Conference Abstracts

All Abstracts were presented at the Groundwater Conferences

Displaying 1 - 50 of 795 results
Title Sort ascending Presenter Name Presenter Surname Area Conference year Keywords

Abstract

The colliery is situated in the Vereeniging-Sasolburg Coalfield, immediately southwest of Sasolburg in the Republic of South Africa. The stratigraphy of this coal field is typical of the coal-bearing strata of the Karoo Sequence. The succession consists of pre-Karoo rocks (dolomites of the Chuniespoort Group of the Transvaal Sequence) overlain by the Dwyka Formation, followed by the Ecca Group sediments, of which the Vryheid Formation is the coal-bearing horizon. Mainly the lava of the Ventersdorp and Hekpoort Groups underlie the coal. The Karoo Formation is present over the whole area and consists mainly of sandstone, shale and coal of varying thickness. The underground mine was flooded after mining was ceased at the colliery in 2004. The colliery is in the fortunate position that it has a very complete and concise monitoring programme in place and over 200 boreholes were drilled in and around the mine throughout the life of the mine. To stabilise mine workings located beneath main roads in the area, an ashfilling project was undertaken by the colliery since 1999. A key issue is if the mine will eventually decant, and what the quality of the water will be. This is important for the future planning of the company, as this will determine if a water treatment plant is necessary, and what the specifications for such a plant will be, if needed. Therefore it was decided to do a down-the-hole chemical profile of each available and accessible borehole with a multi-parameter probe with the aim of observing any visible stratification. Over 90 boreholes were accessible and chemical profiles were created of them. From the data collected a three - dimensional image was created from the electrical conductivity values at different depths to see if any stratification was visible in the shallow aquifer. The ash-filling operations disturbed the normal aquifer conditions, and this created different pressures than normally expected at a deeper underground colliery. From the three-dimensional image created it was observed that no stratification was visible in the shallow aquifer, which lead to the conclusion that in the event that if decant should occur, the water quality of the decanting water will still be of very good quality unless external factors such as ash-filling activities is introduced. It is not often that it is possible to create chemical profiles of such a large number of boreholes for a single colliery and as a result a very complete and informative three-dimensional electrical conductivity image was created. This image is very helpful in aiding the decision making process in the future management of the colliery and eventually obtaining a closure certificate, and also to determine whether ash-filling is a viable option in discarding the ash.

Abstract

The colliery is situated in the Vereeniging–Sasolburg Coalfield, immediately southwest of Sasolburg in the Republic of South Africa. The stratigraphy of this coal field is typical of the coal-bearing strata of the Karoo Sequence. The succession consists of pre-Karoo rocks (dolomites of the Chuniespoort Group of the Transvaal Sequence) overlain by the Dwyka Formation, followed by the Ecca Group sediments, of which the Vryheid Formation is the coal-bearing horizon. Mainly the lava of the Ventersdorp and Hekpoort Groups underlie the coal. The Karoo Formation is present over the whole area and consists mainly of sandstone, shale and coal of varying thickness.

The underground mine was flooded after mining was ceased at the colliery in 2004. The colliery is in the fortunate position that it has a very complete and concise monitoring programme in place and over 200 boreholes were drilled in and around the mine throughout the life of the mine. To stabilise mine workings located beneath main roads in the area, an ashfilling project was undertaken by the colliery since 1999. A key issue is if the mine will eventually decant, and what the quality of the water will be. This is important for the future planning of the company, as this will determine if a water treatment plant is necessary, and what the specifications for such a plant will be, if needed. Therefore it was decided to do a down-the-hole chemical profile of each available and accessible borehole with a multi- parameter probe with the aim of observing any visible stratification. Ninety-four boreholes were accessible and chemical profiles were created of them.

From the data collected a three-dimensional image was created from the electrical conductivity values at different depths to see if any stratification was visible in the shallow aquifer.  The ash-filling operations disturbed the normal aquifer conditions, and this created different pressures than normally expected at a deeper underground  colliery.  From  the  three-dimensional  image  created  it  was  observed  that  no stratification was visible in the shallow aquifer, which lead to the conclusion that in the event that if decant should occur, the water quality of the decanting water will still be of very good quality unless external factors such as ash-filling activities are introduced. It is not often that it is possible to create chemical profiles of such a large number of boreholes for a single colliery and as a result a very complete and informative three-dimensional electrical conductivity image was created. This image is very helpful in aiding the decision-making process in the future management of the colliery and eventually obtaining a closure certificate, and also to determine whether ash-filling is a viable option in discarding the ash.

Abstract

The concept of the ‘Groundwater Reserve’ is enshrined in the National Water Act that stipulates that a classification of all significant water resources must be undertaken and the Reserve requirements be determined and gazetted. The Reserve covers two different aspects, the Ecological Reserve to protect the water dependent ecosystems and the Basic Human Needs (BHN) Reserve to ensure that all people who depend on that water resource have sufficient water for their livelihood. The approach for determining and implementing the Reserve that was developed for surface water resources was adopted for groundwater resources as provided for in the Groundwater Resource Directed  Measures  (GRDM)  Manual,  inter  alia.  However,  there  is  no  separate  ‘Groundwater Reserve’, but rather a groundwater component of, or contribution to, the ecological Reserve and BHN. Hence, the implementation of this methodology often results in undesirable outcomes and is one of the inhibiting factors for sustainable groundwater development, as some of the aspects and methods are not applicable to groundwater and not appropriate for implementation. The current separation of the ‘Groundwater Reserve’ determination process from the ecological Reserve determination emphasises this pitfall of the process and methodology. This paper provides a critical review of the current concept of the ‘Groundwater Reserve’ and its implementation based on several case studies. It concludes  with recommended changes to the standard methodology and a possible way forward for developing an appropriate methodology for addressing and protecting the groundwater contribution to both the ecological and BHN Reserve.

Abstract

Monitoring deep (~100 – 200 m) fresh-saline water interface is a challenge because of the low spatial density of deep boreholes. In this project, Vertical Electrical Soundings measurements were used to evaluate changes in the depth of the interface over various decades. Water quality monitoring is a well-known application of geo-electrical measurements but generally applies to the relatively shallow subsurface. In this case study, the saline groundwater interface is around 120 -200 m deep, and the time interval between the measurements is several tens of years. Several locations showing good-quality existing VES-measurements acquired in the last century were selected to see whether repeat measurements could be performed. The number of locations where a repeat measurement could be performed was limited due to the construction of new neighbourhoods and greenhouse complexes. When interpreting the measurements for the change in the depth of the fresh-salt interface, it is assumed that the transition from fresh to saline groundwater occurs over a small depth range and that the electrical conductivity of the fresh water above this interface has not changed. However, it turned out that the ion concentration of the groundwater in the layers above the fresh-saline interface had increased sharply at almost all locations. This complicated the approach, but still, useful results could be obtained. Based on the measurements, it can be said that the fresh-saline water interface has shifted downwards at 3 locations, and hardly any change has occurred at 5 locations.

Abstract

South Africa faces serious water scarcity challenges not only because it is a semi-arid country but also due to climate change. One of the most significant effects of climate change is an increase in temperature, which inevitably increases evaporation. Increased evaporation directly reduces the availability of surface water resources. Groundwater is less susceptible than surface water resources to evaporation and thus offers resilience against the impacts of climate change. Many South African cities, communities, and farmers depend on groundwater for domestic or other socio-economic purposes. This implies that groundwater resources which are currently or potentially utilisable should be identified, and suitable legal measures should be implemented to protect these resources from potential risks of harm or damage posed by anthropogenic activity. First, This article evaluates the effectiveness of the country’s existing regulatory framework to effectively protect South Africa’s groundwater resources and finds that the framework can be improved significantly. Secondly, it explores regulatory opportunities within the existing legal framework to strengthen South Africa’s groundwater governance regime, including using land use planning instruments to facilitate the implementation of groundwater protection zones

Abstract

The identification of hydrogeological boundaries and the assessment of groundwater’s quantitative and qualitative status are necessary for delineating groundwater bodies, according to the European Guidelines. In this context, this study tries to verify the current delineation of groundwater bodies (GWBs) through hydrogeochemical methods and multicriteria statistical analyses. The areas of interest are three GWBs located in the northern part of Campania Region (Southern Italy): the Volturno Plain, a coastal plain constituted of fluvial, pyroclastic and marine sediments; the Plain of Naples, an innermost plain of fluvial and pyroclastic sediments and the Phlegrean Fields, an active volcanic area with a series of monogenic volcanic edifices. Hydrogeochemical methods (i.e., classical and modified Piper Diagram) and multivariate statistical analyses (i.e., factor analysis, FA) were performed to differentiate among the main hydrochemical processes occurring in the area. FA allowed the handling many geochemical and physical parameters measured in groundwater samples collected at about 200 sampling points in the decade of the 2010s. Results reveal five hydrogeochemical processes variably influencing the chemical characteristics of the three GWBs: salinization, carbonate rocks dissolution, natural or anthropogenic inputs, redox conditions, and volcanic product contribution. Hydrogeochemical methods and FA allow the identification of areas characterised by one or more hydrogeochemical processes, mostly reflecting known processes and highlighting the influence of groundwater flow paths on water chemistry. According to the current delineation of the three GWBs, some processes are peculiar to one GWB, but others are in common between two or more GWBs.

