for the accommodation of groundwater system characteristics and recharge processes. Recently, much research has been focused on the interaction of surface and groundwater models. The coupling of physically based surface and ground water models allows for calibration of the model using both surface and groundwater data while providing scope for improved insight into the processes which define the interaction of groundwater with the rest of the water cycle. For example: stream discharge, interflow, preferential flow through the unsaturated zone and interaction with surface water retained in dams and wetlands. One such model is GSflow (United States Geological Survey), which we are applying to the Upper Vaal Catchment. This model integrates the surface water model PRMS (Precipitation-Runoff Modelling System) with MODFLOW (Modular Groundwater Flow model). The model is initially being calibrated at quaternary catchment scale, starting with the surface water components and later adding the groundwater system. The quaternary catchment is subdivided into smaller, topologically defined hydrological response units. This scaling allows for a better understanding of how well the characteristics of the units are represented in the physical processes incorporated into the model, so that ultimately the sensitivity analysis can incorporate these processes. The results will be compared to current work on recharge being carried out using GRACE data and previous work done in the same area. Once the entire model has been calibrated, there will be scope to calculate future scenarios, allowing for climate and land-use changes. A brief overview of existing work as well as methods and initial results and sensitivity analysis will be presented.

Abstract

The way in which groundwater is utilized and managed in South Africa is currently being reconsidered, and injection wells offer numerous possibilities for the storage, disposal and abstraction of the groundwater resource for municipalities, rural communities, mining, oil and gas, and a multitude of other industries. This presentation is about the North Lee County Reverse Osmosis Water Treatment Plant Injection Deep Injection Well project in southwest Florida in the United States. Water is plentiful in Florida, but it is not drinking water quality when it comes out of the ground. As such, treating water from wells is an important part of water supply in the coastal regions of the state. One form of treatment is reverse osmosis (RO), which generates a brine concentrate waste. The concentrate must then be disposed of, and a preferred method of disposal is an injection well because the disposal is not visible to the general public. The injection well project was associated with the construction of a large water treatment plant. The emphasis of this presentation is on the drilling and technical work in the field for this injection well, and to illustrate the rigorous requirements of drilling, constructing and testing a Class I injection well. Class I injection wells are permitted by the United States Environmental Protection Agency (US EPA) for injecting hazardous waste, industrial non-hazardous liquid, and/or municipal wastewater beneath the lowermost Underground Source of Drinking Water (USDW). Aquifer storage and recovery (ASR) wells are permitted as Class V injection wells by the US EPA. The permitting of an injection well is rigorous and requires state and federal approval before, during and after the field portion of the project. {List only- not presented}

Abstract

This study was aimed at developing an integrated groundwater-surface water interaction (GSI) model for a selected stretch of the Modder River by considering the following five different aspects of the GSI: 1) the distribution of different aquifer systems (structural connectivity) along the river 2) the hydraulic connectivity between the aquifer systems, 3) the volumes of water abstracted from the aquifers by streamside vegetation, 4) the volumes of water replenished to the groundwater system through rainfall recharge, and 5) the exchange fluxes between the various components of the groundwater-surface water system. The distribution of the aquifer systems was investigated by means of a) geo-electrical surveys, and b) in situ slug tests while their hydraulic connectivity was investigated by hydrogeochemical routing. The volumes of water abstracted by streamside vegetation were estimated by the quantification of the transpiration from individual plants and the groundwater recharge was estimated by a root zone water balance. The water exchange fluxes between the groundwater and surface water were determined from a simple riparian zone groundwater budget. The results of the geo-electrical surveys and slug tests allowed the delineation of the riparian area aquifers (RAA) and the terrestrial area aquifers (TAA) on both the south-eastern and north-western sides of the river. Based on the results of hydrochemical analyses, saturation indices and inverse mass balance modelling, the GSI involves flow of water from the TAA to the RAA, and finally to the river on the south-eastern side while it involves flow from the river into the RAA with a limited exchange with the TAA on the south-eastern side. The dominant vegetation on the study area was found to be the Acacia karroo and Diospyros lycioides. The close similarities in isotope compositions of the xylem sap and the borehole water samples suggested that the Acacia karroo sourced its water from the groundwater storage while differences in isotope compositions suggested that the Diospyros lycioides did not source water from the groundwater storage at the time of measurement. The results of groundwater recharge estimation in the study area highlighted the fact that both the antecedent moisture and the rainfall amounts determine whether recharge to the groundwater system will take place. Finally, the results of baseflow estimation indicated that the river is a gaining stream along the south-eastern reach while acting as a losing stream along the north-western reach.

