Conference Abstracts

All Abstracts were presented at the Groundwater Conferences

Displaying 201 - 250 of 795 results
Title Presenter Name Presenter Surname Area Conference year Sort descending Keywords

Abstract

The question about the natural recharge areas for two of the Lower Berg river aquifers units, Elandsfontein Aquifer unit and Langebaan Road aquifer unit, has been keeping geohydrologists working in the area without a definite answer. Tredoux and Engelbrecht have postulated that it must be from the higher grounds around Hopefield, while Woodford hinted that an offshoot fault from the Coleso fault system could also cause the systems to be recharged from the Darling hills. Isotope studies had been done for the proposed Hopefield recharge area, but none has so far been done for the possible Darling recharge system. This paper will look at the studies done up to date and evaluate the data available for the boreholes drilled in the area in an attempt to get a clearer understanding of the two possibilities. It will also identify possible gaps in our knowledge of the area and the steps that would make it possible to fill in the gaps.

Abstract

Coastal wetlands are complex hydrogeological systems in which groundwater have a significant influence on both its water balance and hydrochemistry. Differences in groundwater flow and groundwater chemistry associated with complex hydrogeologic settings have been shown to affect the diversity and composition of plant communities in wetland systems. A number of wetlands can be found across the flat terrain of the Agulhas Plain, of which the most notable is the Soetendalsvlei and the Vo?lvlei. Despite the ecological and social importance of the Vo?lvlei, the extent to which local, intermediate and regional groundwater flow systems influences the Vo?lvlei is poorly understood. The aim of this work is to characterize the spatial and temporal variations in surface water and groundwater interactions in order to demonstrate the influence of groundwater flow systems on the hydrology of the Vo?lvlei. The specific objectives of the study are; 1) to establish a geological framework of the lake sub-surface, 2) to determine the physical hydrological characteristics of the Vo?lvlei and 3) to determine the physical-chemical and isotopic characteristics of groundwater and surface water. Data collection will be done over the period of a year. Methods to be used will include the use of geophysical (electrical resistivity) to determine high water bearing areas surrounding the wetland, a drilling investigation (the installation of piezometers at 5-10m depths and boreholes at 30m depth, sediment analysis (grain size analysis, colour and texture), hydraulic (slug testing to determine hydraulic properties; hydraulic conductivity and transmissivity), hydrological (to estimate groundwater discharge; Darcy flux and hydraulic head difference between groundwater level and lake level), physical-chemical (electrical conductivity, temperature and pH) and stable environmental isotopic (oxygen and hydrogen) analysis of surface water and groundwater, to determine flow paths and identify processes. Thus far, results obtained for the geophysical survey has revealed that the sub-surface of this wetland system is highly variable. Three traverses were done on the South-Western, South-Eastern and Northern side of the wetland (See Figure 1). In VOEL1 (South west), the upper couple of meters show areas of very low resistivity, which is associated with clays, poor water quality and water which has high dissolved salts. The changing of medium to high resistivity values on the North-eastern side is usually indicative of weathered sandstone (Table Mountain Group). VOEL2 (South eastern), indicates that the subsurface is of low resistivity. These low values are the result of noticeable salt grains in the sand. VOEL3 (Northern), indicated upper layers of low resistivity, while the lower depth indicate areas of high resistivity. It is expected that the results of this study will provide a conceptual understanding of surface water-groundwater interactions and the processes which control these interactions, in order to facilitate the effective management and conservation of this unique lacustrine wetland.

Abstract

VLF-Electromagnetic and geoelectric soundings were carried out at Ibuso-Gboro area via Ibadan, Oyo state. The objective was to delineate the groundwater potentials of the area. VLF-Electromagnetic method was adopted for reconnaissance survey with a view to locating bearing fractured zones in the basement bedrock. Sixteen (16) VLF-Electromagnetic profiles whose length ranges from 90-290 m were occupied with station interval of 10 m. The VLF-Electromagnetic results were presented as profiles. Linear features, suspected to be fractured zones, which were from the anomaly curves of the VLF-Electromagnetic were delineated in seven localities along the profiles. These localities were further confirmed by Vertical Electrical Soundings (VES). The seven Schlumberger Vertical Electrical Soundings (VES) were occupied with the electrode spacing (AB/2) varying from 1 m to 100 m with the total spread length of 200 m. The VES data were presented as sounding curves and interpreted by partial curve matching and computer assisted 1-D forward modeling. The results were presented as geoelectric sections, which showed the subsurface geoelectric images. Two out of the seven delineated linear features were test drilled and the fractured zones were met at depth range of between 25.0 m and 38.2 m beneath borehole (1) and 43.0 m and 52.1 m beneath borehole (2) for confined fractured. The pumping test analysis revealed borehole yield varied from 4.8 m3/hr and 5.2 m3/hr, where three (3) abortive boreholes had earlier been drilled. {List only- not presented} Key Words: VLF-Electromagnetic, Linear features, Geoelectric Soundings and Pumping test.

Abstract

Artesian boreholes are a common feature worldwide in confined aquifers, but the hydraulic testing of these boreholes, and estimation of aquifer properties from such tests, still poses a challenge for hydrogeologists. Common hydraulic tests, such as step-drawdown or constant-discharge rate tests require a static water level at the start of the test, and the measurement of drawdown (increasing over time) and abstraction rate (fixed for a period of time). Usually, when undertaking a pumping test in an artesian borehole, the drawdown is measured from ground level, and the drop in hydraulic head between static pressure and ground level is often ignored. This procedure also implies that the starting time of the test is not at the static water level. A constant-head test, set at ground level, is the other option. However, the decrease in flow rate is not only dependent on the hydraulic properties of the aquifer, but also masked by pipe hydraulic effects within the well. This kind of test would also limit the available drawdown to be utilized for the test. Hence, it was required to develop a method for undertaking hydraulic tests in strong artesian boreholes, allowing for the drawdown to fluctuate between levels both above and below ground and avoiding the pitfalls described above. The solution is a specially designed and constructed wellhead for the installation of the pump and monitoring equipment prior to the hydraulic test. The standard tests are slightly modified and are only undertaken after sealing the wellhead and reaching static hydraulic pressure. The recommended wellhead construction and subsequent hydraulic tests were implemented at a strong artesian borehole in the Blossoms Wellfield, south of Oudtshoorn in the Western Cape province of South Africa.

 

Abstract

POSTER Vanwyksvlei had always experienced problems with water supply and quality of drinking water. The town relies on 6 boreholes to supply the town with drinking water. Since 2011 the town was told not to use the water that was supplied from the borehole called Soutgat. This meant that the town could now rely only on the water being supplied from the other 5 boreholes.From 2011 till present the town has experienced a lot of problems regarding water supply, due to the fact that the Soutgat could not be used anymore. Extra stress was put on the other boreholes and these were pumped almost dry. The two aquifers are currently failing and monitoring data since 2009 shows that the water levels of the town are decreasing. Due to low rainfall, recharge to the boreholes are much lower, which exacerbates the problem. This poster will examine the effectiveness of using the Blue Drop system in small towns with limited water supply, at the hand of a case study of Vanwyksvlei. This review will take into account factors such as the point at which water quality is tested in the water supply system, the type of water treatment available for the town and a review the usefulness of certain standards in the Blue Drop system which may indicate failure of supply sources.

Abstract

The National Water Act (NWA) 36 of 1998 is regarded as providing a platform for an innovative way of managing the country's water resources. However, demands on the nation's water resources are intensifying as more and more catchments are coming under increasing stress. This may be attributed to significant changes in land-use and poor water resource governance which negatively affects the Environmental Water Requirement (EWR) flows of rivers in many catchments in South Africa. EWR refers to the flow needed by a river to sustain a healthy ecosystem. It is vital that the determined EWR flows are met and to ensure that all water-users receive their allocated water supplies. To ensure effective water management and water provision, it is critical to understand transmission losses considering that it is a key component of the water balance or hydrological budget. Quantitative investigations of transmission losses are necessary in order to calculate flows in a river and appropriately allocate water for different users. The Groot Letaba River situated in the north-eastern region of South Africa is a prime example of a river system where uncertainties in channel losses and gains are complicating effective water management. The Groot Letaba River is a model river where Strategic Adaptive Management (SAM) is currently being implemented to ensure adaptive and sustainable water resource management. This unique approach is facilitated by the institutional interaction between dam operators (from the upstream Tzaneen Dam) and stakeholders including Kruger National Park. However, there are huge uncertainties surrounding natural water losses (e.g. evapotranspiration) or gains (e.g. groundwater discharge) in the real-time model currently being used by dam operators. This study aims at attempting to narrow down the uncertainty by understanding and quantifying the natural hydrological processes between the two dominant land-uses along this river, i.e. agriculture and protected areas. In particular, the project will investigate the hydrological connectivity between groundwater and surface water along the Letaba River. This project will contribute significantly to management strategies by using a precise hydrological approach which will aid in improving estimates of water supply in the Groot Letaba River. Furthermore, this project could contribute to the development of appropriate water management strategies not only in the Letaba catchment but other similar Lowveld catchments as well.