Abstract

The intermediate vadose zone underlies the plant root zone and comprises soil and rock. Different soils have different hydraulic and mechanical properties, and the vertical and spatial distributions are variable at a small scale. In South Africa, except for the Cenozoic and Quaternary deserts and coastal deposits, rock forms most of the vadose zone, and the rock fractures exacerbate the complexity. The vadose zone is observed at a small scale and dictates what happens in large scale, as adhesion to mineral surfaces happens first, and cohesion between water molecules is next. The original consideration of the intermediate vadose zone was a black box approach measuring what goes in from the surface and what goes out as groundwater recharge, not accounting for the movement of the vast majority of the freshwater supplied through precipitation. That doesn’t address the preferential flow, velocity, and pore water changes in the medium. Soil science addresses the soil or plant root zone very well. This zone governs the vertical movement of water and controls the ecosystems and biodiversity. However, all evapotranspiration disappears below this zone, and capillarity and gravity both move water into and through the intermediate vadose zone. Movement is no longer solely vertical and will be affected by soil types, intergranular porosity in soil and rock, changing water content, and secondary fractures with different properties in rock. This presentation will cover concepts and advances in this field, emphasising how and why water moves in the intermediate vadose zone.

Abstract

The year 2020 will forever be synonymous with the Covid-19 pandemic and the immeasurable impact it has had on all our lives. During this time, there was one avenue that reigned supreme: technology. Whether it was Zoom calls or Netflix, online consultations or video conferencing at work, technology took charge. In light of this, GCS (Pty) Ltd started exploring ways that technology could assist with the most common problem identified in the Water and Environmental sectors, which is the management of large volumes of geodata. Thus, the invention of eSymon.

Monitoring of the environment usually generates a significant amount of data. If this data is not systematically stored, problems often arise with:

• Limited access to historical data due to poor storage;

• Different formats of stored data (if they are kept in digital form at all);

• Continuity and integrity of the data; and

• Security of the data.

Therefore, years of historical data cannot be used or trusted. The solution was to develop eSymon, which is an acronym for Electronic Data Management System for Monitoring. eSymon is primarily designed to:

• Systematically import, store, view and manipulate large volumes of monitoring data;

• Provide remote and instantaneous access to site-specific information;

• Allow data visualization using an interactive GIS interface; and

• Create various outputs such as time series graphs, geochemical diagrams and contour maps.

The main idea of the software is to have all historical data for a site on one platform and have it be accessible and functional at the touch of a button. This results in several key benefits, including saving time, providing accurate and up to date information, not having to wait for technical reports to assess trends and compliance, providing several means of data visualization and, most importantly, ensuring data security.

Abstract

To increase the security of groundwater resources, managed aquifer recharge (MAR) programs have been developed and implemented globally. MAR is the intentional recharge and storage of water in an aquifer, which will be recovered later. It was previously known and implemented as Artificial Recharge (AR). In South Africa, the documented practice dates back 40 years. There are five main MAR methods: Well-Shaft-Borehole, Spreading-induced bank infiltration, In-channel modifications, and Runoff harvesting. Two regional-scale MAR suitability maps for the Spreading Method (SM) and the Well-Shaft-Borehole (WSB) Method were compiled for South Africa, using the Geographic Information System combined with Multi-Criteria Decision Analysis (GIS-MCDA) methodology. Parameters used to compute the maps included the nature of the different aquifers, groundwater level, water quality (EC), distance to river, terrain slope, mean annual rainfall, land cover, soil moisture availability and clogging (Fe-iron content). To create a suitability map, the parameters were combined using the weighted overlay method and the Analytic Hierarchy Process (AHP – specifically the pairwise comparison). The site suitability maps indicated that most areas in South Africa are suitable for the Spreading and Well-Shaft-Borehole methods. The results were verified with the location of existing MAR schemes and were found to agree. However, these maps are not applicable for siting projects at a local scale but can serve as a guide and screening tool for site-specific studies looking for highly suitable or target areas for MAR implementation

Abstract

Gold mining on the Witwatersrand has started in the late nineteenth century as sporadic open cast mining and ceased in the late twentieth century, leaving a complex network of haulages, tunnels and ultra-deep vertical shafts/sub-vertical shafts. At least three ore bodies (conglomeritic horizons) were mined down to a depth in excess of 3 000 m from surface. Three large mining basins resulted from the mining methodology applied, namely the Western, Central and Eastern (Rand) Basins.

In  the  early  days  of  mining  on  the  Witwatersrand  reefs,  gold  mine  companies  realised  that dewatering of their mine workings is required to secure mining operations at deeper levels and decades of pumping and treatment of pumped mine water followed. As the majority of deep gold mines on the Witwatersrand ceased operations since 1970, the deeper portions of the mine voids became flooded and led to a new era in the mining history in the Witwatersrand.

Rewatering of the mine voids is a combination between excessive surface water ingress generated by surface runoff, and to lesser degree recharge from an overlying fractured and weathered aquifer system (where developed). The flow regime in the mine voids from a scattering of ingress/direct recharge points and single discharge points are complex and is driven by shallow (<100 m) and probably deep (>1 000 m) man-made preferential pathways.

The high concentrations of iron sulphide minerals (pyrite. for example FeS2) content, three percent (by weight), of the mined reefs/backfilled stopes and surrounding waste rock piles/tailings dams mobilised significant levels of sulphates (SO4) and ferrous iron (Fe2+) producing an acidic mine-void water (<3 pH).

Monitoring of the rewatering mine void hydrological regime became necessary following the first acid-mine water decant from a borehole in the West Rand Basin, and the Department initiated a mine-void water table elevation trend and water quality monitoring programme. Results from this monitoring programme will be illustrated and discussed in this paper with some views on the future water quality and discharge scenarios.

Abstract

In 2021-23, northern Italy suffered a severe drought due to the absence of rainfall, which strongly affected the pre-alpine lake levels, affecting energy production, agriculture and sustainable river flows. This led to harsh consequences on agriculture, which in the Lombardy region almost completely relied on flooding irrigation methods using water from lakes through Ticino and Adda rivers. As part of the INTERREG Central- Europe project “MAURICE”, which focuses on Integrated Water Resources Management, the winter irrigation practice is proposed as a climate change adaptation strategy. The main project idea is to store surface water in aquifers in periods of exceedance (autumn/winter) using the very dense channels irrigation network as a “natural” infiltration system. The underground storage would increase the groundwater levels, bringing two main advantages during the spring/summer seasons: a good flow rate at plain springs and, in periods of water scarcity, the possibility to extract groundwater for agricultural purposes. Relying on the slow groundwater velocity (about 350 m/y), this practice keeps water stored in the subsoil just below the irrigated areas where the water is needed.

In the early project stage, a basin-scale numerical model is presented to test the potentiality of such practice. A specified water volume was distributed on the crop fields during the winter period, and the effects of such managed recharge were evaluated, also considering the possible problems deriving from the groundwater levels increase. The model demonstrates the adaptation measure feasibility, which will be tested at a field scale in a Pilot Area.

Abstract

For years hydrogeologists have bemoaned the fact the groundwater is often pushed aside in favour of surface water resources being developed for water supply purposes. This is despite the advantages of groundwater being less vulnerable to the impact of drought, generally significantly cheaper to develop and being ubiquitous in character. The intangible character of groundwater was thought to be a major factor in water resources engineers favouring surface water resource development, as well their limited appreciation of the character, exploration, development and management of the resource. But is this really the case? Recent experiences in developing groundwater as an alternative source of water across the Western Cape Province in the face of failing municipal water supplies has highlighted poor communication being a central issue. It was observed that the hydrogeologists had little appreciation of the controls and constraints that govern getting groundwater to the user. Further, their recommendations around the use of groundwater were at times confusing to the uninitiated. Engineers, on the other hand, were found to not adhere to recommended pumping regimes nor appreciate groundwater management requirements. The treatment of groundwater emerged as a constraint that added greatly to the complexity of developing these supplies and requiring ongoing operation and maintenance efforts.

Abstract

The karst aquifer downstream of the actively decanting West Rand Gold Field (a.k.a. the Western Basin) has for decades been receiving mine water discharge. Evidence of a mine water impact in the Bloubank Spruit catchment can be traced back to the early-1980s, and is attributed to the pumping out of so-called "fissure water" encountered during active underground mining operations for discharge on surface. Rewatering of the mine void following the cessation of subsurface mining activities in the late-1990s resulted in mine water decant in 2002. The last five hydrological years (2009?'10 to 2013?'14) have experienced the greatest volume and worst quality of mine water discharge in the 45-year flow and quality monitoring record (since 1979?'80) of the Bloubank Spruit system, causing widespread alarm and concern for the receiving karst environment. The focus of this attention is the Cradle of Humankind World Heritage Site, with earlier speculation fuelled by an initial dearth of information and poor understanding of the dynamics that inform the interaction of surface and subsurface waters in this hydrosystem.