Abstract

Groundwater is used extensively in the Sandveld for the irrigation of potatoes. The groundwater resources are plentiful and of good enough quality for the production of potatoes, however there has been a significant increase in potato production especially from the period 1975 to 2008. The area planted has increased from 2 369 Ha to 6 715 Ha in this period. The rate of increase has reduced significantly since 2008 and is now quite consistent at approximately 6 800 ha/a. In the region groundwater is vital for the proper functioning of ecosystems and it is also the sole source of water for five towns in the area and supplies most of the domestic water for the farms in the area. Thus the abstraction of groundwater for agriculture needs to be carefully assessed to ensure impacts on other systems and users do not occur.

For this reason Potatoes South Africa has taken the responsible approach of investing in the on-going monitoring of groundwater levels (quantity) and groundwater quality in the Sandveld. PSA appointed the groundwater consultancy, GEOSS to do this monitoring and they have continually committed to this monitoring for the past 10 years. The long term monitoring data has been very valuable in that it shows groundwater trends and the spatial distribution of the measured parameters. Regarding the trends it is clear that certain areas are being over-abstracted and groundwater levels are dropping. In the more critical areas, intervention has occurred - boreholes were closed down and the points of abstraction distributed over a much wider area. This region (Lower Langvlei River) is showing clear signs of recovery both in terms of groundwater levels and quality. The other localized areas where negative trends are evident the land owners have been informed and are aware of the problems. In some critical areas continuous groundwater level loggers have been installed to monitor trends.

The long-term groundwater monitoring, has helped significantly in addressing the negative perception about the widespread impact on groundwater resources due to potato cultivation in the Sandveld. It is important the monitoring continues and regular feedback provided to land owners. The monitoring that the local municipality and the Department of Water Affairs do also needs to be integrated into a single database. It is evident that the initial abstraction of groundwater in the pioneer days of potato cultivation did impact groundwater resources and associated ecosystems in the Sandveld, however currently as the rate of expansion has reduced and stabilized, the groundwater resources closely mimic rainfall patterns and the areas that are being impact are localized, well known and being addressed.

Abstract

{List only- not presented}

Abstract

South Africa is a semi-arid country. Its average rainfall of roughly 464 mm/a is much lower than the world average of 860 mm/a. Due to a shortage of surface water, groundwater plays an important role in the water supply to domestic, industrial, agricultural and mining users. Groundwater exploration has become increasingly dependent on the use of geophysical techniques to gain insight into the subsurface conditions to minimise the risk of drilling unsuccessful production boreholes. Dolerite dykes and sills are often targeted during groundwater exploration programmes in Karoo rocks. Due to the high pressures and temperatures that reigned during the emplacement of these structures, the sedimentary host rocks along the margins of the intrusive structures are typically strongly altered. These altered zones are often heavily fractured and, as a result, have increased hydraulic conductivities as compared to the unaltered host rock. The altered zones often act as preferential pathways for groundwater migration, making them preferred targets during groundwater exploration.
In conjunction with magnetic methods, electromagnetic (EM) methods are the techniques most often used for groundwater exploration in Karoo rocks. In South Africa, the ground EM system most commonly used is the Geonics EM34-3 frequency-domain system. This system has already been in use for a few decades, yet a great deal of uncertainty still remains regarding the interpretation of anomalies recorded over geological structures associated with lateral changes in electrical conductivity. This uncertainty results from the fact that the Geonics EM34-3 system employs measurements of the out-of-phase components of the secondary magnetic field relative to the primary magnetic field to calculate an apparent conductivity for the subsurface. The apparent conductivity profiles across lateral changes in conductivity often do not make intuitive sense.
This project focuses on the development of guidelines for the interpretation of anomalies recorded with the EM34-3 system across intrusive structures of geohydrological significance in Karoo rocks. Geophysical surveys were conducted across known dykes and sills in an attempt to systematically investigate the responses recorded across these structures. Data from magnetic and two-dimensional electrical resistivity tomography surveys, as well as from geological borehole logs in some cases, were used as controls to assist in the interpretation.

