Conference Abstracts

All Abstracts were presented at the Groundwater Conferences

Displaying 101 - 150 of 795 results
Title Presenter Name Presenter Surname Area Conference year Sort ascending Keywords

Abstract

Faced with climate change and population growth, Dutch drinking water company Dunea is looking for additional water resources to secure the drinking water supply for the coastal city of The Hague. One of the options is to enhance the existing managed aquifer recharge (MAR) system in the coastal dunes by extracting brackish groundwater. Extracting brackish groundwater provides an additional drinking water source, can protect existing production wells from salinization, and can effectively stabilise or even grow the freshwater reserves in the coastal dunes, according to numerical groundwater modelling. To test this concept in the field, a three-year pilot commenced in January 2022 at Dunea’s primary drinking water production site, Scheveningen. Brackish groundwater is extracted at a rate of 50 m3 /h with multiple well screens placed in a single borehole within the brackish transition zone (85-105 meters below sea level). The extracted groundwater is desalinated by reverse osmosis, whilst the flow rate and quality of extracted groundwater are continuously monitored. The hydraulic effects and the dynamic interfaces between fresh, brackish and saline groundwater are monitored with a dense network of piezometers, hydraulic head loggers and geo-electrical measurement techniques. At the IAH conference, the monitoring results of the pilot will be presented. Based on the results of the field pilot and additional numerical modelling, the feasibility of upscaling and replicating the concept of brackish groundwater extraction to optimize MAR and increase the availability of fresh groundwater in coastal areas is reflected.

Abstract

Water scarcity has driven many countries in arid regions, such as Oman, to desalinate seawater for freshwater supply. Episodic problems with seawater quality (e.g., harmful algae), extreme weather events that affect energy supply and hence the desalination process have nurtured the urgent need to store desalinated seawater (DSW) in the aquifers for use during emergency and peak demand time. Aquifer Storage and Recovery (ASR) using injection wells is a possible strategic option for Oman Water and Wastewater Services Company (OWWSC) to augment aquifer storage using excess desalinated water during low demand times. ASR strategically serves as a water supply backup to optimize production capacities against seasonal demand patterns. The technical-economic feasibility of implementing ASR schemes was investigated in Jaalan, Oman, using hydrogeological and geophysical field measurements, groundwater flow and hydraulic modelling, and economic analysis. Analysis of modelled scenarios results revealed that the Jaalan aquifer is suitable for storing and recovering about 4,000 m3 /hr in 2045. Various well field designs have been tested and optimized numerically using MODFLOW 6, showing that with 160 dual-purpose wells, 7.9 Mm3 can be injected and abstracted within the constraints defined for a robust and sustainable ASR system. Simulations with the density-dependent flow model (MF6 BUY) show that the injected volume can be fully recovered considering the drinking water quality standard. Other sites were also studied. ASR capacity was found to be site-specific, and the groundwater developments near the ASR site governed its feasibility

Abstract

Carbon Capture and Storage (CCS) in deep saline aquifers is a viable option for Green House Gas (GHG) mitigation. However, industrial-scale scenarios may induce large-scale reservoir pressurization and displacement of native fluids. Especially in closed systems, the pressure buildup can quickly elevate beyond the reservoir fracture threshold and potentially fracture/ reactivate existing faults on the cap rock. This can create pathways, which could act as conduits for focused leakage of brine and/or CO2 up-dip and mobilization of trace elements into capture zones of freshwater wells. Careful pressure management can ensure the reservoir’s hydraulic integrity. This can theoretically be achieved through simulation with appropriate mathematical tools. This research aims to quantify pressure buildup at a CO2 injection well by applying fractional derivatives to the pressure diffusivity Differential Equation (PDE). A numerical solution has been developed to (1) predict and assess the consequence of pressure buildup within the storage formation on groundwater flow in shallow aquifers and (2) assess the impact of pressure-mobilized contaminants (CO2 , brine and/or trace elements) on the quality of usable groundwater, if there is a leakage. The efficiency of each derivative is shown to depend on the type of reservoir heterogeneity. The Caputo derivative captured the long tail dependence characteristic of fracture flow, while the ABC derivative was able to model the cross-over from matric into the fracture flow. The numerical tools presented here are useful for successful risk assessments during geo-sequestration in basins with freshwater aquifers.

Abstract

Springs are examples of groundwater discharges. This paper reports on findings from cold springs groundwater discharges that have served as important water sources for sustaining domestic and agricultural supply. This study assessed the hydrogeology of springs to inform practical measures for the protection, utilization, and governance of such discharges. The research assessed the hydrogeology of springs in terms of conditions in the subsurface responsible for occurrences of springs spatially and their flow paths to the surface. Spring locations were mapped and validated for spatiotemporal assessment. The study examined the flow dynamics and hydrogeochemistry of spring discharges. In-situ and laboratory measurements of spring discharges were carried out using standard methods. Results showed that shallow and deep circulating systems of springs existed in the study area, being controlled by lithology and faults. All springs had fresh water of Na-Cl type, and rock-water interaction was the dominant geochemical process that influenced spring water chemistry. Radon-222 analysis showed high values detected in spring waters that confirmed recent groundwater seepage on the surface. The drum-and-stopwatch technique was used to estimate yield from spring discharges because it’s only effective and reliable for yields of less than 2 l/s. Results suggest that some springs were locally recharged with some regionally recharged. Based on results from estimated yield and quality, it was concluded that spring waters had low discharges. A comprehensive assessment of spring discharges should be conducted to generate large datasets to inform practical measures for protection, utilization, and governance.

Abstract

A major surface water–groundwater interaction difficulty is the complex nature of groundwater resources due to heterogenic aquifer parameters. Wholistic research is needed to inform the conceptual understanding of hydrological processes occurring at surface and groundwater interfaces and their interactions at watershed scales. Sustainable water resource use and protection depend on integrated management solutions involving cross-disciplinary studies and integrated hydrological modelling. Choosing appropriate methods such as spatial and temporal scales, measurable indicators, differences in software parameters, and limitations in application often results in uncertainties.

The study aims to conduct a comparative literature analysis, integrating case studies focusing on surface water–groundwater interaction. Literature reviews from case studies focus on several factors, including soils and vegetation studies, hydrochemical signatures, hydrodynamics of the main stem channels, desktop land use assessments, surface water quality profiling, conceptual hydrogeological modelling and numerical modelling in support of understanding surface water – groundwater interaction and highlight the challenges of methods used to indicate baseflow transition. This paper considers the methodologies demonstrated in the literature and their use in numerical modelling to obtain measurable indicators related to the two hydrological disciplines comprising (i) the surface water component and (ii) the groundwater component. These outcomes should be used to inform the potential future impacts on water quality from activities such as mining, irrigation, and industrial development. Water management protocols related to integrated surface water and groundwater studies for the future are critical in ensuring sustainable water management methods on a catchment scale.

Abstract

Along estuaries and coasts, tidal wetlands are increasingly restored on formerly embanked agricultural land to regain the ecosystem services provided by tidal marshes. One of these ecosystem services is the contribution to estuarine water quality improvement, mediated by tidally induced shallow groundwater dynamics from and to tidal creeks. However, in restored tidal marshes, these groundwater dynamics are often limited by compacted subsoil resulting from the former agricultural land use in these areas. Where the soil is compacted, we found a significant reduction of micro- and macroporosity and hydraulic conductivity. To quantify the effect of soil compaction on groundwater dynamics, we set up a numerical model for variably saturated groundwater flow and transport in a marsh and creek cross-section, which was parametrized with lab and field measurements. Simulated results were in good agreement with in situ measured groundwater levels. Where a compacted subsoil is present (at 60 cm depth), 6 times less groundwater and solutes seep out of the marsh soil each tide, compared to a reference situation without a compact layer. Increasing the creek density (e.g., through creek excavation) and increasing the soil porosity (e.g., by organic soil amendments) resulted in a significant increase in soil aeration depth and groundwater and solute transport. As such, these design measures are advised to optimize the contribution to water quality in future tidal marsh restoration projects.