Abstract

As we look at the legislation set out in the driving policies and its guiding frameworks, the need for able institutions to implement strategies that promise and deliver social growth and development, are highlighted. It is only possible to define an 'able institution' through its ability to fulfil its function and enable stakeholders to be part of the decision-making process. (Goldin, 2013) It is this relationship with the collection of stakeholders, in particular strategic water resource stakeholders, their linkages as well as the identification of specific stakeholder issues, that are critically reviewed. The recent Groundwater Strategy (2010) identified key strategic issues/themes. Each chapter listed a number of well thought out recommended actions that address specific challenges in each theme. It is the need for strategic direction (to put these strategies in place "plans into action") and to articulate the specific vision in the right context to the different stakeholders, (internal as well as external) that requires thinking. It is also the uptake of this information by publics (social action and intervention) and the impact of new learning that will need to be measured. This paper will present on a study where the groundwater sector and all its stakeholders are strategically examined to understand the process of communal thinking in the current environmental conditions. It would draw from current communication practices, style, strengths, sector experiences and trends and also reference specific and unique experiences as with the recent WRC Hydrogeological Heritage Overview: Pretoria project. {List only- not presented}

Abstract

POSTER The poster presents the modified hydrogeologic conceptual model that was used to assess the dynamics of groundwater flooding in Cape Flat Aquifer (CFA). The groundwater flooding remains poorly understood in the context of urban hydrogeology of the developing countries such as South Africa. While engineering intervention are relevant to providing solution to such events, continue estimation of hydrogeologic parameters at local scale alongside field measurements remain paramount to plausible modeling the groundwater flooding scenarios that inform such engineering interventions. However, hydrogeologic conceptual model which informs numerical simulation has not been modified to include local scale variation in the CFA to reflect various groundwater units. The current study argues that modifying hydrogeologic conceptual model improves numerical simulations thereby enhancing certainty for engineering solutions. The current study developed groundwater units, set up site specific models and estimated aquifer parameters using pumping step-drawdown and constant rate pumping tests in order to produce a comprehensive modified hydrogeological conceptual model for CFA to inform groundwater modeling at catchment level for water sensitive cities.

Key Words: Aquifer parameters, Groundwater flooding, specific models, hydrogeologic conceptual model, groundwater units, numerical simulations, water sensitive cities, CFA

Abstract

Inadequate characterization of contaminated sites often leads to the development of poorly constructed conceptual site models and consequently, the design and implementation of inappropriate risk management strategies. As a result, the required remedial objectives are not achieved or are inefficient in addressing the identified risks. Unfortunately, it is all too common to find remedial intervention strategies that run for lengthy periods of time at great cost while generating little environmental benefit due to inadequate characterization of site conditions. High resolution site characterization (HRSC) can provide the necessary level of information to allow for development of rigorous conceptual site models, which can be used to develop and implement appropriate risk management solutions for environmental problems. At the outset, the HRSC approach generally has comparatively higher costs than traditional state-of-the-practice assessment methods. However, the project lifecycle costs can be substantially reduced due to development of optimal risk management strategies. In developing countries where there is a lack of legislation relating to soil and groundwater contamination or, a lack of enforcement of legislation which is present, the long-term liabilities related to contaminated sites are often not immediately apparent to the parties responsible for the sites. This often creates a reticence to employ HRSC techniques due to their increased cost, especially when much of the technology must be imported on a project specific basis from either Europe or the United States. The Authors provide information from several case studies conducted in South Africa where HRSC techniques have been employed to gain a greater understanding of subsurface conditions. Techniques employed have included surface-based geophysical techniques such as electrical resistivity tomography (ERT) and multi-channel analysis of seismic waves (MASW), passive soil gas surveys, deployment of Flexible Underground Technologies (FLUTe?) liners, diamond core drilling, fluid electrical conductivity profiling, downhole geophysical logging tools, the Waterloo Advanced Profiling System (APS), and the use of field laboratories. Several of the techniques required importing equipment and personnel from Europe or the US, and in several case studies, were a first to be employed in South Africa, or the continent of Africa for that matter. The Authors present data obtained using the HRSC techniques from the case studies and elaborate on how the information obtained was used to drive effective decision making in terms of managing long term environmental risks at the various sites, which has been positively embraced by local clients. The authors also highlight key challenges in conducting HRSC investigations in an emerging market context.

Abstract

Studies showed that the primary origin of salinity in river flows of the Sandspruit in the Berg Catchment located in the Western Cape Province of South Africa was mainly due to the weathering of the shales, while atmospheric deposition contributed a third of the total salinity. The salts are transported to rivers through surface runoff and subsurface flow (i.e. throughflow and groundwater flow). The purpose of this study was to determine the relative contributions of subsurface flow and surface flows to total flows in the Sandspruit River, Berg Catchment. Three rain events were studied. Water samples for two rain events were analyzed for environmental tracers ?18O, Silica (SiO2), Calcium (Ca2+) and Magnesium (Mg2+). Tracers used for two component hydrograph separation were ?18O and SiO2. These tracers were selected as Ca2+ and Mg2+ provided inconsistent contributions of both subsurface flow and surface flow. Two component hydrograph separations indicated that groundwater is the dominant contributor to flow, while surface runoff mainly contributes at the onset of the storm event. Groundwater response to precipitation input indicated that boreholes near the river have a greater response than boreholes further away from the rivers, which have minor response to the input of precipitation.
Keywords:
Stable Isotopes, Sandspruit River, Tracers, Hydrograph separation, Salinity

Abstract

The aquifer vulnerability of the Molototsi (B81G) and Middle Letaba (B82D) quaternary catchments of the Limpopo Province was assessed to determine the influence of the vadose zone on the groundwater regime. The aquifer vulnerability was assessed by developing a new method, RDSS, which evaluates the vadose zone as a pathway for pollutants by using the following four parameters: Recharge, Depth to water table, Soil type (saturated vertical hydraulic conductivity) and Slope. Recharge was estimated using the Chloride-mass balance method and the depth to the water table was measured in the field using dipmeter. The seepage behavior (soil type) was determined as hydraulic conductivity from in-situ infiltration and percolation testing. (SABS 0252-2:1993 and double ring infiltrometer). The slopes were determined with the digital elevation method using ArcGIS software. The four parameters were overlaid using Weighted Sum, Weighted Overlay and Raster Calculator to produce the vulnerability map. Different weightings were attributed in the methods and the best selected. The results obtained indicated high vulnerability on the lower and upper parts of both catchments. The benefits of the method described are: (a) the easy quantification of the parameters through fairly simple methods and (b) the exclusion of arbitrary index values.

Abstract

South Africa is classified as a semi-arid region where the evapotranspiration sometimes exceeds the annual recharge through rainfall which leads to more drought periods. Combine the before mentioned issue with the water shortages and the impact of mining on water in South Africa, the focus therefore then needs to be placed on the proper estimation of recharge from rainfall and subsequent water management of these water sources. The Ermelo region in Mpumalanga was chosen for the investigation into calculating recharge from rainfall, using water balance methods as the basis on which recharge is calculated. The Ground Water Balance, Saturated Volume Fluctuation, Ground water level fluctuation and Cumulative Rainfall Departure methods was used to calculated recharge and then compare the different methods and their values with each other to compile an accurate estimation of recharge in the area. The data was analysed for each of the methods and then plotted and compared on a simple x-y chart. A new equation was formulated whereby any recharge from the previously mentioned methods can be normalized against the new formula for a more accurate recharge value. As a secondary objective a recharge intensity map was compiled for the area showing the areas of potentially high recharge.

Keywords: South Africa, Ermelo, Recharge Estimation, Water balance methods, Ground Water Balance, Saturated Volume Fluctuation, Ground water level fluctuation, Cumulative Rainfall Departure, Intensity maps.

Abstract

Characterization of Groundwater Potential in the northern parts of the Limpopo Province, South Africa: Results from Integrated Geophysical Studies across the Sagole and Tshipise Hot Springs.
The Sagole and Tshipise hot springs are located in the northern Limpopo Province of South Africa. The geology of the area consists of dykes, dolerite sills, quartzite and undifferentiated meta-sediments. Regional-scale airborne magnetic data and satellite images were used for mapping structures and lithological boundaries in order to identify permeable zones that are associated with thermal groundwater aquifers. Various filtering techniques were used to enhance the magnetic signatures that correspond to structural features. Modeling of airborne magnetic data indicated that the heat source depth was an anticlinal structure at a depth range of 3 km to 5 km. Based on results of interpretation of the magnetic and satellite images, ground follow-up targets were identified. Detailed ground geophysical surveys were carried out across the identified targets using the frequency-domain electromagnetic (EM), electrical resistivity tomography (ERT) and magnetic methods.
{List only- not presented}

The result of interpretation of magnetic data was combined with two-dimensional modeling EM and (ERT). Modeling of the electrical conductivity of the subsurface layers was constrained using existing borehole data. Interpretation of the airborne magnetic data revealed the presence of number of NE-SW striking lineaments that transect the metasedimentary rocks of the Soutpansberg Supergroup. In addition, these structures are manifested by a number of hotsprings that are aligned along major lineaments. The interpretation of 2D modeling of ERT data revealed a highly conductive layer with a depth ranging from surface to 40 m that may be attributed to elevated moisture content. Two-Dimensional modeling of frequency-domain electromagnetic data was carried out to delineate lateral and vertical variation of electrical conductivity. Electrical conductivity values in the range 50 mS/m to 100 mS/m were obtained, indicating the presence of water bearing zones or fractures. Results of the study have shown that hot water rises to the surface along near vertical faults or fractures.