Abstract

Geochemical investigations for a planned coal mine indicated that the coal discard material that would be generated through coal processing would have a significant potential to generate acid rock drainage. A power station is planned to be developed in close proximity to the coal mine, and the potential for co-disposal of coal discard with fly-ash material required examination. Fly-ash is typically highly alkaline and has the potential to neutralise the acidic coal discard material. In order to investigate whether this was a viable option, the geochemical interaction between the coal discard and fly-ash was investigated. Geochemical data, including acid-base accounting, total chemical compositions, leach test data and kinetic test data, were available for the coal discard material and the fly-ash. Using these data as inputs, a geochemical model was developed using Phreeqci to predict the pH of leachate generated by mixing different ratios of coal discard and fly-ash. The ratio of coal discard to fly-ash was established that would result in a leachate of neutral pH. Using this prediction, a kinetic humidity cell test was run by a commercial laboratory for a total of 52 weeks using the optimal modelled ratio of discard and fly-ash. Although leachate pH from the kinetic test initially reflected a greater contribution from fly-ash, the pH gradually decreased to the near-neutral range within the first 20 weeks, and then remained near-neutral for the remainder of the 52-week test. During this period, sulphate and metal concentrations also decreased to concentrations below those generated by either the fly-ash or coal discard individually. The addition of fly-ash to the coal discard material provided sufficient neutralising capacity to maintain the near-neutral pH of the co-disposal mixture until the readily available sulphide minerals were oxidized, and the oxidation rates decreased. At the end of the test, sufficient neutralising potential remained in the humidity cell to neutralise any remaining sulphide material. The results of this investigation suggested that, under optimal conditions, co-disposal of fly-ash with coal discard is a viable option that can result in reduced environmental impacts compared to what would be experienced if the two waste materials were disposed of separately.

Abstract

The provision, usage and discharge of water resources are major concerns for coal mines, both underground and opencast. Water resources in a coal mining environment will often account for a significant portion of the daily operational cost. In order to cut costs, the mine will often collect as much runoff as possible to recycle for future use. This on-going recycling of site water and management of the resource demands a complete site water balance model in order to understand the dynamics of the resource within the boundaries of the mine. To improve the understanding of the dynamics of the resource on a much larger scale, and the effect it will have on recharge in an open cast coal mine environment, one must consider alternative modelling approaches which can compensate for such conditions. This amounts to describing recharge as a modelling component in a physically based distributed model. The main goal of this project is to calculate recharge into the main pit at this specific colliery by applying parameters on a quaternary catchment scale. The colliery is located just west of the town of Ogies, Mpumalanga on the peripheral region of the quaternary catchment B20G. The physiography of the quaternary catchment B20F is described as a central Highveld region gently sloping to the north. The geohydrological modeling application MIKE SHE (developed by DHI) was used to develop a fully integrated catchment model. The model was created mainly to simulate the impact of human activities on the hydrological cycle and hence on water resource development and management. Different modules of MIKE SHE that was used during the modelling stage include saturated- and unsaturated flow and a small degree of overland flow.