Abstract

This work is part of the AUVERWATCH project (AUVERgne WATer CHemistry), which aims to better characterise some Auvergne water bodies, specifically the alluvial hydrosystem of Allier River (France). Alluvial aquifers constitute worldwide a productive water resource, superficial and easily exploitable. In France, 45% of the groundwater use comes from these aquifers. The study site is a wellfield that withdraws 8.5 million m3 of water annually from an alluvial aquifer to produce domestic water for 80% of the local population. At the watershed scale, precipitations have decreased by -11.8 mm/y, air temperatures have increased by 0.06°C/y and the river flow has declined by 20.8 Mm3 /y on 2000 – 2020. In the summer period, at least 50% of the river flow is ensured by the Naussac dam (upstream catchment part), but the recent winter droughts have not allowed the dam to replenish. Thus, water stakeholders are concerned that the productivity of the wellfield could be soon compromised. Based on geological, geophysical, hydrochemical, and hydrodynamic surveys, a numerical model of the wellfield is being developed using MODFLOW. The calibration in natural flow regime is successful using a range of hydraulic conductivities going from 1×10-3 to 1×10-4 m/s (pilot points method), consistent with the pumping tests. Preliminary results show that the river entirely controls the groundwater levels at all observation points. The perspective is now to calibrate this model in a transient regime by integrating domestic water withdrawals to determine how low the river can go without affecting the wellfield productivity.

Abstract

Managed aquifer recharge (MAR) has become increasingly popular in Central Europe as a sustainable, clean, and efficient method for managing domestic water supply. In these schemes, river water is artificially infiltrated into shallow aquifers for storage and natural purification of domestic water supply, while the resulting groundwater mound can simultaneously be designed to suppress the inflow of regional groundwater from contaminated areas. MAR schemes are typically not managed based on automated optimization algorithms, especially in complex urban and geological settings. However, such automated managing procedures are critical to guarantee safe drinking water. With (seasonal) water scarcity predicted to increase in Central Europe, improving the efficiency of MAR schemes will contribute to achieving several of the UN SDGs and EU agendas. Physico-chemical and isotope data has been collected over the last 3-4 decades around Switzerland’s largest MAR scheme in Basel, Switzerland, where 100 km3 /d of Rhine river water is infiltrated, and 40 km3 /d is extracted for drinking water. The other 60 km3 /d is used to maintain the groundwater mound that keeps locally contaminated groundwater from industrial heritage sites out of the drinking water. The hydrochemical/isotope data from past and ongoing studies were consolidated to contextualize all the contributing water sources of the scheme before online noble gas and regular tritium monitoring commenced in the region. The historical and the new continuous tracer monitoring data is now used to inform new sampling protocols and create tracer-enabled/assimilated groundwater-surface water flow models, vastly helping algorithm-supported MAR optimization

Abstract

An end-member mixing analysis has been conducted for the hydrogeological system of the endorheic catchment of the Fuente de Piedra lagoon (Malaga, Southern Spain). Three end-members have been considered because of the three main groundwater types related to the different kinds of aquifers found in the catchment. The model’s objective is to help understand the distribution of the organic contaminants (including contaminants of emerging concern [CECs]) detected in groundwater samples from the catchment. Results suggest that some contaminants can be related to long groundwater residence time fluxes, where contaminant attenuation can be limited due to low oxygen levels and microbial activity. The three main aquifer types are: (i) unconfined carbonate aquifers with low mineralized water corresponding to two mountain ranges with no human activities over theirs surface; (ii) an unconfined porous aquifer formed by Quaternary and Miocene deposits, exposed to pollution from anthropogenic activities (agriculture and urban sources); and (iii) a karstic-type aquifer formed by blocks of limestones and dolostones confined by a clayey, marly and evaporite matrix from Upper Triassic. The groundwater monitoring campaign for the analysis of organic contaminants was carried out in March 2018. Target organic contaminants included pharmaceuticals, personal care products, polyaromatic hydrocarbons, pesticides, flame retardants and plasticizers. For the mixing model, a dataset was built with the hydrochemistry and isotopic results (δ2 H, δ18O) from the monitoring campaign conducted in March 2018 and from campaigns carried out in previous years and retrieved from the literature.

Abstract

Studies have examined the effects of groundwater pumping on nearby streams. Groundwater pumping affects streamflow, surface water rights, and aquatic ecosystems. This study investigates the impact of groundwater abstraction on surface water bodies. A secondary objective aims to develop a conceptual model to evaluate alternative approaches for streamflow depletion. The study area is a previous UFS/WRC test site along Modder River, Free State, South Africa. Streamflow depletion was simulated using four (4) analytical solutions, i.e., Jenkins (1968), Hantush (1964), Hunt (1999) and Hunt (2003). STRMDEPL08 analytical computer program tool is used to evaluate streamflow depletion. The aquifer parameters: distance of the boreholes to the stream; pumping periods analyzed in steady states conditions for a simulation period of 1 year; transmissivity with an average of 71 m/d; storativity of 0.02; specific yield of the aquitard range between 0.1 to 0.3; and abstraction rate of 2 l/s are defined for the hypothetical model. The average distances tested range from 10 m to 6,000 m. Pumping rate scenarios for an order of magnitude lower (0.2 l/s), 1 l/s; 4 l/s, and an order of magnitude larger (20 l/s) were simulated. Simulated graphs indicate that streamflow depletion rates are largest if the borehole is closer to the stream and decrease as the distance of the pumped borehole from the stream increases. Cumulative volume graphs for both analytical solutions decrease streamflow depletion volume

Abstract

This paper presents the results of groundwater flow modelling studies that were conducted within the scope of the PRIMA RESERVOIR project. The project’s main goal is to develop an innovative methodology to mitigate land subsidence due to excessive groundwater exploitation in water-stressed Mediterranean watersheds. This objective is achieved by integrating earth-observation-derived land subsidence rates with a coupled implementation of numerical groundwater flow and geomechanical modelling. MODFLOWbased 3-D transient flow models were constructed for the four pilot sites (the coastland of Comacchio in Italy, the Alto Guadalentín aquifer in Spain, the Gediz River basin alluvial aquifer in Turkiye and the Azraq basin in Jordan) that have different hydrogeological properties and pose different challenges concerning water management. Models were calibrated and run for similar simulation periods (2013-2021) to obtain hydraulic head drawdowns and changes in groundwater storage. Land subsidence at these sites was evaluated using Advanced Differential Radar Interferometry (A-DInSAR) on image stacks from the Sentinel-1 satellite. Subsidence rates were then compared to hydraulic head drawdown rates to identify groundwater pumping-induced subsidence areas. The comparison for all study areas suggested that locations of maximum displacements do not necessarily coincide with areas that display the largest head drawdown calculated by the flow models. Other triggering factors, such as the thickness of compressible materials, are also related to high subsidence areas.

Abstract

Periodic climate variability, such as that caused by climate teleconnections, can significantly impact groundwater, and the ability to predict groundwater variability in space and time is critical for effective water resource management. However, the relationship between climate variability on a global scale and groundwater recharge and levels remains poorly understood due to incomplete groundwater records and anthropogenic impacts. Moreover, the nonlinear relationship between subsurface properties and surface infiltration makes it difficult to understand climate variability’s influence on groundwater resources systematically. This study presents a global assessment of the impact of climate teleconnections on groundwater recharge and groundwater levels using an analytical solution derived from the Richards equation. The propagation of climate variability through the unsaturated zone by considering global-scale climate variability consistent with climate teleconnections such as the Pacific-North American Oscillation (PNA) and the El Niño/Southern Oscillation (ENSO) is evaluated, and it is shown when and where climate teleconnections are expected to affect groundwater levels. The results demonstrate the dampening effect of surface infiltration variability with depth in the vadose zone. Guidance for predicting long-term groundwater levels and highlighting the importance of climate teleconnections in groundwater management is provided. The obtained insights into the spatial and temporal variability of groundwater recharge and groundwater levels due to climate variability can contribute to sustainable water resource management.

