Conference Abstracts

All Abstracts were presented at the Groundwater Conferences

Displaying 151 - 200 of 795 results
Title Presenter Name Presenter Surname Area Conference year Keywords

Abstract

Stable isotopes of the water are widely used in volcanic contexts to identify the recharge area, thanks to a strong orographic effect. Such data help improve the study areas’ conceptual model, especially to identify flow paths through the volcanic edifice. The most common pattern considered is a high to medium-elevation recharge area on a flank of the volcano, feeding both local perched aquifers and a deep basal aquifer. This is quite common for “shield volcanoes”, with the flank comprising a thick accumulation of lava flows. On composite volcanoes, especially in a volcanic arc context, the large diversity of lithologies (effusive/ destructive events dynamics) along the flanks may create a compartmented aquifers system. The Arjuno-Welirang-Ringgit volcanic complex (East Java) has been studied to elaborate a hydrogeological conceptual model. Stable isotopes of the water show significant results in identifying the recharge areas of several aquifers that are outflowing at a similar range of elevation. These results help to propose a water flow pattern from the recharge areas to the main springs with juxtaposed and superposed aquifers. This also leads to constraining the geometry of the aquifers and concluding that one volcanic complex with several recharge areas can feed juxtaposed aquifers. These results also highlight the need to adapt the study scale to each “point of interest” in the volcanic context, as each spring shows a different flowing pattern, preferential recharge elevation, and surface area. These are mandatory data to propose an adapted groundwater management.

Abstract

Darcy Velocity (Vd) is often estimated through a single-borehole Point Dilution Tracer Test (PDTT). Vd is used in the investigation of contaminant transport and distribution in aquifers. The tracer dilution rate in groundwater is controlled by horizontal groundwater flux. However, it can be affected by other artefacts, such as diffusion and density effects. Although there are studies on tracer tests, there has not been much done to gain an understanding of how these artefacts affect the correct Vd estimation. This study, therefore, aims to investigate and provide an understanding of the influence of artefacts on the PDTT through laboratory experiments conducted using a physical model representing a porous media. A total of 18 experiments were performed with different NaCl tracer concentrations under constant horizontal groundwater flow and no-flow conditions. The study results show that the density sinking effect affects an early period of tracer dilution, which can lead to overestimation of Vd; therefore, these stages should not be used to estimate Vd. The study, therefore, proposes a way in which PDTT data should be analysed to understand the effects of artefacts on Darcy velocity estimation.

Abstract

The joint application of water supply system security, groundwater modelling, and multicriteria analysis (MCA) indicated the potential of Managed Aquifer Recharge (MAR) to increase water supply security in Eastern Botswana substantially. Botswana faces increased water stress due to decreased water availability as climate change exacerbates variability in rainfall and increases evaporation losses and water demand. The water supply for Eastern Botswana is based on the bulk water supply system of the North-South Carrier (NSC) connecting dams in the northeast to the main demand centres, including Gaborone. The potential of MAR to increase the water security of the NSC by storing water that otherwise would have been lost to spillover and evaporation and contribute to the provision of water during droughts was studied. Large-scale MAR in the Ntane sandstone aquifer at a wellfield by the NSC was evaluated in terms of hydrogeology and national water supply perspective. Comprehensive hydrogeological surveys and assessments included borehole injection tests and hydrogeological and geochemical modelling to evaluate risks of losing recharged water and clogging of boreholes. Probabilistic water supply system modelling analysed the impact of different MAR scenarios on the water supply security of the NSC, and an MCA tool assessed the sustainability of the different scenarios. The analysis showed that large-scale MAR is feasible, and a scheme with a capacity of 40,000 m3 /d is the most sustainable from technical, social, economic and environmental perspectives and could potentially reduce the number of months with water shortage by 50% in Gaborone.

Abstract

A hydrogeological investigation was conducted at a gold mine in the Mandiana region, northeast Guinea. The objectives of the investigation included: 1) Review the efficiency of the current dewatering system and 2) Assess potential dewatering impacts on neighbouring groundwater users. Historical and current hydrogeological information were reviewed and assessed to address the project objectives. The site geological succession contains laterites, saprolites, saprock, dolorite sill and fresh fractured bedrock below. A review of the borehole lithological logs, pump test and monitoring data confirmed that the contact zone between the saprock and the dolorite sill is the major aquifer zone with hydraulic conductivity up to 25 m/d, with a minor alluvial aquifer with hydraulic conductivity ~ 0.05 m/d. The current dewatering system is not as effective as it should be due to electrical issues causing seepage into the current pit floor. A combination of in-pit sumps and dewatering boreholes is recommended to ensure the mine pit’s dry working conditions. The neighbouring groundwater users tap into the alluvial aquifer with water levels ranging between 0-10 mbgl and are not at risk from mine dewatering impacts due to the dewatering boreholes tapping into the deeper saprock-dolorite contact zone. The shallow and deeper aquifers are hydraulically disconnected. The following is recommended: 1) Drilling of replacement dewatering boreholes and implementing continuous water level and abstraction rate monitoring, and 2) Discharge the in-pit sumps (alluvial aquifer inflow and rainfall) into the river downgradient of the mine to supplement recharge to the alluvial aquifer.

Abstract

The current understanding of groundwater within the larger Bushveld Complex (BC) is evaluated to gauge the potential for deep groundwater, specifically emphasising the lesser investigated eastern limb. From the review of publicly available literature and data, geohydrological databases and statistical analyses are presented as a collation of the current understanding of groundwater in the eastern limb of the BC. Unfortunately, information on deep groundwater (> 300 m) is scarce due to the cost associated with deep drilling, mining exploration holes often neglecting hydrogeological data collection, or lack of public access to this information. Nevertheless, the conceptual model developed from the available information highlights deep groundwater’s variable and structurally controlled nature and the uncertainty associated with groundwater characterisation of the deeper groundwater systems. This uncertainty supports the need for research-based scientific drilling of the deeper fractured lithologies in the eastern limb of the Bushveld Complex. The Bushveld Complex Drilling Project (BVDP) established an opportunity to perform such research-based drilling and was funded by the International Continental Scientific Drilling Program (ICDP). While the main focus of the BVDP is to produce a continuous vertical stratigraphic sequence of the BC, there is a sub-component to collect geohydrological information. The planned borehole, 2 500 m deep, will provide an opportunity to collect information from the deeper systems within the Bushveld Complex and the underlying Transvaal Supergroup, which will inform on the connection between shallow and deeper groundwater.

Abstract

Sacred wells are found across the world yet are rarely studied by hydrogeologists. This paper will present the results of a 5-year hydrogeological study of holy wells in Ireland, a country with a relatively large number of these wells (perhaps as many as 3,000). It was shown that holy wells occur in all the main lithology and aquifer types but are more numerous in areas with extreme or high groundwater vulnerability. Water samples were collected from 167 wells and tested for up to 60 chemical parameters, including a large range of trace elements. Statistical analyses were performed to see if there were any statistically significant associations between the chemical constituents and the reputed health cures for the different well waters, and the results will be presented here. One of the issues in communicating the research findings to the general public is in explaining the small concentrations involved and the likely very small doses pilgrims at holy wells receive during their performances of faith. The spiritual dimension, including the therapeutic value of the landscape where the well is located, is likely an important aspect of the healing reputation.

