Conference Abstracts

All Abstracts were presented at the Groundwater Conferences

Displaying 101 - 150 of 795 results
Title Presenter Name Presenter Surname Sort descending Area Conference year Keywords

Abstract

In this study, petroleum hydrocarbon contamination assessment was conducted at a cluster of petroleum products storage and handling facilities located on the Southern African Indian ocean coastal zone. The Port Development Company identified the need for the assessment of the soil and groundwater pollution status at the tank farms in order to develop a remediation and management plan to address hydrocarbon related soil and groundwater contamination. Previous work conducted at the site before consisted out of the drilling and sampling of a limited number of boreholes. The current investigation was triggered by the presence of free phase product in the coal grading tippler pit located ~350 m down gradient and south-east and east of the tank farms, rendering the operation thereof unsafe. The assessment intended identifying the source of product, distribution and mobility, the extent of the contamination, and the human health risks associated with the contamination. To achieve these, the investigation comprised site walkover and interviews, drilling of 76 hand auger and 101 direct push holes to facilitate vertical soil profile VOC screening and sampling (soil and groundwater) as well as granulomeric analysis to understand grain size distribution within the soil profile. The highest concentrations were associated with the coarse sand layers with the highest permeability. Free phase hydrocarbons product was found in holes adjacent to the pipeline responsible for the distribution of the product form the jetty to the different tanks farms. Of the 57 soil samples, 21 had high values of GRO and DRO, with 22 below Detection Limit and 14 can be described having traces of hydrocarbon. Both TAME and MTBE were detected in most of the water samples taken, including from wells located far down gradient. The groundwater sink, adjacent to the pipeline running from west to east, resulted in the limited lateral spread of MBTE in this area, with limited movement towards the sea. The depth of the soil contamination varies over the sites. Based on the site assessment results it was concluded that most of the groundwater contamination, which is a mixture of different product types, is associated with the pipeline responsible for transporting product from the jetty to the different petroleum companies. {List only- not presented}

Abstract

Well-established engineered systems for depth-discrete monitoring in fractured rock boreholes (referred to as a Multilevel System or MLS) are commercially available and offer much diversity in design options, however, they are used infrequently in professional practice and have seen minimal use in groundwater research. MLSs provide information about hydraulic head and hydrochemistry from many different depths in a single borehole and, therefore, magnify greatly the knowledge value of each borehole. Conventional practice globally is devoted to standard monitoring wells, either alone as longer single screened wells or in clusters or nests with a few wells screened at different depth intervals. These are the mainstay of the groundwater science and engineering community and severely limit prospects for each borehole to provide the information needed to solve the complex problems typically posed by fractured rock. This paper outlines the nature and evolution of MLS technologies and points to recent literature showing how MLSs add important insights that cannot be obtained using conventional wells. Also, it reviews commercially available MLS technologies, which present a range of robust options with each system having different characteristics and niches depending on characterization and monitoring goals and site conditions. The paper also describes refined MLS criteria aimed at improving the cost effectiveness and expanding capabilities of MLSs, so as to improve their accessibility for high resolution data acquisition in the context of both groundwater system characterization and long-term monitoring.

Abstract

Acid mine drainage (AMD) has lately received considerable media coverage in South Africa. This has caused considerable increase in researchers most of them with emphasis on decantation of contaminated water from the old gold mines in Witwatersrand basins and fewer on mine residue contamination from Coal and Gold mines in Mpumalanga and Limpopo provinces. The paper outlines results of ground geophysical surveys that were carried out along the perimeter of two mine dumps in the Barberton Greenstone belt in the Mpumalanga Province, South Africa. The aim of the study was to generate a 3D geo-electric model of the subsurface showing possible acid mine drainage contaminant pathways. Two geophysical methods namely Frequency Domain Electromagnetic profiling (FDEM) and electrical resistivity tomography (ERT) were applied in order to investigate the variation of electrical conductivity in the subsurface. ERT method was done over frequency domain electromagnetics anomalies to further investigate depth extent of the anomalies.
{List only- not presented}

On the resistivity section ERT1 of Dump 1, a discontinuity in the bedrock was identified. The FDEM survey identified an area with high conductivity values to the north of Dump 1. The ERT results show a shallow plume at 20m depth, which is consistent on two parallel sections on Dump 1. The area could be a possible pathway of mine dump residue (AMD) to a stream in the north. The bedrock is generally characterized by high resistivity values; a break in the bedrock exists on this high resistivity zone on ERT 6. The identified breaks in the bedrock in terms of resistivity could be a fault zone which can act as possible pathway of mine dump residue (AMD) to a shallow aquifer.

Potential contaminant recharge pathways were delineated using geophysical electrical and electromagnetic methods. Potential groundwater recharge pathways and sub-vertical low resistivity zones with values <100 Ohm.m were delineated using the ERT method. Investigation of contaminant plume migration is recommended over the anomalies that were generated from geophysics data in the Barberton areas.

KEYWORDS
Acid mine drainage, Frequency Domain Electromagnetic profiling and electrical resistivity tomography

Abstract

Israel, S

Thousands of pharmaceuticals, pesticides and microplastics are consumed and disposed of directly or indirectly into various waterbodies globally. They are collectively termed “contaminants of emerging concern” or CECs. Contaminants of emerging concerns are defined as micropollutants that are present in the environment that are not regulated and that can pose a risk to the health of both humans and wildlife. The spread of these CEC’s in water systems is not isolated to a specific place and is on the rise all over the world. This study aims to investigate the spatial and temporal distribution pattern of pharmaceuticals in Cape Town’s water network, in order to assess the occurrence, concentration levels and distribution of pharmaceuticals in various water bodies. The study focuses on the occurrence of eight pharmaceuticals which are most frequently used and occurs in various water bodies around the world, namely acetaminophen, diclofenac, carbamazepine, naproxen, rifampicin, tenofovir, progesterone, sulfamethoxazole. The research sites include six waste water treatment plants in Cape Town with receiving rivers and borehole sites nearby and downstream from the waste water treatment works. Liquid chromatography combined with mass spectrometry is the selected method used to analyse the analytes of interest in the collected samples. Preliminary results obtained during the summer period (January 2021) showed that pharmaceuticals had indeed spread from waste water treatment plants into receiving water bodies with concentrations ranging from 0.8 to ≤ 6400 ng/L in both surface and groundwater due to the inefficient removal of these compounds. Continued research will conclusively address the concentration levels as a function of time, and consider the spatial distribution and its seasonality. It can be concluded from the preliminary results, that pathways of contamination from waste water discharge points to surface water and groundwater do indeed exist for the 8 pharmaceuticals considered.

Abstract

Evidence suggests that physical availability of groundwater may be only one of many factors in determining whether groundwater-based rural water supply schemes in South Africa are reliable or "sustainable". Other factors include budgetary constraints, community preferences, policy decisions, operation and maintenance procedures, and the availability of skilled staff. These factors and others combine to create "complex problems" around the issue of rural water supplies that require a multidisciplinary approach if they are to be effectively resolved. This work is an on-going part of Water Research Commission Project K5/2158, “Favourable Zone Identification for Groundwater Development: Options Analysis for Local Municipalities”, due to be completed in March 2014.

Abstract

Changes to South African water law and policy since the mid-90s have promoted integrated water resource management (IWRM) and the wider application of the principle of subsidiarity (decentralization), underpinned by the Constitutional emphasis on equity, human rights and redress. New water management organisations aim to promote equity, universal access to water, economic prosperity and gender equality but the reality, especially for groundwater, is less inspiring. The Water Act of 1998 envisages new organisations including Catchment Management Agencies (CMAs), Water User Organisations (WUAs) and Water Service Authorities (WSAs), but in many cases these organisations have inadequate capacity or do not exist at all. Only two of the nine (formerly nineteen) CMAs have been formed in more than fifteen years, and neither is yet financially self-reliant. The onerous process necessary to found a WUA and other disincentives have meant that fully-fledged WUAs as envisaged by the Water Act are rare. Hydrogeologists are unusual at Water Service Authority level, and the Department of Water and Sanitation (DWS) still assesses most groundwater resources. This has stoked argument between DWS and WSAs over long-term sustainable municipal water supplies. Our mandated organisations are not delivering the outcomes for groundwater that policy makers envisaged. Municipalities campaign for surface water instead of groundwater, yet groundwater is still the mainstay of rural water supply and has the most promise for underserved areas. Intractable problems with operation and maintenance are wrongly blamed on the primary groundwater resource, or on "shortages" of one kind or another. There is a need to emphasise function and outcomes rather than trust that these will follow automatically once "the right" organisations are in place. A hybrid of top-down expertise with a genuine focus on local outcomes is called for. We currently pay a considerable opportunity cost for delays, turf-wars and finger pointing - including reputational damage to groundwater as well as less reliable water supplies for the poorest South Africans.

Abstract

Compliance values for Water Use Licenses are based on Water Quality Objectives for the catchment and require each monitoring point to be below the stipulated criteria. This approach neither considers the site geohydrological elements nor the characteristics of point source plumes, meaning that the management of existing groundwater contamination cannot achieve compliance. This deadlock is problematic for both the authorities and for industry/mining in South Africa that cannot adhere to the specific conditions in terms of water quality as specified in most Water Use Licence water quality conditions.

