Conference Abstracts

All Abstracts were presented at the Groundwater Conferences

Displaying 751 - 795 of 795 results
Title Presenter Name Presenter Surname Area Conference year Sort descending Keywords

Abstract

The aquifers in the Chao Phraya River basin region were abundant in groundwater. Lately, the groundwater level has been declining due to agricultural activities. While in the wet season, these areas frequently suffered from flooding due to lower elevation than their surroundings. The Managed Aquifer Recharge (MAR) methods were applied to ease problems by constructing artificial recharge wells which can detain stormwater runoff and let it gradually infiltrate into the aquifer directly. For decades, the Department of Groundwater Resources started the MAR project to alleviate groundwater depletion and flooding over specific areas. However, most of the projects in the past lacked follow-up results and evaluation. Thus, later projects attempted to study recharge processes to evaluate the volume of recharged water through structures and calculate the infiltration rate through filter layers within the structures.

Recently, the field experiments of artificial groundwater recharge were conducted as 8-hour and 20-day experiments with shallow recharge wells in the Chao Phraya River basin regions. These two types of experiments provided similar results. The average recharge rates of 8-hour and 20-day experiments are 2.22 m3/hr and 2.57 m3/hr, respectively. Recharge rates of each well were independently distinct depending on sedimentation characteristics, aquifer thickness, and volume of dry voids. During the test, the recharge well continuously encountered the problem of sediment clogging due to using untreated water from neighbouring streams and ponds. This clogging issue needed to be treated regularly to maintain the efficiency of the recharge well.

Abstract

Water and contaminant transport processes in the vadose zone through preferential flow paths can be understood using environmental and artificial tracer methods. Further improvement in tracer techniques can be achieved by applying numerical modelling techniques of both water and solute transport, accounting for additional information on water movement and the matric potential of the vadose zone. The vadose zone is often ignored as a key component linking the land surface to the groundwater table, even though it acts as a filter that removes or stores potential contaminants. The water transit time between the surface and the groundwater table is frequently investigated using artificial tracers that normally show conservative behaviour. The main advantage is that the input function can be clearly defined, even though artificial tracers can generally only be applied over a relatively small area. The research is expected to provide insight into the selection and use of environmental and artificial tracers as markers for detecting and understanding the contaminant transport processes and pathways of contaminants in altered vadose zone environments (open-pit quarry). The impact is improved characterisation of the pathways, transport and migration processes of contaminants, and residence times, leading to the development of appropriate conceptual and numerical models of vadose zone flow processes that consider various contaminant sources. The principal aim is, therefore, to systematically examine the transport mechanisms and associated pathways of different environmental and artificial tracers in an open-pit quarry.

Abstract

An approach for evaluating the sustainability of managed aquifer recharge (MAR) has been developed and applied in Botswana. Numerical groundwater modelling, water supply security modelling (SWWM) and multi-criteria decision analysis (MCDA) are combined to thoroughly assess hydrogeological conditions, supply and demand over time and identify the most sustainable options. Botswana is experiencing water stress due to natural conditions, climate change and increasing water demand. MAR has been identified as a potential solution to increase water supply security, and the Palla Road aquifer, located 150 km northeast of the capital, Gaborone, has been identified as a potential site. To evaluate the potential of MAR and if it is suitable for improving water supply security, three full-scale MAR scenarios were evaluated based on their technical, economic, social and environmental performance relative to a scenario without MAR. The numerical groundwater model and the WSSM were used iteratively to provide necessary input data. The WSSM is a probabilistic and dynamic water balance model used to simulate the magnitude and probability of water shortages based on source water availability, dynamic storage in dams and aquifers, reliability of infrastructure components, and water demand. The modelling results were used as input to the MCDA to determine the sustainability of alternative MAR scenarios. The results provide useful decision support and show that MAR can increase water supply security. For the Palla Road aquifer, storage and recovery with a capacity of 40 000 m3 /d is the most sustainable option.

Abstract

Water balance partitioning within dryland intermittent and ephemeral streams controls water availability to riparian ecosystems, the magnitude of peak storm discharge and groundwater replenishment. Poorly understood is how superficial geology can play a role in governing the spatiotemporal complexity in flow processes. We combine a new and unusually rich set of integrated surface water and groundwater observations from a catchment in semi-arid Australia with targeted geophysical characterisation of the subsurface to elucidate how configurations of superficial geology surrounding the stream control the variability in streamflow and groundwater responses. We show how periods of stable stream stage consistently follow episodic streamflow peaks before subsequent rapid recession and channel drying. The duration of the stable phases increases in duration downstream to a maximum of 44±3 days before reducing abruptly further downstream. The remarkable consistency in the flow duration of the stable flow periods, regardless of the size of the preceding streamflow peak, suggests a geological control. By integrating the surface water, groundwater and geological investigations, we developed a conceptual model that proposes two primary controls on this behaviour which influence the partitioning of runoff: (1) variations in the permeability contrast between recent channel alluvium and surrounding deposits, (2) the longitudinal variations in the volume of the recent channel alluvial storage. We hypothesise optimal combinations of these controls can create a ‘Goldilocks zone’ that maximises riparian water availability and potential for groundwater recharge in certain landscape settings and that these controls likely exist as a continuum in many dryland catchments globally.

Abstract

Groundwater (GW) is a target of climate change (CC), and the effects become progressively more evident in recent years. Many studies reported the effects on GW quantity, but of extreme interest is also the assessment of qualitative impacts, especially on GW temperature (GWT), because of the consequences they could have. This study aims to systematically review the published papers dealing with CC and GWT, to determine the impacts of CC on GWT, and to highlight possible consequences. Scopus and Web of Science databases were consulted, obtaining 144 papers. However, only 45 studies were considered for this review after a screening concerning eliminating duplicate papers, a first selection based on title and abstract, and an analysis of topic compatibility through examination of the full texts. The analysed scientific production from all five continents covers 1995-2023 and was published in 29 journals. As a result of the review, GWT variations due to CC emerged as of global interest and have attracted attention, especially over the past two decades, with a multidisciplinary approach. A general increase in GWTs is noted as a primary effect of CC (especially in urban areas); furthermore, the implications of the temperature increase for contaminants and groundwater-dependent ecosystems were analysed, and various industrial applications for this increase (e.g. geothermy) are evaluated. It’s evident from the review that GWT is vulnerable to CC, and the consequences can be serious and worthy of further investigation.

