geochemical

Geochemical Behaviour Of Arsenic In Contact With Dolomite

Arsenic is a common contaminant typically found in effluent from gold mine operations and copper smelters throughout the world. The geochemical behaviour of arsenic in contact with dolomite underlying an arsenic containing waste rock pile was investigated. The interaction between the arsenic and the dolomite is an important control in the subsequent transport of the arsenic in the dolomitic aquifer. Rocks with varying dolomite content were tested to investigate the interaction between the arsenic and dolomite.

Testing Potential Reservoir Connectivity Using Isotopes

Anticipated Shale Gas Development could intensify possible natural hydraulic connectivity between deep groundwater reservoirs and shallow aquifers in the Karoo. This project attempts to test geochemical evidence of natural mixing between old groundwater from deep aquifers and young groundwater from shallow aquifers using selected isotopic signatures in conjunction with borehole yields. Borehole yields were determined using slug tests. All isotopes (δ18O, δ2H, δ13C, 3H and 14C) were analysed in the laboratory of Environmental Isotope Group of iThemba Laboratories in Gauteng.

Understanding Natural Groundwater Recharge Systems In The Lower Berg River Catchment, West Coast, Western Cape

The CSIR has embarked on a study to investigate the potential for additional water in the West Coast, Western Cape through the application of Managed Aquifer Recharge (MAR). The benefits of MAR is that it may generate additional water supplies from sources that may otherwise be wasted with the recharged water stored in the aquifer to meet water supply in times of high demand. Determining recharge is the most important aspect of hydrological system. However, the accurate estimation of recharge remains one of the biggest challenges for groundwater investigators.

Geochemical investigations to improve the prediction of mine water impacts: A case study in the Elandsfontein Aquifer System, West Coast.

The impact of the future closure of the KROPZ phosphate mine in the West Coast on the various potential receptors including the underlying Elandsfontein Aquifer System (EAS), Langebaan Lagoon (RAMSAR-site) and wetlands were assessed. This abstract/paper describes the geochemical characterization and management options related to the waste streams from the mining activity, to assess the post closure contribution to groundwater flow from the mine towards potential receptors.