Oblivious to these circumstances, the natural hydrosystem provides an invaluable beneficial function in mitigating adverse impacts on the water resources environment at no cost to society. The hydrologic and hydrogeologic framework that informs this natural benefaction is described in quantitative physical and chemical terms that define the interaction of allogenic and autogenic water sources in a subregional context before highlighting the regional benefit. The subregional context is represented by the Bloubank Spruit catchment, a western tributary of the Crocodile River, which receives both mine water and municipal wastewater effluent and therefore bears the brunt of poor quality allogenic water inputs. The regional context is represented by the Hartbeespoort Dam catchment, which includes major drainages such as the Crocodile River to the south and its eastern tributaries the Jukskei and Hennops rivers, and the Magalies River and its southern tributary the Skeerpoort River to the west. Each of these drainages contribute to the quantity and quality of water impounded in the dam, and an analysis of their respective contributions therefore provides an informative measure of the temporal mine water impact in a regional context.

The result indicates that amongst other metrics, the total dissolved solids (TDS) load delivered by the Bloubank Spruit system in the last five hydrological years amounted to 11% of the total TDS load delivered to Hartbeespoort Dam in this period, ranking third behind the Jukskei River (49%) and the Hennops River (30%), and followed by the Magalies River (5%), Crocodile River (4%) and Skeerpoort River (1%). By comparison, the long-term record reflects changes only in the contributions of the impacted Bloubank Spruit (10%) and pristine Skeerpoort River (2%). The difference is attributed mainly to the intervention of Mother Nature.

Abstract

A map is a symbolic or diagrammatic representation of an area of land or sea, showing physical features and the relationship between these elements. It often reduces a three-dimensional world to two dimensions. Maps are generally static – fixed to paper or some other medium. Maps are produced for different reasons, leading to different types of maps, e.g., roadmaps, topo-cadastral maps and the groundwater maps – with the latter the topic of this article. There is a lot of work going into maps. This includes collecting all the data, doing evaluation and analysis of the data and selecting the data to use on the map. It is not possible to present all the information on a map and maps are often a generalisation. Different kinds of groundwater maps include availability, quality, vulnerability and protection. The selection of symbols to represent the information and the rendering of the maps are important in producing understandable, useful maps, but need explanations.

The success in representing the information on a map will determine the usefulness of a map, but it is still often misused. At the end of this long and tedious process where conflict management skills were well developed, you may find that the information on the map is outdated before the ink on the map is dried properly. The production of maps should be an iterative process, where new data can be incorporated as soon as it becomes available. It is an expensive process and cannot be repeated too often. This article will look at the processes that helped to shape the current series of hydrogeology maps of South Africa, and how to use it optimally while mindful of limitations. It will also briefly touch on recent research that aims to help with the production of improved groundwater maps for South Africa.

Abstract

Since the end of the 1970’s, the Ministry of Agriculture, Water and Land Reform (MAWLR), through the development of the groundwater database (GROWAS II), gathered a great number of data on groundwater quality. In an ongoing study (MAWLR-MEFT-AFD-BRGM, 2023), an opportunity was presented to compile chemical data for groundwater in the two most north-western regions of Namibia, Kunene and Omusati, to elaborate and support decision-making with the available information. A selection of 3256 data presenting a good ionic balance (± 10%) was selected from a large dataset, using metadata from previous BGR projects and the Geological Survey of Namibia at a 1:250,000 scale as supporting information. During the assessment of chemical data, it was depicted that most of the good quality water for human consumption and irrigation is located in the carbonated sedimentary formations at the southeastern part of Kunene and a great part of the northern part of the Kunene region. With more detailed data treatment, it allowed for confirming a natural origin for high fluoride concentration linked to granite, gneiss, old volcanic rocks and high sulphate concentration due to evaporates (gypscrete) in the eastern part of Omusati. In contrast, high nitrate concentrations were found in various lithologies across the two regions confirming local anthropogenic contamination. These results were compared to information obtained through the few published works of local studies to evaluate the accuracy of this large-scale assessment of chemical data.

Abstract

The rainfall situation in the Western Cape became a focal point in 2015; 2016 and 2017. The rainfall in 2015 was half the long term average; in 2016 it was still below the long-term average and in 2017 it was again about half the long-term average. In 2018 the rainfall was better and was about the same as the long term average. These consecutive years of low rainfall were really problematic and with the declaration of the "Day Zero" campaign the media brought the plight of the City of Cape Town into the global headlines. However it was not only the City of Cape Town that was under dire stress but the whole of the Western Cape Province (and beyond). The neighbouring District Municipalities (DM) also embarked on frantic groundwater development and augmentation programmes. GEOSS South Africa (Pty) Ltd was fortunate to be involved in the DMs surrounding the City of Cape Town.

This presentation focusses more on the groundwater aspects per se rather than the technical; aspects of boreholes; pumps etc, with specific reference to case studies including the Sandveld; Saldanha Bay Local Municipality and the Stellenbosch Local Municipality (specifically the Franschhoek area). The Sandveld (which is within the Berg River District Municipality) has a significant agricultural sector and 25 years of regional groundwater monitoring indicates that even with significant groundwater abstraction for the agricultural activities within the area, the groundwater volumes are robust enough to support further development of groundwater to meet the increasing water requirements for the town supply of Graafwater and Lamberts Bay. This expansion is currently underway.

The West Coast District Municipality (specifically the Saldanha Bay Local Municipality) committed significant resources to groundwater development in the times of the drought. The Langebaan Road Aquifer wellfield was expanded with additional production boreholes and a new wellfield, known as the Hopefield Wellfield was also fully developed and equipped with all infrastructure in place. The wellfields have also set up to implement Managed Aquifer Recharge. Although these schemes are not yet operational, the groundwater levels held up well during the drought, indicating these wellfields should play a major role in times of future drought. Groundwater within the Franschhoek area (Winelands District Municipality) is utilized by many sectors and from detailed and long term monitoring the drought had little impact on the resources supporting the development of groundwater supply schemes for Municipal augmentation. From widespread work in the Western Cape Province it is evident that the drought had little impact on the groundwater levels of the region and it bodes well as a resource to be utilised in times of severe stress, so long as it is properly authorised, monitored and managed.

Abstract

Western Cape groundwater resources are often considered in isolation, per quaternary or aquifer depending on the level of management. This is an attempt to look at groundwater resources in its entirety for the major aquifer areas of the Western Cape. Atlantis in the Western Cape has been successfully operating for about 4 decades using artificial recharge, recycling of treated waste water and storm water. It is currently under used due to clogging of borehole screens and pumps with iron. However, there is no question of the potential for use and the volumes of water that the aquifer is able to supply. The Cape Flats Aquifer (CFA) has been identified in the past as a potential source to augment Cape Town’s municipal water supplies. Studies to assess the viability of the aquifer as a water supply to the Cape Metropolitan area all concluded that the CFA is a viable resource that can supply a projected sustainable yield of about 18 Mm3/a of bulk water. Artificial recharge was tested in the Cape Flats and showed great promise. The Langebaan area along the West Coast has an existing well field supply, which is able to supply the town. Artificial recharge was tested in Langebaan Road during 2009, and showed promise for the Langebaan area. In essence, the Western Cape has a large volume of untapped resources which could improve the water situation. Climatic data, groundwater levels, and chemistry for these areas are explored to consider the potential for artificial recharge, abstraction and use and the extent to which artificially recharged and existing resources can supply the coastal areas of the Western Cape.

Abstract

Groundwater quality and groundwater sample representativeness depend on the integrity of the water supply and monitoring wells. Well-integrity issues can occur by improper placement of grout seals behind the protective casing and/or by improper backfilling processes between ports. Multi-level monitoring systems are becoming common in the industry, providing depth-discrete groundwater samples and hydraulic head data from a single borehole. However, isolation between the monitoring intervals can be challenging when backfilled methods are used. No independent verification method exists to confirm seal placement for isolating monitoring intervals in such multi-level wells. A new approach using a hybrid fibre optic cable for adding heat, referred to as Active Distributed Temperature Sensing (A-DTS), is deployed in the annular space of a backfilled multi-level well. This new method is used to quantify the position of bentonite used as seals and sand packs that define the monitoring interval lengths and to identify issues associated with backfilling. A-DTS data from three boreholes with back-filled multilevel systems to 85 mbgs in a dolostone aquifer in Guelph, Ontario, Canada, demonstrates clear boundaries between backfill materials. In one interval, a deviation in the thermal data suggests a bridge in the bentonite seal, and this interval coincides with challenges in the backfilling from the field notes. The proposed method verifies well completion details, is repeatable and provides an efficient and effective way to assess well integrity impacting measurement uncertainty in a range of well types.