Abstract

Groundwater is an essential source of water worldwide. The increased reliance on groundwater has caused the mining of many aquifers, a situation compounded by climate change, rising surface-air temperature, declining precipitation, and reduced groundwater recharge in many regions. The global annual intensity of groundwater use rose from 128 to 155 m3 per capita between 1950 (when the world population was 2.5 billion people) and 2021 (when the population was 7.9 billion people) and is herein projected to rise to 178 m3 per capita by 2050 as the world’s population is projected to increase (to 9.7 billion people by 2050) throughout the rest of the 21st century and beyond. This study projects a global annual groundwater depletion of 1,008 km3 by 2050, representing a 256% rise from the estimated 2010 depletion. This projection is most likely a lower bound of the actual groundwater depletion that would be realized considering environmental flows, historical trends of global economic growth, and climate-change impacts, thus being a harbinger of rising environmental degradation (e.g., land subsidence, seawater intrusion, streamflow reduction, aridification). Measures to achieve groundwater sustainability are herein identified.

Abstract

Identifying groundwater recharge and discharge areas across catchments is critical for implementing effective strategies for salinity mitigation, surface water and groundwater resource management, and ecosystem protection. This study seeks to identify potential GW-SW discharge and recharge areas around the Barotse Floodplain. The results of remote sensing analysis using the Normalised Difference Vegetation Index (NDVI) show that the vegetation is sensitive to the dynamics of groundwater level, with shallower levels (< 10 m) in the lower reaches compared to deeper levels (>10 m) in the upper catchment). These zones are further investigated and likely represent geological variability, aquifer confinement and the degree of GW-SW interactions. GW-SW interactions likely are influenced by an interplay of factors such as water levels in the groundwater and surface level and hydrogeological conditions. Based on the findings, the wetland hosts riparian vegetation species responsive to the groundwater dynamic. NDVI can thus be used as a proxy to infer groundwater in the catchment. Therefore, effective water resources management of the floodplain should be implemented through conjunctive management of groundwater and surface water.

Abstract

Aquifer storage and recovery (ASR) can play a vital role in sustaining water availability to cope with increasing weather extremes. In urban areas, ASR systems may provide flooding risk mitigation and support urban greenery. However, such systems are often relatively small and therefore, their recovery performance depends more strongly on site-specific storage conditions such as dispersion and displacement by ambient groundwater flow. In this study, we evaluated the impact of these factors by adapting and developing analytical solutions and numerical modelling, with recently established Urban ASR systems as a reference for a wide range of realistic field conditions. We validated the accuracy and usefulness of the analytical solutions for performance anticipation. Results showed that a simple, analytically derived formula describing dispersion losses solely based on the dispersion coefficient (α) and the hydraulic radius of the injected volume (Rh) provided a very good match for all conditions tested where α/Rh<0.2. An expansion of the formula to include the development of recovery efficiency with subsequent cycles (i) was also derived and in keeping with simulation results. Also, displacement losses were found to be significant at groundwater flow velocities that are typically considered negligible, particularly as displacement and dispersion losses disproportionally enforced each other. For specific conditions where the displacement losses are dominant, using a downgradient abstraction well, effectively resulting in an ASTR system, might be beneficial to increase recovery efficiencies despite increased construction costs and design uncertainty.

Abstract

Understanding and quantifying hydrology processes represent a mandatory step in semi-arid/arid regions for defining the vulnerability of these environments to climate change and human pressure and providing useful data to steer mitigation and resilience strategies. This generally valid concept becomes even more stringent for highly sensitive ecosystems, such as small islands like Pianosa. The project intends to deploy a multi-disciplinary approach for better understanding and quantifying the hydrological processes affecting water availability and their evolution, possibly suggesting best practices for water sustainability.

First results pointed out as over the last decade the precipitation regime has led to a major rate of evapotranspiration and minor effective infiltration that caused a decreasing of piezometric level over several years. Quantity and chemical-isotopic features of rainfall and effective infiltration water measured/collected by a raingauge and a high precision lysimeter describe the hydrological processes at soil level and characterize the rate and seasonality of groundwater recharge. Hydrogeological and geochemical data of groundwater are highlighting the distribution and relationship among different groundwater components, including the seawater intrusion. Furthermore, the comparative analyses of continuative data monitoring in wells and weather station showed the presence of possible concentrated water infiltration processes during rainfall extreme events that induce a quick response of shallow groundwater system in terms of water level rise and decrease of electrical conductivity. Thus, elements of vulnerability of the aquifer to pollution are pointed out, as well as the possibility to provide technical solutions for enhancing water infiltration and groundwater availability.

Abstract

Underground coal gasification (UCG) is a high-temperature mining method that gasifies coal in situ to produce a synthetic gas that can be used as feedstock for industrial purposes. Coal conversion leads to mineral transformation in the gasifier, which ultimately interacts with the rebounding groundwater post-gasification. This poses a groundwater contamination risk, the biggest environmental risk from a UCG geo reactor. There is currently no model for UCG operators and regulators to assess the total risk of groundwater contamination from UCG operations. This study collates literature on groundwater contamination from UCG operations and presents a workable but comprehensive groundwater risk assessment model for a spent UCG chamber. The model follows the source-pathway-receptor arrangement where groundwater contamination sources are identified as ash, char, roof and floor. All possible pathways are assessed for hydraulic connections with the spent geo-reactor via acceptable geochemical tests, including stable isotopes, hydrochemistry and stratification analysis. Finally, the receptor aquifers (e.g. shallow aquifers) are monitored periodically to determine if contamination has occurred.

Abstract

Managed aquifer recharge (MAR) has become increasingly popular in Central Europe as a sustainable, clean, and efficient method for managing domestic water supply. In these schemes, river water is artificially infiltrated into shallow aquifers for storage and natural purification of domestic water supply, while the resulting groundwater mound can simultaneously be designed to suppress the inflow of regional groundwater from contaminated areas. MAR schemes are typically not managed based on automated optimization algorithms, especially in complex urban and geological settings. However, such automated managing procedures are critical to guarantee safe drinking water. With (seasonal) water scarcity predicted to increase in Central Europe, improving the efficiency of MAR schemes will contribute to achieving several of the UN SDGs and EU agendas. Physico-chemical and isotope data has been collected over the last 3-4 decades around Switzerland’s largest MAR scheme in Basel, Switzerland, where 100 km3 /d of Rhine river water is infiltrated, and 40 km3 /d is extracted for drinking water. The other 60 km3 /d is used to maintain the groundwater mound that keeps locally contaminated groundwater from industrial heritage sites out of the drinking water. The hydrochemical/isotope data from past and ongoing studies were consolidated to contextualize all the contributing water sources of the scheme before online noble gas and regular tritium monitoring commenced in the region. The historical and the new continuous tracer monitoring data is now used to inform new sampling protocols and create tracer-enabled/assimilated groundwater-surface water flow models, vastly helping algorithm-supported MAR optimization

Abstract

Understanding the sensitivity of groundwater resources to surface pollution and changing climatic conditions is essential to ensure its quality and sustainable use. However, it can be difficult to predict the vulnerability of groundwater where no contamination has taken place or where data are limited. This is particularly true in the western Sahel of Africa, which has a rapidly growing population and increasing water demands. To investigate aquifer vulnerability in the Sahel, we have used over 1200 measurements of tritium (3H) in groundwater with random forest modelling to create an aquifer vulnerability map of the region.