Geo Pollution Technologies (GPT) would like to introduce the development of compliance levels which are risk based and achievable taking site specific conditions and the Water Quality Objectives into account. The approach is well established for soil contamination under the Framework for the Management of Contaminated Land and international best practice, and can be extended to groundwater using the following two methods.

Firstly, the Compliance Level Approach entails the development of compliance levels to protect receptors in terms of land use. Example: land use criteria can be domestic, irrigation, livestock, aquatic as from Department of Water and Sanitation. Secondly, the Analytical Approach calculates the human health Tier 1 and Tier 2 risks and calculation of Site Specific Target Levels (SSTLs) that can be used as target levels for site clean-up; if required.

Both these approaches need a firm understanding of the underlying Conceptual Site Model (CSM) which illustrates the interrelationship between the sources of contamination, pathways of transport and potential receptors on which groundwater (and soil) as our pathways can impact. Before Groundwater Compliance values or Site Specific Target Levels can be determined it is important that consensus should be reached between all stakeholders for different CSM scenarios. These scenarios look at different source-pathway-receptor relationships that can exist at a site for activities during the operational and decommissioned phases of a facility.

This paper would like to illustrate that a single groundwater compliance value for a groundwater plume is not only unachievable but cannot be defended scientifically in a modern industrial world. Both the proposed approaches are risk based which is the driver for the implementation of remedial actions and will incorporate Water Quality Objectives at a point of compliance.

We hope through this paper that our authorities will reconsider the blind application of surface water quality standards to groundwater.

Abstract

Since the first decant of acid mine drainage in the West Rand in 2002, a great deal of effort has gone into researching the challenges which it poses there and in the adjacent Central Rand and East Rand Gold Fields. Short-term interventions have been implemented to maintain water at conservatively-determined safe levels and remove the worst contaminants from the water pumped from the mined. A feasibility study, looking at the long-term options has proposed treatment of water to a much higher standard, identifying a number of potential end-users of the treated water and highlighted the extremely high costs involved in responsible management. During the second half of 2010, a team of experts was convened to assess problems related to acid mine drainage in the Witwatersrand and propose solutions. A number of recommendations were made and the most urgent - the need for a short-term intervention to bring things under control and the the feasibility study for long-term management of the problems were undertaken. Nevertheless, despite the intense focus on the problem, a number of questions have remained unanswered. Throughout the period of min flooding, no detailed systematic monitoring of surface water flow has been undertaken, preventing the detailed apportionment of pollution between underground and surface sources. Ingress control measures have been proposed, but funding mechanisms, regulatory hurdles and challenges relating to long-term management have not all been comprehensively addressed. On a more positive note, the installation and operation of pumps to control the water level in the Western and Central Basins will start to provide valuable data regarding the response of the flooded mine workings to pumping, assisting in the characterisation of the hydraulic properties and behaviour of the large voids. This will facilitate the optimisation of pumping strategies and the refinement of environmental critical levels and assist in the development of more sustainable management options.

Abstract

The rainfall situation in the Western Cape became a focal point in 2015; 2016 and 2017. The rainfall in 2015 was half the long term average; in 2016 it was still below the long-term average and in 2017 it was again about half the long-term average. In 2018 the rainfall was better and was about the same as the long term average. These consecutive years of low rainfall were really problematic and with the declaration of the "Day Zero" campaign the media brought the plight of the City of Cape Town into the global headlines. However it was not only the City of Cape Town that was under dire stress but the whole of the Western Cape Province (and beyond). The neighbouring District Municipalities (DM) also embarked on frantic groundwater development and augmentation programmes. GEOSS South Africa (Pty) Ltd was fortunate to be involved in the DMs surrounding the City of Cape Town.

This presentation focusses more on the groundwater aspects per se rather than the technical; aspects of boreholes; pumps etc, with specific reference to case studies including the Sandveld; Saldanha Bay Local Municipality and the Stellenbosch Local Municipality (specifically the Franschhoek area). The Sandveld (which is within the Berg River District Municipality) has a significant agricultural sector and 25 years of regional groundwater monitoring indicates that even with significant groundwater abstraction for the agricultural activities within the area, the groundwater volumes are robust enough to support further development of groundwater to meet the increasing water requirements for the town supply of Graafwater and Lamberts Bay. This expansion is currently underway.

The West Coast District Municipality (specifically the Saldanha Bay Local Municipality) committed significant resources to groundwater development in the times of the drought. The Langebaan Road Aquifer wellfield was expanded with additional production boreholes and a new wellfield, known as the Hopefield Wellfield was also fully developed and equipped with all infrastructure in place. The wellfields have also set up to implement Managed Aquifer Recharge. Although these schemes are not yet operational, the groundwater levels held up well during the drought, indicating these wellfields should play a major role in times of future drought. Groundwater within the Franschhoek area (Winelands District Municipality) is utilized by many sectors and from detailed and long term monitoring the drought had little impact on the resources supporting the development of groundwater supply schemes for Municipal augmentation. From widespread work in the Western Cape Province it is evident that the drought had little impact on the groundwater levels of the region and it bodes well as a resource to be utilised in times of severe stress, so long as it is properly authorised, monitored and managed.

Abstract

The Saldanha / Langebaan area is expanding at a significant rate, increasing the water demand for the area. The expansion comes from the industrial, residential and tourism sector. In addition there are economically viable deposits of silica and phosphate in the area. Ecosystem functioning in the area is also to a degree dependent on groundwater. All of these factors require an improved understanding of the geohydrology of the area. The geology of the area consists of basement Cape Granite and Malmesbury Group rocks that underlie the sediments of the Sandveld Group. The unconsolidated formations present, are (in order of oldest to youngest) as follows: - Elandsfontyn Formation (oldest): This formation overlies the bedrock in depressions and palaeo-channels in the bedrock. This formation is about 40 m thick and is composed of upward fining quartz sediments. - Varswater Formation: This formation is composed of marine deposits and is restricted to the western (seaward) parts of a bedrock depression to the east of the Langebaan Lagoon and Saldanha. The formation is characterized by rounded quartz grains. - Langebaan Formation: This formation consists of calc-arenites. The sediments are generally grey to cream coloured and consist of quartz and shell fragments, the grain size ranges from coarse to fine and the consolidation is variable. - Witzand Formation (youngest). This formation consists of light-coloured, calcareous, coastal dune sand that can be distinguished from the underlying consolidated Langebaan Formation. The Elandsfontyn Aquifer System (EAS) and the Langebaan Road Aquifer System (LRAS) are the main aquifer systems in the area. These aquifer systems are defined by palaeo-channels that have been filled with gravels of the Elandsfontyn Formation and represent preferred groundwater flow paths. Within each of these aquifer systems (EAS and LRAS) two aquifer units are present. Namely, the confined Lower Aquifer Unit (LAU) geologically consisting of the basal gravels of the Elandsfontyn Formation and the Upper Aquifer Unit (UAU) composed of consolidated sands and calcrete. The two units are separated by a clay aquitard. A numerical model has been established for the area, and extends from the Berg River to the Langebaan Lagoon. Granite outcrop and river system define the other boundaries of the model. Extensive logging of groundwater levels by the Department of Water and Sanitation (DWS) has enabled the accurate establishment of a model. In addition extensive field work and a detailed hydrocensus, as well as the capture of a lot of historical information has resulted in a comprehensive GIS which assists with the refinement of the numerical model. The model provides a valuable tool in modelling potential impacts whether they been from planned groundwater abstraction or artificial recharge. {List only- not presented}

Abstract

The Elandsfontein Phosphate Mine is situated midway between the Langebaan Lagoon and the town of Hopefield. It is located on the Cape West Coast, within the Saldanha Bay Municipality. The mine is positioned within the Elandsfontein Aquifer Unit – which comprises an upper and lower aquifer separated by an aquitard. The economic phosphate layer is situated within the saturated zone of the Upper Aquifer Unit. There are fresh water inflows into the Langebaan Lagoon and all measures must be taken to ensure the natural geohydrological flows are not impacted. Numerous groundwater studies and numerical modelling was carried out to optimize the best way of minimizing the impact on the geohydrology of the area. The dewatering system that has been designed includes re-injection of the groundwater approximately 2 km down-gradient of the open pit. This paper reviews the geological and geohydrological setting of the area and the outcomes of the dewatering and injection systems in place.

Abstract

Groundwater is used extensively in the Sandveld for the irrigation of potatoes. The groundwater resources are plentiful and of good enough quality for the production of potatoes, however there has been a significant increase in potato production especially from the period 1975 to 2008. The area planted has increased from 2 369 Ha to 6 715 Ha in this period. The rate of increase has reduced significantly since 2008 and is now quite consistent at approximately 6 800 ha/a. In the region groundwater is vital for the proper functioning of ecosystems and it is also the sole source of water for five towns in the area and supplies most of the domestic water for the farms in the area. Thus the abstraction of groundwater for agriculture needs to be carefully assessed to ensure impacts on other systems and users do not occur.