Key words: Mpumalanga, MIKE SHE, recharge

Abstract

South Africa's water legislation of has often been deemed 'progressive', yet implementation of policies can be weak in terms of groundwater - a resource inherently more difficult to govern than surface water due to its invisibility, difficulties in mapping, the long timescales involved and its ties to land tenure. Furthermore, shallow, hard rock aquifers are frequently perceived as "self-controlling" by their users and thus not requiring active management. This view is however not optimal in areas with a large dependence on groundwater for livelihoods invoking the question what happens between the periods of over-abstraction and the recharge events that replenish them? There is a need for better management, particularly in light of climate variability when recharge episodes can be infrequent and drought can lead to extra calls on aquifers.

Seasonal climate forecasts have the potential to provide information to contribute to groundwater management strategies. This study focuses on the case of Dendron in Limpopo Province. Numerous consultancy reports have been released over the past few decades regarding the over-exploitation of groundwater due to the area's long history of potato cultivation via groundwater-irrigation. The primary aim of this study is to determine the potential contribution of seasonal forecast information in the Dendron area for agricultural groundwater management, given insights to the needs of commercial farmers in the area the dominant users of groundwater. We examine the effectiveness of formal and informal groundwater management strategies in the area and then consider current use of seasonal forecasts and their potential value for decision-making. We also highlight the need for a better understanding of the role of seasonal climate variability in groundwater systems to understand their potential as climate buffers during periods of drought. Insights will be drawn from interviews with farmers and representatives from the Department of Water and Sanitation, and a needs-analysis workshop with the farming community. Constraints and barriers to uptake are also investigated, looking at factors such as data quality and availability, timing of forecasts, perceptions of forecasts, and their communication.

Abstract

POSTER The Fountains East and Fountains West groundwater compartments (by means of the Upper and Lower Fountain springs) have been supplying the City of Pretoria with water since its founding in 1855. These adjacent compartments which are underlain by the Malmani dolomites of the Chuniespoort Group are separated by the Pretoria syenite dyke and are bounded to the north by the rocks of the Pretoria Group (Timeball Hill Formation). Swallow holes and paleosinkholes play important roles in recharge in karst environments. Available sinkhole data and geotechnical percussion borehole logs are being collated to compile a detailed conceptual geological model. Inorganic chemistry data (2007 - 2012) as well as spring discharge volumes (2011 - 2012) for the Upper and Lower Fountain springs, supplied by the City of Tshwane Municipality, is being used to characterise the two compartments. This is done by means of piper diagrams, stiff diagrams and temporal plots. Isotope data for the Upper and Lower Fountain springs are available for 1970 to 2007. ?D and ?18O data from the Upper and Lower Fountain springs are plotted against each other and the Global Meteoric Water Line. Other stable isotopes (including 14C and 3H) are also plotted as time trends and interpreted. Interpretation of the combined geotechnical, chemical and isotope data will aid in understanding the karst aquifer and the controls on groundwater system within and possibly between these compartments.

Abstract

Modelling of groundwater systems and groundwater-surface water interaction using advanced simulation software has become common practice. There are a number of approaches to simulate Lake-aquifer interactions, such as the LAK Package integrated into MODFLOW, the high conductivity and fixed stage approaches. LAK and the high conductivity approaches were applied and compared in simulating Lake- aquifer interaction in the Lake Sibayi Catchment, north-eastern, South Africa using the finite difference three-dimensional groundwater flow model, Visual MODFLOW Flex under steady state conditions. The steady state model consisted of two layers: an upper layer consisting of the Sibayi, KwaMbonambi, Kosi Bay and Port Durnford Formations which have similar characteristics, and a lower model layer representing the karst, weathered and calcareous Uloa Formation. The bottom model boundary is constrained by the impermeable Cretaceous bedrock. The model area covers the surface and groundwater catchments of Lake Sibayi which is constrained in the east by the Indian Ocean. A no-flow boundary condition is assigned to the northern, western and southern sides and a constant head boundary is assigned to the eastern side. The Mseleni River and neighbouring plantations were modelled using the River and Evapotranspiration boundary conditions respectively. Input parameters for the various boundary conditions were obtained from the previously developed high resolution conceptual model, including recharge