In addition, more detailed vulnerability maps were made separately of the areas around Senegal (low vulnerability), Burkina Faso (high vulnerability) and Lake Chad (mixed vulnerability). Model results indicate that areas with greater aridity, precipitation seasonality, permeability, and a deeper water table are generally less vulnerable to surface pollution or near-term climate change. Although well depth could not be used to create an aquifer vulnerability map due to being point data, its inclusion improves model performance only slightly as the influence of water table depth appears to be captured by the other spatially continuous variables.

Abstract

The Bauru Aquifer System (BAS) is a significant source of water supply in the urban area of Bauru city. Over the last decades, BAS has been widely affected by human activities. This study evaluates the nitrate plume in groundwater from 1999 to 2021 and how it relates to urbanization. The methods used were analysis of the data of 602 wells, survey of the sewer network and urbanization, and reassessment of nitrate concentration data. The seasonal analysis of 267 groundwater samples allowed the identification of concentrations up to 15.1 mg/L N-NO3 - mainly from the area’s central region, where the medium to high-density urban occupation dates back to 1910. Otherwise, the sewage system was installed before 1976. The reactions controlling the nitrogen species are oxidation of dissolved organic carbon, dissolution of carbonates, mineralization, and nitrification. Wells, with a nitrate-increasing trend, occur mainly in the central and northern regions, settled from 1910 to 1980-1990, when no legislation required the installation of the sewage network before urbanization. In turn, wells with stable or decreasing nitrate concentrations occupy the southwestern areas. Over the years, the concentrations of these wells have shown erratic behaviour, possibly caused by the wastewater that leaks from the sewer network. The bivariate statistical analysis confirms a high positive correlation between nitrate, sanitation age, and urban occupation density, which could serve as a basis for the solution of sustainable groundwater use in the region. Project supported by FAPESP (2020/15434-0) and IPA/SEMIL (SIMA.088890/2022-02).

Abstract

This study aims to contribute to the conceptual and methodological development of units of joint management in transboundary aquifers (TBAs) to prevent and mitigate cross-border groundwater impacts (GWIs) in quantity and/or quality. Joint management units are a relatively new but growing topic in the field of TBAs, and their conceptualisation and appropriate identification are still at an early stage. By reviewing the literature on the subject and elaborating on its terminology, main features, and current methodological progress, a comparison of the existing methodologies for identifying such units is analysed. On this basis, trends and recommendations for further research and application of such methodologies to the joint management of TBAs are presented. The literature on this issue is scarce and has been published mainly in the last five years. These publications lack consistency in the use of concepts and terminology. The above has led to miscommunication and semantic issues in the concept behind such units and in comprehending the particular challenges of identifying them. Still, some directions and methodologies for identifying or directly delineating these management units have been proposed in the literature. However, no analysis from these methodological attempts has been conducted; thus, there are no lessons to be learned about this progress. This research looks forward to closing these gaps and making headway toward dealing with cross-border GWIs in TBAs, thus helping countries meet international law responsibilities and maintaining stable relationships among them.

Abstract

Modern societies rely heavily on subsurface resources and need open access to accurate and standardized scientific digital data that describe the subsurface’s infrastructure and geology, including the distribution of local and regional aquifers up to a depth of five kilometres. These data are essential for assessing and reducing climate change’s impact and enabling the green transition. Digital maps, 3D and 4D models of the subsurface are necessary to investigate and address issues such as groundwater quality and quantity, flood and drought impacts, renewable geo-energy solutions, availability of critical raw materials, resilient city planning, carbon capture and storage, disaster risk assessment and adaptation, and protection of groundwater-dependent terrestrial and associated aquatic ecosystems and biodiversity. For over a decade, EuroGeoSurveys, the Geological Surveys of Europe, has been working on providing harmonized digital European subsurface data through the European Geological Data Infrastructure, EGDI.

These data are invaluable for informed decision-making and policy implementation regarding the green transition, Sustainable Development Goals, and future Digital Twins in earth sciences. The database is continuously developed and improved in collaboration with relevant stakeholders to meet societal needs and facilitate sustainable, secure, and integrated management of sometimes competing uses of surface and subsurface resources.

Abstract

This paper presents the results of groundwater flow modelling studies that were conducted within the scope of the PRIMA RESERVOIR project. The project’s main goal is to develop an innovative methodology to mitigate land subsidence due to excessive groundwater exploitation in water-stressed Mediterranean watersheds. This objective is achieved by integrating earth-observation-derived land subsidence rates with a coupled implementation of numerical groundwater flow and geomechanical modelling. MODFLOWbased 3-D transient flow models were constructed for the four pilot sites (the coastland of Comacchio in Italy, the Alto Guadalentín aquifer in Spain, the Gediz River basin alluvial aquifer in Turkiye and the Azraq basin in Jordan) that have different hydrogeological properties and pose different challenges concerning water management. Models were calibrated and run for similar simulation periods (2013-2021) to obtain hydraulic head drawdowns and changes in groundwater storage. Land subsidence at these sites was evaluated using Advanced Differential Radar Interferometry (A-DInSAR) on image stacks from the Sentinel-1 satellite. Subsidence rates were then compared to hydraulic head drawdown rates to identify groundwater pumping-induced subsidence areas. The comparison for all study areas suggested that locations of maximum displacements do not necessarily coincide with areas that display the largest head drawdown calculated by the flow models. Other triggering factors, such as the thickness of compressible materials, are also related to high subsidence areas.

Abstract

Groundwater is increasingly being exploited in South African cities as a drought crisis response, yet there is poorly coordinated regulation of increasing urban users and usage and fragmented management of aquifers. Designing interventions and innovations that ensure sustainable management of these resources requires systems thinking, where the city is understood as an integrated, interdependent set of actors and flows of water. This paper presents a study that applied and integrated an urban water metabolism (UWM) analysis with a governance network analysis for two major South African cities facing severe drought risk, Cape Town and Nelson Mandela Bay. ‘Learning Laboratories’ in each city brought together stakeholders from various groundwater-related domains to build a shared understanding of how groundwater fits into the larger system and how various actors shape urban groundwater flows and the health of local aquifers. The UWM quantified all hydrological and anthropogenic flows into and out of each city (or urban system) to conduct an integrated mass balance. How this mass balance changes under varying climate change scenarios and land use was used as a focal point of stakeholder discussions. The governance network analysis highlighted that many state and non-state actors have a stake in shaping the quantity and quality of urban groundwater, such as regulators, service providers, water users, knowledge providers, investors in infrastructure, and emergency responders.