Keywords: Aquifer, geophysics, groundwater, thermal spring

Abstract

In order to meet the increasing national and international demand for coal, substantial expansion plans for existing as well as new coal mines were put forward in recent years. The mine developments are often proposed in environmentally sensitive areas and require an appropriate assessment of potential environmental impacts, including impacts on groundwater dependent ecosystems. This paper describes the development of a conceptual and numerical groundwater model as part of a wetland reserve determination in the Witbank coalfields. The model was used to assess potential mining related impacts on the shallow groundwater flow, including surface seepages and spring discharges feeding hill slope and valley bottom wetlands as well as pans. A number of shallow monitoring boreholes were sited, drilled and tested in the focus area around a pan to characterise the shallow perched and weathered aquifers. While these aquifers were generally found to be very low to low yielding, higher yields were encountered in a coarser grit layer intersected by two of the eight boreholes. The grit layer represents a potential preferential groundwater flow path towards the pan and was subsequently further delineated based on the exploration drilling logs from the mine. The different aquifers, the target coal seam, and over 60 mapped hill slope and valley bottom wetlands as well as pans, were incorporated into a numerical groundwater flow model. A free seepage boundary was assigned to the entire surface area to evaluate if the model is able to represent the observed seepages and spring discharges. The simulation of unsaturated flow processes (Richard's equation) was found to be crucial for the representation of discharges from perched aquifers. Following a satisfactory calibration of the model, different open cast mine layouts were then incorporated into the model to assess their impacts on the groundwater contribution to wetlands. The presented quantitative simulation of groundwater contributions towards wetlands and pans based on site specific groundwater investigations and data is considered a best practice example in assessing the groundwater component for a wetland reserve determination.

Abstract

Gold mineralization in study area is structurally controlled. The geomorphology of the local drainage system is highly controlled by the fault architecture. Surface water flowed through, and eroded open fractures in exposed damaged zones (zone of subsidiary structures surrounding a fault). Previous conceptual hydrogeological models of groundwater system suggested is a two-aquifer system, consisting of a fractured aquifer overlain by a weathered aquifer, where groundwater flow mimics surface topography.

Based on recent drilling and reassessment of historic geological and hydrogeological data, the groundwater system cannot only be described in terms of an elevation or stratigraphic units, as traditional aquifers are, but instead in relationship with the folds and faults. The fractured aquifer system around the mine pit is structurally compartmentalized both laterally and vertically, as depicted by the variance in static hydraulic heads and borehole yields over short distances. The un-fractured mass has very low drainable porosity. Virtually all water is contained in fractures. The main fracture zones north and west of the pit typically yield 1.3 to 2 L/s

Abstract

Water management is a difficult and complex business requiring appropriate institutional arrangements as well as guidance and support from government, which is often unable to act effectively to address day-to-day water resource management (WRM) issues. Theoretically, water as a 'common pool resource' is best managed by users self-organised at a local level and within a basin framework. Water users and other stakeholders have detailed and up-to-date local knowledge as well as an interest in ensuring effective management to share water equitably between different users and to control pollution. This approach is supported by South Africa's National Water Act (NWA), which provides for the establishment of Catchment Management Agencies (CMAs) to perform a range of WRM activities within the framework of a National Water Resource Strategy (NWRS).
Hence, water resource management in general and conjunctive use in particular requires cross sector and cross level cooperative governance. Relevant institutions include the DWA at national and regional level, the CMA, if established, provincial departments that might impact on the water resources, water user associations, water services authorities, water services providers, water boards, and individual water users. These institutions are responsible for various activities and often require some level of inter- and intra-institutional cooperation. Ideally, multiple organisations, policies, legislation, plans, strategies and perspectives should be involved in water-related decision-making, which in turns creates complex leadership challenges. Globally, the lack of sustainable groundwater management can be ascribed to poor governance provisions. These include, but are not limited to, institutional arrangements and political will, including fragmented and overlapping jurisdictions and responsibilities, competing priorities, traditional approaches, rights and water pricing systems, diverging opinions, incomplete knowledge, data as well as uncoordinated information systems. Adding the poor operational and maintenance issues, decision-makers often view groundwater as an unreliable resource and are hesitant to make significant investments in groundwater infrastructure and capacity.
The recent Worldbank and WRC report on groundwater governance in South Africa revealed that the technical, legal, institutional and operational governance provisions were found to be reasonable at the national level but weak concerning cross-sector policy coordination. At the local level, basic technical provisions such as hydrogeological maps and aquifer delineation with classified typology are in place but other governance provisions such as institutional capacity, provisions to control groundwater abstraction and pollution, cross-sector policy coordination and the existence and implementation of groundwater management action plans are weak or non-existent.
It appears from this review that the major hindrances for sustainable groundwater governance and more so for integrated water resource management and conjunctive use scenarios are the discrepancy between groundwater and surface water provisions in the relevant legislation, associated guidelines and their implementation at regional and local, and the lack of skills and clear responsibilities for implementing water resource management actions at municipal level. This is demonstrated with several case studies.

Abstract

In 2009 it was announced that South Africa and Australia would be in competition for the race of the Square Kilometre Array (SKA). In 2009 the MeerKAT project was started in the Karoo near the core site of the SKA, which set out to demonstrate that South Africa was able to build the infrastructure of the SKA. The SKA required water for the building of roads, the dishes and the foundations of the dishes at the MeerKAT site. This poster explains the groundwater monitoring that is being performed at the MeerKAT site from 2011 till present in order to illustrate how good monitoring and management of groundwater can ensure sustainable groundwater use at sites like these. {List only- not presented}

Abstract

For a long time, professionals regarded social media as a superficial, unprofessional platform where internet users would submerge themselves in a virtual world, detached from real-life issues. Slowly, the myths and stigmas surrounding the use of social media has faded as more and more professionals and scientists have realized that these social platforms could be positively exploited in a professional manner which could be beneficial. In a digital age where information at our fingertips is the norm, professionals should co-evolve and ensure that their work is just as accessible and appealing, without the unnecessary jargon. Currently, science is mostly restricted to a very particular audience and conveyed in one direction only. Using a social media platform such as Twitter-which limits messages to only 140 characters-challenges scientists to convey their work in a very concise manner using simpler terminology. Furthermore, it dismisses the usual one-way form of communication by opening dialogue with fellow Twitter users. At conferences, Twitter can serve as a useful tool for active engagement which will not only "break the ice" between delegates but also ensure that important information is communicated to a much wider audience than only those in attendance. This idea was tested at the 2014 Savanna Science Network Meeting held in Skukuza, Kruger National Park, where the hashtag #SSNM was used. More than 63% of the Twitter users who participated in the #SSNM hashtag were actually not present at the conference. These external "delegates" were interested individuals from five different continents and in different professions besides Science. This highlights how social media can be exploited at conferences to ensure that key messages are conveyed beyond the immediate audience at the event.

Abstract

POSTER Investigations have shown that receiving water bodies, which mainly include rivers, streams and the more complicated geohydrological system, are part of the primary end receivers of harmful contaminants from identified coal mining waste bodies. Some of these potential dangers include acid mine drainage (AMD) and sulphur mine drainage (SMD) which have dire effects on the surroundings. The need for a cost effective methodology to assess site hydrology and geohydrology, to understand the associated legal responsibility of contaminated streams and aquifers, is recognised. In the compilation of this paper the unique nature of South African legislation and policies are implemented in the development of a logical approach towards mine closure specifically in the field of groundwater assessments. Furthermore, this paper explores co-disposal of discard and slurry material and the environmental impact of co-disposed wastes is assessed. The unique geological attributes of the KZN coal fields and the geochemical research results found indicates that on its own discard has great potential to produce long term SMD and that slurry has lower SMD potential. Co-disposed results are promising and buffering against long term chemical changes are noted. The final product of this approach constantly considered site hydrogeology, related impacts, risks and liabilities. This gave more clarity on aspects related to the principles followed to identify objectives for sustainable mine closure and to adopted a philosophy of mine closure as a hydrogeological concept. Overview of methods that could be used for mitigation of polluted aquifers and a brief site specific application is discussed with the aim to achieve the key deliverable which focuses on methods to scientifically assess sources, pathways and receivers. Ultimately this process has led to the development of a logical approach towards mine closure for groundwater assessment and remediation in the typical anthracite mine environment.