Abstract

POSTER Vanwyksvlei had always experienced problems with water supply and quality of drinking water. The town relies on 6 boreholes to supply the town with drinking water. Since 2011 the town was told not to use the water that was supplied from the borehole called Soutgat. This meant that the town could now rely only on the water being supplied from the other 5 boreholes.From 2011 till present the town has experienced a lot of problems regarding water supply, due to the fact that the Soutgat could not be used anymore. Extra stress was put on the other boreholes and these were pumped almost dry. The two aquifers are currently failing and monitoring data since 2009 shows that the water levels of the town are decreasing. Due to low rainfall, recharge to the boreholes are much lower, which exacerbates the problem. This poster will examine the effectiveness of using the Blue Drop system in small towns with limited water supply, at the hand of a case study of Vanwyksvlei. This review will take into account factors such as the point at which water quality is tested in the water supply system, the type of water treatment available for the town and a review the usefulness of certain standards in the Blue Drop system which may indicate failure of supply sources.

Abstract

The 'maintainable aquifer yield' can be defined as a yield that can be maintained indefinitely without mining an aquifer. It is a yield that can be met by a combination of reduced discharge, induced recharge and reduced storage, and results in a new dynamic equilibrium of an aquifer system. It does not directly or solely depend on natural recharge rates. Whether long-term abstraction of the 'maintainable aquifer yield' can be considered sustainable groundwater use should be based on a socio-economic-environmental decision, by relevant stakeholders and authorities, over the conditions at this new dynamic equilibrium.
This description of aquifer yields is well established scientifically and referred to as the Capture Principle, and the link to groundwater use sustainability is also well established. However, implementation of the Capture Principle remains incomplete. Water balance type calculations persist, in which sustainability is linked directly to some portion of recharge, and aquifers with high use compared to recharge are considered stressed or over-allocated. Application of the water balance type approach to sustainability may lead to groundwater being underutilised.
Implementation of the capture principle is hindered because the approach is intertwined with adaptive management: not all information can be known upfront, the future dynamic equilibrium must be estimated, and management decisions updated as more information is available. This is awkward to regulate.
This paper presents a Decision Framework designed to support implementation of the capture principle in groundwater management. The Decision framework combines a collection of various measures. At its centre, it provides an accessible description of the theory underlying the capture principle, and describes the ideal approach for the development operating rules based on a capture principle groundwater assessment. Sustainability indicators are incorporated to guide a groundwater user through the necessary cycles of adaptive management in updating initial estimations of the future dynamic equilibrium. Furthermore, the capture principle approach to sustainable groundwater use requires a socio-economic-environmental decision to be taken by wide relevant stakeholders, and recommendations for a hydrogeologists' contribution to this decision are also provided. Applying the decision framework in several settings highlights that aquifer assessment often lags far behind infrastructure development, and that abstraction often proceeds without an estimation of future impacts, and without qualification of the source of abstracted water, confirming the need for enhanced implementation of the capture principle.

Abstract

Water monitoring is a key aspect in the mining industry, in terms of gathering baseline data during the pre-construction stage, identifying potential areas of concern and mitigating source pollutants during the operational stage. A proper water monitoring program assists in the monitoring of plume development and water level rebound during the closure phase. The data made available through consistent long term monitoring should not be underestimated. Monitoring the effect that coal mine operations have on the water quality and quantity of surface and groundwater resources is a complex and multidisciplinary task. Numerous methodologies exist for monitoring of this kind. This paper will supply an overview of the water- rock chemistry associated with coal mine environments and the key indicator elements that should be focused on for water monitoring as well a review of the Best Practice Guidelines requirements in terms of water monitoring. Two case studies of coal mines in KwaZulu Natal will be reviewed, the key challenges outlined and mitigation measures implemented. The impact of requirements such as those set out by the Department of Water and Sanitation in terms of strict water quality limits for water containment and waste facilities as specified by Water Use Licences has also created unrealistic non-compliance conditions. The initial approach to creating a water monitoring programme should involve first identifying gaps in previous datasets and delineating potential sources of contamination. The sampling frequency will depend primarily on the water resource being monitored and the water quality analysis will depend on the type of facility. The facilities required for a specific situation will depend on the type and amount of waste generated, potential for leachate formation, vulnerability of groundwater resources and potential for water usage or resource sensitivity.