Abstract

The interactions between groundwater and the sewerage networks of the Lens-Liévin urban communities, located in the north of France, locally lead to non-compliance in the operation of the network and the wastewater treatment plants, questioning the city’s economic development policy. Indeed, the infiltration of groundwater inflow in the sewerage network could be the cause. Based on the piezometric measurements carried out in 2022, the surface elevation of the groundwater table is carried out using a kriging approach. The comparison of altitudes between network position and piezometry made it possible to identify the pipes most at risk of the infiltration of groundwater inflow and correspond to those indicated as non-compliant by network managers according to the national decree. Outside this period, the network vulnerability indicators are defined based on simulated piezometry by a 3D hydrodynamic model of the chalky hydrosystem (MARTHE code) established in a transient state. For two past extreme situations, the network would have been flooded at 1.20% in the dry period (1997) and up to 8.30% in the wet period (2001), highlighting the existence of a part of the network systematically flooded. Using the hydrodynamic model according to different prospective scenarios makes it possible to anticipate the actions deployed on the network to guide management and adaptation solutions. However, a modelling methodology that considers the feedback between the dynamics of the groundwater and the flows passing through the networks remains to be developed.

Abstract

The alluvial aquifer in the Varaždin region has a long-standing problem with high groundwater nitrate concentrations, mainly from agricultural activities. Since groundwater is used in public water supply networks, it is important to ensure its sustainable use. The aquifer is also used to exploit gravel and sand, and the increased demand for this valuable construction material causes the excavation of gravel pit lakes, making groundwater more vulnerable. Although engineered processes can remove nitrate from groundwater, natural attenuation processes should be investigated to understand the nitrogen behaviour and additional mechanisms for groundwater remediation. Previous research has shown nitrate is a conservative contaminant in the critical zone. Aerobic conditions within an aquifer system prevent significant denitrification. Thus, nitrification is the main process controlling nitrogen dynamics in groundwater. Since groundwater and gravel pit lakes are hydraulically connected, and natural nitrate attenuation exists in these lakes, an additional mechanism for groundwater remediation is possible. This work used isotope hydrochemistry and groundwater modelling to investigate gravel pit lakes as possible sites to reduce nitrate concentration in groundwater. Based on the isotopic composition of groundwater and nitrate concentrations, water balance and solute mass balance were calculated, which made it possible to estimate the nitrate attenuation rate in gravel pit lakes. The gained retardation factor was applied to the groundwater flow and nitrate transport model through several scenarios to evaluate the contribution of gravel pit lakes in reducing the groundwater nitrate concentrations

Abstract

The identification of hydrogeological boundaries and the assessment of groundwater’s quantitative and qualitative status are necessary for delineating groundwater bodies, according to the European Guidelines. In this context, this study tries to verify the current delineation of groundwater bodies (GWBs) through hydrogeochemical methods and multicriteria statistical analyses. The areas of interest are three GWBs located in the northern part of Campania Region (Southern Italy): the Volturno Plain, a coastal plain constituted of fluvial, pyroclastic and marine sediments; the Plain of Naples, an innermost plain of fluvial and pyroclastic sediments and the Phlegrean Fields, an active volcanic area with a series of monogenic volcanic edifices. Hydrogeochemical methods (i.e., classical and modified Piper Diagram) and multivariate statistical analyses (i.e., factor analysis, FA) were performed to differentiate among the main hydrochemical processes occurring in the area. FA allowed the handling many geochemical and physical parameters measured in groundwater samples collected at about 200 sampling points in the decade of the 2010s. Results reveal five hydrogeochemical processes variably influencing the chemical characteristics of the three GWBs: salinization, carbonate rocks dissolution, natural or anthropogenic inputs, redox conditions, and volcanic product contribution. Hydrogeochemical methods and FA allow the identification of areas characterised by one or more hydrogeochemical processes, mostly reflecting known processes and highlighting the influence of groundwater flow paths on water chemistry. According to the current delineation of the three GWBs, some processes are peculiar to one GWB, but others are in common between two or more GWBs.

Abstract

he Danakil Depression of the Afar Rift forms part of the north/south-trending Ethiopia-Eritrean arm of the East African Rift System, whereas the western margin of the depression forms part of an active plate boundary between the western Nubian and eastern Danakil tectonic blocks. Dallol (within the Danakil Depression) currently holds the record for the highest average temperature for an inhabited place on Earth, with annual average temperatures of ~35-36°C. The isolated area was initially explored geologically in the late 1960s, with recent geological and hydrogeological interest in its northeast Ethiopian portion due to easier access, geo-tourism and potash-ore exploration. Potash mining is proposed via solution-extraction techniques, requiring large volumes of water in one of the driest hyper-arid regions. Various hydrogeological investigations were therefore conducted between 2014 and 2016 as part of a feasibility and water resource study towards developing a water resource estimate for the region and proposed mining operations. Alluvial fans on the west side of the rift basin form a major, regional primary aquifer – fan boreholes have yields of 50 litres per second, although groundwater is highly saline (up to 3-5 times the salinity of seawater) and can reach temperatures of 50°C. Groundwater yields of hundreds of millions of cubic metres per annum are potentially available from the saline alluvial fan primary aquifers for potash solution mining. In contrast, groundwater from karstic limestone aquifers could provide a freshwater resource to settlements within the Lelegheddi River basin and the Danakil.

Abstract

The Guarani Aquifer System (SAG) is the main public water supply source in Bauru City (Brazil). It mostly consists of sandstones and is a confined unit of fossil waters (~600 thousand years); therefore, it is a non-renewable and finite resource. SAG is overlaid by the Bauru Aquifer System (SAB), predominantly consisting of sandstones, siltstones, and mudstones, and is essential for private water supply in the municipality. In recent decades, constant drops in water levels in SAG and increases in contaminant loads in SAB have been observed in production wells, generating the need to understand the geometry of those aquifer systems.

This work presents the preliminary results of the analysis and review of hydrogeological and geophysical data from 59 deep wells and 3D geological modelling using Leapfrog Works® to represent a conceptual model of the study area. SAG has a thickness of up to 356 m in the wells and is represented, from bottom to top, by Teresina, Piramboia, and Botucatu formations. In the north and northeast regions, SAG is covered by a layer of basalts from the Serra Geral Aquifer System (SASG) with a thickness of up to 190 m. The thickness of SASG is variable (or even null) due to the action of important faults with vertical displacements that created structural windows in the region. SAB covers the Araçatuba (basal portion), Adamantina (144 m), and Marília (65 m) formations. The lower contact of SAB is made with SASG or SAG (central region). Project funded by FAPESP (2020/15434-0).

Abstract

This study presents a novel approach for developing geologically and hydrogeologically consistent groundwater models at large valley scales. Integrating geological, geophysical, and hydrogeological data into a single model is often challenging, but our methodology overcomes this challenge by combining the Ensemble Smoother with Multiple Data Assimilation algorithm (ESMDA) with a hierarchical geological modelling approach (ArchPy). The ESMDA framework assimilates geophysical and hydrogeological field data jointly. To diminish the computational cost, the forward geophysical and groundwater responses are computed in lower-dimensional spaces relevant to each physical problem, alleviating the computational burden and accelerating the inversion process. Combining multiple data sources and regional conceptual geological knowledge in a stochastic framework makes the resulting model accurate and incorporates robust uncertainty estimation. We demonstrate the applicability of our approach using actual data from the upper Aare Valley in Switzerland. Our results show that integrating different data types, each sensitive to different spatial dimensions enhances the global quality of the model within a reasonable computing time. This automatic generation of groundwater models with a robust uncertainty estimation has potential applications in a wide variety of hydrogeological issues. Our methodology provides a framework for efficiently integrating multiple data sources in geologically consistent models, facilitating the development of hydrogeological models that can inform sustainable water resource management.