Abstract

POSTER The Department of Transport and Public Works has been involved with the building and upgrading of schools in the Western Cape, as well as providing green areas for sports fields. Due to the excessive costs of using municipal water the option of using groundwater for irrigation was investigated by SRK Consulting. A number of successful boreholes have been scientifically sited, drilled and tested since 2011. The boreholes have been equipped with pumps and data loggers have been installed in several. These data loggers measure time-series water levels and temperature while the flow meters measure the discharge rate and the quantity of groundwater used. Currently groundwater is being abstracted to irrigate the sports fields. Initially some problems were encountered. Boreholes were not operating optimally due to incorrect pump sizes resulting in water levels to be at pump inlet depths and pumps were not being switched off for recovery. However, due to continuous monitoring, the pumping rates and times were adjusted accordingly. It is imperative that all boreholes are equipped with loggers and continuously monitored to ensure that the boreholes are being optimally and sustainably used. Monitoring groundwater abstraction and aquifer water levels provides critical information for proper groundwater resource management. It is envisaged that schools will become proactive and participate in the groundwater monitoring. The latter will assist with groundwater awareness and assist in the use of alternative water sources and ease the burden on already stretched conventional sources.

Abstract

Underground coal gasification (UCG) is technology that aspires to exploit coal reserves using in-situ gasification. This mining method gasifies coal seams while extracting a syngas that can be used for electricity generation. Since the bulk of this process occurs in the subsurface, there is a possibility of impacting on regional groundwater quality. This paper seeks to assess this impact on groundwater across different aquifers while taking into account the chemical evolution of these aquifers. Three aquifer systems were identified namely the shallow, intermediate and the deep aquifer which comprises of the coal seam. The water chemistry was reviewed over a two year period during which the gasifier was still active. Alkaline conditions were prevalent across the three aquifers with minor seasonal changes. High levels of dissolved solids were observed especially in the deep aquifer but the quality of water was poor even in background samples. The impact of gasification does have small variation in already unusable water in the deep aquifer which was also characterized by low hydraulic conductivity. Higher hydraulic conductivity values were established in the shallow aquifer. No significant groundwater chemistry change was detected in this aquifer as a result of gasification process.

Abstract

The city of Bloemfontein is currently entirely dependent on remote surface water sources for its potable water supply. The water is purified at great cost, before being pumped over large distances to the reservoirs of the city. However, the surface water resource is unreliable and susceptible to droughts. In addition, large volumes of the purified water are lost before reaching the users. These losses are due to various factors, including leakages in the pipelines transporting the water to Bloemfontein and illegal connections. To reduce the city's dependence on remote surface water sources, this investigation aims to assess the potential for using groundwater resources to augment the municipal water supply. A prominent ring-dyke underlying the city is thought to be associated with strong aquifers. Our geophysical investigations have shown that this dyke yields large and well-defined magnetic and resistivity anomalies that allow easy interpretation of the geometry of the dyke. Future investigations will include the installation of boreholes at positions as determined from an interpretation of the geophysical data. Hydraulic tests will be performed on the aquifers intersected by the boreholes to determine the hydraulic parameters and sustainable yields. The groundwater quality will be assessed to evaluate its suitability for human consumption.

Abstract

The Gravity Recovery and Climate Experiment (GRACE) satellites detect minute temporal variation in the earth's gravitational field at an extraordinary accuracy, in order to make estimation of the total water storage (TWS). GRACE provides a unique opportunity to study and monitor real time water variation in the hydrologic stores (snow, groundwater, surface water and soil moisture) due to increases or decreases in storage. The GRACE monthly TWS data are being used to estimate changes in groundwater storage in the Vaal River Basin for a period (2002 to 2014). The Vaal River Basin has been selected, because it is one of the most water stressed catchments in South Africa; it is well-renowned for its high concentration of industrial activities and urbanized zones. Therefore, in order to meet future water demands, it is critical to monitor and calculate changes in groundwater storages as an important aspect of water management, where such a resource is a key to economic development and social development. Previous studies in the Vaal River Basin were mostly localised focusing mainly on groundwater quality and to a lesser extent groundwater assessment. Hydrological models have been generated for the whole of South Africa, but many of these models do not take into account the groundwater component. Thus, there is a significant gap in the understanding of surface and ground water dynamics in the Vaal River Basin. The paucity of data and monitoring networks are often the limitation in calculating changes in water storage over a large area, particularly in Africa. In this scenario GRACE is a good approach to estimate changes in hydrological storages as it covers large areas and generates real time data. It does not require information on soil moisture, which is often difficult to measure. The accuracy of calculating change in groundwater storage lies in the processing of GRACE data and smoothing radii. For this study, smoothing radii of 1500, 900, 500, 300, 150 and 1 km are used. Currently the associated error with different smoothing radii is unknown. The preliminary results indicate that the study area experienced a loss in TWS of -31.58 mm equivalent water height over a period of 144 months in TWS at 300 km smoothing radius. The change in groundwater storage is calculated by incorporating hydrologic components to the TWS (work in progress). The results obtained from this study will be compared to existing hydrological models and results generated from models applicable to the semi-arid region of South Africa. It is anticipated that this satellite observation technique, GRACE, will provide an accurate estimate of change in groundwater storage. Furthermore, it will show the usefulness of satellite based techniques for improving our understanding of groundwater dynamics, which will improve water management practices.

Abstract

LNAPL present in a monitoring well forms part of the broader groundwater system and is effectively influenced by hydrogeological conditions, which are always changing. Monitoring of LNAPL is therefore of utmost importance to identify and assess the LNAPL hydrogeological conditions. Both groundwater and LNAPL can exist as unconfined and confined. Groundwater is unconfined when the upper boundary is the water table and is confined as a result of the presence of a confining layer with a relatively low vertical hydraulic conductivity that inhibits the flow of all liquids. LNAPL becomes unconfined when the apparent free product thickness increases with a decreasing groundwater elevation and confined when apparent free product thickness increases with an increasing groundwater elevation. The LNAPL is confined as a result of the difference between the capillary properties of the mobile LNAPL zone and its confining layer. Specifically, LNAPL is confined when it cannot overcome the pore entry pressure of the confining unit. Consequently, LNAPL may be confined when groundwater is not. The paper attempts to describe the hydrogeological conditions in case histories of both primary and fractured aquifers and illustrate how to identify and assess the conditions. Data such as free phase and groundwater level monitoring, well logs, sieving of soil and LNAPL bail tests are used as assessment tools. The additional required data is gathered and integrated in the conceptual site model, followed by a revision of the CSM and a refinement of decision goals over time. Thus the CSM matures and enables an improved understanding of the site characteristics and the re-adjustment of decision criteria. {List only- not presented}

Abstract

The groundwater quality of the Orange Water Management Area (OWMA) was assessed to determine the current groundwater status. Groundwater is of major importance in the Orange Basin and constitutes the only source of water over large areas. Groundwater in the OWMA is mainly used for domestic supply, stock watering, irrigation, and mining activities. Increase in mining and agricultural activities place a demand for the assessment of groundwater quality. The groundwater quality was assessed by collecting groundwater samples from farm boreholes, household boreholes, and mine boreholes. Physical parameters such as pH, temperature and Electrical Conductivity (EC) were measured in-situ using an Aquameter instrument. The groundwater chemistry of samples were analysed using Inductively Coupled Plasma Mass Spectrometry, Ion Chromatography, and Spectrophotometer for cations, anions and alkalinity respectively. The analyses were done at Council for Geoscience laboratory. The results obtained indicated high concentration of Nitrate (NO3), EC, sulphate (SO4), Iron (Fe), and dissolved metals (Chromium, Nickel, Copper, Zinc, and Lead). The concentrations were higher than the South African National Standards (SANS) 241 (2006) drinking water required guideline. The OWMA is characterised by the rocks of the Karoo Supergroup, Ventersdorp Supergroup, Transvaal Supergroup, Namaqua and Natal Metamorphic Province, Gariep Supergroup, and Kalahari Group. Groundwater is found in the sandstones of the Beaufort Group. Salt Mining occurs in the Namaqua Group, hence the high concentration of EC observed. High EC was also found in the Dwyka Group. The salt obtained from the pans underlain by the Dwyka Group rocks has relatively high sodium sulphate content, this probably results from oxidation of iron sulphate to sulphate. Therefore, high concentration of SO4 is due to the geology of the area. High concentration of NO3 is due to agricultural activities, whereas high concentration of EC, Fe, SO4 and dissolved metals is due to mining activities.

Abstract

Underground mine water rebound prediction in its simplest form can be simulated linearly by comparing the volume of the mined ore with long-term average recharge rate to obtain an estimate of the time which will elapse before the workings are full to their decant elevation.

This type of linear interpolation of rising water levels can lead to an over estimation or an underestimation of the date when mine voids will flood to the critical levels. This is due to the fact that this method cannot account for the variability and interconnection between different mine voids and also does not consider the change in storage over time which is an important factor. In an abandoned underground water environment, water is stored in flooded mine stopes (tanks) and flows through a network of haulages (pipes). Due to the dip and strike of the ore body, the mined stopes are extensively interconnected on multiple levels and bounded by faults and dykes, so that water rising within any one tank will display a common level throughout that tank. At certain elevations, adjoining tanks may be connected via a discrete "overflow point", which may be a holding or permeable geological features. Water level rise during flooding is a function of head-dependent inflows from adjoining mine aquifers and/or other tanks, and the distribution of storage capacity within the tank.