Abstract

Globally, a growing concern have been that the heavy metal contents of soil are increasing as the result of industrial, mining, agricultural and domestic activities. While certain heavy metals are essential for plant growth as micronutrients, it may become toxic at higher concentrations. Additionally, as the toxic metals load of the soil increases, the risk of non-localized pollution due to the metals leaching into groundwater increases. The total soil metal content alone is not a good measure of risk, and thus not a very useful tool to determine potential risks to soil and water contamination. The tendency of a contaminant to seep into the groundwater is determined by its solubility and by the ratio between the concentration of the contaminant sorbed by the soil and the concentration remaining in solution. This ratio is commonly known as the soil partitioning or distribution coefficient (Kd). A higher Kd value indicate stronger attraction to the soil solids and lower susceptibility to leaching. Studies indicate that the Kd for a given constituent may vary widely depending on the nature of the soil in which the constituent occurs. The Kd of a soil represents the net effect of several soil sorption processes acting upon the contaminant under a certain set of conditions. Soil properties such as the pH, clay content, organic carbon content and the amount of Mn and Fe oxides, have an immense influence on the Kd value of a soil. Kds for Cu, Pb and V for various typical South African soil horizons were calculated from sorption graphs. In most cases there were contrasting Kd values especially when the cations, Cu and Pb, had high contamination levels, the value for V was low. There is large variation between the Kds stipulated in the Framework for the Management of Contaminated land (as drafted by the Department of Environmental Affairs) and the values obtained experimentally in this study. The results further indicate that a single Kd for an element/metal cannot be used for all soil types/horizons due to the effect of soil properties on the Kd. The results for Cu and Pb indicated that the Kds can range in the order of 10 to 10 000 L/kg for Cu and 10 to 100 000 L/kg for Pb. The variation in V Kd was not as extensive ranging from approximately 10 to 1 000 L/kg. {List only- not presented}

Abstract

Simple and cost-effective techniques are needed for land managers to assess and quantify the environmental impacts of hydrocarbon contamination. During the case study, hydrocarbon plume delineation was carried out using hydrogeological and geophysical techniques at a retail filling station located in Gauteng.

Laboratory and controlled spill experiments, using fresh hydrocarbon product, indicate that fresh hydrocarbons generally have a high electrical resistivity, whilst biodegraded hydrocarbons have a lower resistivity. This is attributed to the changes from electrically resistive to conductive behaviour with time due to biodegradation. As such, it should be possible to effectively delineate the subsurface hydrocarbon plume using two-dimensional (2D) Electrical Resistivity Tomography (ERT). As part of the case study, two traverses were conducted using an Electric Resistivity Tomography (ERT) survey with an ABEM SAS1000 Lund imaging system. The resultant 2D tomographs were interpreted based on the resistivity characteristics and subsurface material properties to delineate the plume. Localised resistivity highs were measured in both models and are representative of fresh hydrocarbons whereas areas of low resistivity represented areas of biodegraded hydrocarbons.

More conventional plume delineation techniques in the form of intrusive soil vapour and groundwater vapour surveys as well as hydrochemical anlayses of the on-site monitoring wells were used to compare the results and to construct the detailed Conceptual Site Model. During the investigation, four existing monitoring wells located on the site and additional two wells were installed downgradient of the Underground Storage Tanks (USTs) in order to determine the extent of the plume.

In conclusion, a comparison was found between the groundwater results and geophysical data obtained during the case study and it was concluded that ERT added a significant contribution to the Conceptual Site Model.