Abstract

Various electrical potential difference-audio magnetotelluric (EPD-AMT) geophysical equipment is now available in the market for groundwater exploration, and the Groundwater Detector is one of them. Due to their low cost, deeper penetration, and real-time measurement, the technology has been widely received in many developing and underdeveloped countries. However, research to understand the application of the EPD-AMT surface geophysics approach in groundwater exploration is very limited. This research gap needs urgent attention to promote the technology’s meaningful and wider application. The lack of published case studies to demonstrate the capabilities of the EPD-AMT approach is a limiting factor to its application.

Research on different hydrogeological settings is paramount as part of the efforts to improve the practical understanding of the application of the EPD-AMT geophysical approach in groundwater exploration. This study shares field experience from applying the EPD-AMT Groundwater Detector geophysical technique to explore groundwater in dolomite, granite, and Karoo sandstone hardrock aquifers in Southern Africa.

Abstract

Water resources, including groundwater, are under threat globally from abstraction and pollution, making studies of water flows ever more urgent. South Africa has a growing population, a relatively dry climate and abundant mining activity, all of which increase the importance of water management. Mooiplaas Dolomite Quarry, southeast of Pretoria, has been mining metallurgical grade dolomite since 1969 and is located in the productive karst aquifers of the Malmani Subgroup, Transvaal Supergroup. The site was investigated by sampling precipitation, surface water, groundwater and mine water for hydrochemical and stable isotope analysis from 2011 to 2017, totalling over 400 samples. Nitrate levels in groundwater and mine water were marginally above drinking water limits from explosives residues, and ammonia in the nearby Hennops River was unacceptably high due to municipal sewage outfalls, but otherwise, water quality was very good. Alkalinity from rock weathering, aided by the crushing of dolomite, was the main control on water chemistry. Combined analysis of dissolved matter (TDS, nitrate, Mg, etc.) suggested that the dewatering of the mine and resultant recharge from slime dams caused an aerated zone of groundwater, which mixed with regional groundwater flowing beneath the site. Stable isotopes, with an evaporated signature from mine open water bodies, also showed how mine operations cause recharge to groundwater and subsequent seepage back into the pit lakes. The mine appears not to contaminate the regional groundwater. However, mine designs should avoid situations where process water flows via groundwater back into pits, causing excessive dewatering costs.

Abstract

Contamination of fresh groundwater aquifers by leakage of saline water (brine) from wells may result from various activities, such as salt mining, wastewater or concentrate injection and geothermal heat production. Here, the brine transport and consequences for groundwater monitoring have been explored for a wide range of brine compositions, leakage and hydrogeological conditions using numerical simulations that considered buoyancy impacts from both temperature and density differences. Results show that at close distances to the leak (up to 3-5 meters away), breakthroughs of the salt ( at 1,000 mg/L) occurred within one month of leakage in all modelled scenarios. At a radial distance of 10 meters, with a leak rate of 2 m3 /d, it took three to six months in most cases. For the leakage of relatively warm brines, the heat transport is separated from the salinity due to thermal retardation resulting in monitoring the breakthrough of heat more closely to the depth of the leakage point than the salinity breakthrough. In summary, this study indicates that the mode of dispersion of leaking geothermal brine strongly depends on the brine properties and the leakage and hydrogeological conditions. At the same time, vertical monitoring of temperature and conductivity at a limited distance from brine injection wells (<5m) appears to be a robust method for detecting a possible leak relatively quickly (within a month) and after limited contamination. The monitoring signal in the event of leakage is also sufficiently distinctive to prevent false positives.

Abstract

Shallow groundwater dynamics play a crucial role in wetland ecosystems and are key to climate change resilience. Therefore, conserving and restoring wetland areas requires excellent knowledge of groundwater flow dynamics, which are often rapidly changing following extreme weather events and anthropogenic impacts such as groundwater extraction. Traditional methods to estimate groundwater flow require extensive modelling or rely on point measurements, missing the effect of crucial short-term events and impeding quick actions to conserve the wetlands’ ecohydrological status. Here, we present a newly developed sensor that can measure real-time groundwater flow velocity and direction. The sensor probe consists of two bidirectional flow sensors that are superimposed. It is installed in a dedicated pre-pack filter and can measure a broad range of groundwater flow velocities from 0.5 cm/ day to 2000 cm/day. With an IoT (Internet of Things) system, sensor data is wirelessly transmitted and visualized in real-time on an online dashboard. In addition, we show a selection of results from a case study in the Biebrza National Park (Poland) and a nature reserve in Damme (Belgium). In both ecosystems, we could capture changes in groundwater flow velocity and direction resulting from precipitation and evapotranspiration events. As such, we are confident that our sensors provide new insights into rapidly changing groundwater dynamics and will become an invaluable tool in ecohydrological studies worldwide, ultimately leading to more integrated management strategies to protect and conserve remaining wetlands.

Abstract

There is an urgent need to support the sustainable development of groundwater resources, which are under increasing pressure from competing uses of subsurface geo-resources, compounded by land use and climate change impacts. Management of groundwater resources is crucial for enabling the green transition and attaining the Sustainable Development Goals. The United Nations Framework Classification for Resources (UNFC) is a project-based classification system for defining the environmental-socio-economic viability and technical feasibility of projects to develop resources and recently extended for groundwater. UNFC provides a consistent framework to describe the level of confidence in groundwater resources by the project and is designed to meet the needs of applications pertaining to (i) Policy formulation based on geo-resource studies, (ii) Geo-resource management functions, (iii) Business processes; and (iv) Financial capital allocation. To extend use in groundwater resources management, supplemental specifications have been developed for the UNFC that provide technical guidance to the community of groundwater professionals to enhance sustainable resource management based on improved decision-making. This includes addressing barriers to sustainably exploiting groundwater resources, avoiding lack of access to water and also related to ‘common pool resources’ in which multiple allocations are competing with domestic water supply (e.g. geo-energy, minerals, agriculture and ecosystems, and transboundary allocation of natural resources). UNFC for groundwater resources is designed to enhance governance to protect the environment and traditional users while ensuring socio-economic benefits to society. Consequently, it is a valid and promising tool for assessing both the sustainability and feasibility of groundwater management at local, national and international levels.

Abstract

Aquifer test analysis is complex, and in many regards, the interpretation resembles an art more than a science. Under the best circumstances, aquifer test analysis is still plagued by ambiguity and uncertainty, compounded by the general lack of information on the subsurface. An approach which has seen widespread adoption in other fields that need to classify time series data is machine learning. A Python script that generates numerical groundwater flow models by interfacing directly with the modelling software produces training data for deep learning. Production yielded 3,220 models of aquifer tests with varying hydrogeological conditions, including fracture, no-flow and recharge boundary geometries. Post-processing exports the model results, and the Bourdet derivative is plotted and labelled for image classification. The image classifier is constructed as a simple three-layer convolutional neural network, with ReLU as the activation function and stochastic gradient descent as the optimizer. The dataset provided sufficient examples for the model to obtain over 99% accuracy in identifying the complexities present inside the numerical model. The classification of groundproofing data illustrates the model’s effectiveness while supporting synthetically prepared data using modern groundwater modelling software.

Abstract

Groundwater is a hidden resource, so as part of making it more visible, geophysical methods can be very useful in inferring the delineation of aquifers and/or more productive zones to target in fractured rock environments. The most commonly used techniques to assist groundwater studies or exploration are still resistivity profiles or sections known as ERT or electrical resistivity tomography and vertical electrical soundings or VES. One of the limiting factors with this technique is the scale of what surveys can be conducted, resulting in, at best, some kilometers per day. The Hydrogeophysics group of Aarhus University have developed the towed transient electromagnetic (tTEM) system as a cost-efficient tool for characterizing regional hydrological systems to depths of up to 70 m as an alternative to these more traditional methods - which is highly productive in that collection of 40- to-80-line kilometers of data per day is feasible. The system is based on the transient electromagnetic (TEM) method, which involves using a transmitter and receiver coil to measure the electrical resistivity of the subsurface. The hydrological value in electrical resistivity images stems from the ability to delineate different hydrogeological units based on their contrasting electrical properties. Consequently, 3D electrical resistivity images can infer the subsurface hydrogeology and enhance the success of installing productive boreholes. This work presents case studies from several African countries (e.g., South Africa, Zimbabwe, Ethiopia, Senegal, and Togo). It demonstrates how the tTEM method can identify reliable drinking water sources in these countries.

