Conference Abstracts

All Abstracts were presented at the Groundwater Conferences

Displaying 51 - 100 of 795 results
Title Sort descending Presenter Name Presenter Surname Area Conference year Keywords

Abstract

This work is part of the AUVERWATCH project (AUVERgne WATer CHemistry), which aims to better characterise some Auvergne water bodies, specifically the alluvial hydrosystem of Allier River (France). Alluvial aquifers constitute worldwide a productive water resource, superficial and easily exploitable. In France, 45% of the groundwater use comes from these aquifers. The study site is a wellfield that withdraws 8.5 million m3 of water annually from an alluvial aquifer to produce domestic water for 80% of the local population. At the watershed scale, precipitations have decreased by -11.8 mm/y, air temperatures have increased by 0.06°C/y and the river flow has declined by 20.8 Mm3 /y on 2000 – 2020. In the summer period, at least 50% of the river flow is ensured by the Naussac dam (upstream catchment part), but the recent winter droughts have not allowed the dam to replenish. Thus, water stakeholders are concerned that the productivity of the wellfield could be soon compromised. Based on geological, geophysical, hydrochemical, and hydrodynamic surveys, a numerical model of the wellfield is being developed using MODFLOW. The calibration in natural flow regime is successful using a range of hydraulic conductivities going from 1×10-3 to 1×10-4 m/s (pilot points method), consistent with the pumping tests. Preliminary results show that the river entirely controls the groundwater levels at all observation points. The perspective is now to calibrate this model in a transient regime by integrating domestic water withdrawals to determine how low the river can go without affecting the wellfield productivity.

Abstract

Due to technical, social, and economic limitations, integrated groundwater management presents a significant challenge in developing countries. The significance of this issue becomes even more pronounced in groundwater management, as this resource is often overlooked and undervalued by decision-makers due to its status as a “hidden resource,” despite the fact that it provides multiple ecosystem services. This study aims to establish the technical hydrogeological foundation in rural basins of central Bolivia through alternative, simplified, and cost-effective methods and tools. The study includes applying geophysical techniques, such as Electrical Resistivity Tomography, to determine the conceptual hydrogeological model of a micro-basin. In addition, a soil water balance approach was applied, characterizing 24 biophysical variables to identify groundwater recharge zones, while global circulation models provided a substitute for unreliable meteorological data. Furthermore, a participatory model was developed to identify recharge areas in upper basin areas within the framework of developing a municipal policy for their protection. The participatory model included local knowledge in all stages of methodology development, considering the characteristics of the local plant communities and the spatial distribution of local rainfall. The research findings have already contributed to resolving socio-environmental conflicts in Bolivia and establishing a foundation for effective water governance by empowering local rural communities. This study has demonstrated the feasibility of using alternative, simplified, and low-cost methods and tools to establish the technical hydrogeological basis, which can inform public policies to promote sustainable groundwater management in developing countries.

Abstract

Coal constitutes 77% of the primary energy needs in the country, with the Waterberg Coalfield estimated to host about 40% of the remaining South African coal resources. The Karoo coals were deposited in a reduced environment that have the potential to produce sulphides within the sediments they are hosted. The sulphur content within the coal can range from 0.1 wt.% to as high as 10 wt.%. Mining generates a disturbance in the natural groundwater levels and affects the surrounding water chemistry when sulphate is produced as a result of pyrite oxidation. Acid base accounting (ABA) was used to determine the balance between the acid producing potential (AP) and acid neutralizing potential (NP). From the analysis the Net Neutralising Potential (NNP) classified samples as either acid or non-acid producing. ARD does not only result in the generation of acid but is accompanied by decreased pH and increased values of specific conductance, dissolved metals and sulphate. The ABA results showed that interburden and coal samples have higher risks of producing acid upon oxidation than overburden samples. Higher concentrations of neutralising minerals are present in overburden samples. ABA indicated that the material 60m below ground surface had a higher acid producing potential than the material above. The analysis from kinetic tests showed the long-term behaviour of different samples, with the electrical conductivity (EC) and pH changing over time. Samples with lower pH continued to produce more sulphate, while calcium continued to increase until it was depleted from the samples. Inductively coupled plasma analysis determined the release of the heavy metals which can be detrimental to the environment, such as As, Co, Ni and Pb. The water demand will increase as mining continues in the area, with inter-catchment transfers identified to overcome local water scarcity issues. ARD poses a big threat to both groundwater and surface water resources.

Abstract

The groundwater governance arrangements for the development of groundwater resources were analysed. The analysis highlighted gaps and barriers to overcome before unconventional gas (shale gas and coal bed methane) development can take place at an industrial scale. The following governance challenges were identified (i) setting baseline measurements to detect groundwater pollution and to determine resource status; (ii) review of licenses and setting conditions for the development of unconventional resources; (iii) compliance monitoring and enforcement systems in place (iv) dealing punitively with non-compliant operators (v) mitigation options in place to prevent groundwater pollution; (vi) goal-based regulatory framework in place rather than a prescriptive regulatory framework; (vii) disclosure of hydraulic injection fluid; (viii) coordination with other government departments and regulatory bodies; (ix) a framework for subsidiarity and support to local water management; and (x) an incentive framework that support good groundwater management. To overcome the challenges requires a decentralized, polycentric, bottom-up approach, involving multiple institutions to deal with unconventional gas development. This provides better conditions both for cooperation to thrive and for ensuring the maintenance of such institutions.

Abstract

The mitigation of groundwater impacts related to gold mining tailings disposal within the Orkney-Klerksdorp region was assessed and presented as a case study. The most pressing concern for the facility owners is the potential for pollution of water resources in the vicinity of the mines, especially after mine closure. The key focus of this paper is to describe how methods were applied to characterise the aquifer and keeping the source-pathway-receptor principles in mind. Characterisation also involves lessons learn by comparing pre-tailings deposition and post-tailings deposition aquifer bahviour. Ultimately the process followed in this paper has led to the development of a logical approach to estimate groundwater liability costs in a typical tailings environment. The link between hydrogeology, geotechnical engineering and civil engineering was identified as a critical foundation for the development of a successful groundwater management strategy

Abstract

The effluent at the eMalahleni water reclamation plant is being processed through reverse osmosis which improves the quality of the mine water to potable standards. Brine ponds are generally used for inland brine disposal and this option has been selected for the eMalahleni plant. Limited capacity to store the brines requires enhanced evaporation rates and increased efficiency of the ponds. This study aims to establish the physical behaviour of the brine from the eMalahleni plant in an artificial evaporation environment. This includes the actual brine and synthetic salts based on the major components.

An experimental unit was designed to accommodate and manipulate the parameters that affect the evaporation rate of brines and distilled water under certain scenarios. Two containers, the one filled with 0.5M of NaCl and the other with distilled water were subjected to the same environmental conditions in each experimental cycle. Each container had an area of a 0.25 m² and was fitted with identical sensors and datalogger to record the parameter changes. The energy input was provided by infra-red lights and wind-aided electrical fans. This equipment used in these experiments was to simulate actual physical environmental conditions. 