Abstract

This study focused on improving the understanding of flow regimes and boundary conditions in complex aquifer systems with unusual behavioural responses to pumping tests. In addition, the purpose was to provide a novel analysis of the hydrogeological properties of aquifers to deduce inferences about the general expected aquifer types to inform new practices for managing groundwater. In this paper, we report that using derivative analysis to improve understanding of complexities in aquifer flow systems is difficult and rarely used in groundwater hydraulics research work. Thus, we argue that if derivatives are not considered in the characterizing flow regime. The heterogeneity of aquifers, boundary conditions and flow regimes of such aquifers cannot be assessed for groundwater availability, and the decision to allocate such water for use can be impaired. A comprehensive database was accessed to obtain pumping tests and geological data sets. The sequential analysis approach alongside derivative analysis was used to systematically perform a flow dimension analysis in which straight segments on drawdown-log derivative time series were interpreted as successive, specific, and independent flow regimes. The complexity of using derivatives analyses was confirmed. The complexity of hydraulic signatures was observed by pointing out n sequential signals and noninteger n values frequently observed in the database. We suggest detailed research on groundwater flow systems using tracer methods like isotopes and numeric models must be considered, especially in multilayered aquifer systems such as the Heuningnes catchment.

Abstract

Springs are examples of groundwater discharges. This paper reports on findings from cold springs groundwater discharges that have served as important water sources for sustaining domestic and agricultural supply. This study assessed the hydrogeology of springs to inform practical measures for the protection, utilization, and governance of such discharges. The research assessed the hydrogeology of springs in terms of conditions in the subsurface responsible for occurrences of springs spatially and their flow paths to the surface. Spring locations were mapped and validated for spatiotemporal assessment. The study examined the flow dynamics and hydrogeochemistry of spring discharges. In-situ and laboratory measurements of spring discharges were carried out using standard methods. Results showed that shallow and deep circulating systems of springs existed in the study area, being controlled by lithology and faults. All springs had fresh water of Na-Cl type, and rock-water interaction was the dominant geochemical process that influenced spring water chemistry. Radon-222 analysis showed high values detected in spring waters that confirmed recent groundwater seepage on the surface. The drum-and-stopwatch technique was used to estimate yield from spring discharges because it’s only effective and reliable for yields of less than 2 l/s. Results suggest that some springs were locally recharged with some regionally recharged. Based on results from estimated yield and quality, it was concluded that spring waters had low discharges. A comprehensive assessment of spring discharges should be conducted to generate large datasets to inform practical measures for protection, utilization, and governance.

Abstract

Contamination of fresh groundwater aquifers by leakage of saline water (brine) from wells may result from various activities, such as salt mining, wastewater or concentrate injection and geothermal heat production. Here, the brine transport and consequences for groundwater monitoring have been explored for a wide range of brine compositions, leakage and hydrogeological conditions using numerical simulations that considered buoyancy impacts from both temperature and density differences. Results show that at close distances to the leak (up to 3-5 meters away), breakthroughs of the salt ( at 1,000 mg/L) occurred within one month of leakage in all modelled scenarios. At a radial distance of 10 meters, with a leak rate of 2 m3 /d, it took three to six months in most cases. For the leakage of relatively warm brines, the heat transport is separated from the salinity due to thermal retardation resulting in monitoring the breakthrough of heat more closely to the depth of the leakage point than the salinity breakthrough. In summary, this study indicates that the mode of dispersion of leaking geothermal brine strongly depends on the brine properties and the leakage and hydrogeological conditions. At the same time, vertical monitoring of temperature and conductivity at a limited distance from brine injection wells (<5m) appears to be a robust method for detecting a possible leak relatively quickly (within a month) and after limited contamination. The monitoring signal in the event of leakage is also sufficiently distinctive to prevent false positives.

Abstract

A major surface water–groundwater interaction difficulty is the complex nature of groundwater resources due to heterogenic aquifer parameters. Wholistic research is needed to inform the conceptual understanding of hydrological processes occurring at surface and groundwater interfaces and their interactions at watershed scales. Sustainable water resource use and protection depend on integrated management solutions involving cross-disciplinary studies and integrated hydrological modelling. Choosing appropriate methods such as spatial and temporal scales, measurable indicators, differences in software parameters, and limitations in application often results in uncertainties.

The study aims to conduct a comparative literature analysis, integrating case studies focusing on surface water–groundwater interaction. Literature reviews from case studies focus on several factors, including soils and vegetation studies, hydrochemical signatures, hydrodynamics of the main stem channels, desktop land use assessments, surface water quality profiling, conceptual hydrogeological modelling and numerical modelling in support of understanding surface water – groundwater interaction and highlight the challenges of methods used to indicate baseflow transition. This paper considers the methodologies demonstrated in the literature and their use in numerical modelling to obtain measurable indicators related to the two hydrological disciplines comprising (i) the surface water component and (ii) the groundwater component. These outcomes should be used to inform the potential future impacts on water quality from activities such as mining, irrigation, and industrial development. Water management protocols related to integrated surface water and groundwater studies for the future are critical in ensuring sustainable water management methods on a catchment scale.

Abstract

Water resources worldwide are stressed, and the number of groundwater professionals required to manage those resources is not being generated in sufficient numbers. Groundwater educational resources must be placed in schools to generate excitement and raise awareness. Additionally, people entering the workforce need training throughout their professional careers. Oklahoma State University partnered with the U.S. National Ground Water Association to develop a framework for providing education and training programs in groundwater that allow for interactive online education at all levels. The Awesome Aquifer 360 program targets grades 5-8, allowing students to conceptually explore aquifers and the people who manage them. The Drilling Basics Online program provides a 40-hour basic safety and drilling training to recruit professionals into the groundwater industry and reinforce safe operations. These programs and future plans for the technique will be discussed.

Abstract

Communities in the Lower Shire River Valley in the Chikwawa District of southern Malawi face extreme development challenges due to highly variable climate, including floods and droughts, that trap them in poverty and food insecurity. The area has been the focus of numerous studies and data collection campaigns to understand better the causes and processes associated with brackish groundwater (in alluvial aquifers) and dry boreholes. An applied groundwater assessment was performed to evaluate water supply alternatives and solutions to deliver potable water to approximately 15% of the district without water access after a multi-year campaign to reach 100%. The assessment synthesized a significant volume of water quality data collected by researchers and nongovernment organizations, larger scale geological interpretations published in segmented literature, multi-spectral satellite imagery datasets, and combined field reconnaissance to investigate areas of interest further and address pertinent data gaps. Improved understanding of geologic structure and lithology, complex aquifer recharge, and evapotranspiration processes supported identifying areas unsuitable for groundwater development and yielded recommendations for groundwater exploration and other solutions.