Abstract

A mapping series was generated using the Vanrhynsdorp aquifer system to illustrate an improved standardization groundwater monitoring status reporting, that includes a progressive conceptual site model linked with spatial and temporal groundwater monitoring network assessment on an aquifer scale. The report consists of 4 segments: Base map provides a conceptual site model of a groundwater resource unit (GRU) delineating an area of 1456 km2 representing the geology and geological structures that make up the Vanrhynsdorp aquifer system.

The Groundwater Availability Map illustrated over a long-term trend analysis, the measured water levels indicate an 83% decreasing trend over an average period of 21.83 years, the water levels have declined by an average linear progression of 11.54 m (ranging 0.48-35.76 m) or 0.64 m per year, which equates to an estimated decline in storage of 218 Tm3 - 21 Mm3 within the GRU. The Groundwater EC map illustrated over the long-term analysis of an average period 24 years the average EC ranged between 57 - 791 mS/m, with certain areas tracking at a constant increasing trend beyond 1200 mS/m. The Groundwater Quality Characterization map provides EC contours and spatial Stiff diagram plots. The Stiff diagrams illustrate three aquifer water types namely, Na-Cl (Table Mountain Group Sandstones), Na-Cl with high SO4 concentration (Blouport and Aties Formation) and Na-Cl-HCO3 (Widouw Formation). These four segments of information products inform Resource Quality Objectives and the need for surveillance monitoring in conjunction with annual compliance monitoring and enforcement groundwater use audits.

Abstract

Monitoring regional groundwater levels provides crucial information for quantifying groundwater depletion and assessing environmental impacts. Temporal variation of groundwater levels is the response of the groundwater system to natural and artificial stresses in terms of groundwater recharge and discharge. The complexity and extent of the variation rest on the nature and storage properties of the aquifer system. High groundwater levels are usually found in the recharge zones and low in the discharge zones, resulting in groundwater flow from recharge areas to discharge areas. Continuous decline of groundwater levels has been observed in some of the monitoring boreholes within the National Monitoring Network. Groundwater level decline has been caused either by over-exploitation or reduction of groundwater recharge. Generally, the pattern of spatial and temporal variations of groundwater levels is the consequence of incorporating climatic, hydrological, geological, ecological, topographical, and anthropogenic factors. Therefore, understanding the pattern of spatial and temporal variations in groundwater levels requires a combined approach. A combination approach of National long-term groundwater level monitoring data, Hydrological stresses, Anthropogenic interferences, and characteristics of the groundwater system was used to understand the continuous decline of groundwater levels in selected monitoring stations across the country.

Abstract

Research on Fracking in the Karoo basin yielded results that, if not considered “unexpected”, can be considered as “should have been foreseen”. Some aspects substantially impacting research on fracking are often overlooked when undertaking scientific research on an emotional topic such as fracking. This presentation aims to provide insights and recommendations based on the experiences and outcomes of current research on hydraulic fracturing or “fracking” in the Karoo basin of South Africa. Fracking has been a subject of significant research and debate over the past decade. Topics, each with its challenges, include 1) The scale of exploration/production extent (Site specifics), 2) Importance of robust and independent research, 3) Need for stakeholder engagement and participation, 4) The complexity of environmental risks and impacts, 5) The need for a precautionary approach, 6) Regulatory and policy challenges. Several methodologies can be relied upon to compare outcomes of different aspects of fracking research in the Karoo, such as 1) Comparative analysis, 2) Meta-analysis, 3) Stakeholder mapping and analysis and 4) Data visualisation. A combination of these methodologies can be used to compare outcomes of different aspects of fracking research in the Karoo and provide insights and recommendations for future decision-making and planning. Ultimately, the decision to allow Fracking should be based on a balanced assessment of potential risks and benefits, considering long-term impacts on the environment, economy, and communities.

Abstract

The work presented relates to the influence of regional scale dykes in groundwater flow in karst aquifers of northern Namibia’s Otavi Mountainland around the towns of Tsumeb, Otavi and Grootfontein. The aquifers are well studied and are an important water source locally and for populated central areas of the country during drought. The area has parallel, eastwest trending elongated valleys and ranges shaped by the underlying synclines and anticlines of folded carbonate units of the Damara Supergroup. The role of the regional scale dolerite dykes that cut across the dolomitic aquifers has not been fully appreciated till recently. Aeromagnetic data is effective in mapping the dykes in detail. The dykes trend in a north-easterly to northerly direction into the Otavi Platform carbonate rocks. The dykes are normally magnetised with the odd remanent dyke. They consist mainly of dolerite, although in some cases are described as tectonic with hydrothermal magnetite and no dolerite material. The dykes appear to focus southwest of the Otavi Mountainland near the Paresis Alkaline Intrusive (137Ma). Examination of existing hydrogeological data reveals different characteristics of the dykes that influence groundwater flow, forming: a) conduits that enhance flow along contact zones, b) barrier to flow with compartmentalization and c) partial barrier to flow. An advantage has been taken of the understanding gained to manage mines’ dewatering and pumped water management. Future water resources management and contaminant studies will need to recognise the compartmentalised nature of the aquifer

Abstract

The basis of a hydrogeological conceptual model is the comprehensive characterisation of the groundwater system. This ranges from discrete hydraulic feature analysis to local-scale testing to integrated regional-scale aquifer system conceptualisation. Interdisciplinary data integration is critical to each level of characterisation to gain a realistic, yet simplified representation of the hydrogeological system based on various data sources. Incorporation of geological datasets, including (but not limited to) structural and lithological mapping, geotechnical core logs and geophysical surveys, in conjunction with a tailored selection of hydraulic testing techniques, are often underutilised by hydrogeologists. Yet, the contribution of these alternative hydraulic datasets cannot be overstated.

A recent hydrogeological assessment and feasibility study forming part of the planned expansion project for a base-metal mine in the Northern Cape, South Africa, offers an ideal, practical example. The localised nature of the project area and the inherently complex geological setting required a more detailed conceptual model and hydrostratigraphic domaining approach. Highly heterogeneous stratigraphy and strong structural aquifer controls necessitated characterisation by reviewing, testing and analysing various datasets. Exploratory core datasets, hydraulic aquifer tests, geological and downhole geophysical datasets, and statistical Rock Quality Designation—hydraulic conductivity relationships were interpreted to produce meaningful, refined hydraulic process identifications. A comprehensive local groundwater framework, discretised into various hydrostratigraphic units and structural domains with specified hydraulic parameters, was incorporated to provide a novel, more robust conceptual understanding of the unique hydrogeological system.

Abstract

This study assessed aquifer-river interaction using a combination of geological, hydrological, environmental stable isotope, and hydrochemical data in a non-perennial river system in the Heuningnes catchment. Results showed the depth to groundwater levels ranging from 3 to 10 m below ground level and aquifer transmissivity values of 0.17 to 1.74 m2 /day. The analytical data indicated that Na-Cl-type water dominates most groundwater and river water samples. Environmental stable isotope data of river samples in upstream areas showed depleted δ18O (-4.3 to -5.12 ‰) and δ2H (-22.9 to -19.3 ‰) signatures similar to the groundwater data, indicating a continuous influx of groundwater into the river water. Conversely, high evaporative enrichment of δ18O (1.13 to 7.08 ‰) and δ2H (38.8 to 7.5 ‰) were evident in downstream river samples.