The rate of evaporation was expected to be a function of humidity, wind, radiation, salinity and temperature. The experiments showed the type of salt and thermo-stratification of the pond to be significant contributors to the evaporation rate. The results also showed that the NaCl solution absorbed more heat than the water system. The difference in evaporation observed was ascribed to a difference in the heat transfer rate, which resulted in a higher temperature overall in the brine container than in the water container under similar applied conditions. This effect remained despite the introduction of 2 m/s wind flow over the tanks as an additional parameter. The wind factor seemed to delay evaporation due to its chilling effect upon the upper layers of the ponds, initially hindering the effective transfer of radiative heat into the ponds.

 

Abstract

The significance of a reliable groundwater resource assessment is of growing importance as water resources are stretched to accommodate the growing population. An essential component of a groundwater resource assessment is the quantification of surface water–groundwater interaction. The  insufficient  amount  of  data  in  South  Africa  and  the  apparent  lack  of  accuracy  of  current estimates of the groundwater component of baseflow lead to the investigation of a new method. This applicability of this new approach, the Mixing Cell Model (MCM), to quantify the groundwater contribution to baseflow is examined to assess whether the method would be of use in further groundwater resource assessments. The MCM simultaneously solves water and solute mass balance equations  to  determine  unknown  inflows  to  a  system,  in  this  application  the  groundwater component of baseflow. The incorporation of water quality data into the estimation of the surface water–groundwater  interaction  increases the  use of  available  data,  and  thus has  the  ability to increase the confidence in the estimation process. The mixing cell model is applied to datasets from the surface water–groundwater interaction test site developed by the University of the Free State, in addition to data collected along the middle Modder River during a fieldwork survey. The MCM is subsequently applied to a set of quaternary catchments in the Limpopo Province for which there are available calibrated estimates of the groundwater component of baseflow for the Sami and Hughes models. The MCM is further applied to the semi-arid quaternary catchment D73F to assess the applicability of the mathematically-based MCM in a flow system within a regionally-defined zero groundwater  baseflow  zone.  The  results  indicate  that  the  MCM  can  reliably  estimate  the groundwater component of baseflow to a river when sufficient data are available. Use of the MCM has  the  potential  to  evaluate  as  well  as  increase  the  confidence  of  currently  determined groundwater baseflow volumes in South Africa, which will in turn ensure the responsible and sustainable use of the countries water resources.

Abstract

Noble gases are used in this study to investigate the recharge thermometry and apparent groundwater residence time of the aquifers on the eastern slope of the Wasatch Mountains in the Snyderville Basin of Summit County, Utah. Recharge to and residence time for the basin aquifer in the Salt Lake Valley, Utah, from the western slope of the Wasatch Mountain range by 'mountain-block recharge' (MBR), is a significant source of subsurface flow based on noble gas and tritium (3H) data. The Snyderville Basin recharge thermometry from 15 wells and 2 springs indicates recharge temperatures fall within the temperature "lapse space" defined by the recharge thermometry determined in the study of MBR for the Salt Lake Valley and the mean annual lapse rate for the area. Groundwater residence times for the Snyderville Basin were obtained using tritium and helium-3 (3He). The initial 3H concentrations calculated for the samples were evaluated relative to the 3H levels in the early 1950s (pre-bomb) to categorize the waters as: (1) dominantly pre-bomb; (2) dominantly modern; or (3) a mixture of pre-bomb and modern. Apparent ages range from almost 6 years to more than 50 years. Terrigenic helium-4 (4He) is also used as a groundwater dating tool with the relationship between terrigenic 4He in Snyderville Basin aquifers and age based on the apparent 3H/3He ages of samples containing water from only one distinct time period. The 4He is then used to calculate groundwater residence times for samples that are too old to be dated using the 3H/3He method. The mean groundwater residence times calculated with both methods indicate the water yielded by wells and springs in the Snyderville Basin generally ranges from 6 to more than 50 years. In addition, the calculated terrigenic 4He age for the pre-bomb component of many samples was found to exceed 100 years. While terrigenic 4He residence times are not as definitive as those calculated with the 3H/3He method, or chlorofluorocarbons (CFCs), age dating with terrigenic 4He allows initial estimates to be made for groundwater residence times in the Snyderville Basin, and is an important tool for establishing groundwater residence times greater than 50 years. Historic water levels from production wells indicate a declining water table. This trend in conjunction with precipitation data for the area illustrates the decline in the water levels to be a function of pumping from the aquifers. Groundwater residence times in the Snyderville Basin and declining water levels support the need for a groundwater management program in the Snyderville Basin to effectively sustain the use of groundwater resources based on groundwater age. {List only- not presented}

Abstract

The Two-Streams catchment located in the KwaZulu-Natal Midlands, South Africa has been used as an experimental catchment over the past decade to investigate the impacts of Acacia mearnsii stands on hydrological processes. As part of the ongoing study, the hydrogeology of the catchment was investigated and characterized to understand the impacts of Acacia Mearnsii plantations on groundwater. The hydrological, hydrogeological, hydrochemical and environmental isotope methods were employed in characterizing the hydrogeology of the catchment. The study area is underlain by three geological units: top weathering profile, mainly of clay, which is underlain by weathered shale. Shale is in turn underlain by granite rock. Two hydrostratigraphic units were identified: an unconfined aquifer occurring along the weathered shale and the underlying regional semi-confined aquifer. The regional aquifer is characterised by transmissivity range of 0.15 to 0.48 m2/day, hydraulic conductivity of 0.04 m/day and annual recharge of 31.9 mm. The catchment receives a mean annual rainfall of 778 mm, mean annual evapotranspiration of 802 mm and mean annual stream discharge of 20387 m3. The groundwater and stream samples are characterised by mean specific electrical conductivity of 28.5 mS/m and Ca-HCO3 and Ca-Cl dominant hydrochemical facies. Isotopic values indicate recharge from rainfall with insignificant evaporation during or prior to recharge. Seasonal stream isotope data analysis indicates groundwater as the main contributor of streamflow during dry season. Furthermore, the impacts of Acacia mearnsii trees on groundwater were investigated. Results show that direct groundwater uptake by tree roots from the saturated zone at Two-Streams would not be possible due to limiting root depth. Thus, in instances where the regional groundwater table is not available for direct abstraction by tree roots, trees can have large impact on groundwater by extracting water from the unsaturated zone, reducing recharge to aquifers and baseflow, without having direct access to groundwater

Abstract

Groundwater in the West Coast has been utilised for many years as there are not many surface water resources in the area, and is therefore extremely important. Despite studies being conducted on the aquifer systems since 1976, they are still poorly understood especially with regards to their recharge and discharge processes. This means that the amount of water entering and leaving these systems are unknown, which may lead to over abstraction. It is therefore important to investigate these systems to prevent overexploitation of the groundwater as it will have adverse effects for both humans and ecosystems dependent on it. As part of a managed aquifer recharge (MAR) project for the Saldanha Bay Municipality, this study aims at providing better insight and understanding on the natural resource volumes. The study focusses on groundwater recharge, flow paths and discharge processes and aims at quantifying the volume of water related to each. The study will be conducted by identifying aquifer characteristics through Frequency Domain Electromagnetic and Electrical resistivity geophysical methods. Groundwater flow paths through the unsaturated zone, into the groundwater and towards the discharge area will be determined using Chloride Mass Balance calculations and water isotope analyses. The mass balance equations along with isotope analyses will then aid in the identification of natural recharge and discharge areas of the West Coast aquifer systems, as well as quantifying the volume of water moving through each aquifer. Temperature profiles will also be generated to identify specific layers of the aquifer systems and to determine their groundwater-surface water interactions. The aquifer characteristics will be used in numerical models to test the conceptual understanding of recharge and flow through the systems as well as assessing the volumes of water available to the users of the system.