Abstract

Mt. Fuji is the iconic centrepiece of a large, tectonically active volcanic watershed (100 km2 ), which plays a vital role in supplying safe drinking water to millions of people through groundwater and numerous freshwater springs. Situated at the top of the sole known continental triple-trench junction, the Fuji watershed experiences significant tectonic instability and pictures complex geology. Recently, the conventional understanding of Mt. Fuji catchment being conceptually simple, laminar groundwater flow system with three isolated aquifers was challenged: the combined use of noble gases, vanadium, and microbial eDNA as measured in different waters around Fuji revealed the presence of substantial deep groundwater water upwelling along Japan’s tectonically most active fault system, the Fujikawa Kako Fault Zone [1]. These findings call for even deeper investigations of the hydrogeology and the mixing dynamics within large-scale volcanic watersheds, typically characterized by complex geologies and extensive networks of fractures and faults. In our current study, we approach these questions by integrating existing and emerging methodologies, such as continuous, high-resolution monitoring of dissolved gases (GE-MIMS [2]) and microbes [3], eDNA, trace elements, and integrated 3-D hydrogeological modelling [4]. The collected tracer time series and hydraulic and seismic observations are used to develop an integrated SW-GW flow model of the Mt. Fuji watershed. Climate change projections will further inform predictive modelling and facilitate the design of resilient and sustainable water resource management strategies in tectonically active volcanic regions

Abstract

Water stewardship is achieved through a stakeholder’s inclusive process. It aims to guarantee long-term water security for all uses, including nature. Various actions can occur in the watershed’s recharge area, such as land cover restoration and artificial recharges. To measure the effectiveness of these actions, it is crucial to quantify their impact on water and communities. The common method for assessing the benefits of water stewardship activities is the volumetric water benefit accounting (VWBA) method. It allows for comparing the positive impact on water to the extracted groundwater volume for operations. We present the validation of the Positive Water Impact of DANONE Aqua operation at the Lido Site in West Java, Indonesia, within the VWBA framework. Different methods were used to evaluate three main water impact activities: (1) land cover restoration with reforestation, (2) artificial recharge with infiltration trenches and wells, and (3) water access. The curve number of the SWAT model was used to measure the reduced runoff impact of the land conservation action. The water table fluctuation method was employed to assess artificial recharge volume. The volume of pump discharge rates was used for water access. Results highlight the water impact at the Lido site, with the volumetric accounting of the three main activities. The discrepancy in the final calculation can be related to the variation in the field’s validated activities. VWBA framework is useful to validate water stewardship activities’ impact and plan further impactful actions.

Abstract

A groundwater study at Middelburg Colliery was completed with the emphasis on the investigations into water balances on a rehabilitated coal mining environment. Water balance calculations and water scheduling for collieries in Mpumalanga have become important facets of mine planning over the past years. Opencast mining involves the blasting and removal of rocks overlying the coal layer, which is removed completely. The overburden is then replaced (backfilled) and covered with soil and the terrain is rehabilitated. Rainwater penetrating through the soil into the backfill may become acidic by pyrite and sulphides in the backfill material and ultimately decants on the surface. Decanting generally commences a decade or more after mining ceases. Opencast mining impacts the natural groundwater regime and radically alters the nature of groundwater-surface water interactions. The Department of Water Affairs and Forestry in South Africa requires that mines minimise the release of their polluted water. A groundwater balance is the numerical accounting of the annual recharge to a groundwater resource. It can further be described as a quantitative assessment of the total water resources of a basin over a specific period of time. In a groundwater development program, such a budget is necessary to efficiently manage and utilize the resource. Many of the parameters that determine recharge to an aquifer are measured directly and some are computed from hydraulic characteristics and measured field data. The Middelburg Mine Services has been experiencing excess water problems in past years. Because of the lack of space and the concerns of decanting of mine water out of the rehabilitated pit, it was suggested that mine water treatment should be considered. Geohydrological models were created to determine the decant positions and water volumes for the rehabilitated area. The size of the water treatment plant can then be determined using the calculated decant volumes and positions.

Abstract

Thailand has been grappling with a water scarcity problem every year, leading to insufficient water supply for consumption in many areas. To tackle this issue, groundwater is developed from large sources, making water allocation and economic analysis essential for measuring investments in water supply projects. This research study analyzes the water allocation for consumption and irrigation, including the water sent to hospitals, in two areas, Si Somdet & Roi Et Province and Nong Fai. The study uses the WUSMO program to analyze irrigation water and the EPANET program to analyze the entire water allocation system. The expected results include the appropriate allocation of water for maximum benefit, considering both delivery time and the amount of water to ensure adequate delivery. The study provides a guideline for effective and sustainable water allocation and management, including appropriate and sufficient water costs for managing the water distribution system in both areas. The results show that a water rate of 19 baht per cubic meter in Si Somdet & Roi Et Province results in a B/C value of 1.04 and an EIRR of 6.48%, while a water tariff of 15 baht per cubic meter in Nong Fai results in a B/C of 1.01 and an EIRR of 6.16%. The study highlights the importance of regular analysis of water allocation and cost-effectiveness of projects to ensure sustainable and efficient water management for the people.

Abstract

Introduction: Verlorenvlei catchment in the renowned potato Sandveld area is shared by three main towns where agriculture is a primary economic activity. This semi-arid catchment, receives low winter rainfall, but has a dynamic groundwater system providing almost all water services in the catchment and sustaining the acclaimed Verlorenvlei RAMSAR site. There have been recurring concerns of land use as a potential threat to water resources and the sustainability of Verlorenvlei RAMSAR site. The Minister of Water and Sanitation as custodian of water resources requires that surface water use less than 18 250 m3 and ground water use less than 3 650 m3/a to be granted under general authorization. All water use above such general authorization volumes is to be registered (Government Gazette No. 20526 of 1999). Water use registration, is identified as a tool used to achieve the effective management and governance of water resources. Water use above general authorization, is associated with larger scale land use activity, which may have an impact on water resources and the environmental at large. The following study, seeks to examine and compare catchment water use for land uses, to catchment water availability using water use registration data. Comparing water allocation and catchment capacity, this study further seeks to explore the effectiveness of water use registration in achieving good governance of water resources. Purpose: The purpose of this study was to determine effectiveness of water use registration in promoting good governance in the Verlorenvlei catchment Results: Of 124 registered water users identified in the Verlorenvlei catchment, only two of these water users are within the legislative limit outlined by Government Gazette No. 20526 of 1999. Overall, permissible water use is 447 547 259.5 m3/a, over 10 times the catchment capacity of 40 000 000 m3/a. Conclusion: Overall, excessive water use for land use activity is observed within the catchment, despite provision of legislature guiding against excessive water use. Increased water use registration, does however correlate with improved land use practices for agricultural production (Potato SA, 2014) suggesting probability of good governance. Lastly, there is a need for monitoring; improved water and land use efficiency, Integrated Water Resources Management and good governance in the catchment.

Abstract

This past drought (summer of 2016/17) in the Western Cape has resulted in a number of boreholes “failing” and desperate farmers calling for more boreholes to be drilled. A closer look shows that many, if not most, of these boreholes were tested by the long-discredited “Maximum drawdown-yield at end of 48 hours x 60% = yield” method. A prime example was a borehole drilled and tested by the “old” method in 1983. This borehole was the main borehole supplying a stud horse farming operation. The borehole was equipped with a large capacity pump set at depth for paddock irrigation, plus a low capacity pump set above for drinking water supply. Using the existing main pump the author carried out a step-test in 2012. The borehole appeared to be sustainable. When re-tested in the middle of the drought of 2017 it hit pump- suction in 8 hours, i.e. it is not sustainable. Two radical examples of water supply boreholes are examined: a borehole with air-lift yield of 10 to 15 L/sec for which the sustainable yield was determined to be 0.5 L/sec, and a borehole with an air-lift yield of 0.5 to 0.7 L/sec for which the sustainable yield was determined to be 7.5 L/sec. Conclusion: In order to determine the sustainable yield of a borehole, especially in the fractured rock environment of Southern Africa, do not rely on the driller’s report of air- lift yield, and use the proper method of test-pumping a borehole. If not you may be in trouble.