It is evident from the local geological structures that the fault in the northeastern part of the study area passing Boskloof most likely acts as a conduit to groundwater flow in the NE-SW direction, thereby supplying water to upstream river flow. In contrast, the Bredasdorpberge fault likely impedes groundwater flow, resulting in hydraulic discontinuity between upstream and downstream areas. Relatively low conductive formation coupled with an average hydraulic gradient of 8.4 × 10−4 suggests a slow flow rate, resulting in less flushing and high groundwater salinisation in downstream areas. The results underscore the significance of using various data sets to understand groundwater-river interaction, providing a relevant water management platform for managing non-perennial river systems in water-stressed regions.

Abstract

ue to public health or environmental concerns, performing tracer tests in the field by injecting pathogenic microorganisms or contaminants of emerging concern into groundwater is not permitted. Therefore, examining the effects of preferential flow processes on these contaminants under controlled saturated conditions must be done in the laboratory, but the resulting transport parameters cannot be directly applied to field-scale groundwater models. This research considers how an upscaling relationship can be found using a colloidal tracer and three different scales: small laboratory columns (0.1 m scale), a large intact core (1 m scale), and a real-world gravel aquifer (10 m scale). The small columns were filled with gravel from boreholes at the field site, an alluvial gravel aquifer close to Vienna, Austria. The mesoscale consists of an undisturbed gravel column from a gravel pit near Neuhofen an der Ybbs, Austria. Results showed that a certain pattern emerges after an initial scale-dependent threshold, regardless of differences due to the small columns being repacked with aquifer material and the large column and field site being “undisturbed”. In this way, the mesoscale column allows us to gain insight into upscaling processes by incorporating an in-between step when comparing groundwater transport at the column- to the field scale.

Abstract

Advances in groundwater age dating provide key information for groundwater recharge history and rates, which is of great significance for groundwater sustainable development and management. By far the, radioisotope 14C is the most frequently used in routine investigations. However, groundwater age can be misinterpreted given its dating range of up to 40 ka and its chemically active in nature. In comparison, 81Kr is less frequently used but chemically inert with a dating range of up to 1,300 ka, which overcomes the limit of 14C. Although it is not as precise as 14C when the groundwater age is younger than 40 ka, it may be helpful to determine the reliability of 14C dating results. In this study, we collected eight field samples from coastal aquifers in Nantong, China and analyzed them for 81Kr, 85Kr, and 14C. The 14C results show that all groundwater ages range from 2,400 to 35,300 years, with different correction methods yielding uncertainties of 1,500 to 3,300 years. Four of the 81Kr ages provided upper bounds, while three yielded groundwater ages which are consistent with the 14C dating results within measurement uncertainties. Interestingly, one 81Kr result gave an age of 189+11 - 12ka, whereas the corresponding corrected 14C age was less than 29,200 years. The great difference may indicate modern contamination in the sampling process or mixing between young and old groundwaters. Further investigation is needed to shed more lights in this case. Moreover, it shows the benefits of introducing 81Kr in routine hydrogeological investigations and the groundwater studies.

Abstract

Annually, UNICEF spends approximately US$1B in water, sanitation and hygiene programming (WASH), approximately half of which is spent in humanitarian contexts. In emergencies, UNICEF supports the delivery of water, sanitation and hygiene programming under very difficult programming contexts – interruptions to access, power supply and a lack of reliable data. Many of these humanitarian situations are in contexts where water scarcity is prevalent and where the demand and competition for water are increasing, contributing to tension between and within communities. While water scarcity is not new to many of these water-scarce areas, climate change is compounding the already grave challenges related to ensuring access to safe and sustainable water services, changing recharge patterns, destroying water systems and increasing water demand. Incorrectly designed and implemented water systems can contribute to conflict, tension, and migration. Ensuring a comprehensive approach to water security and resilient WASH services can reduce the potential for conflict and use water as a channel for peace and community resilience. This presents an enormous opportunity for both humanitarian and development stakeholders to design water service programmes to ensure community resilience through a four-part approach: 1. Groundwater resource assessments 2. Sustainable yield assessments (taking into consideration future conditions) 3. Climate risk assessments 4. Groundwater monitoring/early warning systems UNICEF promotes this approach across its WASH programming and the sector through technical briefs, support and capacity building.

Abstract

The Sandveld (Western Cape, South Africa) is a critical potato production area on the national production scale, especially for table potatoes. As the area is situated on the continent’s West Coast, it is a dry area of low rainfall (less than 300 mm /a). The bulk of the irrigation water for agriculture in the region is derived from groundwater. Approximately 60 Mm3 /a of groundwater is abstracted for irrigation of potatoes in the broader Sandveld, assuming a 4-year rotation cycle. The abstraction of groundwater is a sensitive issue in the Sandveld as groundwater also plays a critical role in supplying water to towns in the area, water for domestic use, and it also plays a critical role in sustaining sensitive ecosystems (such as the coastal lake Velorenvlei).

The groundwater resources have been monitored for nearly thirty years now. The results indicate areas where a slow but consistent decline in groundwater levels and groundwater quality is occurring. The trends can also predict when the aquifers will become depleted, and the groundwater will become too saline for use. This is critical information for management interventions to be implemented now to protect the area from irreversible damage.

Abstract

Nearly 1.9 billion people live in marginal environments, including drylands, semiarid, arid, and hyperarid environments. Obscure but ubiquitous circular pockmark depressions dot these lands. These circular depressions can range from a few meters to kilometers, and the depth of these depressions varies from a few centimeters to over 10 m. However, the genesis of the circles has been investigated among scientists for many years because of their obscure nature. Some researchers believe that termites cause fairy circles, while others believe they are caused by plants competing for water and nutrients. This study documented the Africa-wide prevalence and extent of the pockmarks for the first time, and it further classified the pockmarks according to their genesis and hydrological roles. We further investigated their relevance in serving as nature-based solutions to overcome water scarcity in dryland regions. So far, field evidence in Ethiopia and Somalia showed that these features potentially have water security significance in a) organizing surface water flows over arid/semi-arid landscapes, b) serving as the site of temporary surface water storage, and c) serving as the site of focused groundwater recharge into the underlying aquifers. This presentation will highlight the spatial prevalence, extent, and genesis model of the pockmarks across the drylands in Africa (South Africa, Namibia, Somalia, Ethiopia, Kenya, Chad, Senegal, Mali, Niger, etc.).

Abstract

The lack of reliable groundwater level monitoring data hinders the comprehensive understanding and sustainable management of our aquifers. New remotely sensed data products could present novel possibilities to fill in situ data gaps. For example, continuous monthly groundwater storage anomaly estimates at a spatial resolution of 0.25° (28 km) are made available through the Global Data Assimilation System Version 2.2 (GLDAS-2.2) data products that assimilate Gravity Recovery and Climate Experiment (GRACE) data. In this study, it was hypothesised that the open-source, higher resolution Climate Hazards Group InfraRed Precipitation With Station Data (CHIRPS) precipitation data and Moderate Resolution Imaging Spectroradiometer (MODIS) evapotranspiration data could be used to downscale groundwater storage anomalies (GWSA) for local scale investigations. Using an intergranular and fractured aquifer, as well as a karst aquifer as case studies, both enclosed within the Steenkoppies Catchment (A21F), two respective random forest regression (RFR) models were developed to downscale GLDAS-2.2 GWSA. Sampling monthly training data without accounting for temporal lagging resulted in an increased correlation, index of agreement (IA) and improved RMSE for the intergranular and fractured aquifer. Where the correlation between the observed groundwater storage changes and the GLDAS-2.2 groundwater storage estimates were weaker, however, accounting for the temporal lags resulted in an improved RMSE. The final product is a 0.05° (5.5 km) grid of monthly time-series GWSA estimates that can improve groundwater resource assessments, understanding aquifer recharge, modelling accuracies and better overall decision-making regarding Integrated Water Resource Management (IWRM).