Abstract

Hermanus was originally supplied from springs and groundwater until the De Bos Dam was built in the 1950s. Due to increasing water demand, the municipality commenced wellfield development in 2002. The first wellfield comprised 3 boreholes, of which one borehole was later decommissioned due to reduced yield. Three additional boreholes were drilled recently to ensure abstraction capacity within the licence limits. A second wellfield was developed in the Hemel-en-Aarde Valley north of Hermanus. To ensure the sustainable management of the shared resource and minimise environmental impacts, a monitoring committee was established with all relevant roleplayers, other users, civil society, environmental groups and various commenting and regulatory authorities. A comprehensive monitoring network was established to assist with the scheme’s management and ensure that environmental impacts are minimized. The long-term monitoring (up to 20 years) shows that the groundwater abstraction from the Gateway Wellfield does not impact the environment and other users or increase the risk of saline intrusion. Identified impacts have been mitigated with the assistance of the monitoring committee. The municipality aims to provide at least half of the town’s water demand from groundwater and establish conjunctive use operation between surface water from the De Bos Dam and groundwater from these wellfields. The wellfields ensured sufficient water for the municipality when De Bos Dam’s water levels declined significantly during the Western Cape droughts in 2011 and 2017. The presentation will provide examples of the long-term monitoring records and trends.

Abstract

POSTER Electrical Resistivity Tomography (ERT) surveys were conducted in the Kruger National park (KNP) as part of a recent Water Research Commission project (titled: Surface water, groundwater and vadose zone interactions in selected pristine catchments in the Kruger National Park). The surveys were carried out in a pristine ephemeral third-order supersite catchment, namely the southern granite (Stevenson Hamilton). This supersite is representative of the southern granite region of KNP as it covers part of the dominant geology, rainfall gradient and dominant land system.

Electrical   resistivity   profiling   provided   valuable   data   on   the   subsurface  geological   material distribution and results depended on soil/rock properties, water content and salinity. The purpose of electrical surveys was to characterise the hydrogeological components of weathering and depth to water level using the subsurface resistivity distribution. The ground resistivity is related to various geological parameters such as the mineral and fluid content, porosity and degree of water saturation in the rock.

Based on the initial ERT survey interpretations, boreholes were drilled providing actual subsurface results in the form of borehole drilling logs, water levels, hydraulic data and in situ groundwater quality  parameters.  Integrating  the  ERT  survey  data  with  the  results  from  the  intrusive  survey enabled an updated conceptualisation of groundwater flow characteristics and distribution across the southern granite supersite.

Abstract

Integrated geophysical methods can be useful tools in mapping the subsurface characteristics likely to control groundwater occurrence and hence are useful in identifying potential drill targets in different aquifer formations in Southern Africa. This study applied hydrogeophysical methods (natural, electrical, and electromagnetic) to identify potential groundwater-bearing targets within the Kalahari sand aquifers in Namibia and the crystalline basement aquifer system in Namibia and South Africa. The results suggest that hydrogeophysical assessments in Kalahari sandstone aquifers could clearly show that the system exhibits a well-defined layered aquifer formation likely recharged from surface water. On the other hand, crystalline basement formations could be combined with geological observations and used to identify groundwater controls like lineaments and depths to fractured zones. The magnetic method, horizontal and vertical frequency domain electromagnetic geophysical methods presented herein managed to delineate the main dykes and lineament features associated with groundwater occurrence in typical crystalline basement aquifers, while the natural magneto telluric investigations managed to delineate the deep and shallow aquifer formation in Kalahari sandstone aquifer formation. The study also advocates for integrating geophysical methods with local and regional geology for groundwater evaluation to provide a more detailed approach to resource assessment in some of the vulnerable aquifer systems in Southern Africa. Results from this study are useful for technical groundwater management and promoting the utilization of groundwater as a climate-resilient strategy in Southern Africa.

Abstract

Studies showed that the primary origin of salinity in river flows of the Sandspruit in the Berg Catchment located in the Western Cape Province of South Africa was mainly due to the weathering of the shales, while atmospheric deposition contributed a third of the total salinity. The salts are transported to rivers through surface runoff and subsurface flow (i.e. throughflow and groundwater flow). The purpose of this study was to determine the relative contributions of subsurface flow and surface flows to total flows in the Sandspruit River, Berg Catchment. Three rain events were studied. Water samples for two rain events were analyzed for environmental tracers ?18O, Silica (SiO2), Calcium (Ca2+) and Magnesium (Mg2+). Tracers used for two component hydrograph separation were ?18O and SiO2. These tracers were selected as Ca2+ and Mg2+ provided inconsistent contributions of both subsurface flow and surface flow. Two component hydrograph separations indicated that groundwater is the dominant contributor to flow, while surface runoff mainly contributes at the onset of the storm event. Groundwater response to precipitation input indicated that boreholes near the river have a greater response than boreholes further away from the rivers, which have minor response to the input of precipitation.
Keywords:
Stable Isotopes, Sandspruit River, Tracers, Hydrograph separation, Salinity

Abstract

In response to the drought which started in 2017, the Western Cape Government set about securing water supplies to key facilities across the province, including the Knysna Hospital. Drilling and testing of two boreholes at the facility indicated it to be viable to establish a groundwater supply of 66 KL/d from the underlying Table Mountain Group Aquifer. Iron concentrations were low and the initial water chemistry analyses pointed to concentrations below the SANS 241 aesthetic limit. However, further to the implementation and operationalization of the groundwater supply schemes, significantly elevated iron concentrations of up to 6 mg/L were observed. This contributed to the difficulty in getting the Knysna Hospital’s alternative water supply operational. Best practice requires that as little oxygen as possible gets introduced into the groundwater system; and this can be achieved by pumping the borehole continuously at the lowest rate possible. It is not always possible to do this under operational conditions when the water demand varies. To counter the iron problem in the potable water and to prevent or retard an increase in the iron concentration in the abstracted groundwater, iron treatment was added to the treatment train and a dual pumping regime was adopted. Using the variable speed drives that had been installed with the pumps, two pumping rates were adopted – with the rate controlled by the level in the treated water storage tank. When the tank level is low, the borehole is pumped at a rate of 0.9 L/s. However, when the level fills to 70%, the pumping rate is reduced to 0.35 L/s and continues pumping even if the tank is full. The modified system was brought into operation in August 2019 and has continued to meet the water demand of the hospital.