Abstract

The demand on fresh water has increased to such an extend that supply cannot keep up with demand, especially in areas where desalination of seawater is not an option. There is a large gap between the water user, the water supplier and the capacity of the resource/s. The water user sees it as his/her right to be provided with clean water in sufficient volumes to sustain their most basic needs.At the same time people want higher levels of service, especially where sanitation is concerned. The recent droughts in Cape Town and in Port Elizabeth have put significant focus on groundwater and we've seen uncontrolled drilling for groundwater reaching new heights, which is a problem on its own. We can no longer afford not to bring the groundwater user into the water planning cycle, so that the users, on all levels of society, can be educated to understand that the quantity and quality of fresh water (ground -and surface water) is limited and dependent on recharge from rainfall, size of the catchment, topography and all that takes place on the surface. This education must be specific to a target audience and must take into account the existing knowledge and understanding of the user profile. As an example, a case study will be discussed where there are large groundwater users operating within the upper parts of a catchment, followed by municipal abstractions and private abstractions within the central parts of the same catchment. Four profiles of users are therefore present: (1) large-scale irrigation by farmers, (2) large-scale municipal abstractions, (3) private residents and (4) formal / informal settlements, with the latter probably competing for top pot in terms of water use, with the irrigation. They key deliverable of the presentation / paper will be to (1) make people aware of the problem/challenge, and (2) suggest ways to bridge gaps and get all users and service providers to work together to save water and to understand that there are limits to the quantities available.

Abstract

Globally, rivers, lakes and groundwater face complex anthropogenic water quality alterations posing risks to human health, food security and ecosystems. The World Water Quality Alliance (WWQA) forms an open, global consortium, pooling expertise on water quality science and technology innovation and providing a participatory platform for water quality assessments and co-designing tailored and demand-driven services. It addresses priority topics relevant to water governance, scalable water solutions and emerging issues in water management. The African Use Cases provided an initial testbed that puts the quality of surface water and groundwater into the context of the local 2030 Agenda and its multiple linkages across the Sustainable Development Goals. Central to the initial Africa Use Cases was the integration of in-situ, remote sensing-based earth observation and modelling data to derive the best possible current state of water quality (baseline). Of the three African Use Cases, “Cape Town’s Major Aquifer Systems” focused mainly on groundwater quality in an urban environment. One of the success factors for the Cape Town Aquifer Use Case was the ability of the team to integrate the three different data types of the triangle approach on a sub-catchment scale. This required understanding the complex surface and groundwater systems and their interaction (flow paths and fluxes) in the urban environment. A robust stakeholder engagement process and the introduction of transformative art also drove the success of the Cape Town Use Case. The outcomes of this process will be presented and discussed in this presentation.

Abstract

When conducting water quality monitoring, questions arise on which water quality guidelines to use and where to apply them. For example, the use of South African Water Quality Guidelines (SAWQG) for Domestic usage compared to the use of the South African National Standards (SANS) for Potable Water Quality when monitoring drinking water quality. The World Heath Organization (WHO) published a set of water quality guidelines for drinking water which can also be used instead of SANS. Using various water quality guidelines to assess water quality can give different outcomes on the state of water quality of a particular site. For example, SANS water quality guidelines are less strict when compared to the SAWQG target values, however, SAWQG are comprised of different sets of standards for different usages. SAWQG distinguish between drinking water, livestock and irrigation, aquatic systems and industrial usage while SANS are only used for potable or bottled water. The International Finance Corporation (IFC) that is part of the World Bank Group published the Environmental, Health, and Safety (EHS) Guidelines for Environmental Wastewater and Ambient Water Quality, guidelines set specifically for wastewater and ambient water quality. Utilizing this poster, I will explain when to use which guidelines with different types of water samples. I will also discuss the stringent water use license limits applied at some sites compared to the national standards of South Africa.

Abstract

Groundwater is often used as an alternative source of drinking water in many places of the world mostly in rural areas. There is a perceived claim that groundwater is clean and safe. This study was carried out to assess the quality of various groundwater sources in the Vhembe District of South Africa. Questionnaires were distributed to residents of the area to evaluate the water use practices. Water quality indices were employed to estimate the usefulness of the groundwater water resources. Heavy metals and major ions were analysed using ICP-MS. E. coli and total coliforms were determined using membrane filtration method. Health risk of the heavy metals in the water was estimated using standard protocol. The results of the study showed that most of the metals complied with the South Africa National Standards. Some of the anions exceeded the recommended limit. Majority of the groundwater sources were fit for other uses except drinking due to the levels of E. coli determined. Sources of contamination determined were both natural and anthropogenic. Adequate monitoring of groundwater resources is recommended to avoid possible risk to public health.

Abstract

Water monitoring is a key aspect in the mining industry, in terms of gathering baseline data during the pre-construction stage, identifying potential areas of concern and mitigating source pollutants during the operational stage. A proper water monitoring program assists in the monitoring of plume development and water level rebound during the closure phase. The data made available through consistent long term monitoring should not be underestimated. Monitoring the effect that coal mine operations have on the water quality and quantity of surface and groundwater resources is a complex and multidisciplinary task. Numerous methodologies exist for monitoring of this kind. This paper will supply an overview of the water- rock chemistry associated with coal mine environments and the key indicator elements that should be focused on for water monitoring as well a review of the Best Practice Guidelines requirements in terms of water monitoring. Two case studies of coal mines in KwaZulu Natal will be reviewed, the key challenges outlined and mitigation measures implemented. The impact of requirements such as those set out by the Department of Water and Sanitation in terms of strict water quality limits for water containment and waste facilities as specified by Water Use Licences has also created unrealistic non-compliance conditions. The initial approach to creating a water monitoring programme should involve first identifying gaps in previous datasets and delineating potential sources of contamination. The sampling frequency will depend primarily on the water resource being monitored and the water quality analysis will depend on the type of facility. The facilities required for a specific situation will depend on the type and amount of waste generated, potential for leachate formation, vulnerability of groundwater resources and potential for water usage or resource sensitivity.

Abstract

The manner in which municipal and industrial wastes generated are disposed in the urban areas in Nigeria is worrisome. The practice of dumping solid wastes in abandoned burrow-pits or valley and the discharge of liquid wastes directly on soils or surface water without any form of treatment has resulted in soil and water pollution. The continuous release of dangerous gases into the atmosphere by industries unabated has contributed to air pollution. These inadequate waste disposal techniques have created serious environmental and health challenges. Due to increasing population growth rate, urbanization, industrialization and economic growth, there has been a phenomenal increase in the volume of wastes generated daily and handling of these wastes have constituted an environmental problem. The need to manage these wastes in an environmentally-friendly manner that will guarantee safety of the soil and water resources lead to the present study. The newly designed waste management landfill incorporates advanced features such as complex multiple liner construction to facilitate organic decomposition and maintain structural integrity. The multiple protective layers and regular monitoring ensure that the waste management landfills exist in harmony with their surrounding environments and communities. These features that enhances maximum protection of soil and water from contamination by plume by decaying waste is lacking in the un-lined open waste dumps been practiced in the country. Pollution abatement, waste reduction, energy saving, health and economic benefits are some of the advantages of the newly designed sanitary landfill system.

Abstract

The occurrence of emerging organic contaminants (EOCs) in the aquatic environment is of no surprise since these are applied for various purposes daily. This study investigated the changes in EOCs concentrations in the water between 2019 and 2020. During rainy seasons, samples were collected from dams and surrounding boreholes in the Eastern Basin of the Witwatersrand Goldfields. During the first and second laboratory analyses, 24 and 11 analytes were screened in the water samples. The findings indicated that in 2020, compounds such as caffeine, sulfamethoxazole, atrazine and metolachlor displayed detection frequency exceeding 2019. This indicates that the occurrence of these compounds in the aquatic system has increased within a year. Whilst carbamazepine was still traced in 12 sites as previously observed in 2019, compounds estradiol, estrone, bisphenol A and ibuprofen were traced in fewer sites than they were detected in 2019. Compounds 4-nonylphenol, methylparaben, caffeine and atrazine were detected in all the samples analysed for 2019 and 2020, respectively. Antiretrovirals (ARVs) were analysed once and were detected in most sites, with efavirenz registering the highest (12/18) detection frequency. Assessing the occurrence of EOCs in boreholes according to the depth indicated that bisphenol A and estrone were traced in greater concentrations in deep than shallow aquifers, whilst the opposite was observed for atrazine. This study showed groundwater susceptibility to contamination by EOCs, with concentrations of most compounds increasing with time due to their high usage and improper sewer systems in the area.

Abstract

Case studies illustrate a conceptual framework for shallow groundwater flow systems’ temporal and spatial variability with groundwater-surface water interactions in the Boreal Plains of Canada. The framework was developed using a twenty-year hydrometric dataset (e.g., climatological and streamflow data, hydraulic heads, vertical hydraulic head gradients, geochemical and isotopic signatures). The region is characterized by low-relief glacial landscapes, with a mosaic of forestlands and peatlands, and a subhumid climate, resulting in spatially heterogeneous storage and transmission properties, variable recharge and evapotranspiration potentials, and highly complex patterns of water movement. Two primary spatiotemporal scales were examined to create a holistic, variable-scale conceptual model of groundwater movement: the large scale (e.g., glacial landforms, regional topography, decadal climate cycles) and the small scale (e.g., individual landcover, local hummocks, annual moisture deficits). Water table behaviour, evapotranspiration rates, and runoff were controlled by a hierarchy of interactions between hydrological processes occurring at different spatiotemporal scales; however, the specific order of controls depends on the hydrogeological setting. The case studies, supported by empirical and numerical modelling, demonstrate that smaller-scale heterogeneities in geology and recharge can dominate over topographic controls, particularly in areas with high conductivity or hummocky terrain, where the climate, geology, and topographic relief are similar. Many hydrogeological studies rely on surface topography as a first‐order control; however, with field observations and modelling, this conceptual framework demonstrates the need to consider the potential dominance of subsurface characteristics and processes, plus climate, especially in landscapes with low recharge and low relief.