For this reason Potatoes South Africa has taken the responsible approach of investing in the on-going monitoring of groundwater levels (quantity) and groundwater quality in the Sandveld. PSA appointed the groundwater consultancy, GEOSS to do this monitoring and they have continually committed to this monitoring for the past 10 years. The long term monitoring data has been very valuable in that it shows groundwater trends and the spatial distribution of the measured parameters. Regarding the trends it is clear that certain areas are being over-abstracted and groundwater levels are dropping. In the more critical areas, intervention has occurred - boreholes were closed down and the points of abstraction distributed over a much wider area. This region (Lower Langvlei River) is showing clear signs of recovery both in terms of groundwater levels and quality. The other localized areas where negative trends are evident the land owners have been informed and are aware of the problems. In some critical areas continuous groundwater level loggers have been installed to monitor trends.

The long-term groundwater monitoring, has helped significantly in addressing the negative perception about the widespread impact on groundwater resources due to potato cultivation in the Sandveld. It is important the monitoring continues and regular feedback provided to land owners. The monitoring that the local municipality and the Department of Water Affairs do also needs to be integrated into a single database. It is evident that the initial abstraction of groundwater in the pioneer days of potato cultivation did impact groundwater resources and associated ecosystems in the Sandveld, however currently as the rate of expansion has reduced and stabilized, the groundwater resources closely mimic rainfall patterns and the areas that are being impact are localized, well known and being addressed.

Abstract

The Sandveld (Western Cape, South Africa) is a critical potato production area on the national production scale, especially for table potatoes. As the area is situated on the continent’s West Coast, it is a dry area of low rainfall (less than 300 mm /a). The bulk of the irrigation water for agriculture in the region is derived from groundwater. Approximately 60 Mm3 /a of groundwater is abstracted for irrigation of potatoes in the broader Sandveld, assuming a 4-year rotation cycle. The abstraction of groundwater is a sensitive issue in the Sandveld as groundwater also plays a critical role in supplying water to towns in the area, water for domestic use, and it also plays a critical role in sustaining sensitive ecosystems (such as the coastal lake Velorenvlei).

The groundwater resources have been monitored for nearly thirty years now. The results indicate areas where a slow but consistent decline in groundwater levels and groundwater quality is occurring. The trends can also predict when the aquifers will become depleted, and the groundwater will become too saline for use. This is critical information for management interventions to be implemented now to protect the area from irreversible damage.

Abstract

With increasing focus on wasted expenditure within local government and recent media reports on the money spent on poor quality service, it is becoming progressively important for those in a position of engaging consultants, either for groundwater supply or environmental work, to have confidence in the company or person they have employed. This paper focuses on how to assess consultants  before   they   walk  through   the  door  based   on   qualifications,   CVs,   professional registrations and previous work experience. It goes through the project lifestyle, explaining in a non- technical fashion the different processes involved in a groundwater supply or groundwater contamination assessment and provide simple indicators of good practice that should be evident in the   consultant's   work.   Topics   covered   include   assessing   proposals,   gathering   background information, health and safety, appointing sub-contractors, data quality, the use of appropriate published procedural guidelines, the use of relevant quality guidelines and what deliverables should be provided. 

Abstract

On the slopes of Mount Bromo, East Java (Indonesia), the land use of the Rejoso watershed is dominated by rice fields and sugarcane ( lowland area ), agroforestry (midstream) and horticulture and pine plantation in the upstream part. During the last three decades, some land changes driven by socio-economic development, with conversion of agroforests to rice fields, tree monoculture and horticulture, and the development of urban areas nearby, increased pressure on the watershed. Intensive irrigated rice cultivation is using groundwater from free-flowing artesian wells. Due to a lack of management, the hydraulic head and discharge of the major spring are decreasing. Rejoso watershed, like others in urban and rural areas in Indonesia, is facing challenges to guarantee sustainable integrated water resources management. Collective solutions have been implemented between 2016 and 2022 within this watershed. In the downstream, sustainable paddy cultivation and wells management with local stakeholders, aiming at improving water efficiency, have been piloted on 65 ha with 184 farmers. Water governance at the district level was re-activated and strengthened thanks to the project. Various capacity-building tools were used via radio talk shows and workshops. Members of the watershed forum of Pasuruan took some actions to reshape the structure and set up a roadmap. The implementation of collective solutions in the field was a real catalyst and serves all levels of water governance, as it is replicable. This example will be explained and illustrated after the presentation of the socio-hydrogeological context.

Abstract

Throughout the world, climate change impact is the main concern for sustainability of water management and water use activities like agricultural production. Climate changes alter regional hydrologic conditions and results in a variety of impacts on water resource systems. Such hydrologic changes will affect almost every aspect of human well-being. The goal of this thesis is to assess the impact of climate change on the hydro climatology of Fincha Sub-basin located in upper Blue Nile Basin of Ethiopia. The GCM derived scenarios (HadCM3 A2a & B2a SRES emission scenarios) experiments were used for the climate projection. The statistical Downscaling Model (SDSM) was used to generate future possible local meteorological variables in the study area. The down-scaled data were then used as input to the Soil and Water Assessment Tool (SWAT) model to simulate the corresponding future stream flow in of Fincha Sub-basin located in upper Blue Nile Basin. A semi distributed hydrological model, SWAT was used to simulate future stream flow. Three benchmark periods simulated for this study were 2020s, 2050s and 2080s. The time series generated by GCM of HadCM3 A2a and B2a and Statistical Downscaling Model (SDSM) indicate a significant increasing trend in maximum and minimum temperature values and a slight decreasing trend in precipitation for both A2a and B2a emission scenarios in both Shambu and Neshe stations for all three bench mark periods. The hydrologic impact analysis made with the downscaled temperature and precipitation time series as input to the SWAT model suggested an overall decreasing trend in annual and monthly stream flow in the study area, in three benchmark periods in the future. This should be considered by policymakers of water resources planning and management. The hydrologic impact analysis made with the downscaled temperature and precipitation time series as input to the hydrological model SWAT suggested for both A2a and B2a emission scenarios. As a result, at the out let of the watershed the projected on average annual flow decrease by 5.59%,9.03%,11% and 2.16%,4.15 and 3.46% for the 2020s,2050s and 2080s for both A2a and B2a emissions scenarios. Potential evapotranspiration in the watershed also will increase annually on average 3 - 16% for the 2020s and 4-19% for the 2050s and 2080s for both A2a and B2a emissions scenarios. {List only- not presented}

Abstract

Coastal groundwater is a vulnerable resource, estimated to sustain the water needs of about 40% of the world’s population. The Roussillon aquifer is a regional aquifer near Perpignan (southern France). It covers over 800 km2 of land and is used for irrigation, drinking water, and industrial purposes. The aquifer has experienced significant piezometric lowering in the last decades, weakening the regional resource. An important aspect of modelling the hydrodynamic of this aquifer is the need to integrate data from agriculture and drinking water abstraction, natural and anthropogenic recharge, and account for the aquifer’s complex sedimentary arrangement. An ensemble of groundwater models has been constructed to understand the spatial evolution of the saline/freshwater interface and evaluate the impact of groundwater abstraction.

Three sets of physical parameter modelling approaches were used. The first is based on the direct interpolation of pumping tests. The second uses sequential indicator simulations to represent the geological uncertainty. The third is based on a detailed conceptual geological model and multiple-point statistics to represent the detailed geological structure. These models provide parameter fields that can be input for the transient state hydrodynamic simulations. Overall, the ensemble approach allowed us to understand the Roussillon plain’s hydrological system better and quantify the uncertainty on the possible evolution of the main groundwater fluxes and water resources over the last 20 years. These models can help to inform management decisions and support sustainable water resource development in the region.

Abstract

Studies showed that the primary origin of salinity in river flows of the Sandspruit in the Berg Catchment located in the Western Cape Province of South Africa was mainly due to the weathering of the shales, while atmospheric deposition contributed a third of the total salinity. The salts are transported to rivers through surface runoff and subsurface flow (i.e. throughflow and groundwater flow). The purpose of this study was to determine the relative contributions of subsurface flow and surface flows to total flows in the Sandspruit River, Berg Catchment. Three rain events were studied. Water samples for two rain events were analyzed for environmental tracers ?18O, Silica (SiO2), Calcium (Ca2+) and Magnesium (Mg2+). Tracers used for two component hydrograph separation were ?18O and SiO2. These tracers were selected as Ca2+ and Mg2+ provided inconsistent contributions of both subsurface flow and surface flow. Two component hydrograph separations indicated that groundwater is the dominant contributor to flow, while surface runoff mainly contributes at the onset of the storm event. Groundwater response to precipitation input indicated that boreholes near the river have a greater response than boreholes further away from the rivers, which have minor response to the input of precipitation.
Keywords:
Stable Isotopes, Sandspruit River, Tracers, Hydrograph separation, Salinity

Abstract

The aquifers in the Chao Phraya River basin region were abundant in groundwater. Lately, the groundwater level has been declining due to agricultural activities. While in the wet season, these areas frequently suffered from flooding due to lower elevation than their surroundings. The Managed Aquifer Recharge (MAR) methods were applied to ease problems by constructing artificial recharge wells which can detain stormwater runoff and let it gradually infiltrate into the aquifer directly. For decades, the Department of Groundwater Resources started the MAR project to alleviate groundwater depletion and flooding over specific areas. However, most of the projects in the past lacked follow-up results and evaluation. Thus, later projects attempted to study recharge processes to evaluate the volume of recharged water through structures and calculate the infiltration rate through filter layers within the structures.