Abstract

Pollution of underground water is fast becoming a global problem and South Africa is not immune to this problem. The principal objective of this paper is to investigate the effectiveness of laws and policies put in place to mitigate underground water pollution. The paper also seeks to examine the causes and types of underground water pollution followed by a closer look into the laws and policies in place to mitigate the pollution levels. Finally, the paper seeks to ascertain whether the current policies are properly implemented. The paper follows content analysis (desk research) to achieve the objectives. Policy recommendations are given based on the findings. {List only- not presented}

Abstract

Saldanha Bay is partially dependent on groundwater as part of their bulk water supply, as surface water resources in the area are extremely limited and fully allocated. Due to this, there is lots of pressure on the groundwater resources by industrial development and residential growth. Despite studies being conducted on these aquifer systems since 1976, they are still poorly understood especially with regards to their recharge and discharge processes. This study aimed at providing better insight and understanding on the natural groundwater recharge and discharge processes in order to assist in the better management of groundwater resources in Saldanha Bay. Recharge investigations included a Time Domain Electromagnetic airborne geophysical survey, the assessment of groundwater levels, infiltration tests, hydrochemical analyses as well as stable and radioactive isotope analyses. These methods allowed for the delineation of the geological layers and extent, determination different water quality spatially across the aquifer, determination of flow paths through the saturated and unsaturated zones, identification of inter-aquifer flow as well as different recharge processes in the area. The results of this study showed that is highly likely that the Saldanha Bay Aquifers are mainly recharged via deep flow paths from the Aurora Mountain Range and Moorreesburg region. Investigations also showed that it is unlikely that the Aquifer Systems are recharged by local rainfall due to thick unsaturated sands and low annual rainfall, except for runoff at the foot of granite hills through focused recharge processes. The Berg River, Langebaan Lagoon and the Atlantic Ocean were identified as being the main discharge zones for the area. It is recommended that further hydrogeological investigations are conducted in the Moorreesburg region in order to get a fuller picture of the regional groundwater recharge processes and flow to Saldanha Bay.

Abstract

To explore the sources of pollution and health risk profile of heavy metal elements in groundwater,41 sets of representative groundwater samples from the southwest subbasin of the Shiqi River were examined for 10 heavy metal elements, correlation analysis and principal component analysis were used to resolve the possible sources of heavy metal contamination in groundwater. The concentration characteristics and health risk levels of the 10 heavy metals were assessed using the single factor contamination index (Pi), the Nemerow comprehensive contamination index (PN) and the health risk model. The results show that: 1) The average values of heavy metal elements of the groundwater in the study area all met the limit of class III water standard in the quality standard for groundwater; only the maximum value of Al was exceeded, followed by a large variation in the concentrations of Al, Mn and Cr. The heavy metal element with the largest average contribution was Al (65.74%). 2) The results of the single factor contamination index evaluation show that only the heavy metal element Al exceeds the level, and the results of the Nemerow comprehensive contamination index evaluation show that the study area is basically at low pollution levels and the quality of groundwater is good. 3) The results of the multivariate statistical analysis show that Zn, Co and Mn are mixed sources of geological formation and domestic waste, Al, As, and Cu are agricultural sources, Cd, Cr and Ni are industrial sources, and Hg comes from long-range atmospheric transport.

Abstract

Maphumulo B; Mahed G

Disastrous droughts sweeping across South Africa has led to the population turning towards groundwater as their primary source of water. This groundwater movement has increased the need for proper groundwater management in terms of both quality and quantity. Groundwater sampling is a crucial, and yet often overlooked, component of water quality assessment and management. This thesis evaluated the various groundwater sampling methods used within fractured rock aquifers in the Beaufort West region. Each sampling method was evaluated in terms of their precision and accuracy according to their hydrochemical results. Historical hydrochemical data from past reports was utilised to determine how various groundwater sampling techniques influence results. This helped gained a better understanding of the requirements required to correctly and accurately sample different water sources such as boreholes and windmills. These requirements include the importance of purging in order to remove stagnant water from windmills. By understanding these sampling techniques, it is possible to create a groundwater sampling protocol which should be followed when sampling fractured rock aquifer in order to ensure best possible results.

Abstract

On a global scale, groundwater is seen as an essential resource for freshwater used in both socioeconomic and environmental systems; therefore forming a critical buffer when droughts occur. Due to its location in a dry and semi-arid part of South Africa, Beaufort West relies on groundwater as a crucial source of fresh water. Thus, proper management of their groundwater resources is vital to ensure its protection and preservation for future generations. Although fluctuations have occurred over the years, groundwater levels in the area have progressively dropped due to abstraction in well fields. However, in 2011, an episodic flooding event resulted in extreme groundwater recharge with groundwater levels North-East of Beaufort West recovering tremendously. This led to the overall groundwater levels of Beaufort West becoming relatively higher. The general flow of groundwater in the town, which is from the Nuweveld Mountains in the North to the town dyke in the South, is dictated by dykes occurring in the area.

This study aims to expand on the understanding of episodic groundwater recharge around extreme climatic conditions of high precipitation events in a semi-arid region. This was done by analyzing historical data for the Gamka Dam spanning over 30 years; estimating recharge in the Beaufort West well fields caused by the flooding event; as well as studying the hydrogeological setting and lineaments in the area. It was found that sufficiently elevated recharge around the observed flooding event only occurred in areas where the correct climatic (precipitation, evaporation), geological and geographical conditions were met. Ultimately, gaining a better understanding of these recharge events should aid in the assessment of the groundwater development potential of Beaufort West.

Abstract

The article presents the application of a water balance model as a preliminary tool for investigating groundwater–surface water (GW–SW) interactions along an alluvial channel aquifer located in a semi-arid climate in the central province of South Africa. The model is developed based on the conservation of mass; solute and stable isotopic mixing of the model components. Discharge measurements were made for the river segment inflow and outflow components using stream velocity-area technique. The Darcy equation was used to calculate the groundwater discharge from the alluvial channel aquifer into the river segment. Electrical conductivity (EC) and δ2H isotope were measured for the inflow and outflow components of the model as indicators of solute and stable isotopic ratios. Measurements were conducted during a low river flow once-off period in October 2011, thus offering a great opportunity to assess GW–SW exchanges when other potential contributors can be regarded as negligible. The model net balance shows that the river interval is effectively losing water. The mass and solute balance approach provided close to a unique solution of the rate of water loss from the model. The model outcome provides a platform from which to develop appropriate plans for detailed field GW–SW interaction investigations to identify the mechanism through which the river is losing water.