Abstract

Globally, a growing concern have been that the heavy metal contents of soil are increasing as the result of industrial, mining, agricultural and domestic activities. While certain heavy metals are essential for plant growth as micronutrients, it may become toxic at higher concentrations. Additionally, as the toxic metals load of the soil increases, the risk of non-localized pollution due to the metals leaching into groundwater increases. The total soil metal content alone is not a good measure of risk, and thus not a very useful tool to determine potential risks to soil and water contamination. The tendency of a contaminant to seep into the groundwater is determined by its solubility and by the ratio between the concentration of the contaminant sorbed by the soil and the concentration remaining in solution. This ratio is commonly known as the soil partitioning or distribution coefficient (Kd). A higher Kd value indicate stronger attraction to the soil solids and lower susceptibility to leaching. Studies indicate that the Kd for a given constituent may vary widely depending on the nature of the soil in which the constituent occurs. The Kd of a soil represents the net effect of several soil sorption processes acting upon the contaminant under a certain set of conditions. Soil properties such as the pH, clay content, organic carbon content and the amount of Mn and Fe oxides, have an immense influence on the Kd value of a soil. Kds for Cu, Pb and V for various typical South African soil horizons were calculated from sorption graphs. In most cases there were contrasting Kd values especially when the cations, Cu and Pb, had high contamination levels, the value for V was low. There is large variation between the Kds stipulated in the Framework for the Management of Contaminated land (as drafted by the Department of Environmental Affairs) and the values obtained experimentally in this study. The results further indicate that a single Kd for an element/metal cannot be used for all soil types/horizons due to the effect of soil properties on the Kd. The results for Cu and Pb indicated that the Kds can range in the order of 10 to 10 000 L/kg for Cu and 10 to 100 000 L/kg for Pb. The variation in V Kd was not as extensive ranging from approximately 10 to 1 000 L/kg. {List only- not presented}

Abstract

The expectation that during yield tests, a borehole will react within the expected framework of the existing numerical models, is often not met within real-world scenarios. This is mainly due to the observation that the Theis solution for confined aquifers, Neuman solution for unconfined aquifer and Barker Generalised Radial Flow Model for hydraulic tests in fractured rocks all include idealised assumptions regarding the physical aspects of a hypothetical. In order to interpret the data from a yield test these methods, along with the Flow Characteristic method for sustainable yield estimates, are commonly used. However, as these assumptions are not always met, the analysis is usually focused on time periods within the test that approximate these solutions. In some cases, the extent to which these assumptions are not met can produce drawdown data that is not well described by the usual analytical models used to analyse this data. This study addresses some of the shortcomings experienced during testing in non-ideal aquifers, as well as briefly describing some tests where small budgets, short deadlines, a lack of information and/or unforeseen circumstances resulted in similar challenges to analyses. This study does not present new solutions to drawdown data analyses, but rather discusses how the mentioned solutions were used during testing to accommodate for the shortcomings experienced.

Abstract

Vapour intrusion (VI) is recognized to drive human health risk at numerous sites that have been contaminated by petroleum products and other volatile contaminants. The risks related to VI are typically evaluated using direct measurement (vapour sampling) or modelling methods. ERM has developed a toolbox approach using a combination of exclusion distance criteria, direct measurement and modelling methods to assess risks and achieve closure. For direct measurement, samples of vapour are taken beneath the floor slab of buildings (sub-slab sampling) or from the air inside the buildings (indoor air sampling). Modelling methods are often used to estimate the partitioning of volatile contaminants from soil or groundwater sources into the vapour phase and the subsequent transport of vapours from the subsurface environment into habitable buildings. A limitation of modelling approaches is that they are designed to be conservative to be adequately protective of sensitive receptors. VI models also do not typically take into account the degradation of hydrocarbon vapours in the presence of oxygen, which has been found to be a significant process for petroleum hydrocarbons. The authors have compiled a dataset of petroleum vapour and groundwater results from over 50 petroleum release sites in southern Africa. These data were used to develop exclusion distance criteria for vapours emitted from contaminated groundwater sources (i.e. distance from the source at which sufficient aerobic attenuation has occurred for the VI risk to be negligible). A standard "lines of evidence" approach has been applied to the assessment of VI risk by firstly applying the exclusion distance criteria to sites with groundwater contaminant plumes beneath buildings, and if these are met, the sites are considered to have no unacceptable VI risk. Where exclusion screening criteria are not met, risk is estimated using modelling, and if a potential risk is predicted, then direct sub-slab measurements are taken to more accurately assess the risk. Lastly, where sub-slab assessment predicts a potential VI risk, indoor vapour measurement are taken to evaluate actual risk, taking into account interferences from other sources and background levels of contaminants. Mitigating measures can then be applied as appropriate. Various case studies will be presented including direct measurements at industrial and residential sites overlying contaminant plumes and modelling methods at residential properties adjacent to service station sites. A risk-based approach to the assessment of contaminated land provides a sustainable and cost effective methodology, and also avoids unnecessary remediation. The results show that VI risks can be adequately addressed with a toolbox approach using multiple lines of evidence.

Abstract

POSTER Vanwyksvlei had always experienced problems with water supply and quality of drinking water. The town relies on 6 boreholes to supply the town with drinking water. Since 2011 the town was told not to use the water that was supplied from the borehole called Soutgat. This meant that the town could now rely only on the water being supplied from the other 5 boreholes.From 2011 till present the town has experienced a lot of problems regarding water supply, due to the fact that the Soutgat could not be used anymore. Extra stress was put on the other boreholes and these were pumped almost dry. The two aquifers are currently failing and monitoring data since 2009 shows that the water levels of the town are decreasing. Due to low rainfall, recharge to the boreholes are much lower, which exacerbates the problem. This poster will examine the effectiveness of using the Blue Drop system in small towns with limited water supply, at the hand of a case study of Vanwyksvlei. This review will take into account factors such as the point at which water quality is tested in the water supply system, the type of water treatment available for the town and a review the usefulness of certain standards in the Blue Drop system which may indicate failure of supply sources.

Abstract

The development of satellite technologies creates more and more opportunities to build modern tools for monitoring the state of groundwater. The use of the GRACE satellites to monitor GWS changes has become widespread, but the degree of accuracy with which remote sensing data can estimate these changes is unclear. In this study, we quantified changes in the GWS in Poland from 2009 to 2022 using GRACE observations, in-situ data, and GLDAS. Long-term trends and seasonality were calculated and analysed for each time series. The correlation analysis between GRACE TWS, GWS obtained from GRACE and GLDAS, and GWS in situ was performed using linear regression. Pearson and Spearman’s methods show that GRACE performance is good in the region of shallow (up to 3 m) presence of thick (above 5 m) unconfined porous aquifers; however, performance is worse in a region with multiple aquifer systems, including fissured and karst aquifers. In addition, an unrepresentative groundwater GRACE signal is obtained in regions with surface water storage, such as the Baltic Sea area. It was also found that there is very high consistency between the GRACE observations and wells water level changes, while the GWS series obtained from GRACE and GLDAS do not provide adequate compatibility. According to the GRACE data, the results suggest that evapotranspiration and the hydrodynamic system have the greatest impact on the sensitivity of the GWS estimation. The results are important for better processing the GRACE data to obtain a representative signal for the GWS assessment.

Abstract

This study explores some of the principle issues associated with quantifying surface and groundwater interactions and the practical application of models in a data scarce region such as South Africa. The linkages between the various interdependent components of the water cycle are not well understood, especially in those regions that suffer problems of data scarcity and there remain urgent requirements for regional water resource assessments. Hydrology (both surface and groundwater hydrology) is a difficult science; it aims to represent highly variable and non-stationary processes which occur in catchment systems, many of which are unable to be measured at the scales of interest (Beven, 2012). The conceptual representations of these processes are translated into mathematical form in a model. Different process interpretations together with different mathematical representations results in the development of diverse model structures. These structural uncertainties are difficult to resolve due to the lack of relevant data. Further uncertainty is introduced when parameterising a model, as the more complex the model, the greater the possibility that many different parameter sets within the model structure might give equally acceptable results when compared with observations. Incomplete and often flawed input data are then used to drive the models and generate quantitative information. Approximate implementations (model structures and parameter sets), driven by approximate input data will necessarily produce approximate results. Most model developers aim to represent reality as far as possible, and as our understanding of hydrological processes has improved, models have tended to become more complex. Beven (2002) highlighted the need for a better philosophy toward modelling than just a more explicit representation of reality and argues that the true level of uncertainty in model predictions is not widely appreciated. Model testing has limited power as it is difficult to differentiate between the uncertainties within different model structures, different sets of alternative parameter values and in the input data used to run a model. A number of South African case studies are used to examine the types of data typically available and explore the extent to which a model is able to be validated considering the difficulty in differentiating between the various sources of uncertainty. While it is difficult to separate input data, parameter and structural uncertainty, the study found that it should be possible to at least partly identify the uncertainty by a careful examination of the evidence for specific processes compared with the conceptual structure of a specific model. While the lack of appropriate data means there will always be considerable uncertainty surrounding model validation, it can be argued that improved process understanding in an environment can be used to validate model outcomes to a degree, by assessing whether a model is getting the right results for the right reasons.