Recently, the field experiments of artificial groundwater recharge were conducted as 8-hour and 20-day experiments with shallow recharge wells in the Chao Phraya River basin regions. These two types of experiments provided similar results. The average recharge rates of 8-hour and 20-day experiments are 2.22 m3/hr and 2.57 m3/hr, respectively. Recharge rates of each well were independently distinct depending on sedimentation characteristics, aquifer thickness, and volume of dry voids. During the test, the recharge well continuously encountered the problem of sediment clogging due to using untreated water from neighbouring streams and ponds. This clogging issue needed to be treated regularly to maintain the efficiency of the recharge well.

Abstract

Groundwater in flooded abandoned mines could be used for geothermal purposes using heat pumps and an open loop involving pumping and re-injection. Hydraulic conductivity values of the mined rock zones have been artificially increased. However, long-term efficiency and the possible impacts of geothermal doublets must be studied involving a series of hydrogeological challenges. Hot water would be pumped from the deep parts of the mine works, and cold water would be re-injected in a shallower gallery or shallow fractured rocks, with a seasonal flow inversion for building cooling during the hot season. Indeed, a ‘short-cut’ groundwater flow is to be avoided between the mine’s deep and shallow parts. The true geometry of the interconnected network of open galleries and shafts can be highly complex and must be conceptualized realistically to ensure that the model is feasible and reliable.

This model must involve groundwater flow and heat transport, with temperature-dependent density and viscosity, in a complex 3D heterogeneous domain of highly fractured rocks and partially collapsed exploitation zones, galleries, and shafts. Such a model is nevertheless widely recommended to design and optimize the short--, mid-, and long-term efficiency of the geothermal system and assess possible environmental impacts. An example of simulations on a synthetic case will be used for illustration and preparation work before further application in a real case study.

Abstract

The Kavango West and East regions are situated in a semi-arid area northeast of Namibia and bounded by the perennial Okavango River on the northern border. Groundwater in the area is the main source of water supply for the inhabitants living further from the river. In addition, most bulk water users along the river have boreholes for their water supply. With a semi-arid climate, drought in the regions is common and inflicts devastating effects on local communities. More drought relief boreholes are being drilled to sustain communities, increasing the dependency of the inhabitants on groundwater. The complexity of the behaviour and nature of the groundwater in the regions is poorly understood, and there are no strategies to manage these aquifers properly. As a result, an attempt was made to better understand the groundwater potential by examining several hydrogeological factors involved. A basic water-balance approach was used in determining the groundwater potential of the middle and lower Kalahari aquifers. The total resource potential for the entire region is estimated at 144 447.16 x 106 m3 /a, demonstrating great resource potential with significant storage space.

The greatest potential is shown in the middle Kalahari aquifers, comprising about 94% of the total resource. Groundwater recharge, as one of the hydrogeological factors, was determined using the chloride mass balance method, giving an average of 6.03 mm/a for the entire study area. If utilized sustainably, the Kalahari aquifers can sustain most communities within the two regions, especially those further from the Okavango River.

Abstract

POSTER The human interferences in river catchments includes impoundment construction, sediment mining, bank revetment and artificial cutoff, which eventually leads to changes in the hydrology system and channel transportation ability, and may reduce channel stability. In past 10 years the Kuils River had been upgraded between Van Riebeeck Road and the Stellenbosch Arterial route to reduce flood levels. The stretch of the river between the R300 and Van Riebeeck Road was also upgraded: reducing any possibility of flooding, by concrete-lining of some areas of the river that are within the Kuilsrivier Municipal Area. Producing a cross-section of a river channel is of great importance in river studies. To determine the discharge one should survey the profile of a feature such as a meander or riffle, it is necessary to produce a cross-section of the river. In order to focus on restoration requirements of a river, a map of the river is needed. This provides an indication of what exactly the river currently is. Habitat mapping is intended to access the stream. Woody debris, substrate, aquatic vegetation is measured continuously throughout a river, to be able to identify conservation and restoration needs. The cross section 1.3 of site 1 indicates that the channel width from January 2002 is almost similar in width of September 2012. The depth of the channel is about 0.5m deeper when compared to January 2002. The Kuils River banks are covered in grassy vegetation, with some trees with deep and large roots that provide protection against undercutting along rivers. The banks of Site 1 are covered long weeds and annual grasses with shallow root systems, which don't provide stability when the banks were saturated after high rainfall. The Kuils River area is used for various types of land uses and this also impacts the channels eg. Urban, Industrial and Agricultural use. Because of canalization occurring upstream one can see evidently the changes within the channel.

Abstract

Zimbabwe occupies a tectonically stable plateau underlain by ancient Precambrian crystalline basement rocks. These  form a central craton bounded by east-west trending mobile belts; the Zambezi mobile belt to the north and the Limpopo mobile belt to the south. Zimbabwe receives generally low and variable quantities of seasonal rainfall within a semi-arid to savannah type climate characterised by moderate to high temperatures. Evaporation commonly exceeds rainfall so that recharge to the thin near surface aquifers is generally low and in some years non-existent. The groundwater resources of the weathered and fractured basement aquifers that underlie more than 60% of the country are of limited potential, typically sufficient to supply the needs of small villages and cattle ranches. However, within the central plateau area of the African to Post-African erosion surfaces, the weathered and fractured basement may exceed 60 m in thickness. The thickness of this zone diminishes towards the main valley systems where subsequent cycles of erosion have stripped the weathered zone away, leaving only a shallow surface fractured zone that may only be 20-30 m thick. Groundwater resources have been developed extensively in Zimbabwe since the 1920s. During 1991/92 drought abstraction from urban boreholes within the southern Harare area caused yield decline and ultimate failure of numerous boreholes. It is now time to question the long-term viability of groundwater development within the basement aquifers in Zimbabwe given the uncertainty in groundwater resources, the complexities of the climate–groundwater interactions and the projected demands of a growing rural population.

 

Abstract

South Africa is the leading user of pesticides in Sub-Saharan Africa, but data on pesticide occurrence in (ground)water is limited. Consequently, there is a need to improve knowledge on transport pathways that cause pesticides to enter the aquatic environment. This research monitored pesticide concentrations in three agricultural catchments in the Western Cape, South Africa, including Grabouw (pome fruit), Hex River Valley (table grapes), and Piketberg (wheat). Passive samplers were deployed in rivers from March 2022- March 2023, adding to a 2017-2019 dataset of analytical and pesticide application data. Field and laboratory methods were developed at Stellenbosch University to measure pesticides using Liquid Chromatography-Mass Spectrometry. For quality control, duplicate samples were analyzed at Eawag, Switzerland. 30 compounds were detected, yet two/three comprise most of the total mass, including an analyte not considered in earlier investigations (dimethomorph).

Rainfall-flow relationships and agricultural application could only partially explain detection levels, suggesting that other factors, including non-agricultural application or groundwater input, might influence detections. Two compounds exceeded European Environmental Quality Standards (chlorpyrifos and imidacloprid). Imidacloprid is particularly concerning because it exceeded consistently despite few recorded applications. 2017-2022 imidacloprid data indicates a decreasing concentration trend in Hex River Valley and increasing trends in Piketberg and Grabouw. Consistently high detections during wet and dry periods suggest groundwater input. However, such pesticide transport pathways are poorly understood due to a lack of local evidence. Local authorities must establish a long-term monitoring program to understand better the risk pesticides pose to the aquatic environment and human health.

Abstract

The SADC Grey Data archive http://www.bgs.ac.uk/sadc/ provides a chronology of groundwater development within the constituent countries of the SADC region. Early reports show how groundwater development progressed from obtaining water by well digging to the mechanical drilling of boreholes for provision of water for irrigation, township development, transport networks and rural settlement. During the 1930s steam driven drilling rigs were supplanted by petrol engine driven cable tool percussion drilling. Dixey (1931), in his manual on how to develop groundwater resources based on experiences in colonial geological surveys in eastern and southern Africa, describes aquifer properties, groundwater occurrence and resources as well as water quality and groundwater abstraction methods. Frommurze (1937) provides an initial assessment of aquifer properties in South Africa with Bond (1945) describing their groundwater chemistry. South African engineers transferred geophysical surveying skills to the desert campaign during World War II. Paver (1945) described the application of these methods to various geological environments in South Africa, Rhodesia and British colonial territories in eastern and central Africa. Test pumping methods using electric dippers were also developed for the assessment of groundwater resources. Enslin and others developed DC resistivity meters, replacing early Meggar systems, produced data that when analysed, using slide rules with graphs plotted by hand, identified water bearing fractures and deeply weathered zones. Tentative maps were drawn using interpretation of aerial photographs and heights generated using aneroid altimeters. The problems faced by hydrogeologists remain the same today as they were then, even though the technology has greatly improved in the computer era. Modern techniques range from a variety of geophysical surveying methods, automated rest level recorders with data loggers to GPS location systems and a whole host of remotely sensed data gathering methods. Worryingly, using such automated procedures reduces the ability of hydrogeologists to understand data limitations. The available collection of water level time series data are surprisingly small. Surrogate data need to be recognised and used to indicate effects of over abstraction as demand grows. As the numbers of boreholes drilled per year increases the number of detailed hydrogeological surveys undertaken still remains seriously small. Has our knowledge of hydrogeological systems advanced all that much from what was known in the 1980s? Case histories from Malawi, Zimbabwe and Tanzania illustrate a need for groundwater research with well-judged sustainability assessments to underpin safe long-term groundwater supply for the groundwater dependent communities in the region.