A high permeability zone and strong surface-groundwater connection was identified along the Gungu River. Data collected throughout the area of interest corroborated that significant freshwater recharge occurs in the alluvial aquifer, promoting an aquifer zone where freshwater and higher yields are likely. Exploratory drilling resulted in a very high-yielding freshwater well that supported the development of a piped water system serving several villages.

Abstract

The lack of reliable groundwater level monitoring data hinders the comprehensive understanding and sustainable management of our aquifers. New remotely sensed data products could present novel possibilities to fill in situ data gaps. For example, continuous monthly groundwater storage anomaly estimates at a spatial resolution of 0.25° (28 km) are made available through the Global Data Assimilation System Version 2.2 (GLDAS-2.2) data products that assimilate Gravity Recovery and Climate Experiment (GRACE) data. In this study, it was hypothesised that the open-source, higher resolution Climate Hazards Group InfraRed Precipitation With Station Data (CHIRPS) precipitation data and Moderate Resolution Imaging Spectroradiometer (MODIS) evapotranspiration data could be used to downscale groundwater storage anomalies (GWSA) for local scale investigations. Using an intergranular and fractured aquifer, as well as a karst aquifer as case studies, both enclosed within the Steenkoppies Catchment (A21F), two respective random forest regression (RFR) models were developed to downscale GLDAS-2.2 GWSA. Sampling monthly training data without accounting for temporal lagging resulted in an increased correlation, index of agreement (IA) and improved RMSE for the intergranular and fractured aquifer. Where the correlation between the observed groundwater storage changes and the GLDAS-2.2 groundwater storage estimates were weaker, however, accounting for the temporal lags resulted in an improved RMSE. The final product is a 0.05° (5.5 km) grid of monthly time-series GWSA estimates that can improve groundwater resource assessments, understanding aquifer recharge, modelling accuracies and better overall decision-making regarding Integrated Water Resource Management (IWRM).

Abstract

Darcy Velocity (Vd) is often estimated through a single-borehole Point Dilution Tracer Test (PDTT). Vd is used in the investigation of contaminant transport and distribution in aquifers. The tracer dilution rate in groundwater is controlled by horizontal groundwater flux. However, it can be affected by other artefacts, such as diffusion and density effects. Although there are studies on tracer tests, there has not been much done to gain an understanding of how these artefacts affect the correct Vd estimation. This study, therefore, aims to investigate and provide an understanding of the influence of artefacts on the PDTT through laboratory experiments conducted using a physical model representing a porous media. A total of 18 experiments were performed with different NaCl tracer concentrations under constant horizontal groundwater flow and no-flow conditions. The study results show that the density sinking effect affects an early period of tracer dilution, which can lead to overestimation of Vd; therefore, these stages should not be used to estimate Vd. The study, therefore, proposes a way in which PDTT data should be analysed to understand the effects of artefacts on Darcy velocity estimation.

Abstract

The City of Windhoek in Namibia has developed wellfields and a managed aquifer recharge scheme within the fractured Windhoek Aquifer to ensure a sustainable potable water supply to the city during drought. A three-dimensional numerical groundwater model of the aquifer was developed using the finite-difference code MODFLOW to determine the potential impacts of varying pump inlet depth elevations and varying production borehole abstraction rates for optimal wellfield and aquifer management. The initial steady-state numerical model was calibrated to September 2011 groundwater levels, representing the best approximation of “aquifer full” conditions (following a good rainfall period and best available data). The subsequent transient numerical model was calibrated against groundwater level fluctuations from September 2011 to August 2019, the period after steady-state calibration for which data was available (and during which monitored groundwater abstraction occurred). The calibrated transient model was used to run various predictive scenarios related to increased emergency groundwater abstraction and estimate potential impacts on the Windhoek Aquifer. These predictive scenarios assessed groundwater level drawdown and recovery, aquifer storage potential, and potential abstraction rates under different pump elevations. Model results indicated a sharp initial groundwater level drop followed by a gradual decrease as groundwater levels approached the 100 m saturated depth mark. Pumping elevations were subsequently updated with recommended abstraction rates and volumes for the entire Windhoek Aquifer. The numerical groundwater model, in association with extensive groundwater monitoring, will be used to assess/manage the long-term sustainable and optimal utilisation of the Windhoek Aquifer.

Abstract

Groundwater quantity and quality of shallow aquifers have deteriorated in recent years due to rapid development that has created an increased demand for drinking water, which is increasingly being fulfilled by groundwater abstraction. The study evaluates the hydrogeological framework of the Quaternary aquifer of the Kabul basin, Afghanistan, and the impact of urbanization on the groundwater resources around the Kabul city plain. Time series of Landsat satellite LCLU images indicate that the urban area increased by 40% between 2000 and 2020, while the agricultural area decreased by 32% and bare land decreased from about 67% to 52% during this period. The assumed groundwater overdraft 2019 was 301.4×103 m3 /day, while the recharge was 153.4×103 m3 /day, meaning a negative balance of about 54 million cubic meters (MCM) this year. Due to the long-term decline of water levels at 80 90 cm/year, and locally (Khairkhana, Dasht-e-Barchi) 30-50m during 2005-2019, a considerable groundwater drawdown is shown. Groundwater quality, on the other hand, reveals that chloride concentrations and salinity increased throughout the aquifer between 2005 and 2020. The nitrate concentration decreased in most Kabul Plain places over the period. In conclusion, the quantity and quality situation of urban groundwater in Kabul is worrying; urgent scientific and sustainable solutions and measures should be considered to manage this situation.

Abstract

A hydrogeological investigation was conducted at a gold mine in the Mandiana region, northeast Guinea. The objectives of the investigation included: 1) Review the efficiency of the current dewatering system and 2) Assess potential dewatering impacts on neighbouring groundwater users. Historical and current hydrogeological information were reviewed and assessed to address the project objectives. The site geological succession contains laterites, saprolites, saprock, dolorite sill and fresh fractured bedrock below. A review of the borehole lithological logs, pump test and monitoring data confirmed that the contact zone between the saprock and the dolorite sill is the major aquifer zone with hydraulic conductivity up to 25 m/d, with a minor alluvial aquifer with hydraulic conductivity ~ 0.05 m/d. The current dewatering system is not as effective as it should be due to electrical issues causing seepage into the current pit floor. A combination of in-pit sumps and dewatering boreholes is recommended to ensure the mine pit’s dry working conditions. The neighbouring groundwater users tap into the alluvial aquifer with water levels ranging between 0-10 mbgl and are not at risk from mine dewatering impacts due to the dewatering boreholes tapping into the deeper saprock-dolorite contact zone. The shallow and deeper aquifers are hydraulically disconnected. The following is recommended: 1) Drilling of replacement dewatering boreholes and implementing continuous water level and abstraction rate monitoring, and 2) Discharge the in-pit sumps (alluvial aquifer inflow and rainfall) into the river downgradient of the mine to supplement recharge to the alluvial aquifer.