 

Abstract

Groundwater is vulnerable to contamination from various anthropogenic sources. The degree of groundwater vulnerability can be assessed using various methods, which are grouped into three major categories: index-and-overlay methods, process-based computer simulations and statistical analyses. This study attempts to produce a groundwater vulnerability map of the eThekwini Metropolitan District Municipality using the index-and-overlay method of DRASTIC in a GIS environment for the first time. The advantage of this method is that it provides relatively simple algorithms or decision trees to integrate large amount of spatial information into maps of simple vulnerability class es and indices. The main objective of the study is to identify areas of high groundwater contamination potential based on hydrogeological conditions so that management interventions are undertaken timely. DRASTIC is a groundwater vulnerability assessment method based on the intrinsic property of groundwater systems to human or natural impacts. It uses seven hydrogeological parameters, namely, Depth to groundwater, net Recharge, Aquifer media, Soil media, Topography, Impact of the vadose zone and hydraulic Conductivity of the aquifer. These DRASTIC parameters characterize the hydrological setting and are known to control the vulnerability of aquifers to surface derived pollutants. Various studies show that depth to groundwater and impact to vadose zone impose larger impact on aquifer vulnerability followed by recharge, topography and soil media. The application of DRASTIC to the greater Durban area resulted in vulnerability index values in the range from 71 to 168. Based on these index values, greater Durban area is classified into zones of low, moderate and high vulnerability of groundwater to pollution. The low vulnerability areas (Drastic Index. DI: 71-114) are located in the northern region around Magangeni which are underlain by the intergranular and fractured aquifer due to essentially deep groundwater table (>25 m), vadose zone sediments, low hydraulic conductivity and recharge rate. The moderately vulnerable areas (DI: 114-127) cover more than 50% of the study area that is underlain by fractured and Intergranular, and fractured aquifers. The moderate vulnerability areas are located in the western region (Hammarsdale and Kloof), northern region (Mount Edgecombe and Tongaat) and southern region (Amanzimtoti). The moderate vulnerability pattern is mainly due to variation in the hydraulic conductivity of the aquifer and the vadose zone and less by the recharge and the depth to groundwater. The region around central Durban, the Bluff area, Yellowwood Park and areas along the coast that are underlain by intergranular aquifer are mapped as "hotspots" characterized by high vulnerability to groundwater pollution (DI: 127-168) and needs immediate management intervention.

Abstract

Environmental isotope and hydrochemical analyses were employed to improve existing understanding of groundwater flow dynamics in the defunct mine for assessing the source of water at a pumping shaft located near Stilfontein Town, Northwest Province, South Africa. Currently pumping is done using the shaft at an average rate of 37,000 m3 /day to prevent flooding of downstream mines. The current findings point out that the source of water at the shaft comes from a much narrow area than previously reported and that the contribution of seepage water from a nearby return water dam is significant enough to compensate groundwater flow from the upper dolomite aquifer and limit northerly expansion of the cone-of-depression. Hydrochemical data reveals that shaft-water at deeper levels (950 m bgl) exhibit evidence of mine seepage originating from the nearby tailings dam. The isotope data also show that up to 45% of water is recycled between shaft water and the surface water. Tritium values of the shaft-water samples are above 4 TU suggesting recent recharge is taking place at deeper levels through open fractures and mine underground haulages. The information from the hydrochemical and environmental isotope data was used to improve an earlier understanding that the source of water as coming dominantly from dolomite aquifer. Finally, the results highlight the relevance of coupling various methods to check the result of numerical modelling, and indeed the centralized pumping is key to controlling subsurface water flooding in downstream mines, a successful implementation of regional mine water management.

Abstract

In coastal areas worldwide terrestrial groundwater resources and the coastal sea are generally hydraulically connected thus allowing continuous groundwater/seawater interaction. This major form of land-ocean interplay is associated with two potential pathways of dissolved matter transport, namely (1) flux from the marine to the terrestrial environment in form of seawater intrusion into terrestrial aquifers and (2) flux of terrestrial groundwater into the coastal ocean manifested as submarine groundwater discharge (“SGD”). The sea-to-land pathway is of relevance due to the risk of irreversible salinization of coastal groundwater resources and is in most cases a manmade (and hence manageable) phenomenon set off by excessive groundwater exploitation that is not balanced by groundwater recharge. The land-to-sea pathway (i.e. SGD), on the other hand, occurs naturally everywhere an aquifer with a positive hydraulic head is connected to the ocean. It is of interest due to two potential threats, namely (i) the loss of freshwater to the ocean, an issue that is particularly relevant in climate zones characterized by water scarcity, and (ii) the detrimental impact of nutrient- or contaminant-laden groundwater discharge on the coastal water quality, an aspect that is of relevance along urbanized coastlines worldwide. The latter implies that SGD localization and quantification is of major relevance with regard to (i) the evaluation of the vulnerability of the coastal sea to groundwater pollution and for (ii) understanding the associated matter cycles including nutrients, organic compounds or inorganic contaminants. We present results of an environmental tracer based approach that aimed at evaluating short-term SGD dynamics into the Knysna estuary, South Africa. Both natural components of SGD, terrestrial freshwater (FSGD) and recirculated seawater (RSGD), were estimated individually. We conducted an end-member mixing analysis for time series of radon (222Rn) and salinity over two tidal cycles in order to determine four water fractions within the estuary: seawater, river water, FSGD and RSGD. The results were backed by stable isotope data (18OH2O and 2HH2O). End-member mixing ratio analyses revealed the mixing ratios that fit best to the observations at every time-step of the 24 h time series, which was carried out near the estuary mouth. Results indicated highest FSGD and RSGD fractions in the estuary water during low tide amounting to 0.2 % and 0.8 % for FSGD and RSGD, respectively. A radon mass balance for the whole estuary revealed a radon flux via SGD of 41 ± 7 Bq m-2 d-1, which equals a total FSGD of 4.6 *104 m3 d-1  and RSGD of 1.5 *105 m3  d-1 . The results do imply that the majority of nutrient fluxes (DIN) into the estuary are SGD-derived.

Abstract

POSTER As the National Water Act has evolved to provide for more effective and sustainable management of our water resources, there has been a shift in focus to more strategic management practices. With this shift come new difficulties relating to the presentation of sensitivity issues within a spatial context. To this end it is necessary to integrate existing significant spatial layers into one map that retains the context, enables simple interpretation and interrogation and facilitates decision making. This project shows the steps taken to map and identify key groundwater characteristics in the Karoo using Geographic Information Systems (GIS) techniques. Two types of GIS-based groundwater maps have been produced to assist with interpretation of existing data on Karoo Aquifer Systems in turn informing the management of groundwater risks within Shell's applications for shale gas exploration. Aquifer Attribute and Vulnerability maps were produced to assist in the decision making process. The former is an aquifer classification methodology developed by the project team, while the latter uses the well-known DRASTIC methodology. The overlay analysis tool of ESRI's ArcGIS 10.1 software was used, enabling the assessment and spatial integration of extensive volumes of data, without losing the original detail, and combining them into a single output. This process allows for optimal site selection of suitable exploration target areas. Weightings were applied to differentiate the relative importance of the input criteria. For the Attributes maps ten key attributes were agreed by the project team to be the most significant in contributing to groundwater/aquifer characteristics in the Karoo. This work culminated in the production of a series of GIS-based groundwater attributes maps to form the Karoo Groundwater Atlas which can be used to guide groundwater risk management for a number of purposes. The DRASTIC model uses seven key hydrogeological parameters to characterise the hydrogeological setting and evaluate aquifer vulnerability, defined as the tendency or likelihood for general contaminants to reach the watertable after introduction at ground surface.