Abstract

Test-pumping drawdown curves are not always sufficiently indicative of aquifer characteristics and geometry. In fact, drawdown curves should never be analysed and interpreted alone. The derivative analysis (Bourdet et al., 1983) and flow dimension theory (Barker, 1988) make it possible to infer the regional geometries and flow characteristics of fractured aquifers which are otherwise often unknown or inconclusive when interpreting point-source borehole logs. The propagation of the drawdown and/or pressure front through the aquifer reaches distal hydrogeological objects which influence the flow regime and imprints signatures in the drawdown derivative curves. The conjunctive interpretation of these flow regime sequences and geological data results in a robust, well-informed conceptual model which is vital for resource management.

A methodology similar to that of A. Ferroud, S. Rafini and R. Chesnaux (2018) was applied to the test-pumping data of 14 confined and unconfined Nardouw Aquifer boreholes in the Steenbras area, Cape Town, which has been under exploratory investigation since the early 2000’s. The Steenbras wellfield was developed following the major 2017-2018 Western Cape drought. The NE-SW trending open folds and dextral strike-slip Steenbras-Brandvlei Megafault Zone (with crosscutting faults and dykes) make the aquifer hydrogeologically complex. It is due to these complexities that the sequential flow regime analysis was undertaken to enhance the current conceptual understanding.

The analyses reveal domains of flow models which include open vertical fracture, T-shaped channel, double(triple) porosity model, and leaky/recharge boundary amongst others. Poor data quality and noise issues are also highlighted. The outcomes of the sequential flow regime analysis allow for identification of applicable flow models for type curve fitting to avoid erroneous aquifer parameter estimations; improvement of the hydrogeological understanding of the aquifer; enhancements of the current conceptual model in order to inform on subsequent numerical modelling, groundwater resource management and ecological protection.

Abstract

Groundwater boreholes are a key element of many mining projects, as part of dewatering and water supply  systems,  and  must  achieve  high  levels  of  operational  efficiency  and  service  availability. Outside of the mining industry, planned borefield maintenance programmes have become a key part of professional well-field management, with proven benefits in terms of operational cost savings and continuity of pumping. However, the benefits of proactive planned maintenance of groundwater boreholes on mine sites have only recently been widely recognised. Potential operational problems are described, including water quality issues which can result in mineral contamination leading to deposits and scale build-up which can clog screens and pumps, reduce water flow and yield, and eventually cause pump breakdowns and mine stoppages. Best practice methodologies to remove or minimise the contamination are described and the benefits of implementing a planned maintenance programme are discussed. Case studies are described from two significant mines in Australia, where boreholes suffered from mineral contamination, including calcium carbonate and iron bacteria contamination. Both mines suffered  from  increased  pump  breakdowns,  groundwater  yields  consistently  below  target  and serious cost overruns. Borehole rehabilitation treatment plans were implemented to resolve the immediate contamination problems followed by an ongoing maintenance programme to prevent or minimise their reoccurrence. Treatment programmes included a downhole camera survey, use of a bespoke software program to review the results of the survey and the available water quality data, and a purpose built rehabilitation rig that included the use of specialist chemical treatments to remove and control the existing encrustation and clogging deposits.

Abstract

The Cedarville Flats aquifer located in the Upper Umzimvubu River Basin, Eastern Cape Province is a source of water supply for an important agricultural region in South Africa. The hydrogeology of this important aquifer is investigated to understand the occurrence, circulation, recharge and quality of groundwater. To this end, local and regional geology, borehole lithological logs, borehole yields, aquifer hydraulic characteristics (including aquifer thickness, water level, hydraulic conductivity, transmissivity and storage coefficient), hydrometeorological, hydrochemicaland environmental isotope data were collected and interpreted. The results show that the alluvial aquifer is made up of sand, gravel, boulders and clay and its thickness reaches 51 meters in places. Median hydraulic properties indicate that the Cedarville Flats primary aquifer is the most productive aquifer compared to the underlying Molteno and Burgersdorp Formations. It has an estimated median borehole yield in the order of 6 l/s as compared to 2 l/s for the Burgersdorp and 1.5 liters for the Molteno Formations. The aquifers in the area receive an estimated 7% of rainfall recharge. The groundwaters of the area are characterized by low ionic concentration with EC and TDS ranging from 235 to 285 ?S/cm and from 65 to 151 mg/l, respectively. The hydrochemical data further indicate a groundwater hydrochemical facies of either Ca-Na-Mg-HCO3 or Na-Ca-Mg-HCO3 highlighting a typically less evolved recharge area groundwater having short residence time and hence less water-rock interaction. Springs and artesian wells show a relatively depleted stable isotope and very low to dead tritium signals indicating high altitude recharge and longer circulation path and residence times compared to wells tapping the water table aquifer which indicate young water with recharge coming from the immediate surrounding area. Similarity in hydrochemical and stable isotope signatures between the streams that drain across the alluvial flats and the shallow groundwaters mean that there is a close interconnection between surface water and groundwater in the area.

Abstract

The response of an alluvial and estuarine deposit aquifer, locally known as the Harbour Beds Formation, located in the coastal area of the Durban Metropolitan District to 48 hours of group well pumping is studied to understand its potential for groundwater supply and consequent seawater intrusion. Groundwater levels were monitored from the three pumped boreholes and piezometers. Similarly, EC, TDS and pH were monitored every hour from the boreholes and piezometers. Hydrochemical and water isotopes (2H and 18O) samples of groundwater were taken at 12, 18, 24, 36, 42 and 48 hours during pumping. The results indicate that the aquifer has a transmissivity, hydraulic conductivity and storativity of 48.97 m2/d, 1.7 m/day and 0.0032, respectively. The generally monitored EC, TDS, and pH have been fairly constant during the pumping period and didn’t show any seawater intrusion. Similarly, the hydrochemical data monitored for the three boreholes show general Na-CaHCO3-Cl-dominated groundwater throughout the pumping duration. However, uneven drawdown distribution and complex groundwater flow conditions indicate that the aquifer structure and hydraulic properties are heterogeneous. The water isotopes (2H and 18O) monitoring during the test pumping suggests spatial variability regarding water recharging the Harbour Beds aquifer. Though limited in area extent, the Harbour Beds Formation aquifer is a productive aquifer with acceptable water quality and can be a viable water source for domestic and industrial uses. However, continuous long-term monitoring of water quality and groundwater levels using data loggers is recommended to prevent induced seawater intrusion and contamination.

Abstract

The Paleozoicage Natal Group Sandstone (NGS) that outcrops from Hlabisa (in the north) to Port Shepstone (in the south) and Greytown (west) to Stanger (east) in the Province of KwaZulu-Natal, South Africa, is investigated in terms of its hydrogeological characteristics. This sandstone group, which comprises a lower Durban and an upper Marrianhill Formations, is a secondary/fractured aquifer system that has variable but good productivity across its members. It is characterised by variable borehole blow yields ranging from 0.2 l/s to as high as 20 l/s, with more than 50% of the boreholes having blow yield > 3 l/s. Preliminary analysis of these boreholes yields indicates that higher yielding boreholes are associated with a network of intersecting fractures and faults, and are recommended targets for future water well-siting in the area. Groundwater in the NGS is of good quality in terms of major and trace element composition and it has a total dissolved solids (TDS) composition of <450 mg/l. It was observed that the specific electrical conductivity (EC), TDS and major ions composition of groundwater within the sandstone decrease from north to south, which appears to be controlled by the geochemical composition of the aquifer material and an increase in the rate of recharge. Depth to groundwater is also found to decrease southwards because of an increase in the rate of recharge. Groundwater hydrochemical facies are generally either Na-HCO3 or Na-HCO3–Cl, and environmental isotope data (2H, 18O, Tritium) indicates that the groundwater gets recharge from modern precipitation. Furthermore, the EC increases from inland to the coastal zone, indicating maritime influences and the general direction of groundwater flow is eastwards, to the Indian Ocean.

Abstract

Coal constitutes 77% of the primary energy needs in the country, with the Waterberg Coalfield estimated to host about 40% of the remaining South African coal resources. The Karoo coals were deposited in a reduced environment that have the potential to produce sulphides within the sediments they are hosted. The sulphur content within the coal can range from 0.1 wt.% to as high as 10 wt.%. Mining generates a disturbance in the natural groundwater levels and affects the surrounding water chemistry when sulphate is produced as a result of pyrite oxidation. Acid base accounting (ABA) was used to determine the balance between the acid producing potential (AP) and acid neutralizing potential (NP). From the analysis the Net Neutralising Potential (NNP) classified samples as either acid or non-acid producing. ARD does not only result in the generation of acid but is accompanied by decreased pH and increased values of specific conductance, dissolved metals and sulphate. The ABA results showed that interburden and coal samples have higher risks of producing acid upon oxidation than overburden samples. Higher concentrations of neutralising minerals are present in overburden samples. ABA indicated that the material 60m below ground surface had a higher acid producing potential than the material above. The analysis from kinetic tests showed the long-term behaviour of different samples, with the electrical conductivity (EC) and pH changing over time. Samples with lower pH continued to produce more sulphate, while calcium continued to increase until it was depleted from the samples. Inductively coupled plasma analysis determined the release of the heavy metals which can be detrimental to the environment, such as As, Co, Ni and Pb. The water demand will increase as mining continues in the area, with inter-catchment transfers identified to overcome local water scarcity issues. ARD poses a big threat to both groundwater and surface water resources.