Abstract

The Kalahari iron manganese field (KIMF) in the Northern Cape, South Africa, was historically exploited by only three mines, with Hotazel the only town and the rest of the area being largely rural, with agricultural stock/ game farming the major activity. Since 2010, mining activities have increased to more than 10 operational mines with increased water demand and environmental impacts on groundwater. The area is within catchments of the Matlhwaring, Moshaweng, Kuruman and Gamogara rivers that drain to the Molopo River in the Northern Cape. All the rivers are non-perennial, with annual flow occurrence in the upstream areas that reach this downstream area once every 10 years. The area is semi-arid, with annual evaporation nearly five times the annual precipitation. The precipitation is less than 300mm, with summer precipitation in the form of thunderstorms. Vegetation is sparse, consisting mainly of grasslands, shrubs and some thorn trees, notably the majestic camel thorns. The Vaal Gamagara Government Water Supply Scheme imports 11 Ml/d or 4Mm3 /a water for mining and domestic purposes in the KIMF section. The area is covered with Kalahari Group formation of 30 to 150 m thick with primary aquifers developed in the basal Wessels gravels and Eden sandstones for local use. The middle Boudin clay forms an aquitard that isolates and reduces recharge. Water levels range from 25 to 70m, and monitoring indicates local dewatering sinks and pollution. This study will report on the water uses, monitoring and observed groundwater impacts within the current climatic conditions.

Abstract

The use of radiogenic isotope tracers, produced through bomb testing (e.g. 3H and 14C), and the application of these isotopes is yet to be fully explored now that atmospheric abundances have returned to background levels. New isotope-enabled institutions and laboratories have recently been established in developing countries to apply isotopes in practical research. This study utilized several laboratories in South Africa and in Europe to compile a robust hydrochemical (major cations and anions) and isotope (d18O, d2H, 3H, 14C, 86Sr/87Sr) dataset of groundwater from 95 sample locations in the Maputo province of Mozambique. Groundwater is hosted in different aquifers and recharged through variable mechanisms ranging from direct infiltration of exposed alluvial soils to inter-aquifer transfer between fractured aquifer systems in the mountainous regions and the weathered bedrock in the lowlands. A combination of hydrochemistry and isotopes provided insight into the heterogeneous nature of recharge, mixing of modern and fossil groundwaters, and aquifer vulnerabilities when combined with other physical parameters in the region. However, it is also clear that grab sampling over a regional spatial extent and two sampling seasons (wet and dry) did not capture all the system variability, and more regular monitoring would uncover details in the system’s behaviour not captured in this study.

Abstract

 Predicting and quantifying the hydrogeological interference of big underground works is a complex effort. This is due to the considerable uncertainty in estimating the key geomechanical and hydrogeological parameters affecting the area of potential interference of the projects. Moreover, the pattern of involved groundwater flow systems is hardly identified, either in natural or disturbed conditions. Base tunnels through mountain ridges are particularly complex in their interactions with groundwater. Several approaches and tools have been published to predict the magnitude and distribution of water inflows inside tunnels and their impact on many receptors (springs, rivers, lakes, wells, groundwater-dependent ecosystems). The research, co-funded by Italferr Spa (Italian railway national company for tunnel design), deals with calibrating and validating these methods based on huge datasets. Main engineering companies provided data from completed base tunnel projects. In particular, in this study, the Drawdown Hazard Index (DHI) method has been calibrated with a dataset of a 15 km long sector of the Gotthard base tunnel drilled through a crystalline geological setting. The calibration involved only the Potential Inflow (PI) parameter to verify the matching between the probability of inflow and the actual output of the excavation, according to the available data in the preliminary stage of the project. An alternative tool based on a machine-learning approach was then applied to the same dataset, and a comparison was presented.

Abstract

Conjunctive use of surface water and groundwater plays a pivotal role in sustainably managing water resources. An increase in population, especially in the cities, increases the demand for water supply. Additional infrastructure to meet the needs and treatment techniques to remove the pollutants should be updated from time to time. Closing the urban water cycle by recycling and reusing treated sewage in the water sector can significantly reduce excessive groundwater extraction. However, this method is being implemented in only a few cities in developed countries. In the closed urban water cycle, treated sewage is discharged to rivers or other surface water bodies and used for managed aquifer recharge (MAR). Bank filtration, soil aquifer treatment and infiltration ponds are available MAR methods that augment the groundwater resources and remove pollutants during the natural infiltration process. These cost-effective natural treatment methods serve as a pre-treatment technique before public water supply to remove turbidity, algal toxins, bulk dissolved organic carbon and pathogenic microorganisms. The successful performance of these treatment methods depends on the need and feasibility for MAR, suitable hydrogeological conditions, sub-surface storage capacity of the aquifers, availability of suitable areas for MAR, type of MAR, source of recharge water, quality criteria, assessing the past, present and future climatic conditions. Case studies on groundwater resources management and water quality assessment, including for organic micropollutants from a large urban catchment in India, are presented.

Abstract

Kinsevere Mine is an open pit copper mine located within the Central African Copper Belt, experiencing common water challenges as mining occurs below the natural water table. The site’s conceptual model is developed and updated as one of the tools to manage and overcome the water challenges at and around the mining operations. The natural groundwater level mimics topography but is also affected by the operations. The pits act as sinks. The water table is raised below the waste dumps due to recharge in these areas, and the general groundwater flow direction is to the east. The site is drained by the Kifumashi River, located to the north of the site. Water levels from dewatering boreholes and natural surface water bodies define the site’s piezometric surface. The geological model is adopted to define the aquifers and groundwater controls. The Cherty Dolomites, a highly fractured Laminated Magnesite Unit, contribute the highest inflows into the mine workings. The Central Pit Shear Zone acts as a conduit and compartment for groundwater between Mashi and Central Pits. Hydraulic tests have been conducted over the years, and these data are used to estimate possible aquifer property values. The high-yielding aquifer on the west is dewatered using vertical wells, and the low-yielding breccia on the east is depressurized using horizontal drain holes. The site’s water management strategy is reviewed and improved through refinement of the conceptual model.

Abstract

Groundwater level monitoring is essential for assessing groundwater’s availability, behaviour and trend. Associated with a modelling tool, groundwater level fluctuations can be predicted in the short to middle term using precipitation probabilities or meteorological forecasts. This is the purpose of the MétéEAU Nappes tool implemented by BRGM for the City of Cape Town (CoCT) in the Table Mountain Group Aquifer (TMGA). This case study shows how near real-time groundwater level monitoring can support the municipality in managing its future groundwater withdrawals. The TMGA is an important source of groundwater in the Western Cape region of South Africa. The upper Nardouw Sub-Aquifer of the TMGA is an unconfined aquifer recharged by rainfall. It had been monitored in the Steenbras area for over 10 years before CoCT started groundwater production from the Steenbras wellfield in 2021. The MétéEAU Nappes forecasting tool is already implemented on many observation wells of the French national piezometric network, where it is used for decision-making by the French administration. It allows, in particular, to anticipate several threshold levels of drought and take appropriate measures. It combines real-time water cycle measurement data with a groundwater level lumped model (e.g. Gardenia model) and extrapolates observations for the next 6 months from statistical meteorological scenarios completed with abstraction scenarios. This tool can help protect the Steenbras wellfield as a critical water source for CoCT in the TMGA. This study was financed by the French Agency for Development (AFD).

Abstract

South Africa is known for droughts and their effect on groundwater. Water levels decrease, and some boreholes run dry during low recharge periods. Groundwater level fluctuations result from various factors, and comparing the levels can be challenging if not well understood. Fourie developed the “Groundwater Level Status” approach in 2020 to simplify the analysis of groundwater level fluctuations. Groundwater levels of two boreholes within different hydrogeological settings can thus be compared. The “Status” can now indicate the severity of the drought and thus be used as a possible groundwater restriction level indicator. The reasons for the groundwater level or the primary stress driver can only be determined if the assessment is done on individual boreholes and the boreholes according to hydrogeological characteristics. The analysis is used to identify areas of risk and inform the authorities’ management to make timely decisions to prevent damage or loss of life or livelihoods. The applicability of this approach from a borehole to an aquifer level is showcased through practical examples of the recent droughts that hit South Africa from 2010-2018.