Abstract

This study explores some of the principle issues associated with quantifying surface  water and groundwater interactions and the practical application of models in a data scarce region such as South Africa. The linkages between the various interdependent components of the water cycle are not well understood, especially in those regions that suffer problems of data scarcity, and there remain  urgent  requirements  for  regional  water  resource  assessments.  Hydrology  (both  surface water and groundwater hydrology) is a difficult science; it aims to represent highly variable and non- stationary processes which occur in catchment systems, many of which are unable to be measured at the scales of interest. The conceptual representations of these processes are translated into mathematical form in a model. Different process interpretations, together with different mathematical representations, result in the development of diverse model structures. These structural uncertainties are difficult to resolve due to the lack of relevant data. Further uncertainty is introduced  when  parameterising  a  model,  as  the  more  complex  the  model,  the  greater  the possibility that many different parameter sets within the model structure might give equally acceptable results when compared with observations. Incomplete and often flawed input data are then used to drive the models and generate quantitative information. Approximate implementations (model structures and parameter sets), driven by approximate input data, will necessarily produce approximate results. Most model developers aim to represent reality as far as possible, and as our understanding of hydrological processes has improved, models have tended to become more complex. Beven (2002) highlighted the need for a better philosophy toward modelling than just a more explicit representation of reality and argues that the true level of uncertainty in model predictions  is  not  widely  appreciated.  Model  testing  has  limited  power  as  it  is  difficult  to differentiate  between  the  uncertainties  within  different  model  structures,  different  sets  of alternative parameter values and in the input data used to run a model. A number of South African case studies are used to examine the types of data typically available and explore the extent to which a model is able to be validated considering the difficulty in differentiating between the various sources of uncertainty. While it is difficult to separate input data, parameter and structural uncertainty, the study found that it should be possible to at least partly identify the uncertainty by a careful examination of the evidence for specific processes compared with the conceptual structure of a specific model. While the lack of appropriate data means there will always be considerable uncertainty surrounding model validation, it can be argued that improved process understanding in an environment can be used to validate model outcomes to a degree, by assessing whether a model is getting the right results for the right reasons.

Abstract

South Africa is known for droughts and their effect on groundwater. Water levels decrease, and some boreholes run dry during low recharge periods. Groundwater level fluctuations result from various factors, and comparing the levels can be challenging if not well understood. Fourie developed the “Groundwater Level Status” approach in 2020 to simplify the analysis of groundwater level fluctuations. Groundwater levels of two boreholes within different hydrogeological settings can thus be compared. The “Status” can now indicate the severity of the drought and thus be used as a possible groundwater restriction level indicator. The reasons for the groundwater level or the primary stress driver can only be determined if the assessment is done on individual boreholes and the boreholes according to hydrogeological characteristics. The analysis is used to identify areas of risk and inform the authorities’ management to make timely decisions to prevent damage or loss of life or livelihoods. The applicability of this approach from a borehole to an aquifer level is showcased through practical examples of the recent droughts that hit South Africa from 2010-2018.

Abstract

South Africa is the leading user of pesticides in Sub-Saharan Africa, but data on pesticide occurrence in (ground)water is limited. Consequently, there is a need to improve knowledge on transport pathways that cause pesticides to enter the aquatic environment. This research monitored pesticide concentrations in three agricultural catchments in the Western Cape, South Africa, including Grabouw (pome fruit), Hex River Valley (table grapes), and Piketberg (wheat). Passive samplers were deployed in rivers from March 2022- March 2023, adding to a 2017-2019 dataset of analytical and pesticide application data. Field and laboratory methods were developed at Stellenbosch University to measure pesticides using Liquid Chromatography-Mass Spectrometry. For quality control, duplicate samples were analyzed at Eawag, Switzerland. 30 compounds were detected, yet two/three comprise most of the total mass, including an analyte not considered in earlier investigations (dimethomorph).

Rainfall-flow relationships and agricultural application could only partially explain detection levels, suggesting that other factors, including non-agricultural application or groundwater input, might influence detections. Two compounds exceeded European Environmental Quality Standards (chlorpyrifos and imidacloprid). Imidacloprid is particularly concerning because it exceeded consistently despite few recorded applications. 2017-2022 imidacloprid data indicates a decreasing concentration trend in Hex River Valley and increasing trends in Piketberg and Grabouw. Consistently high detections during wet and dry periods suggest groundwater input. However, such pesticide transport pathways are poorly understood due to a lack of local evidence. Local authorities must establish a long-term monitoring program to understand better the risk pesticides pose to the aquatic environment and human health.

Abstract

POSTER The poster presents the modified hydrogeologic conceptual model that was used to assess the dynamics of groundwater flooding in Cape Flat Aquifer (CFA). The groundwater flooding remains poorly understood in the context of urban hydrogeology of the developing countries such as South Africa. While engineering intervention are relevant to providing solution to such events, continue estimation of hydrogeologic parameters at local scale alongside field measurements remain paramount to plausible modeling the groundwater flooding scenarios that inform such engineering interventions. However, hydrogeologic conceptual model which informs numerical simulation has not been modified to include local scale variation in the CFA to reflect various groundwater units. The current study argues that modifying hydrogeologic conceptual model improves numerical simulations thereby enhancing certainty for engineering solutions. The current study developed groundwater units, set up site specific models and estimated aquifer parameters using pumping step-drawdown and constant rate pumping tests in order to produce a comprehensive modified hydrogeological conceptual model for CFA to inform groundwater modeling at catchment level for water sensitive cities.

Key Words: Aquifer parameters, Groundwater flooding, specific models, hydrogeologic conceptual model, groundwater units, numerical simulations, water sensitive cities, CFA

Abstract

The Gravity Recovery and Climate Experiment (GRACE) satellites detect minute temporal variation in the earth's gravitational field at an extraordinary accuracy, in order to make estimation of the total water storage (TWS). GRACE provides a unique opportunity to study and monitor real time water variation in the hydrologic stores (snow, groundwater, surface water and soil moisture) due to increases or decreases in storage. The GRACE monthly TWS data are being used to estimate changes in groundwater storage in the Vaal River Basin for a period (2002 to 2014). The Vaal River Basin has been selected, because it is one of the most water stressed catchments in South Africa; it is well-renowned for its high concentration of industrial activities and urbanized zones. Therefore, in order to meet future water demands, it is critical to monitor and calculate changes in groundwater storages as an important aspect of water management, where such a resource is a key to economic development and social development. Previous studies in the Vaal River Basin were mostly localised focusing mainly on groundwater quality and to a lesser extent groundwater assessment. Hydrological models have been generated for the whole of South Africa, but many of these models do not take into account the groundwater component. Thus, there is a significant gap in the understanding of surface and ground water dynamics in the Vaal River Basin. The paucity of data and monitoring networks are often the limitation in calculating changes in water storage over a large area, particularly in Africa. In this scenario GRACE is a good approach to estimate changes in hydrological storages as it covers large areas and generates real time data. It does not require information on soil moisture, which is often difficult to measure. The accuracy of calculating change in groundwater storage lies in the processing of GRACE data and smoothing radii. For this study, smoothing radii of 1500, 900, 500, 300, 150 and 1 km are used. Currently the associated error with different smoothing radii is unknown. The preliminary results indicate that the study area experienced a loss in TWS of -31.58 mm equivalent water height over a period of 144 months in TWS at 300 km smoothing radius. The change in groundwater storage is calculated by incorporating hydrologic components to the TWS (work in progress). The results obtained from this study will be compared to existing hydrological models and results generated from models applicable to the semi-arid region of South Africa. It is anticipated that this satellite observation technique, GRACE, will provide an accurate estimate of change in groundwater storage. Furthermore, it will show the usefulness of satellite based techniques for improving our understanding of groundwater dynamics, which will improve water management practices.

Abstract

Tamilo, T; Webb, S.J.

The Vredefort Dome 120 km southwest of Johannesburg is a meteorite impact crater that formed at approximately 2 Ga. The region hosts farmland, and the town of Parys is situated in the northwestern part of the dome. The dome is the location of the annual Wits University/AfricaArray Geophysical Field School. The aim of the field school is to teach geoscience students several geophysical techniques while conducting scientific research in the area.