Abstract

Degradation of chloroethene in groundwater primarily occurs via microbially-mediated reductive dechlorination (RD). Anaerobic organohalide-respiring bacteria (OHRB) use chloroethenes as electron acceptors to gain energy. They produce reductive dehalogenase enzymes (RDases) to perform this function by transcription of functional genes into mRNA and translation to proteins (metabolic regulation). However, how hydrodynamics and hydrogeochemistry control the metabolic efficiency of OHRB in biodegrading chloroethene is essential for effective bioremediation design yet an under-investigated topic. For this reason, we implemented a virtual experiment (1D reactive transport model) to investigate the effects of site conditions on transcription-translation and, hence, biodegradation processes within chloroethene plumes. In the model, RD was simulated using Enzyme-Based Kinetics, explicitly mimicking the production of RDases via metabolic regulation, calibrated on microcosm experimental data gained from literature. Features of an actual contaminated site (Grindsted, Denmark) were then used to set up the virtual experiment. Here, chloroethene leaked from a former pharmaceutical factory migrates through a sandy aquifer and gets discharged into the Grindsted stream. Preliminary results show that substrate (electron donors) limiting conditions caused by competing electron acceptors and dispersion and high flow rates represent the key factors controlling biodegradation via RDase production.

Abstract

Water resources, including groundwater, are under threat globally from abstraction and pollution, making studies of water flows ever more urgent. South Africa has a growing population, a relatively dry climate and abundant mining activity, all of which increase the importance of water management. Mooiplaas Dolomite Quarry, southeast of Pretoria, has been mining metallurgical grade dolomite since 1969 and is located in the productive karst aquifers of the Malmani Subgroup, Transvaal Supergroup. The site was investigated by sampling precipitation, surface water, groundwater and mine water for hydrochemical and stable isotope analysis from 2011 to 2017, totalling over 400 samples. Nitrate levels in groundwater and mine water were marginally above drinking water limits from explosives residues, and ammonia in the nearby Hennops River was unacceptably high due to municipal sewage outfalls, but otherwise, water quality was very good. Alkalinity from rock weathering, aided by the crushing of dolomite, was the main control on water chemistry. Combined analysis of dissolved matter (TDS, nitrate, Mg, etc.) suggested that the dewatering of the mine and resultant recharge from slime dams caused an aerated zone of groundwater, which mixed with regional groundwater flowing beneath the site. Stable isotopes, with an evaporated signature from mine open water bodies, also showed how mine operations cause recharge to groundwater and subsequent seepage back into the pit lakes. The mine appears not to contaminate the regional groundwater. However, mine designs should avoid situations where process water flows via groundwater back into pits, causing excessive dewatering costs.

Abstract

Table Mountain reaches 1086m elevation, the upper half of which comprises Table Mountain Group (TMG) quartzite with extensive fracture porosity. The lower half of the mountain comprises a mixture of Cape Granite intruded into Malmesbury Group metapelites, both of which are poor aquifers, but are in places overlain by scree slopes predominantly composed of TMG quartzite boulders. The region experiences a Mediterranean climate with warm, dry summers and cold, wet winters, with rainfall ranging from 600-1600mm/a depending largely on proximity to the mountain. Several springs issue from the slopes of the mountain, ranging in elevation from 15-410masl and in flow from non-perennial to 30L/s. Water chemistry reveals very little about spring water flow, as the waters have very low dissolved solids. Samples of 10 of these springs were taken twice per year for 3 years while rainwater was sampled at 120masl at the University of Cape Town (UCT) and at 1074masl at the Upper Cableway Station. These samples were analysed for oxygen and hydrogen stable isotope composition, mostly by mass spectrometer, but also by laser spectroscopy. The isotope results reveal an altitude gradient between the two rainfall stations of -0.075?/100m for ?D and -0.48?/100m for ?18O. Employing this isotope gradient, the average recharge altitude for the springs is 304masl, compared to an average discharge altitude of 156masl. Using this difference in altitude and the average slope of the terrain, a typical flow path of 1km from recharge to discharge point can be derived. Additionally, there are shifts in the weighted annual mean isotope composition of rainfall at UCT. For the years 2010-2012, the shifts are paralleled by similar shifts in the mean isotope composition at the springs for each of those years. This suggests rainfall discharges in the same winter season it has been recharged. In combination with the evidence for long term reliability of some of the springs over the dry season and during droughts, this suggests a layered flow of groundwater in the scree aquifer, allowing both long term steady discharge of deeper groundwater, as well as short term discharge of recently recharged rain. In combination with the flow path derived above, hydraulic conductivities in the realm of 10-20m/d can be calculated for the scree aquifers.

Abstract

The Table Mountain Group is a major fractured rock aquifer system throughout the Western Cape, with many interconnected but semi-independent parts, each having its own recharge area, flow paths and discharge area. Groundwater is known to travel long distances and reach great depths, including through the Olifants River syncline, such as at The Baths hot spring near Citrusdal. Stable isotope compositions of rain and groundwater in the Cederberg and Olifants River Mountains were measured over a period of 2-3 years. Rainfall in the Cederberg averaged -22‰ and -4.7‰ for D and  18O respectively, whereas rainfall in the Olifants River Mountains averaged -11‰ and -3.0‰ similarly. Groundwater used by farmers in the Olifants River Mountains averaged -13‰ and -2.9‰ similarly. The similarity between groundwater and rainfall isotope compositions in the Olifants River Mountains suggests local groundwater movement. It was concluded that the source of groundwater abstracted by farmers in the Olifants River Mountains is from the peaks west of the Olifants River with little to no contribution from the Cederberg, east of the Olifants River syncline. Geological evidence (thinning of the Olifants River syncline and increased faulting northwards) supports this conclusion.

Abstract

The Smuts House in Centurion is under threat of subsidence due to sinkholes. These sinkholes are linked to the Malmani Dolomite Formation, a Proterozoic carbonate sequence within the Chuniespoort Group of the Transvaal Supergroup, and is subject to sinkhole development (Clay, 1981). In addition to Smuts House, the areas are populated by thousands of people meaning risk of financial damage and, in some cases, loss of property and lives (Trollip, 2006).

The Jan Smuts House Museum is located in a natural park of indigenous trees and shrubs. The area is generally flat-lying; however, various ridges bisect the site in a north-south trend. A koppie (Cornwall Hill) is situated in the north. Outcrops of dolomite and chert characterise most of the study area. The two major streams in the area are that of the Sesmylspruit and Olifantspruit.

This study was undertaken to examine the relationship between subsidence of the Smuts House Museum, subsurface features (geological and anthropogenic) and the local geology. Magnetic and resistivity, active seismic and ground-penetrating radar (GPR) geophysical data were collected, along with x-ray fluorescence (XRF) geochemical data and hydrogeological data.

Abstract

In recent years there has been renewed interested in identifying and understanding groundwater resources. Airborne electromagnetic (AEM) surveys can provide useful, cost effective information about the geometry of aquifers and their host rocks. TEMPEST is a fixed wing AEM system which has been used extensively for groundwater applications. The system possesses many attributes which aid in groundwater exploration including: broad operational bandwidth; multifaceted software approach; and, a distinctive calibration technique. These features allow both shallow and deep subsurface features to be imaged which aid in mapping groundwater aquifers along with the broader groundwater subsystem. This paper will review TEMPEST surveys flown for the Western Australian Department of Water (DoW) for the purpose of groundwater characterisation. The surveys were focussed on the identification of geological contacts, subsurface aquifers and seawater intrusion extents. The survey data was interpreted using an integrated approach which involved reviewing the newly acquired geophysical data, identifying contacts and anomalous features in the acquired data, reviewing existing geological and geophysical data in the area and correlating features identified in acquired data to known geology. The first case study was flown over the North Gnangara area of the Perth Basin with the primary aim of defining the spatial distribution of clay and silty layers that impede recharge to the groundwater table. The survey succeeded in achieving its primary aim of identifying the distribution of clay layer targets. Through the integrated interpretation approach it was also successful in achieving its secondary aims by clearly defining the contact between superficial units and the underlying stratigraphy, identifying key structures within the basin, outlining the top of the seawater intrusion, and mapping confining strata within the deeper aquifer systems in the Perth Basin. The second case study was flown over the lower reaches of four river systems in the North Pilbara coast with the aim of understanding the aquifer geometries and groundwater salinity distribution within the region. The primary aims of the survey were achieved and provided a basement geology map, relative porosity maps, approximate weathered and unweathered bedrock surfaces as well as the approximate geometry of the seawater intrusion within all survey areas. It was also possible to map the interpreted extents of alluvial aquifers within two of the river systems as well as the contact between two sandstone aquifers present in one of the river systems. These case studies show that the TEMPEST AEM system can provide valuable information about the geometry of aquifers and their host geology. AEM surveys should be used as an initial method for determining broad aquifer geometry and the identification of priority areas prior to further less cost effective water bore drilling.