Abstract

In this study, we assess the potential of large riverbed aquifers in semi-arid Africa, known as sand rivers, to mitigate water scarcity and salinity for multiple-use water supply through a case study of the Limpopo River in Mozambique. Such sand river systems are widespread and still heavily underused at a regional scale, particularly in Mozambique, with the riparian vegetation currently being the primary user, though only consuming a minor fraction of available water. At a local scale, we performed geoelectrical surveys, water level measurements (in river and groundwater), as well as field physicochemical measurements and hydrochemical and isotopic sampling at 38 locations in the river channel, margins and up to 6 km away from the river, over five years. Results show that these shallow systems can be up to a kilometer wide and 15 m thick and, at some locations, can extend laterally beyond the river channel, below thin layers of clay and silt. Large areas of the sand river channel carry runoff yearly, providing optimal conditions for rapid recharge into the coarse sands with a high storage capacity. Connectivity between the river margin and channel is clearly shown at the local scale, even though sand pockets located further away appear isolated (revealed by geophysics), isotopically different and more brackish. Recharge, evapotranspiration and mixing processes are confirmed through hydrogeochemical modelling. The proven connectivity is highly relevant as groundwater is abstracted locally, promoting socio-economic development in water-scarce regions.

Abstract

Recharge is an important factor in Water Resources Management as it is often used as a measure for sustainable groundwater abstraction and resource allocation. The recharge estimation is, however, linked to a specific time, area and conditions and then generalised over seasons and years. Current climate change estimations predict a warmer and drier future for western parts of southern Africa. Groundwater recharge estimation methods do not consider changes in climate over the short term and do not consider the longer trends of a changing climate. This article looks at the various methodologies used in recharge estimations and their application in a changing world, where rainfall period, pattern and intensity have changed, where higher temperatures lead to higher actual evapotranspiration and where there is a greater need for water resources for use in agriculture, industry and domestic use. Our study considers the implications of current recharge estimation methods over the long term for water allocation and water resources management of groundwater resources from local and aquifer catchment scale estimations.

Abstract

The geochemical study of deep aquitard water in the southern Golan-Heights (GH), Israel, reveals the complex paleo-hydrological history affected by the intensive tectonic activity of the Dead Sea Rift (DSR). The sampled water collected from new research boreholes exhibits relatively high salinities (2,000-10,000 mg Cl/L), low Na/Cl ((HCO3 +SO4 )). δ18OV-SMOW and δDV-SMOW values are relatively depleted (~-7‰ and ~-42‰, respectively), while 87Sr/86Sr ratios are enriched compared to the host rocks. Lagoonary brines with similar characteristics (excluding the water isotopic compositions) are known to exist along the DSR. These brines formed 10-5 Ma ago from seawater that transgressed into the DSR and subsequently underwent evaporation, mineral precipitation and water-rock interactions. These hypersaline brines intruded into the rocks surrounding the DSR and based on the current study, also extended as far as the southern GH. Further, following their subsurface intrusion into the GH, the brines have been gradually diluted by isotopically depleted freshwater, leaving only traces of brines nowadays. The depleted isotopic composition suggests that the groundwater system is recharged at high elevations in the north. It is also shown that variable hydraulic conductivities in different formations controlled the dilution rates and subsequently the preservation of the entrapped brines. The paleo-hydrological reconstruction presented here shows that the flow direction has reversed over time. Brines that initially intruded from the rift have since been gradually flushed back to the rift by younger fresh groundwater.

Abstract

The National Park Plitvice Lakes (NPPL) in the Republic of Croatia was declared in 1949 due to its exceptional natural beauty. However, in addition to its attraction, the NPPL also encompasses an area of significant karstic water resources in the Dinaric karst region, on the border between the Black Sea and the Adriatic Sea catchment. In some parts, groundwater connections to the Klokot Spring and Una River in Bosnia and Herzegovina have been assumed by hydrogeological research and proven by tracing tests, which confirm transboundary aquifer. Assessing transboundary aquifer systems already presents challenges in managing this area, considering not only the well-defined physical catchment. Therefore, comprehensive protection is necessary, which must reconcile people’s aspirations for spatial development with the sustainability of natural systems. Protecting karstic water resources can be achieved through separate analyses of the natural vulnerability of surface and groundwater and their integration into a comprehensive protection system. Protection should be layered through three levels: (1) protecting the area from the impact of the upstream catchment, (2) protecting surface water in the catchment that is most affected by anthropogenic influences, and (3) protecting the surrounding area from the impact of the NPPL, which with numerous visitors every year and tourist facilities, also represents significant pressure on downstream catchments. The ultimate goal is a scientifically based proposal for sustainable development of the protected area, in line with the needs of protection and spatial use, and based on an assessment of the overall risk to water resources.

Abstract

The occurrence of emerging organic contaminants (EOCs) in the aquatic environment is of no surprise since these are applied for various purposes daily. This study investigated the changes in EOCs concentrations in the water between 2019 and 2020. During rainy seasons, samples were collected from dams and surrounding boreholes in the Eastern Basin of the Witwatersrand Goldfields. During the first and second laboratory analyses, 24 and 11 analytes were screened in the water samples. The findings indicated that in 2020, compounds such as caffeine, sulfamethoxazole, atrazine and metolachlor displayed detection frequency exceeding 2019. This indicates that the occurrence of these compounds in the aquatic system has increased within a year. Whilst carbamazepine was still traced in 12 sites as previously observed in 2019, compounds estradiol, estrone, bisphenol A and ibuprofen were traced in fewer sites than they were detected in 2019. Compounds 4-nonylphenol, methylparaben, caffeine and atrazine were detected in all the samples analysed for 2019 and 2020, respectively. Antiretrovirals (ARVs) were analysed once and were detected in most sites, with efavirenz registering the highest (12/18) detection frequency. Assessing the occurrence of EOCs in boreholes according to the depth indicated that bisphenol A and estrone were traced in greater concentrations in deep than shallow aquifers, whilst the opposite was observed for atrazine. This study showed groundwater susceptibility to contamination by EOCs, with concentrations of most compounds increasing with time due to their high usage and improper sewer systems in the area.

Abstract

Salinization is one of the main threats to groundwater quality worldwide, affecting water security, crop productivity and biodiversity. The Horn of Africa, including eastern Ethiopia, northeast Kenya, Eritrea, Djibouti, and Somalia, has natural characteristics favouring high groundwater salinity. However, available salinity data are widely scattered, lacking a comprehensive overview of this hazard. To fill this gap, machine learning modelling was used to spatially predict patterns of high salinity with a dataset of 6300 groundwater quality measurements and various environmental predictors. Maps of groundwater salinity were produced for thresholds of 800, 1500 and 2500 μS/cm. The main drivers include precipitation, groundwater recharge, evaporation, ocean proximity, and fractured rocks. The combined overall model accuracy and area under the curve of multiple runs were both ~81%. The salinity maps highlight the uneven spatial distribution of salinity, with the affected areas mainly located in arid, flat lowlands.