Abstract

Sand mining in southern Africa is on the rise, fuelled largely by rapid urbanisation. This creates a range of societal and biophysical challenges and supports livelihoods in regions with high unemployment. Relevant scientific studies are scarce. This study explores the impacts of sand mining from ephemeral rivers on Botswana, South Africa and Mozambique communities through field visits, interviews, modelling, remote sensing and legislative analysis. What was expected to be a hydrogeology project focussing on water resources identified a broader range of issues that should be considered. Initial results uncovered a range of negative biophysical impacts, including alteration of hydrological regimes, which in turn affect groundwater recharge and exacerbate drought and flood risks, destruction of riparian vegetation, increased erosion, damage to infrastructure (including bridges and roads), reduced water quality, and the spread of invasive plant species. Equally important are the range of social impacts, such as drowning people and livestock, loss of agricultural land, increased traffic, dust, noise and crime. Complex governance arrangements influence these social and environmental challenges. The findings highlight the need to adopt an inter- and trans-disciplinary approach that considers linkages between human and natural systems. This approach is essential for finding sustainable solutions for the provision of construction materials that limit detrimental impacts on water resources, ecosystems and livelihoods. 

Abstract

Hermanus was originally supplied from springs and groundwater until the De Bos Dam was built in the 1950s. Due to increasing water demand, the municipality commenced wellfield development in 2002. The first wellfield comprised 3 boreholes, of which one borehole was later decommissioned due to reduced yield. Three additional boreholes were drilled recently to ensure abstraction capacity within the licence limits. A second wellfield was developed in the Hemel-en-Aarde Valley north of Hermanus. To ensure the sustainable management of the shared resource and minimise environmental impacts, a monitoring committee was established with all relevant roleplayers, other users, civil society, environmental groups and various commenting and regulatory authorities. A comprehensive monitoring network was established to assist with the scheme’s management and ensure that environmental impacts are minimized. The long-term monitoring (up to 20 years) shows that the groundwater abstraction from the Gateway Wellfield does not impact the environment and other users or increase the risk of saline intrusion. Identified impacts have been mitigated with the assistance of the monitoring committee. The municipality aims to provide at least half of the town’s water demand from groundwater and establish conjunctive use operation between surface water from the De Bos Dam and groundwater from these wellfields. The wellfields ensured sufficient water for the municipality when De Bos Dam’s water levels declined significantly during the Western Cape droughts in 2011 and 2017. The presentation will provide examples of the long-term monitoring records and trends.

Abstract

The SADC region has vast potential to alleviate water scarcity and promote growth through the responsible development of groundwater resources. To achieve this, it is crucial to understand the resource’s value, implement sustainable abstraction programs, protect its quality, optimize its usage for regional development, and implement innovative aquifer management programs, including artificial recharge. Greenchain Group is a water treatment company that recognizes the value of water and strategically deploys its expertise to maximize the potential of each drop. As membrane technology specialists and local manufacturers of this advanced technology, we understand how to design integrated solutions to safeguard water quality and accessibility. Our wide range of filtration technologies allows us to select the technology suited to the application and regional groundwater context and to produce high-quality water from various sources, including groundwater. Additionally, by removing contaminants/unwanted constituents from groundwater, we enhance the value of each drop of water for local potable consumption, eliminate the need for overwatering in agriculture, and allow for the creation of new agriculture/industries in regions with poor groundwater quality. This same technology can also treat wastewater and remove contaminants (e.g. chemical of emerging concern, PFAS) and thus is critical to water reuse applications and responsible Managed Aquifer Recharge. Greenchain Group’s treatment systems have been used in various industries, including agriculture, mining, energy, medical, food and beverage, and remote and mobile settings.

Abstract

Slug tests are preliminary tests applied to determine the hydraulic conductivity and whether it is necessary to perform a pumping test on the borehole under investigation and should never be recommended as a substitute for a pumping test. For this reason, slug tests cannot be related to sustainable yield because slug tests cannot detect boundary conditions. The aim was to develop a methodology to relate slug tests to a potential yield estimation, investigating and reviewing the applicability and accuracy of the slug test methodology in South Africa, applied on fractured rock aquifers as established in 1995. The aim was achieved by reviewing the methodology applied for slug tests that are related to potential yield estimations, identifying the limitations of slug tests, investigating the possibility of updating the potential yield estimation method of 1995, and investigating the possibility of relating slug tests, to potential yield and transmissivity estimations through groundwater modelling. The investigation revealed that using transmissivity values determined through slug test homogenous modelling can be utilised to estimate the potential yield of a borehole under investigation by implementing correlation statistics. Note that this is not an absolute and is subject to limitations.

Abstract

The potential role of groundwater in supporting the resilience of human societies is garnering increased attention in the context of climate change. Much of this attention focuses on the resilience of the groundwater resource itself. Less attention has been given to the way that groundwater is used by society and how this may influence human-centred resilience outcomes, particularly in urban settings. In this paper, I explore how questions of scale are fundamental to the role of groundwater in the resilience of urban areas, from the scale of individual households to more regional and catchment-based notions of scale. It is these variations in the geographies of urban groundwater exploitation that provide for the challenges of groundwater governance. Drawing on the practices revealed across 5 diverse cities in sub-Saharan Africa; the paper highlights the variety of ways that groundwater promotes the resilience of urban areas to water stress. The paper finds that groundwater can accommodate a prevalence of ‘self-supply’ and market-based models as urban populations seek to counter failings in public supply provision. Whilst these actions promote the resilience of the urban setting in the short to medium term, they raise important questions for the longer-term sustainability of the resource. The paper considers the implications of these questions for the future governance of resilient groundwater resources and the role of groundwater as part of a wider strategy for urban resilience.

Abstract

Machine learning techniques are gaining recognition as tools to underpin water resources management. Applications range widely, from groundwater potential mapping to the calibration of groundwater models. This research applies machine learning techniques to map and predict nitrate contamination across a large multilayer aquifer in central Spain. The overall intent is to use the results to improve the groundwater monitoring network. Twenty supervised classifiers of different families were trained and tested on a dataset of fifteen explanatory variables and approximately two thousand points. Tree-based classifiers, such as random forests, with predictive values above 0.9, rendered the best results. The most important explanatory variables were slope, the unsaturated zone’s estimated thickness, and lithology. The outcomes lead to three major conclusions: (a) the method is accurate enough at the regional scale and is versatile enough to export to other settings; (b) local-scale information is lost in the absence of detailed knowledge of certain variables, such as recharge; (c) incorporating the time scale to the spatial scale remains a challenge for the future.

Abstract

This study aims to investigate the groundwater circulation and hydrogeochemical evolution in the coastal zone of Xiamen, southeast China, which can provide a reference for the development of water resources and the protection of soil and water environment in the coastal areas. A close connection between mountains and the sea characterizes the southeast coast of China. Although rainfall is abundant, the topography limits it, and water resources quickly run into the sea. Coupled with a concentrated population, water is scarce. In addition, this area’s water and sediment environment are influenced by human activities and geological conditions. Its changing trend also needs further study. Therefore, using hydrochemical analysis, isotope technology, numerical simulation and other techniques, this study took Xiamen City on the southeast coast as an example to study the groundwater circulation and the environmental evolution of water and sediment. The results show that although the aquifer is thinner, there is still deep groundwater circulation, and the seawater intrusion range of deep aquifer is much further than that of shallow aquifer. In addition to geological causes, human activities have become the main factors affecting groundwater quality, especially nitrate and lead. The nitrate content even exceeds the content of the major ionic components. Introducing land-based pollutants has also contributed to declining seawater and sediment quality in the Bay area. In general, the main pollutants in coastal areas include nutrients, heavy metals and new pollutants.