Abstract

The City of Cape Town is a favourite tourist destination. With Table Mountain being one of the new seven natural wonders of the world, Cape Town is also uniquely positioned where the Benguela and Atlantic ocean currents meet. Proximate environs play home to some of the most unique biodiversity found in the world with the fynbos biome protected in numerous reserves such as the Cape Peninsula, Table Mountain and Kogelberg Nature Reserves. Cape Town is also South Africa’s cultural heartbeat where artists, film makers, designers and wine connoisseurs contribute to the tourism of the country.

The recent drought and increasing demands through urbanisation are raising concerns regarding water scarcity and supply. Will the city be able to supply this growing demand, notably with additional stress due to climate change?

The Hydrological Heritage Overview aims to address the important power water has over Mankind and how we can harness that to our benefit without compromising the environment. The selection of Cape Town (following completion of Pretoria and Johannesburg) supplies the opportunity to address the mechanical impacts of water: Table Mountain formed through the action of water, and was shaped into its characteristic landform due to subsequent erosion by water action. Additional emphasis on the power of water relates to aspects of hydropower, the impacts of floods and droughts, and additionally of the power of water as it is harnessed as a vital life supporting resource and as a means of recreation.

As the final deliverable of this project, a short 12-minute documentary film has been made for the information of the general public and interested parties. The film showcases the water history of the City of Cape Town, emphasising supply from springs, dams and, more recently, artificial groundwater recharge. Although not a technical presentation, showcasing of the film will advance citizen science and public appreciation for the value of water.

Abstract

The intermediate vadose zone underlies the plant root zone and comprises soil and rock. Different soils have different hydraulic and mechanical properties, and the vertical and spatial distributions are variable at a small scale. In South Africa, except for the Cenozoic and Quaternary deserts and coastal deposits, rock forms most of the vadose zone, and the rock fractures exacerbate the complexity. The vadose zone is observed at a small scale and dictates what happens in large scale, as adhesion to mineral surfaces happens first, and cohesion between water molecules is next. The original consideration of the intermediate vadose zone was a black box approach measuring what goes in from the surface and what goes out as groundwater recharge, not accounting for the movement of the vast majority of the freshwater supplied through precipitation. That doesn’t address the preferential flow, velocity, and pore water changes in the medium. Soil science addresses the soil or plant root zone very well. This zone governs the vertical movement of water and controls the ecosystems and biodiversity. However, all evapotranspiration disappears below this zone, and capillarity and gravity both move water into and through the intermediate vadose zone. Movement is no longer solely vertical and will be affected by soil types, intergranular porosity in soil and rock, changing water content, and secondary fractures with different properties in rock. This presentation will cover concepts and advances in this field, emphasising how and why water moves in the intermediate vadose zone.

Abstract

Despite majority of the terrestrial fresh water resources being groundwater, there still exists a public perception that the only source of potable water is from surface water bodies. Due to this misperception, the general public is often ignorant about the importance of groundwater as a resource. This is evident in the lack of appreciation for the Upper and Lower Fountains in Pretoria as the main reason for various historical events in and around Pretoria, leading to it eventually becoming the capital of South Africa. This project, which introduces a broader Hydrological Heritage Overview programme, is intended to create awareness regarding the history and importance in the development of South Africa, and to improve public understanding of the important role that hydrology and hydrogeology is playing in our day to day lives. Additionally, scientific appraisal of historical data will aid the relevant managements to better manage these valuable resources, while making interesting and important archived data available to the scientific community in the form of trend analyses and conceptual models. The paper will showcase a 10-minute narrated video on the importance of groundwater in the history of Pretoria. As part of a water awareness programme to inform the general public about Pretoria's water supply from springs since its founding in 1855, the video depicts the development of the capital city around these springs from its founding to present.

Abstract

Hydrogeologists have moved past merely investigating for water supply and quantification of sustainable yields. In the 21st century, and with rapid urbanisation and climate change, hydrogeologists are expected to work in cross-disciplinary fields of geochemistry, aquatic biodiversity, surface water – groundwater interaction, groundwater economics, law and management. In addressing important hydrological parameters such as recharge, recharge rates, advection of contaminants and interflow, the role of the vadose zone becomes increasingly important. A series of case studies and physical models were used to evaluate the movement of water at variable saturation through media with primary, secondary and tertiary porosity. Scales of models varied based on different volumes of observation and relevance from discreet fractures to regional hillslopes.

Centrifugal acceleration was employed in some of the models to scale predetermined variables. Models included consolidation of heterogeneous soil successions, discreet fractures and their intersections, flow from soil into discreet rock fractures, and column testing of dolomite residuum. Advances are made in the qualitative and often quantitative assessment of interflow, soil-to-rock percolation, discrete fracture flow, and flow through dolomite residuum. Further to this, insight is gained into empirical quantification of hydraulic parameters through, for instance, the cubic law; the relevance of flow regimes (turbulent versus laminar) at various Reynolds numbers; and breaching of interfaces to promote vertical percolation of water stored in partially saturated geological media. Applications include improved understanding of pore water pressure distributions in media, induced seepage under consolidation, ingress water eroding soil into bedrock cavities resulting in sinkholes or surface subsidence, drainage of slopes and cuttings, water influencing infrastructure, indirect and localised recharge rates, aquifer susceptibility to contamination from surface, and urban hydrology in general.

The paper addresses some key findings and examples within the context of an extensive series of publications and research reports.

Abstract

Hydrogeology no longer only relies on understanding of phreatic systems. Highly heterogeneous and anisotropic conditions in soil and rock comprising intergranular, fractured and karstic porosity affect groundwater vulnerability, recharge rates, drainage and dewatering practices, soil corrosivity, natural attenuation of contaminants, and integrity of infrastructure, to name a few examples. Movement of water at partial and highly variable saturation is very complex, depending on very small-scale variations in ground conditions as well as very subtle changes in moisture content. In contributing to this, a number of research projects were conducted, focused around physical experiments in the laboratory or mimicked in the field, and subjected to differing conditions pertaining to gravitational acceleration to scale the vertical dimension. Studies contribute to flow mechanisms and flow regimes of variably saturated soils and rocks, as well as the interface between, and link available theoretical understanding and empirical approaches to physical experiments and field verification experiments. Where possible, hydraulic parameters are estimated to improve the quantification of said parameters at discreet scale rather than assuming single values for bulk systems. Obvious limitations and assumptions are understood to the extent that updated flow scenarios are proposed to contribute to variably saturated flow systems. Behaviour is inferred for fractures of changing orientation, changes in medium from soil to rock, and for alternation between wetting and drying of different media. Selected experiments will be presented to highlight novel findings and the way forward

Abstract

Anticipated Shale Gas Development could intensify possible natural hydraulic connectivity between deep groundwater reservoirs and shallow aquifers in the Karoo. This project attempts to test geochemical evidence of natural mixing between old groundwater from deep aquifers and young groundwater from shallow aquifers using selected isotopic signatures in conjunction with borehole yields. Borehole yields were determined using slug tests. All isotopes (δ18O, δ2H, δ13C, 3H and 14C) were analysed in the laboratory of Environmental Isotope Group of iThemba Laboratories in Gauteng. To date, results from four water samples collected in Jansenville reveal these average isotope signatures: δ18O = -3.02 ‰, δ 2H = -21.17 ‰, δ 13C = 12.46 ‰ 3H = 0.45 TU and 14C = 65.38 pMC. The δ18O-δ 2H relationship for the groundwater has a gradient of 4.48. This demonstrates that the groundwater has experienced evaporation before or during recharge. The unevaporated isotopic signature of the water is -5.86 ‰ and -33.89 ‰ for δ18O and δ2H, respectively. The enriched δ13CDIC signature suggests that methanogenesis has influenced the groundwater. The unstable isotopes (3H and 14C) suggest that there is groundwater mixing in Jansenville between younger water from shallow aquifers and older water likely from deeper aquifers. Borehole yields increase with decreasing radioactive isotope concentrations. This suggests that high yielding boreholes are areas of potential contamination because they are associated with mixed groundwater.

Abstract

This paper describes the calibration and testing processes of three methods of measuring hydraulic conductivity (slug test, mini disk infiltrometer and particle size distribution (sieves)) across varying scales (field and lab). The methods used in the field are the slug test and sieves which were used in four different wells of the Rietvlei wetland in Cape town and the mini disk infiltrometer was used in a grid developed in one of the Nelson Mandela University Reserve salt pans. The mini disk infiltrometer and the slug test are used to determine the saturated hydraulic conductivity (Ks) of altered or unaltered soil samples under controlled conditions in a laboratory, and that is a key parameter to understand the movement of water through a porous medium. The mini disk infiltrometer requires a small volume of water and has a compact size which makes it convenient for laboratory soil specimens, especially when studying vertical infiltration. Infiltration shows a dependence on the compaction and saturation of soil while hydraulic conductivity increases with depth in a simulated aquifer.