These novel and high-resolution hazard maps (1 km2 resolution) further enable estimating the population potentially exposed to hazardous salinity levels. This analysis shows that about 11.5 million people (~7% of the total population) living in high-salinity areas, including 400,000 infants and half a million pregnant women, rely on groundwater for drinking. Somalia is the most affected country, with an estimated 5 million people potentially exposed. The created hazard maps are valuable decision-support tools for government agencies and water resource managers in helping direct salinity mitigation efforts

Abstract

The long mining history in Namibia has resulted in numerous abandoned mines scattered throughout the country. Past research around the Klein Aub abandoned Copper mine highlighted environmental concerns related to past mining. Considering that residents of Klein Aub depend solely on groundwater, there is a need to thoroughly investigate groundwater quality in the area to ascertain the extent of the contamination. This study made considerable effort to characterise groundwater quality using a comprehensive approach of quality assessment and geostatistical analysis. Onsite parameters reveal that pH ranges between 6.82-7.8, electrical conductivity ranges between 678 - 2270 μS/cm, and dissolved oxygen ranges between 1.4 -5.77 mg/L. With an exemption of two samples, the onsite parameters indicate that water is of excellent quality according to the Namibian guidelines. The stable isotopic composition ranges from −7.26 to -5.82‰ and −45.1 to -35.9‰ for δ18O and δ2H, respectively—the groundwater plots on and above the Global Meteoric Water Line, implying no evaporation effect. Hydrochemical analyses show bicarbonate and chloride as dominant anions, while calcium and sodium are dominant cations, indicating groundwater dissolving halite and mixing with water from a recharge zone.

The heavy metal pollution index of the groundwater is far below the threshold value of 100, which signals pollution; it contrasts the heavy metal evaluation index, which clustered around 3, implying that the heavy metals moderately affected groundwater. Copper, lead and Arsenic were the main contributors to the values of the indices.

Abstract

There is an urgent need to support the sustainable development of groundwater resources, which are under increasing pressure from competing uses of subsurface geo-resources, compounded by land use and climate change impacts. Management of groundwater resources is crucial for enabling the green transition and attaining the Sustainable Development Goals. The United Nations Framework Classification for Resources (UNFC) is a project-based classification system for defining the environmental-socio-economic viability and technical feasibility of projects to develop resources and recently extended for groundwater. UNFC provides a consistent framework to describe the level of confidence in groundwater resources by the project and is designed to meet the needs of applications pertaining to (i) Policy formulation based on geo-resource studies, (ii) Geo-resource management functions, (iii) Business processes; and (iv) Financial capital allocation. To extend use in groundwater resources management, supplemental specifications have been developed for the UNFC that provide technical guidance to the community of groundwater professionals to enhance sustainable resource management based on improved decision-making. This includes addressing barriers to sustainably exploiting groundwater resources, avoiding lack of access to water and also related to ‘common pool resources’ in which multiple allocations are competing with domestic water supply (e.g. geo-energy, minerals, agriculture and ecosystems, and transboundary allocation of natural resources). UNFC for groundwater resources is designed to enhance governance to protect the environment and traditional users while ensuring socio-economic benefits to society. Consequently, it is a valid and promising tool for assessing both the sustainability and feasibility of groundwater management at local, national and international levels.

Abstract

Water scarcity has driven many countries in arid regions, such as Oman, to desalinate seawater for freshwater supply. Episodic problems with seawater quality (e.g., harmful algae), extreme weather events that affect energy supply and hence the desalination process have nurtured the urgent need to store desalinated seawater (DSW) in the aquifers for use during emergency and peak demand time. Aquifer Storage and Recovery (ASR) using injection wells is a possible strategic option for Oman Water and Wastewater Services Company (OWWSC) to augment aquifer storage using excess desalinated water during low demand times. ASR strategically serves as a water supply backup to optimize production capacities against seasonal demand patterns. The technical-economic feasibility of implementing ASR schemes was investigated in Jaalan, Oman, using hydrogeological and geophysical field measurements, groundwater flow and hydraulic modelling, and economic analysis. Analysis of modelled scenarios results revealed that the Jaalan aquifer is suitable for storing and recovering about 4,000 m3 /hr in 2045. Various well field designs have been tested and optimized numerically using MODFLOW 6, showing that with 160 dual-purpose wells, 7.9 Mm3 can be injected and abstracted within the constraints defined for a robust and sustainable ASR system. Simulations with the density-dependent flow model (MF6 BUY) show that the injected volume can be fully recovered considering the drinking water quality standard. Other sites were also studied. ASR capacity was found to be site-specific, and the groundwater developments near the ASR site governed its feasibility

Abstract

Groundwater is increasingly being exploited in South African cities as a drought crisis response, yet there is poorly coordinated regulation of increasing urban users and usage and fragmented management of aquifers. Designing interventions and innovations that ensure sustainable management of these resources requires systems thinking, where the city is understood as an integrated, interdependent set of actors and flows of water. This paper presents a study that applied and integrated an urban water metabolism (UWM) analysis with a governance network analysis for two major South African cities facing severe drought risk, Cape Town and Nelson Mandela Bay. ‘Learning Laboratories’ in each city brought together stakeholders from various groundwater-related domains to build a shared understanding of how groundwater fits into the larger system and how various actors shape urban groundwater flows and the health of local aquifers. The UWM quantified all hydrological and anthropogenic flows into and out of each city (or urban system) to conduct an integrated mass balance. How this mass balance changes under varying climate change scenarios and land use was used as a focal point of stakeholder discussions. The governance network analysis highlighted that many state and non-state actors have a stake in shaping the quantity and quality of urban groundwater, such as regulators, service providers, water users, knowledge providers, investors in infrastructure, and emergency responders.

Abstract

Test-pumping drawdown curves do not always sufficiently indicate aquifer characteristics and geometry and should never be analysed in isolation. Using derivative analysis and flow dimension theory, inferring the regional geometries and flow characteristics of fractured aquifers that are otherwise unknown or inconclusive is possible. As the drawdown and/or pressure front propagates through the aquifer, it reaches various hydrogeological objects that influence flow regimes and imprints a sequence of signatures in the drawdown derivative curve. The conjunctive interpretation of these flow regime sequences and hydrogeological data results in a robust, well-informed conceptual model (in terms of both local groundwater flow and the aquifer), which is vital for sustainable groundwater resource management. Derivative and flow regime analysis was applied to the test-pumping data of confined and unconfined Nardouw Aquifer (Table Mountain Group) boreholes within Steenbras Wellfield (Western Cape). Major NE-SW trending folding and transtensional Steenbras-Brandvlei Megafault Zone, in association with cross-cutting faults/fractures and younger False Bay Suite dykes, make the Nardouw Aquifer (and deeper Peninsula Aquifer) hydrogeologically complex. The sequential flow regime analyses reveal domains of conceptual flow models, including open vertical fractures, T-shaped channels, double (triple) porosity models, and leaky/recharge boundary models, amongst others. Appropriate analytical flow models (type curve fitting) are then applied for accurate aquifer parameter estimations, which are used to evaluate recommended long-term yields through predictive pumping scenarios. The outcome is an improved hydrogeological understanding and enhanced conceptual model of the aquifer, which informs numerical modelling, ecological protection, and groundwater resource management.

Abstract

Modern societies rely heavily on subsurface resources and need open access to accurate and standardized scientific digital data that describe the subsurface’s infrastructure and geology, including the distribution of local and regional aquifers up to a depth of five kilometres. These data are essential for assessing and reducing climate change’s impact and enabling the green transition. Digital maps, 3D and 4D models of the subsurface are necessary to investigate and address issues such as groundwater quality and quantity, flood and drought impacts, renewable geo-energy solutions, availability of critical raw materials, resilient city planning, carbon capture and storage, disaster risk assessment and adaptation, and protection of groundwater-dependent terrestrial and associated aquatic ecosystems and biodiversity. For over a decade, EuroGeoSurveys, the Geological Surveys of Europe, has been working on providing harmonized digital European subsurface data through the European Geological Data Infrastructure, EGDI.