Abstract

he Namphu and Rangbua subdistricts in Ratchaburi province, in western Thailand, are affected by groundwater contamination. According to site characterization results, the aquifer has been contaminated with volatile organic compounds and heavy metals since 2014. Membrane filtration technology is an alternative method for treating groundwater to produce safe drinking water for household use. Nanofiltration membrane is a relatively recent development in membrane technology with characteristics that fall between ultrafiltration and reverse osmosis (RO). This study aimed to determine the hydrochemistry of contaminated groundwater and examine the efficiency of nanofiltration membranes for removing pollutants in groundwater and the potential implementation of the membrane. The membrane module used in this study is cylindrical in shape of 101.6 cm long and 6.4 cm in diameter, and the membrane surface charge is negative with monovalent rejection (NaCl) of 85-95%.

The filtration experiments were conducted at a pressure of 0.4-0.6 MPa, which yielded flow rates of approximately 2 L/min. To examine the nanofiltration membrane efficiency, groundwater samples were extracted from four monitoring wells and were used as feed water. According to laboratory results, the nanofiltration maximum removal efficiencies for 1,2-dichloroethylene, vinyl chloride, benzene, nickel, and manganese were 97, 99, 98, 99, and 99%, respectively. However, the treatment efficiency depends on several factors, including pretreatment requirements, influent water quality and the lifespan of the membrane. Further research should be conducted to determine the maximum concentration of VOCs and heavy metals in the feed water before applying this treatment method to a large scale.

Abstract

Groundwater systems are complex and subject to climate change, abstraction, and land use stresses, making quantifying their impacts on aquifers difficult. Groundwater models aim to balance abstraction and aquifer sustainability by simulating the responses of an aquifer to hydrological stresses through groundwater levels. However, these models require extensive spatial data on geological and hydrological properties, which can be challenging to obtain. To address this issue, data-driven machine learning models are used to predict and optimize groundwater levels using available data. This paper argues that using machine learning to model groundwater level data improves predicting and optimizing groundwater levels for setting up a managed aquifer recharge scheme. The West Coast Aquifer System in South Africa was used as a case study. The neural network autoregression model was used for the analysis. Multiple variables such as rainfall, temperature, and groundwater usage were input parameters in the mode to facilitate predictions. Outputs from the model showed how machine learning models can enhance the interpretation of observed and modelled results on groundwater levels to support groundwater monitoring and utilization. In areas with high dependence on groundwater and where data on abstraction (use) and monitoring were scarce, results showed that feasible measures were available to improve groundwater security. Although the simulation results were inconclusive, the results provided insights into how the use of machine learning can provide information to inform setting up a managed aquifer recharge scheme.

Abstract

The present study applied multivariate statistical analysis (MSA) to investigate the status of the hydrochemistry of groundwater Upper Berg River Catchment, Western Cape, South Africa. Factors that influence the quality of groundwater are well established. The aim of the present study was to characterize groundwater quality in the Upper Berg River Catchment, using multivariate statistical analysis methods in order to establish the evolution and suitability of such waters for agricultural use in addition to confirming major factors that explain groundwater quality in the study area. Principal Component Analysis (PCA) and Hierarchical Cluster Analysis (CA) were applied to groundwater physicochemical data that were collected from 30 boreholes. Data collection and analysis followed standard procedure. The use of a Piper Diagram showed that Na-Cl water types were the predominant groundwater facies. Furthermore, PCA extracted five major factors that explained 83.11 % of the variation in the physicochemical characteristics of groundwater. Using Varimax rotation, two main factors, namely, surface water recharge and rock-water interactions, were extracted which collectively explained 60.81% of the variation in the groundwater physicochemical data. The two factors indicate that the predominant factors affecting groundwater quality in the study area are natural (biochemical) processes in the subsurface as well as interactions between the rock matrix and passing water. Cluster Analysis extracted three major groundwater clusters based on dissimilarities in groundwater physicochemical characteristics in different sites. The first cluster included 7 borehole sites located in the Franschhoek Valley area and 14 borehole sites located in the Robertsvlei Saddle area as well as the upper catchment (behind the Berg River Dam). The second and third clusters collectively included 9 groundwater sites within the Franschhoek Valley area. These sites were located on agricultural land where extensive vineyard and orchid cultivation is done. Groundwater quality in the Upper Berg River Catchment mainly reflects the influence of natural process of recharge, rock-water interactions and microbial activity. The quality of groundwater fell within Target Water Quality Guidelines for agricultural water use published by the Department of Water and Forestry Affairs meaning such waters are suitable for agricultural use.

Key words: Dendrogram, Groundwater quality, Hierarchical Cluster Analysis, Principal Component Analysis, Physicochemical, Spatial.

Abstract

To better understand the role of groundwater contribution to baseflow and EWR in groundwater protection and allocation, groundwater contribution must be quantified. Groundwater contribution to baseflow remains a challenge. Baseflow values have been widely used as groundwater contribution to surface water, which overestimates or underestimates the role of groundwater in the ecological ecosystem sustainability. To achieve the aim of the study, which was to estimate groundwater contribution to baseflow in a perennial river system at a catchment scale of the Upper Berg catchment, three objectives were taken into consideration: 1) To describe the hydrogeology of river morphology for groundwater-surface water interaction, 2) To estimate groundwater contribution to baseflow 3) To demonstrate the use of the background condition in setting resource quality objectives. Baseflow separation method using the Lynne & Hollick and Chapman algorithms, mass balance equation using EC as the tracer, field observation, and hydrochemical analysis methods were used to determine groundwater contribution to baseflow. Based on the hydrogeological cross-section presented, the fractures and faults of the peninsula geological formation dominating the study area predicted groundwater contribution to baseflow, which was confirmed by the calculations. The mass balance equation showed that 2,397 % of the 7.9 % baseflow index calculated at G1H076 and 19,093% of the 7.2% baseflow index calculated at G1H077 was groundwater. The background condition of the Upper Berg catchment was determined to be pristine with clean water.

Abstract

The demand for water continues to increase despite water shortages in the already over stressed Vaal River Basin. The Vaal River supplies water to the major metropolitan cities of Johannesburg and Tshwane. Water shortage threatens food security and the economic expansion of the country and it is unclear if there will be sufficient water to meet future water demands in the Vaal River Basin. In this study satellite observation techniques were used to quantify the available water resources and identify the underlying factors driving changes in water storage.