A geophysical survey during the 2019 field school over an open field just outside of Parys revealed a buried fracture that hosts ground water. A 150 m long magnetic profile over the fractures shows a magnetic low (approximately 500 nT) that correlates with a low resistivity region on the inverted electrical resistivity data (dipole-dipole method). Euler deconvolution depth estimates and magnetic modelling estimate an overburden thickness of around 10 m and a similar fracture thickness. The magnetic low of the fracture is due to weathering and removal of any magnetic material in the granites in the region.

Two existing boreholes that lie 618m due south and at a 10 m lower elevation have water levels of around 6.4 m. Both boreholes lie near a riverbed and vegetation, and appear to lie along an extension to the fracture. This fractures detected using geophysical methods seems to form part of a larger fracture system within the Vredefort Dome, that is linked to the formation of the dome. These fractures provide a vital source of water for the local farming community.

Abstract

Enslin,S; Webb, SJ

The Vredefort Dome 120 km southwest of Johannesburg is a meteorite impact crater that formed at approximately 2 Ga. The region hosts farmland, and the town of Parys is situated in the northwestern part of the dome. The dome is the location of the annual Wits University/AfricaArray Geophysical Field School. The aim of the field school is to teach geoscience students several geophysical techniques while conducting scientific research in the area.

A geophysical survey during the 2019 field school over an open field just outside of Parys revealed a buried fracture that hosts ground water. A 150 m long magnetic profile over the fractures shows a magnetic low (approximately 500 nT) that correlates with a low resistivity region on the inverted electrical resistivity data (dipole-dipole method). Euler deconvolution depth estimates and magnetic modelling estimate an overburden thickness of around 10 m and a similar fracture thickness. The magnetic low of the fracture is due to weathering and removal of any magnetic material in the granites in the region.

Two existing boreholes that lie 618m due south and at a 10 m lower elevation have water levels of around 6.4 m. Both boreholes lie near a riverbed and vegetation, and appear to lie along an extension to the fracture. This fractures detected using geophysical methods seems to form part of a larger fracture system within the Vredefort Dome, that is linked to the formation of the dome. These fractures provide a vital source of water for the local farming community.

Abstract

The current study investigated the subsurface of aquifers in Heuningnes Catchment focusing on aquifer characteristics for groundwater resource assessments. Surface geophysical resistivity method was adapted for mapping the shallow subsurface layers and hydrogeologic units at selected sites within the catchment. The aim was to provide a preliminary overview of the subsurface nature of aquifers within the study area, by establishing features such as geological layers, position of weathered zones, faults and water bearing layers. The multi-electrode ABEM SAS 1000 resistivity meter system, using the Wenner array, was used to obtain 2D resistivity data of the subsurface. The acquired data was processed and interpreted using Res2DINV software to produce the 2D resistivity models. The analysis of the resistivity models of the subsurface reveals maximum of four layers; sandstone, shale, poor clayed and brackish water saturated layer. On comparing the model results with the surficial geological formation of the catchment geological map, the identified layers were found to correspond with the geology of the area. The findings i) provide insights on sites that can be drilled for groundwater exploration, ii) show possible water-type variations in the subsurface. Although the results are not conclusive but they provide basis for further research work on quality and flow dynamics of groundwater.

{List only- not presented}
Key words: aquifer properties, hydrogeologic units, geo-electric model, electrical-resistivity method

Abstract

This study focused on improving the understanding of flow regimes and boundary conditions in complex aquifer systems with unusual behavioural responses to pumping tests. In addition, the purpose was to provide a novel analysis of the hydrogeological properties of aquifers to deduce inferences about the general expected aquifer types to inform new practices for managing groundwater. In this paper, we report that using derivative analysis to improve understanding of complexities in aquifer flow systems is difficult and rarely used in groundwater hydraulics research work. Thus, we argue that if derivatives are not considered in the characterizing flow regime. The heterogeneity of aquifers, boundary conditions and flow regimes of such aquifers cannot be assessed for groundwater availability, and the decision to allocate such water for use can be impaired. A comprehensive database was accessed to obtain pumping tests and geological data sets. The sequential analysis approach alongside derivative analysis was used to systematically perform a flow dimension analysis in which straight segments on drawdown-log derivative time series were interpreted as successive, specific, and independent flow regimes. The complexity of using derivatives analyses was confirmed. The complexity of hydraulic signatures was observed by pointing out n sequential signals and noninteger n values frequently observed in the database. We suggest detailed research on groundwater flow systems using tracer methods like isotopes and numeric models must be considered, especially in multilayered aquifer systems such as the Heuningnes catchment.

Abstract

Studies have examined the effects of groundwater pumping on nearby streams. Groundwater pumping affects streamflow, surface water rights, and aquatic ecosystems. This study investigates the impact of groundwater abstraction on surface water bodies. A secondary objective aims to develop a conceptual model to evaluate alternative approaches for streamflow depletion. The study area is a previous UFS/WRC test site along Modder River, Free State, South Africa. Streamflow depletion was simulated using four (4) analytical solutions, i.e., Jenkins (1968), Hantush (1964), Hunt (1999) and Hunt (2003). STRMDEPL08 analytical computer program tool is used to evaluate streamflow depletion. The aquifer parameters: distance of the boreholes to the stream; pumping periods analyzed in steady states conditions for a simulation period of 1 year; transmissivity with an average of 71 m/d; storativity of 0.02; specific yield of the aquitard range between 0.1 to 0.3; and abstraction rate of 2 l/s are defined for the hypothetical model. The average distances tested range from 10 m to 6,000 m. Pumping rate scenarios for an order of magnitude lower (0.2 l/s), 1 l/s; 4 l/s, and an order of magnitude larger (20 l/s) were simulated. Simulated graphs indicate that streamflow depletion rates are largest if the borehole is closer to the stream and decrease as the distance of the pumped borehole from the stream increases. Cumulative volume graphs for both analytical solutions decrease streamflow depletion volume

Abstract

The National Environmental Management Waste Act, 59 of 2008 (NEMWA) clearly identifies the status and risk of contaminated sites and provides a legislative mechanism for remediation activities to be implemented and controlled. The Draft National Framework for the Management of Contaminated Land (henceforth Framework) provides national norms and standards for the practical implementation of remediation activities in compliance with NEMWA. A soil-screening value (SSV) for the protection of water resources is based on a two-phase equilibrium partitioning and dilution model which includes a dilution factor (DF) and partitioning coefficient (Kd) which converts the water quality guideline to a total soil-screening value. This paper presents a methodology to use soil-specific Kvalues to improve the accuracy of the new South African guideline for contaminated land.

Appropriate Phase 1 screening assessments are important due to the potential consequence it holds. Some uncertainty exists in the Phase 1 screening values due to variability in Kd values for different soil. This study shows that the Kvalues selected for the Framework is not representative of typical South African soils. Cu Kd values exceed the value provided by the Framework in all soils, but are lower that the Framework V Kd value in all soils. For Pb, low clay content weathered soils have lower Kd, but higher clay content soils are up to four orders of magnitude higher that the Kd in the Framework. Furthermore, due to the large variability (three to four orders of magnitude for Cu and Pb) point estimates of a single Kd value cannot be used for all soil types. However, for V only one order of magnitude variation is found. 

A way of addressing the uncertainty would be to determine the water soluble portion during the assessment. This would dramatically increase the certainty with which screening is conducted and could prevent significant inappropriate screening. Additional cost incurred be offset by saving as a result of unnecessary Phase 2 assessments or the reduction of undetected risks that later could impact the environment

Phase 1 screening could also be improved by including soil classification and some basic soil properties in the site assessment and adjusting Kd values, accordingly. Soil properties that can be used are typically clay content, pH and organic matter content. From these properties more appropriate Kds can be estimated for use in setting screening values.

Abstract

This study examined the effective use of the hydrogeologic conceptual model (HCM) to implement the integrated water resource management (IWRM) approach. While research focuses on using hydrogeologic models  in  groundwater  for  planning,  few  studies  show  how  to  use  HCM  for  a successful IWRM approach, especially in  resource  poor  catchments.  This  is  largely  due  to  t he lack of adequate data to showcase such models. Despite the lack of numerical groundwater data, the HCM was used in this study and it provided the scientific and visual presentation of key issues for practical understanding by stakeholders. For the first time, HCM provided a  practical understanding of t he  groundwater system in the Limphasa River catchment. By using HCM and physical factors qualitatively, the study revealed that, apart from storage, abstraction mechanisms significantly contributes to regional initiatives of groundwater supply whose central objective is to utilise and manage such water sustainably. The model is based on the relationship between groundwater availability  and  its  related  hydrogeologic factors.  Findings suggest improvement  in quantifying the studied parameters through field experiments to provide a better estimation on storage and abstraction of groundwater in relation to impacts of a future changing climate. Since using HCM has shown practical usage, replicating it in catchments with similar physical and socioeconomic environments, would be desirable as refining the model progresses.