These data are invaluable for informed decision-making and policy implementation regarding the green transition, Sustainable Development Goals, and future Digital Twins in earth sciences. The database is continuously developed and improved in collaboration with relevant stakeholders to meet societal needs and facilitate sustainable, secure, and integrated management of sometimes competing uses of surface and subsurface resources.

Abstract

Crystalline basement underlies much of Africa, and the groundwater within the shallow, weathered layer provides reliable drinking water for many people. This resource is key in adapting to changing climate, particularly in providing reliable water for drinking and smallscale irrigation. However, this requires higher yields from boreholes than currently abstracted. Renewed research is required to investigate sustainable yields from this type of aquifer and how it varies spatially. Recent work on crystalline basement rocks in Africa has shown that there are a number of important geological and geomorphological controls on shallow aquifer parameters; variability of geological properties and the impact of the landscape history is likely to have a strong control. Typically, the basement has experienced high metamorphic grades, which reduces intergranular porosity. Consequently, the aquifer relies on the presence of fault/ fracture zones; and the regolith’s depth and nature, which can have significantly higher porosity and permeability than the underlying bedrock. The interaction and variability of these key factors and climatic and landuse variables are likely to impact shallow aquifer productivity strongly. Here, we report on an ongoing study by UK and African scientists to understand how to represent the variability of geological, regolith and landscape factors across African crystalline basements. In tandem, a data-driven modelling approach is being used to examine these controls’ influence on groundwater yields. Continental-scale mapping of basement groundwater yield is planned, supporting those planning further aquifer development, including the growing use of solar-powered pumps.

Abstract

The abstract presents a 2D modelling approach alternative to a 3D variable saturated groundwater model of solute or heat transport at the regional scale. We use FEFLOW to represent processes in the saturated zone, coupled with various models describing the unsaturated zone. The choice of the latter depends on modelling needs, i.e. simulation of the movement of seepage water and nitrate fate with respect to crop rotation patterns and dynamic characteristics of heat gradients, respectively. The flexibility of coupling specialized models of different subsurface compartments provides the opportunity to investigate the effects of land use changes on groundwater characteristics, considering the relevant drivers in sufficient detail, which is important in regions with intensive anthropogenic activities. The coupling can be operated either with (direct coupling) or without (sequential coupling) including the feedback between the saturated and the unsaturated zones depending on the depth of the groundwater table below the surface. Thus, the approach allows for reasonable computational times. The Westliches Leibnitzer Feld aquifer in Austria (43 km²; Klammler et al., 2013; Rock and Kupfersberger, 2018) will be presented as an example highlighting the needed input data, the modelling workflow and the validation against measurements.

Abstract

Various electrical potential difference-audio magnetotelluric (EPD-AMT) geophysical equipment is now available in the market for groundwater exploration, and the Groundwater Detector is one of them. Due to their low cost, deeper penetration, and real-time measurement, the technology has been widely received in many developing and underdeveloped countries. However, research to understand the application of the EPD-AMT surface geophysics approach in groundwater exploration is very limited. This research gap needs urgent attention to promote the technology’s meaningful and wider application. The lack of published case studies to demonstrate the capabilities of the EPD-AMT approach is a limiting factor to its application.

Research on different hydrogeological settings is paramount as part of the efforts to improve the practical understanding of the application of the EPD-AMT geophysical approach in groundwater exploration. This study shares field experience from applying the EPD-AMT Groundwater Detector geophysical technique to explore groundwater in dolomite, granite, and Karoo sandstone hardrock aquifers in Southern Africa.

Abstract

Groundwater is an essential source of water worldwide. The increased reliance on groundwater has caused the mining of many aquifers, a situation compounded by climate change, rising surface-air temperature, declining precipitation, and reduced groundwater recharge in many regions. The global annual intensity of groundwater use rose from 128 to 155 m3 per capita between 1950 (when the world population was 2.5 billion people) and 2021 (when the population was 7.9 billion people) and is herein projected to rise to 178 m3 per capita by 2050 as the world’s population is projected to increase (to 9.7 billion people by 2050) throughout the rest of the 21st century and beyond. This study projects a global annual groundwater depletion of 1,008 km3 by 2050, representing a 256% rise from the estimated 2010 depletion. This projection is most likely a lower bound of the actual groundwater depletion that would be realized considering environmental flows, historical trends of global economic growth, and climate-change impacts, thus being a harbinger of rising environmental degradation (e.g., land subsidence, seawater intrusion, streamflow reduction, aridification). Measures to achieve groundwater sustainability are herein identified.

Abstract

This paper presents the results of groundwater flow modelling studies that were conducted within the scope of the PRIMA RESERVOIR project. The project’s main goal is to develop an innovative methodology to mitigate land subsidence due to excessive groundwater exploitation in water-stressed Mediterranean watersheds. This objective is achieved by integrating earth-observation-derived land subsidence rates with a coupled implementation of numerical groundwater flow and geomechanical modelling. MODFLOWbased 3-D transient flow models were constructed for the four pilot sites (the coastland of Comacchio in Italy, the Alto Guadalentín aquifer in Spain, the Gediz River basin alluvial aquifer in Turkiye and the Azraq basin in Jordan) that have different hydrogeological properties and pose different challenges concerning water management. Models were calibrated and run for similar simulation periods (2013-2021) to obtain hydraulic head drawdowns and changes in groundwater storage. Land subsidence at these sites was evaluated using Advanced Differential Radar Interferometry (A-DInSAR) on image stacks from the Sentinel-1 satellite. Subsidence rates were then compared to hydraulic head drawdown rates to identify groundwater pumping-induced subsidence areas. The comparison for all study areas suggested that locations of maximum displacements do not necessarily coincide with areas that display the largest head drawdown calculated by the flow models. Other triggering factors, such as the thickness of compressible materials, are also related to high subsidence areas.

Abstract

Groundwater is a strategic long-term water resource used by an estimated 70% of the populations in sub-Saharan Africa for drinking, irrigation and a wide range of economic activities. Understanding groundwater recharge processes is key for effectively using and managing water resources. Very few studies have used direct groundwater observations to assess the impact of different farming systems on groundwater recharge processes. This study focused on assessing basement aquifer recharge in 4 instrumented catchments in Malawi (Chitedze), Zambia (Liempe and Kabeleka) and Zimbabwe (Domboshawa) within the SADC region between 2019-2022. Employing a range of methods, including direct field observations (groundwater hydrographs, precipitation data, stable isotopes, chloride mass balance and residence time tracer data), we quantify the amount of groundwater recharge as well as the timing and nature of recharge processes under both conservation and conventional tillage systems in these four study sites. Groundwater recharge was measured in most years across the study sites. The study reveals the strong climate controls on seasonal groundwater recharge volumes, the influence of low permeability layers in the unsaturated zone, and the likely magnitude of impact from different farming practices. Groundwater residence times are high (i.e. low fractions of modern recharge, interquartile range 1-5%, n=46), even in shallow piezometers, suggesting these unpumped systems may be highly stratified. The results provide an evidence-based suite of data that reveals much about key controls on groundwater recharge in basement aquifers in sub-humid drylands and will inform the development and management of such groundwater systems.