Total Water Storage (TWS) values derived from the Gravity Recovery and Climate Experiment (GRACE) twin satellites were used to calculate changes in TWS anomaly in order to identify losses and gains in storage over 12 years. GRACE satellite data were compared with PERSIANN (Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks) rainfall data and MODIS ET (Moderate-Resolution Imaging Spectroradiometer Evapotranspiration) time series data. It was observed that GRACE satellites are capable of recovering the geophysical signal caused by water storage changes at a coarser resolution. TWS anomaly indicates an increase in water storage over the study period of 0.0155 mm of EWH. Evapotranspiration from MODIS ET show a relatively steady trend with no significant changes.

Based on visual comparison, seasonal effect was captured by all datasets. Linear trends fitted on the data shows that rainfall amount is decreasing and GRACE TWS is increasing, which indicates that there are other factors contributing to the TWS. A comparison of the GRACE TWS and surface water anomalies in the Vaal River Basin showed an increasing trend, which could imply that inter-basin transfers from adjacent basins play a significant role in TWS dynamics in the Vaal River Basin. It was found that a combination of satellite observation techniques allows for robust interpretation of the data. If water storage continues to decline at the current South Africa’s water crisis are likely to worsen and the impacts could be devastating, which necessitates the development of adaptation measures in order to survive in an ever changing climatic environment. This study proves that satellite techniques are useful tools for monitoring and water assessment studies in in large scale basins

Abstract

A fault system may form preferential flow paths for groundwater along fault planes. In an industrial and mining environment, such geological structures pose a geohydrological challenge when delineating and managing groundwater pollution. A geophysical investigation, employing electric resistivity tomography (ERT) and electromagnetics (EM), was conducted along a section of a graben system to improve the geological understanding, define groundwater flow paths and pollution distribution in a mining and industrial setting. Additionally, the geophysical survey assisted in the siting of monitoring boreholes to gain an understanding of the geohydrological properties within the fault system. A total of 35 profiles were completed along a 12 km section of the graben including a refined grid around a water-filled quarry with elevated salinity. The geophysical results confirmed the presence of faults and indicated zones of lower apparent resistivity along the graben. Areas of elevated conductivity were modelled near industrial and mining operations, such as ash tailings, discard dumps and mine-water dams, suggesting that leachate could potentially seep into the underlying aquifers. A refined ERT model around the quarry indicated areas of high conductivity at dolerite contacts, fault planes and within a backfilled area which could form preferential groundwater flow paths from and to the quarry. This study showed that a fault system underlying industrial and mining activities with high conductivity zones could distribute seepage along secondary geological structures but could also aid as a barrier between different aquifer systems. An outstanding groundwater chemistry analysis is expected to provide further insight whether the detected groundwater flow paths along the fault planes contribute to the distribution of pollutants across the industrial site. Overall, the geophysical survey and consequent siting of monitoring boreholes were useful tools to identify groundwater flow paths for pollutants across a large scale structure to implement future water management plans.

Abstract

The aquifer vulnerability of the Molototsi (B81G) and Middle Letaba (B82D) quaternary catchments of the Limpopo Province was assessed to determine the influence of the vadose zone on the groundwater regime. The aquifer vulnerability was assessed by developing a new method, RDSS, which evaluates the vadose zone as a pathway for pollutants by using the following four parameters: Recharge, Depth to water table, Soil type (saturated vertical hydraulic conductivity) and Slope. Recharge was estimated using the Chloride-mass balance method and the depth to the water table was measured in the field using dipmeter. The seepage behavior (soil type) was determined as hydraulic conductivity from in-situ infiltration and percolation testing. (SABS 0252-2:1993 and double ring infiltrometer). The slopes were determined with the digital elevation method using ArcGIS software. The four parameters were overlaid using Weighted Sum, Weighted Overlay and Raster Calculator to produce the vulnerability map. Different weightings were attributed in the methods and the best selected. The results obtained indicated high vulnerability on the lower and upper parts of both catchments. The benefits of the method described are: (a) the easy quantification of the parameters through fairly simple methods and (b) the exclusion of arbitrary index values.

Abstract

Based on a modified DRASTIC model and GIS techniques, shallow groundwater vulnerability assessment was carried out in the Federal Capital City of Abuja, Nigeria. The results indicate that the studied area can be divided into three zones, namely: low groundwater vulnerability zone (vulnerability index <100) which covers about 60% of the City; moderate vulnerability zone (vulnerability indexes 100-140) which covers 35% of the City and high vulnerability zone (vulnerability index >140) which covers only 5% of the City. The highest groundwater vulnerability zone mainly locates in the central solid waste disposal site area in the outskirt of the City. The findings correlate well with the results of the physicochemical and microbiological investigation. The general low contamination vulnerability signature of the City may be attributed to absence of industries, limited agricultural activities, and preponderance of clayey top soil which effectively forms the first defence against contamination of the underlying aquifers as well as the presence of central sewage collection facility that covers about 25% of the City.

Abstract

The aquifer vulnerability of the Molototsi (B81G) and Middle Letaba (B82D) quaternary catchments was assessed to determine the influence of the vadose zone on the groundwater regime. The aquifer vulnerability was assessed by developing a new method, which evaluates the vadose zone as a pathway for pollutants by using the following four parameters: Recharge, Depth to water table, Soil type (saturated vertical hydraulic conductivity) and Slope (RDSS). Recharge was estimated using the Chloride-mass balance method and the depth to the water table was measured in the field using dipmeter. The seepage behaviour (soil type) was determined as hydraulic conductivity from in situ infiltration and percolation testing (SABS 0252-2:1993 and double ring infiltrometer). The slopes were determined with the digital elevation method using ArcGIS software. The four parameters were overlaid using Weighted Sum, Weighted Overlay and Raster Calculator to produce the vulnerability map. Different weightings were attributed in the methods and the best selected. The results obtained indicated high vulnerability on the lower and upper parts of both catchments. Aquifers in areas which showed high vulnerability are at high risk of contamination. The benefits of the  method  described  are  (a) the  easy  quantification  of  the  parameters  through  fairly  simple methods and (b) the exclusion of arbitrary index values.

Abstract

The paper presents the groundwater monitoring data collected at Eskom's Thyspunt Site over the eleven-year period from January 2008 to January 2019. The Thyspunt site is underlain by an upper unconfined intergranular aquifer of the Algoa Group sediments, called the Algoa Aquifer, and a deeper semi-confined fractured-rock aquifer of the Table Mountain Group, called the TMG Aquifer. In the Algoa Aquifer, the highest water levels were recorded after the very good winter rains of 2011 and 2012. Between 2013 and January 2019 the recorded water levels in this aquifer have been declining to the lowest measured levels since monitoring started in 2008. This decline varies from 11.0 m in the Oyster Bay dune field recharge zone to 0.8 m in the Langfonteinvlei discharge zone. The deeper TMG Aquifer shows a similar decline over the last four years ranging from 10.1 m in the inland recharge zone where the TMG outcrops to 1.3 m at the near coastal discharge zone.