Abstract

he Danakil Depression of the Afar Rift forms part of the north/south-trending Ethiopia-Eritrean arm of the East African Rift System, whereas the western margin of the depression forms part of an active plate boundary between the western Nubian and eastern Danakil tectonic blocks. Dallol (within the Danakil Depression) currently holds the record for the highest average temperature for an inhabited place on Earth, with annual average temperatures of ~35-36°C. The isolated area was initially explored geologically in the late 1960s, with recent geological and hydrogeological interest in its northeast Ethiopian portion due to easier access, geo-tourism and potash-ore exploration. Potash mining is proposed via solution-extraction techniques, requiring large volumes of water in one of the driest hyper-arid regions. Various hydrogeological investigations were therefore conducted between 2014 and 2016 as part of a feasibility and water resource study towards developing a water resource estimate for the region and proposed mining operations. Alluvial fans on the west side of the rift basin form a major, regional primary aquifer – fan boreholes have yields of 50 litres per second, although groundwater is highly saline (up to 3-5 times the salinity of seawater) and can reach temperatures of 50°C. Groundwater yields of hundreds of millions of cubic metres per annum are potentially available from the saline alluvial fan primary aquifers for potash solution mining. In contrast, groundwater from karstic limestone aquifers could provide a freshwater resource to settlements within the Lelegheddi River basin and the Danakil.

Abstract

Given the challenging global water outlook due to climate change and urbanisation, there is a heightened necessity for greater water resilience at critical facilities to tackle water disasters or disasters that lead to water crises. In 2017, the Western Cape Province of South Africa experienced an extended drought with the risk of acute water shortages. The Western Cape Government (WCG) developed business continuity plans and implemented a programme to ensure water supply to certain critical service delivery facilities, utilising the strategy of developing localised groundwater supply systems. The case study research of the WCG program enabled the development of an evaluation framework that assessed this strategy’s effectiveness in improving water resilience levels at critical facilities. From the lessons learnt in the WCG programme, the research also crystallised the critical success factors in sustainably implementing this strategy. The research showed that this is an effective strategy for its purposes and provides both current and future disaster preparedness planners with an improved understanding of the levels of water resilience achievable through this strategy and the methodology to achieve it best.

Abstract

Water resources, including groundwater, are under threat globally from abstraction and pollution, making studies of water flows ever more urgent. South Africa has a growing population, a relatively dry climate and abundant mining activity, all of which increase the importance of water management. Mooiplaas Dolomite Quarry, southeast of Pretoria, has been mining metallurgical grade dolomite since 1969 and is located in the productive karst aquifers of the Malmani Subgroup, Transvaal Supergroup. The site was investigated by sampling precipitation, surface water, groundwater and mine water for hydrochemical and stable isotope analysis from 2011 to 2017, totalling over 400 samples. Nitrate levels in groundwater and mine water were marginally above drinking water limits from explosives residues, and ammonia in the nearby Hennops River was unacceptably high due to municipal sewage outfalls, but otherwise, water quality was very good. Alkalinity from rock weathering, aided by the crushing of dolomite, was the main control on water chemistry. Combined analysis of dissolved matter (TDS, nitrate, Mg, etc.) suggested that the dewatering of the mine and resultant recharge from slime dams caused an aerated zone of groundwater, which mixed with regional groundwater flowing beneath the site. Stable isotopes, with an evaporated signature from mine open water bodies, also showed how mine operations cause recharge to groundwater and subsequent seepage back into the pit lakes. The mine appears not to contaminate the regional groundwater. However, mine designs should avoid situations where process water flows via groundwater back into pits, causing excessive dewatering costs.

Abstract

Top-down governance systems are not well designed to secure the protection, use and management of groundwater at the local level and, on the contrary, perpetuate ‘wicked’ problems of poor groundwater management and protection. Citizen science promises solutions to these ‘wicked’ problems. We present findings from a project in the Hout Catchment, Limpopo, where citizen scientists monitor water in wells in remote rural settings. We redress the bias towards the natural sciences and pay attention to human systems as it is through engaging with people’s ‘ordinary’ citizens that they will protect their environment for better planetary health. To better understand these human systems that impact groundwater, we emphasise diversity and difference and argue for a HOPE model (heralding optimal participatory equity). HOPE has intrinsic and extrinsic value (equity) (addressing a hydrological void and understanding groundwater features). To achieve this, we open up a toolkit providing very practical methods. Using these tools, we propose that citizen science - taking science away from remote institutions, out of libraries and laboratories - and bringing it close to people is emancipatory and addresses new ways of understanding polycentric governance. Citizen science is transformative; citizens move from a passive state of non-engagement with science to acting as scientists. Disempowered people now have a sense of being part of the betterment of their world and improved water resources management. Narrowing the natural and social sciences divide is crucial for improved polycentric governance.

Abstract

Year-round water security is at risk as socio-economic developments lead to increasing water demands, while climate change affects water availability through higher-intensity rainfall and prolonged periods of drought. Coastal zones and deltas with often high population densities experience additional risks of salinisation and land subsidence. These developments ask for creative solutions to secure sustainable and year-round access to fresh water. The subsurface provides storage capacity to actively infiltrate freshwater, bridging the time-gap between demand and supply. Combining infiltration with extraction and desalination of brackish water prevents the salinisation of aquifers whilst providing an additional water source. We call this COASTAR. A Dutch research consortium with partners like water companies and water boards develops COASTAR. Among COASTAR results are suitability maps for Aquifer Storage and Recovery (ASR) and Brackish Water Extraction (BWE) in the coastal zone of the Netherlands. The maps are based on geohydrological factors. A quick-scan analysis was also performed to quantify the nation-wide potential extractable ASR and BWE volumes. COASTAR develops case study models and local scale pilots on ASR and BWE. For two water supply regions, an analysis has been made to geographically match development in water demand with suitability for ASR and BWE as a step in the search for strategic locations to develop ASR and BWE. The suitability maps provide guidance for initiatives’ development and practical experiences from pilot projects; this provides important information for further upscaling of COASTAR approaches.

Abstract

The largely groundwater-dependent Sandveld region’s water resources have been put under severe strain due to increased agricultural and town development and recent increased interest in mineral exploration within these catchments. The area known locally as the Sandveld consists of the coastal plain along the west coast of South Africa, bordered by the Olifants River to the north and east, the Berg River to the south and the Atlantic Ocean coastline to the west. Groundwater is considered an essential source of fresh water for the town and agricultural supply. It also plays a major role in maintaining the functionality of the natural environment, especially concerning the coastal wetlands, such as the Verlorenvlei Wetland, designated as a Wetland of International Importance (Ramsar Site). Monitoring boreholes displayed a general drop in water levels, and a decrease in surface water flow has been reported. This has resulted in the drying up of wetland areas within the catchments. This investigation focused on conceptualising the geohydrological setting and defining the groundwater-surface water interactions and interdependencies. The assessment entailed a complete review and analyses of available hydrogeological and hydrochemical data and reports obtained through Stellenbosch University, the Department of Water and Sanitation and the private consulting sector. The priority groundwater areas were delineated, and recommendations on the regional management of these aquifers were made. The research characterised the geohydrological setting and outlined the Sandveld surface water systems’ dependency on groundwater baseflow and spring flow.