Abstract

Groundwater systems are complex and subject to climate change, abstraction, and land use stresses, making quantifying their impacts on aquifers difficult. Groundwater models aim to balance abstraction and aquifer sustainability by simulating the responses of an aquifer to hydrological stresses through groundwater levels. However, these models require extensive spatial data on geological and hydrological properties, which can be challenging to obtain. To address this issue, data-driven machine learning models are used to predict and optimize groundwater levels using available data. This paper argues that using machine learning to model groundwater level data improves predicting and optimizing groundwater levels for setting up a managed aquifer recharge scheme. The West Coast Aquifer System in South Africa was used as a case study. The neural network autoregression model was used for the analysis. Multiple variables such as rainfall, temperature, and groundwater usage were input parameters in the mode to facilitate predictions. Outputs from the model showed how machine learning models can enhance the interpretation of observed and modelled results on groundwater levels to support groundwater monitoring and utilization. In areas with high dependence on groundwater and where data on abstraction (use) and monitoring were scarce, results showed that feasible measures were available to improve groundwater security. Although the simulation results were inconclusive, the results provided insights into how the use of machine learning can provide information to inform setting up a managed aquifer recharge scheme.

Abstract

The Natural Background Level (NBL) of contaminants in groundwater is typically determined using regional-scale monitoring networks or site-specific studies. However, regional scale values are limited in their ability to capture natural heterogeneities that affect contaminant mobility at smaller scales, potentially leading to local over- or underestimation of the natural contaminant concentration. Conversely, site-specific studies can be expensive and time-consuming, with limited use outside the specified case study. To overcome this issue, a study was conducted in a 2600 km2 area, analyzing arsenic concentration values from monitoring networks of sites under remediation as an alternative source of information. The main drawbacks of the alternative dataset were the lack of information on monitoring procedures at the remediation sites or potential anthropogenic influences on the concentration data. However, these limitations were adequately managed with a thorough data pre-treatment procedure informed by a conceptual model of the study area. The NBLs estimated with the alternative dataset were more reliable than that from the regional monitoring network, which, in the worst case (i.e., in the area with the highest geological and geochemical heterogeneity), the NBL of one order of magnitude was underestimated. As a future step, the project seeks to incorporate geological and geochemical heterogeneities as secondary variables in a geostatistical analysis to produce a continuous distribution of arsenic concentrations at the mesoscale. This would provide a useful tool for managing contaminated sites and a reproducible protocol for NBL derivation in different areas, overcoming the scale issue.

Abstract

The basis of a hydrogeological conceptual model is the comprehensive characterisation of the groundwater system. This ranges from discrete hydraulic feature analysis to local-scale testing to integrated regional-scale aquifer system conceptualisation. Interdisciplinary data integration is critical to each level of characterisation to gain a realistic, yet simplified representation of the hydrogeological system based on various data sources. Incorporation of geological datasets, including (but not limited to) structural and lithological mapping, geotechnical core logs and geophysical surveys, in conjunction with a tailored selection of hydraulic testing techniques, are often underutilised by hydrogeologists. Yet, the contribution of these alternative hydraulic datasets cannot be overstated.

A recent hydrogeological assessment and feasibility study forming part of the planned expansion project for a base-metal mine in the Northern Cape, South Africa, offers an ideal, practical example. The localised nature of the project area and the inherently complex geological setting required a more detailed conceptual model and hydrostratigraphic domaining approach. Highly heterogeneous stratigraphy and strong structural aquifer controls necessitated characterisation by reviewing, testing and analysing various datasets. Exploratory core datasets, hydraulic aquifer tests, geological and downhole geophysical datasets, and statistical Rock Quality Designation—hydraulic conductivity relationships were interpreted to produce meaningful, refined hydraulic process identifications. A comprehensive local groundwater framework, discretised into various hydrostratigraphic units and structural domains with specified hydraulic parameters, was incorporated to provide a novel, more robust conceptual understanding of the unique hydrogeological system.

Abstract

Water resources worldwide are stressed, and the number of groundwater professionals required to manage those resources is not being generated in sufficient numbers. Groundwater educational resources must be placed in schools to generate excitement and raise awareness. Additionally, people entering the workforce need training throughout their professional careers. Oklahoma State University partnered with the U.S. National Ground Water Association to develop a framework for providing education and training programs in groundwater that allow for interactive online education at all levels. The Awesome Aquifer 360 program targets grades 5-8, allowing students to conceptually explore aquifers and the people who manage them. The Drilling Basics Online program provides a 40-hour basic safety and drilling training to recruit professionals into the groundwater industry and reinforce safe operations. These programs and future plans for the technique will be discussed.

Abstract

The Lower Berg River Aquifer System, situated in the Western Cape province of South Africa, is important to the towns that overlay it, as they rely on the aquifer for water supply, which supplements industrial development and residential growth. This aquifer system is important because surface water resources in the area are finite and fully allocated. Despite studies on the Lower Berg River Aquifer System since 1976, knowledge of the geological layers, recharge and discharge areas, and groundwater flow paths remain limited. This study aimed to provide greater insight and understanding of the aquifer to assist in better management. Investigations included a Time Domain Electromagnetic airborne geophysical survey, the assessment of groundwater levels, infiltration tests, hydrochemical analyses, and stable and radioactive isotope analyses. These methods allowed for the identification of the aquifer’s layers and extent, determination of water quality in different parts of the aquifer, delineation of flow paths through the saturated and unsaturated zones, identification of inter-aquifer flow, as well as different modes of recharge.

Abstract

Coastal groundwater is a vulnerable resource, estimated to sustain the water needs of about 40% of the world’s population. The Roussillon aquifer is a regional aquifer near Perpignan (southern France). It covers over 800 km2 of land and is used for irrigation, drinking water, and industrial purposes. The aquifer has experienced significant piezometric lowering in the last decades, weakening the regional resource. An important aspect of modelling the hydrodynamic of this aquifer is the need to integrate data from agriculture and drinking water abstraction, natural and anthropogenic recharge, and account for the aquifer’s complex sedimentary arrangement. An ensemble of groundwater models has been constructed to understand the spatial evolution of the saline/freshwater interface and evaluate the impact of groundwater abstraction.

Three sets of physical parameter modelling approaches were used. The first is based on the direct interpolation of pumping tests. The second uses sequential indicator simulations to represent the geological uncertainty. The third is based on a detailed conceptual geological model and multiple-point statistics to represent the detailed geological structure. These models provide parameter fields that can be input for the transient state hydrodynamic simulations. Overall, the ensemble approach allowed us to understand the Roussillon plain’s hydrological system better and quantify the uncertainty on the possible evolution of the main groundwater fluxes and water resources over the last 20 years. These models can help to inform management decisions and support sustainable water resource development in the region.

Abstract

Groundwater quantity and quality of shallow aquifers have deteriorated in recent years due to rapid development that has created an increased demand for drinking water, which is increasingly being fulfilled by groundwater abstraction. The study evaluates the hydrogeological framework of the Quaternary aquifer of the Kabul basin, Afghanistan, and the impact of urbanization on the groundwater resources around the Kabul city plain. Time series of Landsat satellite LCLU images indicate that the urban area increased by 40% between 2000 and 2020, while the agricultural area decreased by 32% and bare land decreased from about 67% to 52% during this period. The assumed groundwater overdraft 2019 was 301.4×103 m3 /day, while the recharge was 153.4×103 m3 /day, meaning a negative balance of about 54 million cubic meters (MCM) this year. Due to the long-term decline of water levels at 80 90 cm/year, and locally (Khairkhana, Dasht-e-Barchi) 30-50m during 2005-2019, a considerable groundwater drawdown is shown. Groundwater quality, on the other hand, reveals that chloride concentrations and salinity increased throughout the aquifer between 2005 and 2020. The nitrate concentration decreased in most Kabul Plain places over the period. In conclusion, the quantity and quality situation of urban groundwater in Kabul is worrying; urgent scientific and sustainable solutions and measures should be considered to manage this situation.