The process of flooding occurs independently in two (or more) adjoining tanks until such time as the water level in one or more of the tanks reaches an overflow point. Inter-tank transfers of water will then occur until the difference in head between the two tanks either side of each overflow point is minimised. To apply the conceptual model stated above, EPANET 2 was used to predict the risk of flooding of a mine shaft, in the Free State Goldfields, if dewatering is discontinued. Considerations on stope volumetric calculations, haulage interconnections, modelling assumptions and predictions, are presented.

Abstract

Conjunctive use of surface water and groundwater resources offers huge advantages to municipalities. It can significantly increase the resilience of the municipal water supply to drought situations. Optimal use and integration of different sources would result in a yield of the total system that is higher than the combined yield of each source separately. However, integrated water resource management (IWRM) in general and planned conjunctive use of both groundwater and surface water resources in particular have not been successfully implemented yet in South Africa. Six selected case studies of municipalities across South Africa, which utilize both surface water and groundwater for the water supply to specific towns, have undergone a review of their current water governance provisions wrt groundwater, surface water and conjunctive use. The review has been based on a questionnaire for direct interaction with the local government officials, supported by other readily available documents such as municipal Integrated Development Plan (IDP) and Water Services Development Plan (WSDP), municipal websites, Blue Drop and Green Drop Assessment Reports, Municipal Strategic Self-Assessment (MuSSA) and the All Towns Reconciliation Strategy reports. These case studies reveal the different institutional arrangements for water resource management and water supply services that exist in municipalities. The advantages and disadvantages of the institutional arrangements for each case study have been determined. Problem areas identified include split of responsibilities for surface water and groundwater resources between different institutions, lack of financial and HR support within the government spheres, lack of formal and structured stakeholder engagement, insufficient monitoring for both sources, inter alia. Based on this comparative study of different municipalities, a draft framework of optimal institutional arrangements and governance provisions at local government level is developed to support the integration and optimisation of surface water and groundwater supply. The proposed framework is based on three pillars; viz. leadership and clear structures within the responsible local government institution, formal engagement with all relevant internal and external stakeholders and a sufficient monitoring network that supports the stakeholder engagement and decision making.

Abstract

POSTER Since June 2010 and still ongoing today, the Lower Orange River Valley has experienced over a 1168 tremors(a) and earthquakes in the vicinity of Augrabies. Of these 1168 tremors, 71 quakes registered above 3 on the Richter scale and on 18 December 2011, the area was struck with an earthquake that registered 5 on the Richter scale. Four thermal springs are also located near this earthquake zone and the temperature of the water have a range of between 38?C -46.6?C, according to Kent LE. (1949/1969). 25?C is the division between thermal and non-thermal waters and the thermal gradient for the Riemvasmaak area(b) is 24?C, clearly indicating that the four springs are thermal when looking at the temperature difference. The Department of Water Affairs has been monitoring these springs monthly since 2011 and has been taking field measurements and chemical analyses. The aim of this study is a) to see if the tremors and earthquakes have an effect on the chemistry of the thermal springs, b) to create a data set for the thermal springs, as these springs was recorded and mentioned in Kent LE. reports of 1949 and 1969 but no samples were collected and analysed, c) to see if the water source for the groundwater in the area and the thermal springs are connected and d) to see if the recent floods may have had an influence on the earthquake zone seeing as the Orange River runs through the zone. The following sources are used to describe the earthquakes and water quality: (a) Earthquake data from the Council of Geosciene (b) ZQM data on NGA temp range between 21-28?C depending on the season with 24?C being the mean.

Abstract

Accurate parameter estimation for fractured-rock aquifer is very challenging, due to the complexity of fracture connectivity, particular when it comes to artesian flow systems where the potentiometric is above the ground level, such as semi-confined, partially confined and weak confined aquifers in Table Mountain Group (TMG) Aquifer. The parameter estimates of these types of aquifers are largely made through constant-head and recovery test method. However, such a test is seldom carried out in Table Mountain Group Aquifer in South Africa due to a lack of proper testing unit made available for data capturing and appropriate method for data interpretation. An artesian borehole of BH 1 drilled in TMG Peninsula Formation on the Gevonden farm in Western Cape Province was chosen as a case study. The potentiometric surface is above the ground level in rainy season, while it drops to/below ground level during the dry season. A special testing unit was designed and implemented in BH 1 to measure and record the flow rate during the free-flowing period, and the pressure changes during the recovery period. All the data were captured at a function of time for data interpretation at later stage. Curve-fitting software developed with VBA was adopted for parameter estimation based on the constant-head and recovery tests theories. The results indicate that a negative skin zone exists in the immediate vicinity of the artesian borehole, and the hydraulic parameters estimates of transmissivity (T) ranging from 6.9 to 14.7 m2/d and storativity (S) ranging from 2.1*10-5 to 2.1*10-4 appear to be reasonable with measured data collected from early times. However, due to formation losses, the analytical method failed to interpret the data collected at later times. Consequently the analysed results by analytical solution with later stage data are less reliable for this case. The MODFLOW-2000 (Parameter Estimation) package developed by USGS was also adopted to determine these parameters for the same aquifer. It approves that there exist formation losses, which leads to the aquifer response distinctly different at later stage of overflow and recovery tests. The aquifer parameter estimates with early time data of tests by analytical and numerical methods show that there is generally good agreement. However, significant errors could be generated by analytical method applied where there is occurrence of well or formation losses, while these restrictions could be overcome by applying a numerical method.

Abstract

This paper outlines and presents out-of-the-box theories as examples to highlight some of the challenging restraints within the current legislative environment preventing scientists, engineers and other operational personnel to take theory into action and implementation. Key to this is the very static nature of the water use license (WUL)and associated process. The first example shows how integrated dynamic water modelling can be utilized to create an integrated water and waste management plan within the mining sector. The models developed using principles from Government Notice 704, the Best Practice Guidelines (BPGs) and the principles of water conservation and demand management. Ultimately it keeps clean and dirty water flows separate and optimises the use of dirty water in order to reduce raw/potable water off-takes through this process. The objective of these models are to optimise the water use and develop strategies to ultimately enable mines to optimize it's internal non-potable water resources therefor relieving pressure on the limited potable systems, as well as aiding surrounding communities, in which they operate, with potable water. Results from the model provides for 1 or 20 years simulation data that differs year-on-year based on numerous factors, i.e. rainfall, run of mine (ROM) feed and growing/declining surface run-off areas. The variability of the results makes it almost impossible to utilize within application documentation as it is too complex and it does not align with the application figures as required in the WUL process. This resulting in a fairly simplistic and sometimes unrealistic static model that is submitted as part of the application.

Abstract

Faced with a burgeoning population and property growth, and in preparation for a future drier climate regime; the coastal town of Hermanus in the Western Cape has set up two wellfields to abstract groundwater from the underlying aquifer in order to augment the constrained surface water supply from the De Bos Dam.
Water Use Licences (WUL) were issued to the Overstrand Municipality in June 2011 and December 2013. The licences authorise a maximum annual abstraction of 1 600 Ml of water from the Gateway wellfield and 800 Ml of water from the Volmoed and Camphill wellfield via several boreholes. The water abstracted from the Gateway wellfield is pumped via a booster pump station to the Preekstoel Treatment Plant. The Volmoed and Camphill wellfield are situated at a higher altitude allowing for a gravity feed pipeline.
Earth Science Company, Umvoto Africa, has the responsibility to ensure Resource Quality Objectives are met which include balancing the need to protect the resource on the one hand; and the to develop sustainable utilisation of the Hermanus groundwater resources and compliance with the WUL on the other. The consultancy provides hydrogeological support, wellfield management and technical advice in operating the boreholes, pumps, boosters and related infrastructures.
Running the operations of the wellfield relies on a high-tech, semi-automated system, incorporating a remotely controlled, telemetry based structure. Vital parameters are monitored by electronic sensors, feeding data to processors which alters pump performance to maintain specified boundary levels. Data is simultaneously communicated via telemetry to a central control which uses data acquisition software to portray information to the operators. Warning alarms both alert operators via SMS and in certain instances auto-shut down the system.
To ensure ecological sustainability of the ground water resource, the wellfield also requires hydrogeological monitoring at far field locations within the recharge areas. Some of these locations are in remote areas making data download costly. The high-tech telemetry approach is used with positive results.
Any automated telemetry system is prone to malfunction and environmental hazards. The challenge lies in managing this and providing sufficient back up and duplication of systems.
The paper gives an overview of the components and flow of data based on the experiences gained during the evolution and development over 12 years of operation. Automation produces vast data bases which are often not sufficiently analysed, the premise that "once collected, the task is done". However data is only as good as the people who drive the systems and this paper provides a critical analysis of human intervention in an automated system and the decisive role of quality-checks. Finally the paper seeks to provide a pragmatic guideline for water users to comply with the WUL and institutional regulations.