Abstract

Monitoring regional groundwater levels provides crucial information for quantifying groundwater depletion and assessing environmental impacts. Temporal variation of groundwater levels is the response of the groundwater system to natural and artificial stresses in terms of groundwater recharge and discharge. The complexity and extent of the variation rest on the nature and storage properties of the aquifer system. High groundwater levels are usually found in the recharge zones and low in the discharge zones, resulting in groundwater flow from recharge areas to discharge areas. Continuous decline of groundwater levels has been observed in some of the monitoring boreholes within the National Monitoring Network. Groundwater level decline has been caused either by over-exploitation or reduction of groundwater recharge. Generally, the pattern of spatial and temporal variations of groundwater levels is the consequence of incorporating climatic, hydrological, geological, ecological, topographical, and anthropogenic factors. Therefore, understanding the pattern of spatial and temporal variations in groundwater levels requires a combined approach. A combination approach of National long-term groundwater level monitoring data, Hydrological stresses, Anthropogenic interferences, and characteristics of the groundwater system was used to understand the continuous decline of groundwater levels in selected monitoring stations across the country.

Abstract

Kinsevere Mine is an open pit copper mine located within the Central African Copper Belt, experiencing common water challenges as mining occurs below the natural water table. The site’s conceptual model is developed and updated as one of the tools to manage and overcome the water challenges at and around the mining operations. The natural groundwater level mimics topography but is also affected by the operations. The pits act as sinks. The water table is raised below the waste dumps due to recharge in these areas, and the general groundwater flow direction is to the east. The site is drained by the Kifumashi River, located to the north of the site. Water levels from dewatering boreholes and natural surface water bodies define the site’s piezometric surface. The geological model is adopted to define the aquifers and groundwater controls. The Cherty Dolomites, a highly fractured Laminated Magnesite Unit, contribute the highest inflows into the mine workings. The Central Pit Shear Zone acts as a conduit and compartment for groundwater between Mashi and Central Pits. Hydraulic tests have been conducted over the years, and these data are used to estimate possible aquifer property values. The high-yielding aquifer on the west is dewatered using vertical wells, and the low-yielding breccia on the east is depressurized using horizontal drain holes. The site’s water management strategy is reviewed and improved through refinement of the conceptual model.

Abstract

Groundwater is an important freshwater supply that has a significant role in the economy. However, water is increasingly becoming scarce in several regions. Huai Krachao Subdistrict in Kanchanaburi Province is an example of an area that has been experiencing a severe drought for decades due to the impacts of climate change. This study was conducted to delineate the groundwater potential zones in hard-rock terrains using geographic information system (GIS) techniques. The study aims to explore deep groundwater resources in challenging areas and propose alternative methods supporting traditional groundwater exploration. This finding revealed that the groundwater potential zones were classified into high, moderate, and low potential zones based on the groundwater potential index (GWPI), integrated using the Weighted Index Overlay Analysis. The computed weights from the Analytical Hierarchy Process were acceptable and consistent. The high potential zones mainly occur in the Silurian-Devonian metamorphic rocks. The GIS-based analytical results were later prepared for detailed field investigation, including collecting well information and conducting the 2-dimensional geophysical survey. To prove the GWPI map, 9 groundwater wells were drilled in the high potential zones. Consequently, well yields obtained from the pumping-test analysis ranged from 24-40 m3 / hr, some of which are springs rich in dissolved minerals. Accordingly, a significant amount of water could meet the water demand, supplying about 1 million m3 /year. Under these circumstances, discovering new groundwater resources can support roughly 5,000 people and agricultural lands no less than 480 hectares (4.8 km2 ).

Abstract

Periodic climate variability, such as that caused by climate teleconnections, can significantly impact groundwater, and the ability to predict groundwater variability in space and time is critical for effective water resource management. However, the relationship between climate variability on a global scale and groundwater recharge and levels remains poorly understood due to incomplete groundwater records and anthropogenic impacts. Moreover, the nonlinear relationship between subsurface properties and surface infiltration makes it difficult to understand climate variability’s influence on groundwater resources systematically. This study presents a global assessment of the impact of climate teleconnections on groundwater recharge and groundwater levels using an analytical solution derived from the Richards equation. The propagation of climate variability through the unsaturated zone by considering global-scale climate variability consistent with climate teleconnections such as the Pacific-North American Oscillation (PNA) and the El Niño/Southern Oscillation (ENSO) is evaluated, and it is shown when and where climate teleconnections are expected to affect groundwater levels. The results demonstrate the dampening effect of surface infiltration variability with depth in the vadose zone. Guidance for predicting long-term groundwater levels and highlighting the importance of climate teleconnections in groundwater management is provided. The obtained insights into the spatial and temporal variability of groundwater recharge and groundwater levels due to climate variability can contribute to sustainable water resource management.

Abstract

In the social sciences, there has been a ‘posthuman’ turn, which seeks to emphasise the role of non-human agents as co-determining social behaviours. In adopting a ‘more-than-human’ approach, the academy seeks to avoid claims of human exceptionalism and extend the social to other entities. In this paper, we explore the extent to which the more-than-human approach might be applied to groundwater and aquifers and the implications that this may have for groundwater science. The role of groundwater in complex adaptive socio-ecological systems at different scales is increasingly well-documented. Access to groundwater resources positively influences societal welfare and economic development opportunities, particularly in areas where surface waters are scarce. The potential adverse effects of human activities on the quantity or quality of groundwaters are also widely reported. Adopting a ‘properties’ approach, traditional social science perspectives typically describe aquifers as structuring the agency of human actors. To what extent might aquifers also have agency, exhibited in their capacity to act and exert power? Drawing on insights from 5 cities across sub-Saharan Africa, we argue for the agency of aquifers in light of their capacity to evoke change and response in human societies. In doing so, we draw on the concept of the more-than-human to argue for a more conscious consideration of the interaction between the human and non-human water worlds whilst acknowledging the critical role played by researchers in shaping these interactions.