Abstract

Shallow groundwater dynamics play a crucial role in wetland ecosystems and are key to climate change resilience. Therefore, conserving and restoring wetland areas requires excellent knowledge of groundwater flow dynamics, which are often rapidly changing following extreme weather events and anthropogenic impacts such as groundwater extraction. Traditional methods to estimate groundwater flow require extensive modelling or rely on point measurements, missing the effect of crucial short-term events and impeding quick actions to conserve the wetlands’ ecohydrological status. Here, we present a newly developed sensor that can measure real-time groundwater flow velocity and direction. The sensor probe consists of two bidirectional flow sensors that are superimposed. It is installed in a dedicated pre-pack filter and can measure a broad range of groundwater flow velocities from 0.5 cm/ day to 2000 cm/day. With an IoT (Internet of Things) system, sensor data is wirelessly transmitted and visualized in real-time on an online dashboard. In addition, we show a selection of results from a case study in the Biebrza National Park (Poland) and a nature reserve in Damme (Belgium). In both ecosystems, we could capture changes in groundwater flow velocity and direction resulting from precipitation and evapotranspiration events. As such, we are confident that our sensors provide new insights into rapidly changing groundwater dynamics and will become an invaluable tool in ecohydrological studies worldwide, ultimately leading to more integrated management strategies to protect and conserve remaining wetlands.

Abstract

Aquifer test analysis is complex, and in many regards, the interpretation resembles an art more than a science. Under the best circumstances, aquifer test analysis is still plagued by ambiguity and uncertainty, compounded by the general lack of information on the subsurface. An approach which has seen widespread adoption in other fields that need to classify time series data is machine learning. A Python script that generates numerical groundwater flow models by interfacing directly with the modelling software produces training data for deep learning. Production yielded 3,220 models of aquifer tests with varying hydrogeological conditions, including fracture, no-flow and recharge boundary geometries. Post-processing exports the model results, and the Bourdet derivative is plotted and labelled for image classification. The image classifier is constructed as a simple three-layer convolutional neural network, with ReLU as the activation function and stochastic gradient descent as the optimizer. The dataset provided sufficient examples for the model to obtain over 99% accuracy in identifying the complexities present inside the numerical model. The classification of groundproofing data illustrates the model’s effectiveness while supporting synthetically prepared data using modern groundwater modelling software.

Abstract

With the revision of the European Drinking Water Directive (Directive on the quality of water intended for human consumption 2020/2184) in December 2020, the preparation of Water Safety Plans (WSP) is foreseen according to the guidelines of WHO. Within the EU Interreg Adrion MUHA project, a decision support tool (DST) has been developed to provide a holistic approach to drinking water infrastructure risk analysis. The project mainly addresses four water-related risks: accidental pollution, floods, droughts and earthquakes. The core of the DST is the inventory of hazardous events (causes, their consequences and impacts) for each component of the drinking water supply chain: (1) drinking water source - catchment area, (2) water supply system, and (3) domestic distribution system. For each identified potential hazard, the type of hazard was determined (e.g., biological, chemical, radiological, or physical hazard (including turbidity), inadequate availability of water supplied to customers, safety to personnel, external harm to third parties, including liability). The DST was tested in the partner countries (Italy, Slovenia, Croatia, Serbia, Montenegro and Greece) to verify the resilience of the measures and elaborate the WSP.

In the end, the REWAS-ADRION strategy was elaborated, aiming to increase the resilience of drinking water supplies to floods, droughts, accidental pollution, and earthquake-related failures by improving the water safety planning mechanism based on the concept of inter-agency cooperation to support water utilities, civil protection organizations, and water authorities.

Abstract

Having knowledge of spatiotemporal groundwater recharge is crucial for optimizing regional water management practices. However, the lack of consistent ground hydrometeorological data at regional and global scales has led to the use of alternative proxies and indicators to estimate impacts on groundwater recharge, enabling effective management of future water resources. This study explores the impact of land use changes and wildfires on groundwater recharge at a regional scale in Bolivia, using an alternative indicator to estimate variations in groundwater recharge rates. Based on a study by de Freitas L. in 2021, the methodology developed the annual groundwater recharge reduction rate (RAPReHS) utilizing remotely sensed data from the FLDAS and TERRACLIMATE datasets. The RAPReHS employs a simplified version of the water balance equation, estimating direct vertical groundwater recharge by considering the difference between precipitation, evapotranspiration, and runoff. The methodology was upscaled to improve data processing and analysis efficiency using an open-source cloud-computing platform (Google Earth Engine) over a 20-year period. The first results reveal a strong correlation between decreasing groundwater recharge rates and natural vegetation in the eastern region. By utilizing the RAPReHS index, forest preservation strategies can be prioritized. This study is in the framework of SDG 13 (Climate Action), which aims to mitigate the impacts of climate change on the environment and society. By exploring the impact of land use changes and wildfires on groundwater recharge at a regional scale in Bolivia, this research contributes to the inclusion of groundwater in policy guidelines for sustainable water management

Abstract

Groundwater quality and groundwater sample representativeness depend on the integrity of the water supply and monitoring wells. Well-integrity issues can occur by improper placement of grout seals behind the protective casing and/or by improper backfilling processes between ports. Multi-level monitoring systems are becoming common in the industry, providing depth-discrete groundwater samples and hydraulic head data from a single borehole. However, isolation between the monitoring intervals can be challenging when backfilled methods are used. No independent verification method exists to confirm seal placement for isolating monitoring intervals in such multi-level wells. A new approach using a hybrid fibre optic cable for adding heat, referred to as Active Distributed Temperature Sensing (A-DTS), is deployed in the annular space of a backfilled multi-level well. This new method is used to quantify the position of bentonite used as seals and sand packs that define the monitoring interval lengths and to identify issues associated with backfilling. A-DTS data from three boreholes with back-filled multilevel systems to 85 mbgs in a dolostone aquifer in Guelph, Ontario, Canada, demonstrates clear boundaries between backfill materials. In one interval, a deviation in the thermal data suggests a bridge in the bentonite seal, and this interval coincides with challenges in the backfilling from the field notes. The proposed method verifies well completion details, is repeatable and provides an efficient and effective way to assess well integrity impacting measurement uncertainty in a range of well types.

Abstract

Globally, losses of excess nitrogen (N) from agriculture are affecting our air and water quality. This is a well-known environmental threat and is caused by food production for an ever-growing population. Since the 1980s, many European countries, such as Denmark, have successfully combatted N pollution in the aquatic environment by regulating and introducing national agricultural one-size-fits-all mitigation measures. However, further reduction of the N load is still required to meet the demands of, e.g., the EU water directives. Scientifically and politically, implementing additional targeted N regulation of agriculture is a way forward. A comprehensive Danish groundwater and modelling concept has been developed to produce high-resolution groundwater N retention maps showing the potential for natural denitrification in the subsurface. The concept’s implementation aims to make future targeted N regulation successful environmentally and economically. Quaternary deposits, formed by a wide range of glacial processes and abundant in many parts of the world, often have a very complex geological and geochemical architecture. The results show that the subsurface complexity of these geological settings in selected Danish catchments results in large local differences in groundwater N retention. This indicates a high potential for targeted N regulation at the field scale. A prioritization tool is presented that has been developed for cost-efficient implementation at a national level to select promising areas for targeted N regulation.