Abstract

POSTER The study aims at using hydrogeochemical model to establish groundwater quality in shallow and deep aquifers in Heuningnes Catchment which is located within Bredasdorp in the Western Cape Province. The catchment is positioned at latitude of 34o42'50"S and longitude 20o07'13"E. The area is about 1400km2 has vleis, lakes and pans and its predominant formation is sedimentary rocks of Table Mountain and Bokkeveld Groups sitting on a crystalline basement of the Malmesbury granites. Comprehensive characterisation of the hydrogeochemical evolution is lacking and the current study argues that the use of hydrogeochemical Analysis Model (HAM) has potential to establish water-type, water source, water mixing/rock-water interactions, salinity, saturated adsorption ratio and hardness-softness of that predominant hydrochemical facies in the study area in addition to assessing the compliance of such water to WHO and South Africa water quality guidelines for drinking and agricultural use. Groundwater samples will be collected in 45 different locations (wellpoints/shallow wells, boreholes and wetland as end member) using in-situ sampling techniques to measure pH, electrical conductivity, total dissolved solids and temperature. Turbidity, total hardness, calcium, chloride and bicarbonate will be analysed using analytical chemistry methods including titrimetric method. Magnesium, potassium, sodium, nitrate and phosphate analysed by Atomic Absorption Spectrophotometer whilst sulfate will be analysed using spectrophotometer. Graphical methods such as piper diagram will be used to present the results to determine water-type, water freshness/hardness, water source, water mixing/rock-water interactions, salinity, saturated adsorption ratio and hydrogeochemical processes. The results from the present study are envisaged to inform formulation of science-based interventions strategies that will lead to sustainable utilization and management of the water resources in the area to improve the livelihoods of people and environmental integrity.

Key words: Groundwater quality, Heuningnes Catchment, hydrogeochemical Analysis Model, Piper diagrams, Hydrogeochemistry

Abstract

When planning an experimental setup in the laboratory, it is very important and possible to control all the variables so that one can manipulate particular variables at a given time. Experimental setups under natural conditions could be a challenging task. The success of an experiment depends to a large extent on the correct understanding of the functioning of a natural system. If the conceptual understanding of the natural system is erroneous, it is likely that unexpected results could be achieved. This was the case with the artificial recharge pilot project that was done in 2008 and 2009 at the Langebaan Road wellfield just outside Hopefield in the Western Cape. Years of research gave scientists a fairly good idea of the way in which the aquifer system functioned, especially since the establishment of the well field. This provided information of the response of the aquifer unit to large scale abstraction. The Langebaan Road aquifer unit is a multilayered system with a lower aquifer composed of Elandsfontyn gravel overlaying a bedrock layer of either granite of the Vredenburg or Darling plutons of the Cape Granite Suite or Malmesbury shale. The bedrock was considered impermeable. The upper aquifer layer was composed of mostly the Varswater Formation with peat and clay of the Elandsfontyn Formation forming the confining layer between the two aquifer layers. The extent of the different layers of the aquifer unit was plotted with a fair amount of accuracy and the clay layer was considered to be continuous between the two aquifer layers. Monitoring data for the area was done since 1974 with a gap in data-set between 1991 and 2001. Despite all the data from geophysical work, boreholes drilled, and the monitoring record, the research done prior and during the artificial recharge pilot project in 2008 and 2009 the aquifer units did not respond quite as anticipated. The Artificial Recharge (AR) pilot project team concluded that the aquifer units responded in a particular manner as opposed to the expected response according to the data and conceptual model at hand. It was thus clear that there are gaps in the conceptual model of the aquifer systems in the bigger Lower Berg River Valley that include the Langebaan Road, Elandsfontein and other aquifers that needed to bridge before another pilot test is attempted. Although the artificial recharge pilot project did not yield the expected results, valuable lessons were learned. This article will look at the conclusions and recommendations of the research done on the pilot project and attempt to evaluate the monitoring data (water levels, chemistry and rainfall) from the period just before the beginning of the AR pilot project. The monitoring data would be manipulated using the following techniques

Abstract

The current study investigated the subsurface of aquifers in Heuningnes Catchment focusing on aquifer characteristics for groundwater resource assessments. Surface geophysical resistivity method was adapted for mapping the shallow subsurface layers and hydrogeologic units at selected sites within the catchment. The aim was to provide a preliminary overview of the subsurface nature of aquifers within the study area, by establishing features such as geological layers, position of weathered zones, faults and water bearing layers. The multi-electrode ABEM SAS 1000 resistivity meter system, using the Wenner array, was used to obtain 2D resistivity data of the subsurface. The acquired data was processed and interpreted using Res2DINV software to produce the 2D resistivity models. The analysis of the resistivity models of the subsurface reveals maximum of four layers; sandstone, shale, poor clayed and brackish water saturated layer. On comparing the model results with the surficial geological formation of the catchment geological map, the identified layers were found to correspond with the geology of the area. The findings i) provide insights on sites that can be drilled for groundwater exploration, ii) show possible water-type variations in the subsurface. Although the results are not conclusive but they provide basis for further research work on quality and flow dynamics of groundwater.

{List only- not presented}
Key words: aquifer properties, hydrogeologic units, geo-electric model, electrical-resistivity method

Abstract

The subsurface has been likened to a maze due to the intricate and often disconnected pathways contained even in unconsolidated and relatively homogeneous aquifer systems. The weathered fractured aquifers in the Karoo offer unique challenges to those planning monitoring campaigns and provide opportunities for the research community to identify innovative solutions. Careful thought needs to be given to the objectives of monitoring as these can change the requirements of the work. Other important considerations are the location and design of monitoring wells which often needs to be tailored to site specific conditions while the selection of determinands to be analysed introduces yet another layer of complexity. These include questions around the relevant detection limits, representative sampling methods and a host of other aspects. Following prescribed approaches designed for managing traditional industrial processes may not be relevant even though these approaches are based on decades of research and learning from past experience, both good and bad. Careful consideration of the technical detail in advance of beginning any monitoring in the field is essential and even then, as in any hydrogeological assessment, a level of uncertainty will always remain. This presentation will cover the status of planning work on Karoo aquifer characterisation and geochemical assessment of the ambient or baseline conditions. Significant effort continues to be made to tailor fieldwork to site specific conditions and be ready to collect a representative data set when conditions allow. {List only- not presented}

Abstract

POSTER The human interferences in river catchments includes impoundment construction, sediment mining, bank revetment and artificial cutoff, which eventually leads to changes in the hydrology system and channel transportation ability, and may reduce channel stability. In past 10 years the Kuils River had been upgraded between Van Riebeeck Road and the Stellenbosch Arterial route to reduce flood levels. The stretch of the river between the R300 and Van Riebeeck Road was also upgraded: reducing any possibility of flooding, by concrete-lining of some areas of the river that are within the Kuilsrivier Municipal Area. Producing a cross-section of a river channel is of great importance in river studies. To determine the discharge one should survey the profile of a feature such as a meander or riffle, it is necessary to produce a cross-section of the river. In order to focus on restoration requirements of a river, a map of the river is needed. This provides an indication of what exactly the river currently is. Habitat mapping is intended to access the stream. Woody debris, substrate, aquatic vegetation is measured continuously throughout a river, to be able to identify conservation and restoration needs. The cross section 1.3 of site 1 indicates that the channel width from January 2002 is almost similar in width of September 2012. The depth of the channel is about 0.5m deeper when compared to January 2002. The Kuils River banks are covered in grassy vegetation, with some trees with deep and large roots that provide protection against undercutting along rivers. The banks of Site 1 are covered long weeds and annual grasses with shallow root systems, which don't provide stability when the banks were saturated after high rainfall. The Kuils River area is used for various types of land uses and this also impacts the channels eg. Urban, Industrial and Agricultural use. Because of canalization occurring upstream one can see evidently the changes within the channel.

Abstract

Fine ash is a by-product generated during coal combustion and gasification. It is often disposed of as slurry and stored on tailings dams over long periods of time, where it is exposed to weathering. Weathering causes soluble ions to go into solution and to be transported along preferred pathways through the tailings dam. This study was conducted to assess the leaching behaviour of fresh and weathered fine ash and to evaluate the impact on the underlying aquifers. A kinetic test was conducted over 21 weeks to analyse the leachate composition of progressively-aged fine ash and to calculate the release rates for major ions and trace metals of environmental concern. The leachate composition was compared to the groundwater composition of the underlying aquifers to assess the environmental impact of long term ash leaching. The study showed that the release rate of Ca decreased with increasing depth and age of the fine ash. The release rate of Mg, Na, K, Mo, V, Ba, Cr and Mo increased slightly between 22 m and 28 m in the tailings dam. Aluminium had a decreasing release rate from 28 m depth onwards. It was concluded that fine ash leaching influenced the water composition of the underlying aquifers because similarities were observed in the water type trend. The shallow aquifer south of the tailings dam contained Ca/Mg/SO4/Cl/NO3 water with a significant increase in Ca, Mg, Na, Cl and SO4 over time. These ions were expected to be found in the pollution plume due to their high release rate observed in the fine ash. The deeper aquifer northeast and south of the tailings dam showed a reverse trend of decreasing Ca, Mg and NO3 with time. This is possibly due to decreasing release rates in the aging fine ash and due to the cation exchange capacity (CEC) of the aquifer retarding the movement of Ca and Mg in the pollution plume. The shallower aquifer northwest of the tailings dam showed a decrease in Ca and Mg but an increase in K, while the water composition of the deeper aquifer increased in Ca, Mg, Na, K and Cl. This indicates that the pollution plume moved from the shallower to the deeper aquifer and that most of the Ca and Mg content in the fine ash has been leached from the tailings dam after more than 30 years of storage. The study confirmed that leaching of elements from the fine ash tailings dam had a negative influence on the underlying aquifers and that the clay lining was not sufficient in retaining the leachate.