Abstract

Groundwater represents a crucial source of drinking water in the Lille metropolitan area. Despite its importance, the resource is vulnerable to the potential evolution of land use: recharge, runoff and evapotranspiration processes in a soil-sealing context and changes in cultural practices. As a result, stakeholders emphasized the importance of exploring the influence of land use on groundwater to ensure sustainable resource management and enhance territorial planning. The 3D hydrodynamic model helped manage groundwater resources, but the (MARTHE code) has a significant limitation in that it does not consider the impact of land use evolution. We propose to investigate the contribution of a hydrological distributed numerical approach incorporating land cover data in groundwater modelling compared to a global approach at the scale of a peri-urban territory. To do so, we use the HELP code by considering the temporal and spatial evolution of land use and their associated characteristics, such as vegetation and soil properties, to detail recharge and runoff over more than 20 years that we incorporate into the initial groundwater model.

The two approaches yielded comparable global water balance results. However, at the local scale, the model accounting for land use showed significantly different hydric components. Choosing the appropriate model depends on the specific research question and spatial scale, and considering land use evolution is crucial for accurate urban planning impact assessments, especially at the district level.

Abstract

The study focuses on the overlapping effects of low-enthalpy geothermal plants in urbanized areas, showing the importance of quantifying thermal groundwater exploitation to manage the resource adequately. Geothermal energy connects groundwater use to one of the ever-growing needs nowadays: energy. For low-temperature geothermal, the form of energy we can harness is thermal energy for building heating or cooling, one of the most polluting sectors, representing 34% of CO2 emissions in Europe. As in the main European cities, geothermal energy use is constantly growing, and understanding the status of groundwater exploitation for geothermal purposes is essential for proper resource management. To this end, the study’s first phase focused on quantifying geothermal use in the study area selected in Milan city-Italy.

Knowing the characteristics of geothermal plants in the area allows us to understand the extent of the resource exploitation and the consequences of its mismanagement at a large scale. In fact, the plant designers often focus on the local scale, not considering the presence of neighbouring plants, which risks decreasing the plant’s efficiency or amplifying its subsurface thermal effect. To minimize the thermal effects/interferences of geothermal plants in the subsoil, the study of the application of D-ATES systems (Dynamic Aquifer Thermal Energy Storage) with significant groundwater flow is promising. A numerical model of the study area is then implemented with MODFLOW-USG for thermal transport in porous media to evaluate the advantages of installing D-ATES systems instead of typical open-loop systems.

Abstract

Previous studies have shown that river-aquifer connectivity exists. However, an integrated approach that consists of multiple measuring methods to quantify and characterise such connectivity still needs improved scientific understanding due to the underlying principles and assumptions of such methods, mainly when such methods are applied in a semi-arid environment. Three techniques (hydrogeochemistry, stable water isotopes, and baseflow separations) were applied to quantify and characterize river-aquifer interactions. The study’s objective was to improve knowledge and understanding of the implications of the results from the three methods. Field measurement, laboratory assessment, and record review were used to collect primary and secondary data. Results showed that Na- HCO3 water type dominated the upper stream, discharging onto the surface and forming stream sources. Na-HCO3 water type was an outlier when the area’s geology and land use activities were assessed. The isotope results showed that the studied aquifer had 9% recently recharged water. Being the upstream, the freshwater in such a mountainous aquifer was expected. The baseflow index (BFI) results showed that the dependency of the total river flow to aquifer discharge contributed 7.24 % in the upper stream, 7.31% in the middle stream, and 7.32% in the lower stream. These findings provided empirical evidence that hydrochemistry, stable isotopes, and baseflow separation methods provide key insights into aquifer-stream connectivity. Such findings inform choosing appropriate and relevant measures for protecting, monitoring, and allocating water resources in the catchments.

Abstract

Natural processes (e.g., El Nio) and anthropogenic activities (e.g., land-use modification and groundwater abstraction) drive local and global hydrological changes. Consequently, these changes threaten the role of wetlands in the hydrological and ecological functioning of a catchment. Verlorenvlei is a vulnerable RAMSAR-listed estuarine lake located on the west coast of South Africa in Elands Bay. Since the 2015-2018 Western Cape drought, Verlorenvlei has experienced drier-than-normal conditions with less rainfall, negatively impacting the surrounding ecology. Seasonal and spatial changes of the water sources (e.g., rainfall, surface water, and groundwater) supporting the wetland and the interconnectivity between these reservoirs were investigated using O/H stable isotopes and hydrochemistry analysis. The study collected event-based rainfall (57 samples), surface water (18 samples), and groundwater (108 samples) in February, April, and June 2022. Stable isotope ratios and hydrochemistry indicate that groundwater outside the watershed (topographically and surface water delineated) supports the wetlands, suggesting that local and regional groundwater flow systems influence the Verlorenvlei. Furthermore, the Verlorenvlei is subjected to high evaporation compared to other surface waters and, in return, is reliant on baseflow supporting its hydrological functioning. The Krom Antonies and Hol sub-catchments exhibit overlapping groundwater isotope ratios and water types compared to the Verloren sub-catchment, suggesting a disproportionately high groundwater contribution from both sub-catchments into the wetland. Understanding Verlorenvlei’s water balance is necessary to improve ecological reserve determination studies to help ensure environmental and socio-economic sustainable water use

Abstract

The City of Cape Town (CCT) initiated its “New Water Programme” in 2017 (during the major 2015-2018 “Day Zero” drought) to diversify its bulk water supply, thereby improving longterm water security and resilience against future droughts. This includes bulk groundwater abstraction from the major fractured Peninsula and Nardouw Aquifers of the Table Mountain Group (TMG) in the mountain catchments east of the CCT. The TMG aquifers are essential in sustaining groundwater-dependent ecosystems associated with the Cape Floral Kingdom – a global biodiversity (but also extinction) hotspot with exceptional endemic diversity. A strong geoethical, “no-regrets” approach is therefore required to develop TMG wellfield schemes for the CCT (and other towns/cities in the Western/Eastern Cape) to reduce the risk of any negative ecological and environmental impacts while still enhancing the drought resilience of the city, providing water for future urban growth, and meeting Sustainable Development Goals 6 and 11.

To this extent, the CCT has developed an extensive regional (and local, in terms of Steenbras Wellfield) environmental monitoring network, incorporating a range of in-situ and remote sensing-based measurements across the Earth’s “Critical Zone” – this includes current groundwater, surface water, ecological, soil and meteorological monitoring stations, and future seismo-geodetic monitoring. An ongoing ambition is to include this CCT TMG monitoring network into the “Greater Cape Town Landscape”, which is currently in development as one of six national South African landscapes under the “Expanded Freshwater and Terrestrial Environmental Observation Network” (EFTEON) platform being hosted by the South African Environmental Observation Network.

Abstract

Understanding and quantifying hydrology processes represent a mandatory step in semi-arid/arid regions for defining the vulnerability of these environments to climate change and human pressure and providing useful data to steer mitigation and resilience strategies. This generally valid concept becomes even more stringent for highly sensitive ecosystems, such as small islands like Pianosa. The project intends to deploy a multi-disciplinary approach for better understanding and quantifying the hydrological processes affecting water availability and their evolution, possibly suggesting best practices for water sustainability.

First results pointed out as over the last decade the precipitation regime has led to a major rate of evapotranspiration and minor effective infiltration that caused a decreasing of piezometric level over several years. Quantity and chemical-isotopic features of rainfall and effective infiltration water measured/collected by a raingauge and a high precision lysimeter describe the hydrological processes at soil level and characterize the rate and seasonality of groundwater recharge. Hydrogeological and geochemical data of groundwater are highlighting the distribution and relationship among different groundwater components, including the seawater intrusion. Furthermore, the comparative analyses of continuative data monitoring in wells and weather station showed the presence of possible concentrated water infiltration processes during rainfall extreme events that induce a quick response of shallow groundwater system in terms of water level rise and decrease of electrical conductivity. Thus, elements of vulnerability of the aquifer to pollution are pointed out, as well as the possibility to provide technical solutions for enhancing water infiltration and groundwater availability.