Abstract

Hermanus was originally supplied from springs and groundwater until the De Bos Dam was built in the 1950s. Due to increasing water demand, the municipality commenced wellfield development in 2002. The first wellfield comprised 3 boreholes, of which one borehole was later decommissioned due to reduced yield. Three additional boreholes were drilled recently to ensure abstraction capacity within the licence limits. A second wellfield was developed in the Hemel-en-Aarde Valley north of Hermanus. To ensure the sustainable management of the shared resource and minimise environmental impacts, a monitoring committee was established with all relevant roleplayers, other users, civil society, environmental groups and various commenting and regulatory authorities. A comprehensive monitoring network was established to assist with the scheme’s management and ensure that environmental impacts are minimized. The long-term monitoring (up to 20 years) shows that the groundwater abstraction from the Gateway Wellfield does not impact the environment and other users or increase the risk of saline intrusion. Identified impacts have been mitigated with the assistance of the monitoring committee. The municipality aims to provide at least half of the town’s water demand from groundwater and establish conjunctive use operation between surface water from the De Bos Dam and groundwater from these wellfields. The wellfields ensured sufficient water for the municipality when De Bos Dam’s water levels declined significantly during the Western Cape droughts in 2011 and 2017. The presentation will provide examples of the long-term monitoring records and trends.

Abstract

Prevention of threats to the quality and quantity of groundwater supply is critical to ensure its sustainability. Several African studies have shown that contamination of aquifers is primarily caused by improper placement of land-based human activities. Therefore, adequate preventative measures are required to safeguard the water quality of African aquifers to avoid long-term deterioration. Spatially explicit, 3D numerical groundwater modelling is a common methodology to assess contaminant transport. However, model development is time-consuming and complex. Contrastingly, DRASTIC-L is a 2D, GIS-based aquifer vulnerability mapping technique. The method is simple to apply, but analyses are qualitative and subjective. The study aims to compare both methods and to combine their strengths using GIS overlay. Overall, aquifer vulnerability was determined using the DRASTIC-L method, while wellhead protection areas were delineated using steady-state numerical modelling. This study focuses on the Cape Flats area due to its rapid development and growing municipal water supply supplementation needs. DRASTIC-L mapping revealed that aquifers in the Cape Flats are highly vulnerable to contamination due to the region’s unconfined hydrogeological properties, shallow water table and high-risk land use types. Moreover, groundwater vulnerability mapping combined with the delineation of wellhead protection areas allows for reduced uncertainty in the contamination potential of delineated groundwater protection zones. As a result, this study highlights the need for overall resource protection of the Cape Flats aquifers and provides insights into mapping out potential source protection areas of existing water supply wells.

Abstract

Emerging contaminants (e.g. pharmaceuticals or pesticides) are increasingly detected in aquatic environments. The most apparent contamination source of river water pollution by pharmaceuticals is sewage treatment plant stations that discharge treated sewage effluent to the rivers. The river bank filtration systems (RBF) can effectively remove these contaminants. The two RBF sites were examined for pharmaceuticals: Śrem and Gorzów waterworks. The water samples for pharmaceuticals investigation were taken from the river and four continuously pumped wells at each site. Two wells near the river were chosen at each site (40-50 m) and two at a greater distance from the river (70 m in Śrem and 110 m in Gorzów). A visible increase in pharmaceutical concentrations was observed along the river. The sum of pharmaceuticals concentration is 8151 ng/l in Śrem (upstream), while in Gorzów (downstream) concentration is 9142 ng/l. A very big differentiation in pharmaceutical occurrence was observed. In Śrem, the sum of pharmaceuticals concentration is between 657 and 3290 ng/l, while in Gorzów, despite the higher concentrations of pharmaceuticals in the river, these substances were detected only in one well located at a close distance from the river (two substances at a concentration of 92 ng/l).

The research proves a very big differentiation of pharmaceutical concentration even on sites located at similar hydrogeological conditions and demonstrates the necessity of its monitoring, especially in groundwater strongly influenced by river water contamination (like at RBF sites). This work has received funding from the National Science Centre Poland (grant no. 2021/41/B/ST10/00094).

Abstract

The Geneva aquifer is internationally recognized for its transboundary resource management agreement between Switzerland and France, described as the first groundwater management agreement in the world. Signed in 1978 and renewed in 2008, this agreement on managing a shared underground resource has long been an example for establishing other agreements worldwide, particularly by UNESCO and its hydrological program via the TBA commission of the IAH. Like many countries worldwide, Switzerland and France experienced a critical summer of 2022 concerning the use of water resources, both surface and underground. The system applied in the cross-border agreement for using the aquifer involves French participation in the costs of managing aquifer recharge (MAR), depending on the total pumping. It shows that the French part, having consumed more water to compensate for the extreme drought of 2022, has seen its bills increase considerably. Development plans show that the population of Greater Geneva will increase considerably by 2030-2040, requiring significant medium-term water availability (30% additional water). Therefore, the French institutions’ political leaders have formally asked the authorities of the canton of Geneva to review the conditions linked to the quotas and calculation methods included in the 2008 agreement. A new agreement could be a real example of positive cross-border coordination for decision-makers finding themselves in a blocked or even conflicting situation due to differences in managing a shared resource revived by the effects of climate change.

Abstract

Groundwater is the most important source of potable water in rural areas of Acholiland, a sub-region of northern Uganda. Installation of handpumps has been the focus of local government and international aid to provide safe drinking water in Uganda. However, non-functional handpumps are one reason for the abandonment of groundwater resources. For handpumps to be sustainable for years, appropriate siting and construction is required, as well as monitoring. This is common knowledge to specialists working in rural supply, but gaps in knowledge transfer and field skills may exist for the persons installing and maintaining handpump wells. This is a case study of a ten-day field campaign designed to train local participants who actively work in the rural groundwater supply sector. Nine non-functional handpump sites were identified for repair and hydrogeology and geophysical studies. A non-governmental organization, IsraAID, along with Gulu University implemented training by hydrogeology specialists to build local capacity. The training included handpump functionality tests, downhole inspections, electrical resistivity tomography surveys, and water quality sampling, including a novel Escherichia coli test that did not require an incubator. Functionality tests and downhole inspections provided simple but effective ways to assess handpump and well issues. Training in water quality empowered the participants to complete rapid assessments of the quality of the water and start monitoring programs. The success of the project was based on collaboration with multiple organizations focusing on the development of local capacity. The lessons learnt from this campaign should be considered for other rural groundwater supply scenarios.

Abstract

The interaction between groundwater and wetlands is poorly understood, even though it has been the topic of many research projects, like the study done at the Langebaan Lagoon. This interaction is complex as it lies at the intersection between groundwater and surface water, but each situation is unique, with different conditions regulating the interaction. Wetlands can be the source of water that recharges groundwater systems on the one hand, while the other is dependent on the groundwater systems. This interaction became part of the project looking at how to implement Managed Aquifer Recharge for Saldanha Bay Local Municipality without having a negative impact on the groundwater-dependent ecosystems, such as the springs and wetlands in the area. Ten wetlands were identified on the Langebaan Road Aquifer Unit, and a monitoring programme was developed. The purpose of the monitoring was to determine the status of the wetlands as a baseline before the implementation of managed aquifer recharge and to determine the level of groundwater dependence. The latter was done by hydrochemical analysis of rainwater, groundwater and water from the wetlands and stable isotope analysis. The ability of the wetlands to act as a recharge point to the groundwater system will be investigated through column experiments and lithostratigraphic analysis of soil columns taken at the wetlands. Groundwater levels will also be plotted as contour lines to determine the intersection of the water table with the wetlands in the area.