Abstract

Prevention of threats to the quality and quantity of groundwater supply is critical to ensure its sustainability. Several African studies have shown that contamination of aquifers is primarily caused by improper placement of land-based human activities. Therefore, adequate preventative measures are required to safeguard the water quality of African aquifers to avoid long-term deterioration. Spatially explicit, 3D numerical groundwater modelling is a common methodology to assess contaminant transport. However, model development is time-consuming and complex. Contrastingly, DRASTIC-L is a 2D, GIS-based aquifer vulnerability mapping technique. The method is simple to apply, but analyses are qualitative and subjective. The study aims to compare both methods and to combine their strengths using GIS overlay. Overall, aquifer vulnerability was determined using the DRASTIC-L method, while wellhead protection areas were delineated using steady-state numerical modelling. This study focuses on the Cape Flats area due to its rapid development and growing municipal water supply supplementation needs. DRASTIC-L mapping revealed that aquifers in the Cape Flats are highly vulnerable to contamination due to the region’s unconfined hydrogeological properties, shallow water table and high-risk land use types. Moreover, groundwater vulnerability mapping combined with the delineation of wellhead protection areas allows for reduced uncertainty in the contamination potential of delineated groundwater protection zones. As a result, this study highlights the need for overall resource protection of the Cape Flats aquifers and provides insights into mapping out potential source protection areas of existing water supply wells.

Abstract

The Anglo-American Municipal Capability & Partnership Program (MCPP) has partnered with the Council for Scientific and Industrial Research (CSIR) to implement programs focused on Strategic Water Management and Strategic Planning within the Gamagara and Tsantsabane Local municipalities within the Northern Cape Region. The CSIR appointed GEOSS South Africa (Pty) Ltd to assist with Municipal Groundwater Capacity Development and Support for these two municipalities. This work explores multi-level groundwater governance systems between the local municipality, government, the mining industry, and the private groundwater sector. The scope of the work focused on developing a comprehensive and practical groundwater management plan detailing the standard operating procedures for each municipality. These operating procedures have been drawn up using principles of best practice guidelines for groundwater monitoring and management but have taken site-specific details of the groundwater supply to the respective Municipalities into account. Workshops were conducted where Municipal staff were trained in basic principles pertaining to groundwater and practical skills in monitoring and managing their supply. This has proved very successful in informing Municipalities about their local groundwater system and aquifer. The capacity-building development aspect will ensure that Municipalities have the resources and the knowledge to manage their groundwater resource effectively. GEOSS has undergone several training workshops and offers weekly technical support to the two Municipalities. As the confidence of the municipal staff to manage their resource grows, their independence from the mining companies should lessen.

Abstract

In the past decade, Southern Africa has experienced periods of extreme drought. This was especially true in the western Karoo in South Africa. Continuous drought and limited rainfall led to declining aquifer water levels that curtailed sustainable water supply for towns and livestock. The western Karoo is almost completely dependent on groundwater. Managed aquifer recharge (MAR) is being used to reduce the effects of droughts and mitigate climate change impacts. A good understanding of the geology and the behaviour of the aquifers is needed for implementing various MAR designs, including nature-based solutions, which are used to recharge aquifers with limited rainfall. This paper discusses 5 active MAR case studies in the Western Karoo. Here, site-specific MAR methods that use small rainfall events deliver reasonable results, whereas the implemented MAR options keep most aquifers functional. Observations at the MAR sites also showed improved water quality and less bacterial clogging. This improves the environment around the managed aquifer recharge sites. The MAR methods and designs discussed in this paper can be used on a larger scale for a town or a smaller scale for a farm. Maintenance costs are low, which makes these options cost-effective for less wealthy areas.

Abstract

South Africa faces serious water scarcity challenges not only because it is a semi-arid country but also due to climate change. One of the most significant effects of climate change is an increase in temperature, which inevitably increases evaporation. Increased evaporation directly reduces the availability of surface water resources. Groundwater is less susceptible than surface water resources to evaporation and thus offers resilience against the impacts of climate change. Many South African cities, communities, and farmers depend on groundwater for domestic or other socio-economic purposes. This implies that groundwater resources which are currently or potentially utilisable should be identified, and suitable legal measures should be implemented to protect these resources from potential risks of harm or damage posed by anthropogenic activity. First, This article evaluates the effectiveness of the country’s existing regulatory framework to effectively protect South Africa’s groundwater resources and finds that the framework can be improved significantly. Secondly, it explores regulatory opportunities within the existing legal framework to strengthen South Africa’s groundwater governance regime, including using land use planning instruments to facilitate the implementation of groundwater protection zones

Abstract

Managed Aquifer Recharge (MAR) provides an integrated water governance solution that improves water security for communities and farmers by storing water in aquifers and managing groundwater extractions to ensure water supplies are available during droughts. Quantitative analysis of levelised costs and benefit-cost ratios (BCRs) of 21 MAR schemes from 15 countries and qualitative assessment of additional social and environmental benefits demonstrates the benefits of MAR compared to water supply alternatives. Cost-benefit analysis provides a systematic method for comparing alternative water infrastructure options. Levelised cost is a widely accepted method of comparing MAR with alternative water infrastructure solutions when market valuations of water are unavailable.

The benefits of MAR can be estimated by the cost of the cheapest alternative source of supply or the production value using water recovered from aquifer storage. MAR schemes recharging aquifers with natural water using infiltration basins or riverbank filtration are relatively cheap with high BCRs. Schemes using recycled water and/or requiring wells with substantial drilling infrastructure and or water treatment are more expensive while offering positive BCRs. Most MAR schemes have positive or neutral effects on aquifer conditions, water levels, water quality, and environmental flows. Energy requirements are competitive with alternative sources of supply. This analysis demonstrates strong returns to investment in the reported MAR schemes. MAR provides valuable social and environmental benefits and contributes to sustaining groundwater resources where extraction is managed.

Abstract

West of the world-renowned conservation site, Kruger National Park, lies the larger extent of the Greater Kruger National Park within the Limpopo province. Boreholes have been drilled for decades to provide water to game lodges, large resorts, and watering holes for game viewing and livestock. The area contains both primary and secondary aquifers classified as having yields between 0.5 and 5.0 l/s, based on the geological setting, which consists of gneiss intruded by dolerite dyke swarms. A geohydrological assessment revealed that groundwater quality within the project area has an EC of 100 - 350 mS/m, linked to borehole proximity to surface water systems. The Makhutswi Gneiss and Doleritic Dyke swarms are the major controlling geology of the area, with higher-yielding boreholes close to dykes and major structural lineaments (faulted / weathered zones). A concern identified through geohydrological assessment observations is that boreholes frequently dry up after a few years, requiring deeper drilling/redrilling or drilling a new borehole. Aggressive calcium hardness in the water frequently damages equipment and increases maintenance costs. This project investigated the feasibility of increasing recharge to the aquifer with seasonal flooding/rainfall events by constructing artificially enhanced recharge locations overlaying doleritic dykes. This is expected to decrease the groundwater’s salinity and hardness, reducing operational costs. This pre-feasibility assessment has been completed, and the project has continued through a gradual implementation phase.