Abstract

A review from international literature discredits the capability of MODFLOW to simulate mine water rebound, due to the nonstandard hydrogeology of underground mine systems. The conceptual understanding is that, after cessation of dewatering, mine water inflow rates and hydraulic heads are related to the void-volume, the differences in head between the water in the mine void and head dependent source, plus natural recharge to the mine voids. The flooded mine voids in the study area are partially underlain by a dolomitic aquifer. The other head dependent source of inflow into the mine voids are the surrounding and overlying Karoo aquifers. Head independent inflow rates into the mine voids, using the long term decant rates, was estimated to be 0.2% of rainfall. During mining, dewatering occurred at approximately 3 to 6 Ml/d. The objective of the model was therefore to simulate the changes head-dependent inflow rates during the rebound period. Analysis of the water level recovery data depicted that once the mine filled up with water, the hydraulic head of the mine rose with the elastic storage coefficient value of the mine void and not the specific retention as conditions changed from unconfined to confined. A three layer model was setup, to represent the two seams mined, separated by a deep Karoo aquifer. The presence of the dolomite on the mine floor was incorporated using the general head boundary package. Head dependent influx from overlying shallow and intermediate Karoo aquifers were simulated using the river package. All model layers were simulated as confined, initially to avoid model convergence issues. The confined setup proved to be the core in simulating mine water rebound with MODFLOW. The modelling exercise showed that storage during rebound is a boundary condition. This simply means that the complexity of mine water rebound can only be achieved in MODFLOW by proper time stepping and dividing the model into different stress periods to represent the changes in storage. Rebound in the study area, modelled with 21 stress periods produced a perfect water level recovery data for the different mine compartments. This was achieved by applying storage capacities of between 0.3 to 0.006 to simulate rebound during unconfined conditions, and values of between 10-4 and 10-5 when the mine void is flooded. The results showed that the inflow from the dolomitic aquifer steadily decreased from 4121 m3/d to 0 m3/d as the mine hydraulic head increased and rose over the head in the dolomitic aquifer. During the same period, inflow from the surrounding Karoo aquifers decreased from 2422 m3/d to less than 10 m3/d. The results of the model were very important in determining the volumes of water to be abstracted from the mine voids for ash-backfilling. {List only- not presented}

Abstract

Worldwide many aquifer systems are subject to hydrochemical and biogeochemical reactions involving iron which limit the sustainability of groundwater schemes. This mainly manifests itself in clogging of the screen and immediate aquifer with iron oxyhydroxides resulting in loss of production capacity of the borehole. Clogging is caused by chemical precipitation and biofouling processes which also manifests in South African wellfields such as the Atlantis and the Klein Karoo Rural Water Supply Scheme. Both wellfields have the potential to provide a sufficient, good quality water supply to rural communities, however clogging of the production boreholes has threatened the sustainability of the scheme as quality and quantity of water is affected. Repeated rehabilitation of the affected boreholes using techniques such as the Blended Chemical Heat Treatment (BCHT) method does not provide a long term solution. Such treatments are costly with varying restoration of original yields achieved and clogging recurs with time. Currently, the research, management and treatment options in South Africa have focused on the clogging processes which are complex and site specific making it extremely difficult to treat and rectify. This project attempts to eliminate the cause of the clogging which is elevated concentrations of dissolved iron. High iron concentrations in groundwater are associated with reducing conditions in the aquifer allowing for dissolution of iron from the aquifer matrix. These conditions can be natural- and/or human-induced. Attempts to circumvent iron clogging of boreholes have focussed on increasing the redox potential in the aquifer to prevent dissolution and facilitate fixation of the iron in the aquifer matrix. Various in situ treatment systems have been implemented successfully overseas for some time. However, in South African in situ treatment of iron has only been a theoretical approach. Based on experience from abroad the most viable option to research and apply elimination of ferrous iron in South African aquifer systems would be through the in situ iron removal treatment The objective of this paper is to set out the experience from abroad and to outline the initial results of this treatment. A pilot plant for testing the local applicability of this method was constructed at the Witzand wellfield of the Atlantis primary aquifer on the West coast of South Africa.

Abstract

This study explores some of the principle issues associated with quantifying surface and groundwater interactions and the practical application of models in a data scarce region such as South Africa. The linkages between the various interdependent components of the water cycle are not well understood, especially in those regions that suffer problems of data scarcity and there remain urgent requirements for regional water resource assessments. Hydrology (both surface and groundwater hydrology) is a difficult science; it aims to represent highly variable and non-stationary processes which occur in catchment systems, many of which are unable to be measured at the scales of interest (Beven, 2012). The conceptual representations of these processes are translated into mathematical form in a model. Different process interpretations together with different mathematical representations results in the development of diverse model structures. These structural uncertainties are difficult to resolve due to the lack of relevant data. Further uncertainty is introduced when parameterising a model, as the more complex the model, the greater the possibility that many different parameter sets within the model structure might give equally acceptable results when compared with observations. Incomplete and often flawed input data are then used to drive the models and generate quantitative information. Approximate implementations (model structures and parameter sets), driven by approximate input data will necessarily produce approximate results. Most model developers aim to represent reality as far as possible, and as our understanding of hydrological processes has improved, models have tended to become more complex. Beven (2002) highlighted the need for a better philosophy toward modelling than just a more explicit representation of reality and argues that the true level of uncertainty in model predictions is not widely appreciated. Model testing has limited power as it is difficult to differentiate between the uncertainties within different model structures, different sets of alternative parameter values and in the input data used to run a model. A number of South African case studies are used to examine the types of data typically available and explore the extent to which a model is able to be validated considering the difficulty in differentiating between the various sources of uncertainty. While it is difficult to separate input data, parameter and structural uncertainty, the study found that it should be possible to at least partly identify the uncertainty by a careful examination of the evidence for specific processes compared with the conceptual structure of a specific model. While the lack of appropriate data means there will always be considerable uncertainty surrounding model validation, it can be argued that improved process understanding in an environment can be used to validate model outcomes to a degree, by assessing whether a model is getting the right results for the right reasons.

Abstract

The eastern coastal plain of South Africa has one of the outstanding natural wetland and coastal sites of Africa. The estuaries are complex and dynamic systems sustained by both groundwater and surface water. These systems are driven primarily by changing sea level and fluctuating climatic conditions, especially river runoff and sedimentation rates, which have been heavily affected by land use change. The largest lake, St Lucia, lies at the bottom end of several rivers, some of which have major afforestation within their catchments. Given that there is a strong connection between surface water and groundwater, a significant driver of the reduced river runoff constitutes reduced groundwater baseflows due to the lowering of groundwater levels in the upstream reaches of the lake's catchments. The remaining large lakes (Lake Sibaya and the Kosi Bay Lake system) are largely groundwater driven and are also affected by increasing impacts on the groundwater sustaining the lakes. There is an urgent need to quantify the impact of land use change, particularly increasing plantation forestry, on these coastal estuarine systems. While previous work has been undertaken to better understand the complex environment, this study examines the coastal environment (Lake St Lucia, Lake Sibaya and the Kosi Bay lakes) in an integrated manner and considers the impacts of various land use activities on the system, both in the 'buffer zone' surrounding the lakes and within the upstream reaches of the river catchments. The study builds on previous investigations and utilises results from existing models as well as available field data. The integrated Pitman Model is used to model the groundwater/surface water dynamics and will be validated using existing numerical model results, observed stream flow, groundwater levels and lake level information. While the model has been established at a quaternary catchment scale for the upstream reaches of the rivers, the downstream reaches have been modelled at smaller spatial scales dictated by groundwater flow directions. A wetland sub-model has been established to represent the numerous and varied wetlands while a specific sub-model has been developed to represent the hydrodynamics of Lake St Lucia and its complex connections to the sea. The currently ongoing study aims to quantify the current and future land use change impacts on the groundwater and surface water resources sustaining the lakes.

Abstract

What are the key institutions, both formal and informal, that determine actual groundwater use in the Ramotswa aquifer? Are current institutions at regional, national and sub-national levels adequate to collaborate for equitable benefit-sharing for the future? These are the questions that the paper will address based on early findings of a project aimed at determining the role the Ramotswa aquifer can play in addressing multiple-level water insecurity, drought and flood proneness, and livelihood insecurity. Groundwater resources are critical in the SADC region

Abstract

This paper follows on current research taking place in the Springbok Flats Basin focusing on Carbon Dioxide Geological Sequestration within coal seams. The research, commissioned by ESKOM, began in 2012 and has a primary aim of producing a hydrogeological risk assessment for carbon dioxide geological sequestration operations scheduled for national pilot testing within the basin. One of the fundamental tools used in the assessment has been finite element mesh modeling. A 3D finite element mesh model of the study area, that has 11307 nodes, has been generated using FEFLOW algorithms. Portions in the study area without linear and point physical features have been modeled with the Advancing Front Algorithm, while the Grid Builder Algorithm has been used to model portions with linear and point features. This paper has investigated the node angle accuracy and precision of the mesh model by generating a map of the maximum interior angle of triangles. Approximately 70 % of the triangles have equilateral angles, while the remainder triangles have obtuse angles. The majority of the equilateral triangles occur within the portions modeled with the Advancing Front Algorithm. Half of the obtuse triangles have been refined to equilateral triangles with the FEFLOW refinement tools while the other half has been refined manually with the node digitizing features. FEM models perform better with dense triangle matrices with equilateral angles, as they influence the accuracy of the FEM.

