Groundwater

Machine learning as a tool to improve groundwater monitoring networks

Machine learning techniques are gaining recognition as tools to underpin water resources management. Applications range widely, from groundwater potential mapping to the calibration of groundwater models. This research applies machine learning techniques to map and predict nitrate contamination across a large multilayer aquifer in central Spain. The overall intent is to use the results to improve the groundwater monitoring network. Twenty supervised classifiers of different families were trained and tested on a dataset of fifteen explanatory variables and approximately two thousand points.

Risks related to groundwater resources in the Murray-Darling Basin, Australia

Groundwater governance and risk management in the Murray-Darling Basin in Australia (MDB) are being challenged by the increasing demand for water and the growing scarcity and variability of water supply owing to climate change. Over the past 20 years, consideration of risk related to groundwater in the MDB has evolved from concerns about the impact of groundwater extraction on surface water resources to an integrated assessment of risks to connected water resources and ecosystems.

Open access to digital groundwater and geodata supports the green transition and the spatial planning of competing subsurface uses

Modern societies rely heavily on subsurface resources and need open access to accurate and standardized scientific digital data that describe the subsurface’s infrastructure and geology, including the distribution of local and regional aquifers up to a depth of five kilometres. These data are essential for assessing and reducing climate change’s impact and enabling the green transition.

Ensuring the provision of sustainable water services in water-scarce humanitarian environments

Annually, UNICEF spends approximately US$1B in water, sanitation and hygiene programming (WASH), approximately half of which is spent in humanitarian contexts. In emergencies, UNICEF supports the delivery of water, sanitation and hygiene programming under very difficult programming contexts – interruptions to access, power supply and a lack of reliable data. Many of these humanitarian situations are in contexts where water scarcity is prevalent and where the demand and competition for water are increasing, contributing to tension between and within communities.

Understanding the influence of Artefacts on the Darcy Velocity Estimations from Point Dilution Tracer Tests

Darcy Velocity (Vd) is often estimated through a single-borehole Point Dilution Tracer Test (PDTT). Vd is used in the investigation of contaminant transport and distribution in aquifers. The tracer dilution rate in groundwater is controlled by horizontal groundwater flux. However, it can be affected by other artefacts, such as diffusion and density effects. Although there are studies on tracer tests, there has not been much done to gain an understanding of how these artefacts affect the correct Vd estimation.

Contribution of gravel pit lakes in reducing the groundwater nitrate contamination originating from agricultural land

The alluvial aquifer in the Varaždin region has a long-standing problem with high groundwater nitrate concentrations, mainly from agricultural activities. Since groundwater is used in public water supply networks, it is important to ensure its sustainable use. The aquifer is also used to exploit gravel and sand, and the increased demand for this valuable construction material causes the excavation of gravel pit lakes, making groundwater more vulnerable.

Groundwater and surface water interdependencies in a water-scarce arid system, Sandveld, South Africa

The largely groundwater-dependent Sandveld region’s water resources have been put under severe strain due to increased agricultural and town development and recent increased interest in mineral exploration within these catchments. The area known locally as the Sandveld consists of the coastal plain along the west coast of South Africa, bordered by the Olifants River to the north and east, the Berg River to the south and the Atlantic Ocean coastline to the west. Groundwater is considered an essential source of fresh water for the town and agricultural supply.

A new Danish groundwater mapping and modelling concept for targeted agricultural N-regulation

Globally, losses of excess nitrogen (N) from agriculture are affecting our air and water quality. This is a well-known environmental threat and is caused by food production for an ever-growing population. Since the 1980s, many European countries, such as Denmark, have successfully combatted N pollution in the aquatic environment by regulating and introducing national agricultural one-size-fits-all mitigation measures. However, further reduction of the N load is still required to meet the demands of, e.g., the EU water directives.

Making the Invisible Visible: Do Aquifers Have Agency?

In the social sciences, there has been a ‘posthuman’ turn, which seeks to emphasise the role of non-human agents as co-determining social behaviours. In adopting a ‘more-than-human’ approach, the academy seeks to avoid claims of human exceptionalism and extend the social to other entities. In this paper, we explore the extent to which the more-than-human approach might be applied to groundwater and aquifers and the implications that this may have for groundwater science.

How groundwater temperature is affected by climate change: a systematic review and meta-analysis

Groundwater (GW) is a target of climate change (CC), and the effects become progressively more evident in recent years. Many studies reported the effects on GW quantity, but of extreme interest is also the assessment of qualitative impacts, especially on GW temperature (GWT), because of the consequences they could have. This study aims to systematically review the published papers dealing with CC and GWT, to determine the impacts of CC on GWT, and to highlight possible consequences. Scopus and Web of Science databases were consulted, obtaining 144 papers.