Abstract

Industrial areas are major sources of surface and groundwater pollution. As a result, constant monitoring of water quality is of vital importance to detect pollution incidences in time and to take corrective actions. This integrated hydrogeological, hydrochemical and environmental isotopes (?2H, ?18O, 3H) study has been undertaken to investigate the hydrogeological conditions around the Kusile coal-fired power station located in the quaternary catchment B20F. The study area is characterized by mainly weathered and fractured and fractured aquifer systems. The weathered and fractured aquifers are made up of the Ecca Group shale lithologies, with weathering depths ranging between 5 and 12 m below ground surface (b.g.l.), while the fractured aquifer system is made up of the Pretoria Group quartzites, chert and shale units. Both aquifer systems have borehole yields ranging from 0.1 to 2 L/s. The depth to groundwater ranges from few cms to 22.7 m, with an average depth of 7.6 m b.g.l. Regional groundwater flow direction is from south-east to north-west, following the topographic gradient. The hydrochemical analysis from 25 boreholes, 6 springs, and 19 surface water points show electrical conductivity (EC) values less than 70 mS/m, pH values in the range from 5.2 to 9.6. High concentrations of Fe, Mn and Zn were measured in some samples that have high turbidity (> 5 NTU). The hydrochemical data shows six hydro-chemical facies with Mg-HCO3 as the most dominant indicating a shallow circulating less evolved recharge area groundwater. Multivariate statistical methods in the form of factor and cluster analyses were applied in the analyses of the hydrochemical data collected. The results of Factor analysis indicated three factors which explained 81.5% of the total variance in the hydrochemical data. The first factor is characterised by strong loadings of EC, Mg, SO42-, Ca, and Cl which could explain the contribution of the major ions to the salinity. The second factor has high positive loadings of Fe, turbidity, and a strong negative loading of dissolved oxygen indicating reducing conditions. Factor three shows high positive loadings of HCO3-, pH and Na, where the positive correlation of HCO3- and pH shows carbonate buffering on the pH of the system. The Hierarchial Cluster Analysis subdivided the samples into two clusters and two sub-clusters. Cluster 1 is dominated by surface water samples which are characterised by elevated concentration of HCO3-, turbidity, and SO42-. The second cluster has two sub-clusters. Cluster C-2-1 is characterised by lower Cl and K concentrations while cluster C-2-2 contains boreholes which are dominated by Mg-HCO3 water type. Environmental isotope data indicates that groundwater recharge is from a mixture between sub-modern and recent precipitation. Four surface water samples along a stream line show a similar isotopic signature as the groundwater samples indicative of an interaction between the groundwater and surface water. The preliminary results of the inorganic hydrochemical data doesn't indicate pollution from the Kusile coal-fired Power Station.

Abstract

Many groundwater models are commissioned and built under the premise that real world systems can be accurately simulated on a computer - especially if the simulator has been "calibrated" against historical behavior of that system. This premise ignores the fact that natural processes are complex at every level, and that the properties of systems that host them are heterogeneous at every scale. Models are, in fact, defective simulators of natural processes. Furthermore, the information content of datasets against which they are calibrated is generally low. The laws of uncertainty tell us that a model cannot tell us what will happen in the future. It can only tell us what will NOT happen in the future. The ability of a model to accomplish even this task is compromised by a myriad of imperfections that accompany all attempts to simulate natural systems, regardless of the superficial complexity with which a model is endowed. This does not preclude the use of groundwater models in decision-support. However it does require smarter use of models than that which prevails at the present time. It is argued that, as an industry, we need to lift our game as far as decision-support modeling is concerned. We must learn to consider models as receptacles for environmental information rather than as simulators of environmental systems. At the same time, we must acknowledge the defective nature of models as simulators of natural processes, and refrain from deploying them in a way that assumes simulation integrity. We must foster the development of modelling strategies that encapsulate prediction-specific complexity supported by complexity-enabling simplicity. Lastly, modelers must be educated in the mathematics and practice of inversion, uncertainty analysis, data processing, management optimization, and other numerical methodologies so that they can design and implement modeling strategies that process environmental data in the service of optimal environmental management.

Abstract

Streamwater and groundwater are changing in the Arctic region because of significant climate warming. Arctic amplification has intensified the melting of snow cover, glaciers and permafrost, leading to a prominent variation in the annual discharge of rivers, the groundwater occurrence, and their relationships. In high-latitude regions, evaluating groundwater flux/storage and river discharge is challenging due to a lack of hydrogeological data. Changes in river flows and groundwater discharge will alter freshwater and terrigenous material flux, with implications for freshwater and marine ecosystems. Consequently, a more timely and accurate evaluation of surface and groundwater is required. In this framework, through the ICEtoFLUX project (MUR/PRA2021/project-0027), hydrology, geophysics and geochemical-isotopic surveys have been started during 2022 in the Bayelva River catchment (W-Svalbard) from its glaciers and periglacial/proglacial systems up to the Kongsfjorden. The study aims to quantify hydrologic processes and related transport of matter (solid transport, chemical solutes flux) and investigate how subsurface and surface waters interact during active layer development. The first results suggest that electrical conductivity and total suspended solids increase from glaciers to the Bayelva monitoring station, about 1 km from the coast. Seasonal evolution of physical-chemical features was also observed. Results from geophysics data and piezometers indicate that the underground flow is spatially and temporally heterogeneous, both quantitatively and from a physicochemical-isotopic point of view. Springwater characteristics testify to a deep and well-organized groundwater flow path system. This study highlights the high complexity of these systems and their high sensitivity to the meteo-climatic regimes.

Abstract

Emerging contaminants (e.g. pharmaceuticals or pesticides) are increasingly detected in aquatic environments. The most apparent contamination source of river water pollution by pharmaceuticals is sewage treatment plant stations that discharge treated sewage effluent to the rivers. The river bank filtration systems (RBF) can effectively remove these contaminants. The two RBF sites were examined for pharmaceuticals: Śrem and Gorzów waterworks. The water samples for pharmaceuticals investigation were taken from the river and four continuously pumped wells at each site. Two wells near the river were chosen at each site (40-50 m) and two at a greater distance from the river (70 m in Śrem and 110 m in Gorzów). A visible increase in pharmaceutical concentrations was observed along the river. The sum of pharmaceuticals concentration is 8151 ng/l in Śrem (upstream), while in Gorzów (downstream) concentration is 9142 ng/l. A very big differentiation in pharmaceutical occurrence was observed. In Śrem, the sum of pharmaceuticals concentration is between 657 and 3290 ng/l, while in Gorzów, despite the higher concentrations of pharmaceuticals in the river, these substances were detected only in one well located at a close distance from the river (two substances at a concentration of 92 ng/l).

The research proves a very big differentiation of pharmaceutical concentration even on sites located at similar hydrogeological conditions and demonstrates the necessity of its monitoring, especially in groundwater strongly influenced by river water contamination (like at RBF sites). This work has received funding from the National Science Centre Poland (grant no. 2021/41/B/ST10/00094).

Abstract

Limpopo Province is one of the wealthiest areas of South Africa with respect to geothermal spring occurrences, which were classified according to the residing mountains: Soutpansberg, Waterberg and Drakensberg. Mphephu, Sagole, Siloam and Tshipise geothermal springs fall within the Soutpansberg. This study is aimed at understanding the origin and age, geochemical processes controlling the water chemistry. Analyses of major ion hydrochemistry and environmental isotopes (?18O, ?2H and ?3H) were undertaken, which is supported by conventional hydrogeological information. The dominant hydrochemical facies for geothermal springs within Soutpansberg are Na-Cl and Na-HCO3. The results indicate that geothermal spring water chemistry is controlled by water-rock interaction, silicate/carbonate weathering, mineral dissolution, cation exchange and inverse cation exchange. The isotopic composition of the springs range from ?0.48? to ?5.41? for ?18O, from ?33.3? to ?24? for ?2H, and from 0 to 1.6 TU for tritium. The hydrogen (?2H) and oxygen (?18O) isotope signatures reveal a significant infiltration before evaporation takes place. This implies that the geothermal water has been originating from local precipitation with evidence of paleoclimate effect. ?3H values show that the present rainfall contributes more to the geothermal spring recharge particularly in summer compared to winter season. This corroborates with findings from the geothermal water age obtained by radiocarbon method, which placed the recharge period during the Holocene. Hence, this is clearly indicated that this water is originating from the deep circulating local meteoric water.

Abstract

Geothermal springs occur throughout the world and South Africa (SA) is endowed with several springs of this nature. Siloam and Tshipise are among the known scalding geothermal springs found in Limpopo Province. The optimal use of a geothermal spring is largely dependent upon its physical and chemical characteristics. Hence, there is need to understand the chemical processes controlling the springs. Hydrochemical characteristics of Siloam and Tshipise geothermal springs were undertaken for a period of six months May – December 2014. Water samples were collected from the springs and stored at low temperatures (+/- 4 °C) for analysis of hydrochemical characteristics. The results show that Siloam and Tshipise geothermal spring water is not suitable for drinking and irrigation due to high pH, high fluoride concentrations, high sodium absorption ratio (SAR), Residual sodium carbonate (RSC) and permeability index (PI) values. The water type found in Siloam and Tshipise were Na-Cl and Na-HCO3, respectively. The variations were probably due to the differences in fundamental changes in water chemistry and the geology. Plot (Ca+Mg) vs (HCO3+SO4) shows the distribution of geothermal water between silicate and carbonate weathering processes. The chloro-alkaline indices (CAI) 1, 2 calculated from the waters of the study area give negative values and this implies the presence of base-exchange reaction. Hence, sources of the geothermal springs were deep and could not significantly be affected by rainfall recharge. Therefore, major processes controlling the water quality are silicate weathering, mineral dissolution, cation exchange and inverse cation exchange.