Abstract

POSTER Researching a subject on the internet the slogan "Water flows upstream to money" popped up. The context was drought, and the meaning clear. If politics come into play as well, it would seem that science is relegated to a distant third place. The proclamation of the National Water Act, of 1998 (Act 36 of 1998), recognized the importance of groundwater and its role in the hydrological cycle and water supply issues. Groundwater governance has grown since then and is becoming increasingly important. One of the most important tenets on which groundwater based is the concept of sustainability. Various definitions of sustainability is used with the best know being "?development which meets the needs and aspirations of the present generation without compromising the ability of future generations to meet their own needs." Even though the basic understanding of sustainability may have been around for much longer than the term, it is the application of the theory in our current context that present us with challenges. Concepts like the precautionary principle, corporate governance and other buzz words that is being used does not always ensure good groundwater governance. One of the greatest problems is often the lack of scientific understanding and knowledge. Groundwater systems tend to be more complex and thus more difficult to manage than surface water. Understanding how groundwater and surface water interact, and that it is actually a linked water resource adds to the complexity. Add to this its importance in the functioning of groundwater dependent ecosystems that is still poorly understood. This article will look at principles for good groundwater governance and the tools that are needed to achieve it. It will finally look at real case studies where scientific considerations fall by the wayside for the requirements of the economy and political goals.

Abstract

The Table Mountain Group (TMG) Formation in the Uitenhage region, in the Eastern Province of South Africa, has many groundwater users, which could result in the over-exploitation of the underlying aquifer. Consequently, several investigations have been conducted to help in the planning and management of groundwater resources within the region. Traditionally, these investigations have considered groundwater and surface water as separate entities, and have been investigated separately. Environmental isotopes, hydrochemistry and feacal colifom bacteria techniques have proved to be useful in the formulation of interrelationships and for the understanding of groundwater and surface water interaction. The field survey and sampling of the springs, Swartkops River and the surrounding boreholes in the Uitenhage area have been conducted. After full analysis of the study, it is anticipated that the data from the spring, Swartkops River and the surrounding boreholes show interannual variation in the isotope values, indicating large variation in the degree of mixing, as well as to determine the origin and circulation time of different water bodies. ?D and ?18O value for the spring ranges from ?18.9? to ?7.4?, and 5.25? to 4.82?, respectively, while ?D values for borehole samples range from ?23.5? to ?20.0? and ?18O values range from ?5.67? to ?5.06?. In the river sample, ?D values ranges from ?12.1? to ?4.2?, ?18O from ?3.7? to ?1.13?, respectively. The entrobacter aerogen and E.Coli bacteria were detected in the samples. E. coli population for spring and the artesian boreholes indicated low value while the shallow boreholes had higher values are relatively closer to those of the middle ridges of the Swartkops River. The EC values for the spring samples averages at 14 mS/m, borehole samples ranges from 21 mS/m to 1402 mS/m, and surface water ranges from 19 mS/m to 195 mS/m. Swartkops River is an ephemeral, therefore it is expected that diffuse recharge occurs into the shallow aquifer.

Abstract

The so-called apparent increase of transmisivity (T) or hydraulic conductivity (K) with scale is an artifact and does not exist in the field. The reason for the apparent increasing of T with scale is due to the use of the "not applicable" random log Gaussian stochastic models that are used by geohydrologists. In the petroleum field, which uses deterministic methods, the apparent increase of T with aquifer volume does not occur. Groundwater practitioners have to change their view and use models that do not show this effect.

By using intuitive inspection of geological, fracture and connectivity data as well as real pumping test data, this paper shows that up-scaling must be performed with an exponential decaying function, where T always decreases with scale
.
Two types of heterogeneities exists namely a.) horizontal and b.) vertical. Connectivity between fractures is extremely important in both cases, but it is only in semi-confined and watertable aquifers that the vertical heterogeneities are really important (typical case of fracture dewatering)
{List only- not presented}

Abstract

Groundwater provides an important buffer to climate variability in Africa. Yet, groundwater irrigation contributes only a relatively small share of cultivated land, approximately 1% (about 2 mill. ha) as compared to 14% in Asia. While groundwater is over-exploited for irrigation in many parts in Asia, previous assessments indicate an underutilized potential in parts of Africa. As opposed to previous country-based estimates, this paper derives a continent-wide, distributed (0.5 degrees spatial resolution) map of groundwater irrigation potential, indicated in terms of fractions of cropland potentially irrigable with renewable groundwater. The method builds on an annual groundwater balance approach using 41 years of hydrological data, allocating only that fraction of groundwater recharge that is in excess after satisfying other present human needs and environmental requirements, while disregarding socio-economic and physical constraints in access to the resource. Due to high uncertainty of groundwater environmental needs, three scenarios, leaving 30, 50 and 70% of recharge for the environment, were implemented. Current dominating crops and cropping rotations and associated irrigation requirements in a zonal approach were applied in order to convert recharge excess to potential irrigated cropland. Results show an inhomogeneously distributed groundwater irrigation potential across the continent, even within individual countries, mainly reflecting recharge patterns and presence or absence of cultivated cropland. Results further show that average annual renewable groundwater availability for irrigation ranges from 692 to 1644 km3 depending on scenario. The total area of cropland irrigable with renewable groundwater ranges from 44.6 to 105.3 mill. ha, corresponding to 20.5 to 48.6% of the cropland over the continent. In particular, significant potential exists in the semiarid Sahel and eastern African regions which could support poverty alleviation if developed sustainably and equitably. The map is a first assessment that needs to be complimented with assessment of other factors, e.g. hydrogeological conditions, groundwater accessibility, soils, and socio-economic factors as well as more local assessments.

Abstract

The SADC Grey Data archive http://www.bgs.ac.uk/sadc/ provides a chronology of groundwater development within the constituent countries of the SADC region. Early reports show how groundwater development progressed from obtaining water by well digging to the mechanical drilling of boreholes for provision of water for irrigation, township development, transport networks and rural settlement. During the 1930s steam driven drilling rigs were supplanted by petrol engine driven cable tool percussion drilling. Dixey (1931), in his manual on how to develop groundwater resources based on experiences in colonial geological surveys in eastern and southern Africa, describes aquifer properties, groundwater occurrence and resources as well as water quality and groundwater abstraction methods. Frommurze (1937) provides an initial assessment of aquifer properties in South Africa with Bond (1945) describing their groundwater chemistry. South African engineers transferred geophysical surveying skills to the desert campaign during World War II. Paver (1945) described the application of these methods to various geological environments in South Africa, Rhodesia and British colonial territories in eastern and central Africa. Test pumping methods using electric dippers were also developed for the assessment of groundwater resources. Enslin and others developed DC resistivity meters, replacing early Meggar systems, produced data that when analysed, using slide rules with graphs plotted by hand, identified water bearing fractures and deeply weathered zones. Tentative maps were drawn using interpretation of aerial photographs and heights generated using aneroid altimeters. The problems faced by hydrogeologists remain the same today as they were then, even though the technology has greatly improved in the computer era. Modern techniques range from a variety of geophysical surveying methods, automated rest level recorders with data loggers to GPS location systems and a whole host of remotely sensed data gathering methods. Worryingly, using such automated procedures reduces the ability of hydrogeologists to understand data limitations. The available collection of water level time series data are surprisingly small. Surrogate data need to be recognised and used to indicate effects of over abstraction as demand grows. As the numbers of boreholes drilled per year increases the number of detailed hydrogeological surveys undertaken still remains seriously small. Has our knowledge of hydrogeological systems advanced all that much from what was known in the 1980s? Case histories from Malawi, Zimbabwe and Tanzania illustrate a need for groundwater research with well-judged sustainability assessments to underpin safe long-term groundwater supply for the groundwater dependent communities in the region.

Abstract

When considering how to reduce contamination of petroleum hydrocarbons in shallow aquifers, it is important to recognize the considerable capacity of natural processes continuously at work within the secondary sources of contamination. This natural processes are technically referred to as Monitored Natural Attenuation (MNA), a process whereby petroleum hydrocarbons are deteriorated naturally by microbes. This approach of petroleum hydrocarbon degradation relies on microbes which utilise oxygen under aerobic processes and progressively utilises other constituents (sulphates, nitrates, iron and manganese) under anaerobic processes. MNA process is mostly evident when light non-aqueous phase liquids (LNAPLs) has been removed while the dissolved phase hydrocarbon compounds are prominent in the saturated zone. The case studies aim at determining feasibility and sustainability of Monitored Natural Attenuation process at different sites with varying geological setting.