Abstract

Water scarcity has driven many countries in arid regions, such as Oman, to desalinate seawater for freshwater supply. Episodic problems with seawater quality (e.g., harmful algae), extreme weather events that affect energy supply and hence the desalination process have nurtured the urgent need to store desalinated seawater (DSW) in the aquifers for use during emergency and peak demand time. Aquifer Storage and Recovery (ASR) using injection wells is a possible strategic option for Oman Water and Wastewater Services Company (OWWSC) to augment aquifer storage using excess desalinated water during low demand times. ASR strategically serves as a water supply backup to optimize production capacities against seasonal demand patterns. The technical-economic feasibility of implementing ASR schemes was investigated in Jaalan, Oman, using hydrogeological and geophysical field measurements, groundwater flow and hydraulic modelling, and economic analysis. Analysis of modelled scenarios results revealed that the Jaalan aquifer is suitable for storing and recovering about 4,000 m3 /hr in 2045. Various well field designs have been tested and optimized numerically using MODFLOW 6, showing that with 160 dual-purpose wells, 7.9 Mm3 can be injected and abstracted within the constraints defined for a robust and sustainable ASR system. Simulations with the density-dependent flow model (MF6 BUY) show that the injected volume can be fully recovered considering the drinking water quality standard. Other sites were also studied. ASR capacity was found to be site-specific, and the groundwater developments near the ASR site governed its feasibility

Abstract

Saldanha Bay Local Municipality appointed Skytem to conduct an airborne geophysical 3D aquifer mapping survey. As part of improving the sustainable management of the groundwater resources and exploring the options of Managed Aquifer Recharge, a better understanding of the aquifers is required. The Skytem technology unlocked a rich understanding of the subsurface geology and the groundwater contained in it.

Before the main survey commenced, a trial survey was conducted to investigate the quality of the data that may be expected from the main survey. The trial survey was conducted over the existing water supply wellfield where there were existing groundwater data including borehole lithology from drilling and ground geophysics. Consequently, the main survey commenced and consisted of the following:
1) Magnetic survey providing information regarding bedrock composition and where it changes due to faults or deposition,
2) Time Domain Electromagnetic survey providing conductivity/resistivity of the subsurface,
3) Detailed elevation along flight paths, and
4) 50Hz signal to understand where interferences can be due to power lines.

The survey interpretation showed the following important aquifer characteristics that will be useful for future management of the aquifer system:
1) Bedrock elevation and paleo topography, 2) Areas with different bedrock composition, 3) Geological faults in the bedrock, 4) Bedrock below the surface, 5) Areas with thick dry sand, 6) Clay layer extent and area without clay, 7) Areas with different water quality, and 8) Areas with very high concentrations of salt.

The survey output and interpretations are regarded as very useful for the update of the conceptual models for the area. Data can now be used to update the numerical models and improve the management of the wellfields.

Abstract

Stable isotopes of the water are widely used in volcanic contexts to identify the recharge area, thanks to a strong orographic effect. Such data help improve the study areas’ conceptual model, especially to identify flow paths through the volcanic edifice. The most common pattern considered is a high to medium-elevation recharge area on a flank of the volcano, feeding both local perched aquifers and a deep basal aquifer. This is quite common for “shield volcanoes”, with the flank comprising a thick accumulation of lava flows. On composite volcanoes, especially in a volcanic arc context, the large diversity of lithologies (effusive/ destructive events dynamics) along the flanks may create a compartmented aquifers system. The Arjuno-Welirang-Ringgit volcanic complex (East Java) has been studied to elaborate a hydrogeological conceptual model. Stable isotopes of the water show significant results in identifying the recharge areas of several aquifers that are outflowing at a similar range of elevation. These results help to propose a water flow pattern from the recharge areas to the main springs with juxtaposed and superposed aquifers. This also leads to constraining the geometry of the aquifers and concluding that one volcanic complex with several recharge areas can feed juxtaposed aquifers. These results also highlight the need to adapt the study scale to each “point of interest” in the volcanic context, as each spring shows a different flowing pattern, preferential recharge elevation, and surface area. These are mandatory data to propose an adapted groundwater management.

Abstract

The Table Mountain Group is a major fractured rock aquifer system throughout the Western Cape, with many interconnected but semi-independent parts, each having its own recharge area, flow paths and discharge area. Groundwater is known to travel long distances and reach great depths, including through the Olifants River syncline, such as at The Baths hot spring near Citrusdal. Stable isotope compositions of rain and groundwater in the Cederberg and Olifants River Mountains were measured over a period of 2-3 years. Rainfall in the Cederberg averaged -22‰ and -4.7‰ for D and  18O respectively, whereas rainfall in the Olifants River Mountains averaged -11‰ and -3.0‰ similarly. Groundwater used by farmers in the Olifants River Mountains averaged -13‰ and -2.9‰ similarly. The similarity between groundwater and rainfall isotope compositions in the Olifants River Mountains suggests local groundwater movement. It was concluded that the source of groundwater abstracted by farmers in the Olifants River Mountains is from the peaks west of the Olifants River with little to no contribution from the Cederberg, east of the Olifants River syncline. Geological evidence (thinning of the Olifants River syncline and increased faulting northwards) supports this conclusion.

Abstract

The mineral-rich basin of the West African region has vast reserves of gold, diamond as well as iron ore deposits. Throughout the regional geological setting characterised by structural variations and intrusive belts with metamorphic mineral-rich sequences covered by saprolite soils, one common chemical constituent remains a constant in the water reserves. Arsenic is in high concentrations throughout the region with chemical ranges commonly above the various country guidelines as well as international IFC and WHO standards. The aqueous chemical species is associated with arsenopyrite-rich mineralogy of the regional greenstone belts and highly weathered soils. 

This conference presentation investigates the natural source of the arsenic through baseline data, as well as the effect of mining on the already high concentrations of arsenic in both the groundwater and surface water. Natural levels of various chemical species in the regional area are already high at baseline level. One of the main research questions is thus whether mining and other anthropogenic activities will have  an impact on the environment or will  the changes to concentrations be so insignificant to allow the ecosystems and water users to continue in their current ways without any effect. Various case studies in Burkina Faso, Liberia, Sierra Leone and other countries have been combined to investigate the arsenic-rich resources of the West African region through groundwater specialist investigative methods with emphasis on geochemical modelling of the fluidrock and fluid–fluid interactions leading to the aqueous chemical conditions in the region.

Abstract

The mineral-rich basin of the West African region has vast reserves of gold, diamond as well as iron ore deposits. Throughout the regional geological setting characterised by structural variations and intrusive belts with metamorphic mineral-rich sequences covered by saprolite soils, one common chemical constituent remains a constant in the water reserves. Arsenic is in high concentrations throughout the region with chemical ranges commonly above the various country guidelines as well as international IFC and WHO standards. The aqueous chemical species is associated with arsenopyrite-rich mineralogy of the regional greenstone belts and highly weathered soils.

This conference presentation investigates the natural source of the arsenic through baseline data, as well as the effect of mining on the already high concentrations of arsenic in both the groundwater and surface water. Natural levels of various chemical species in the regional area are already high at baseline level. One of the main research questions is thus whether mining and other anthropogenic activities will have  an impact on the environment or will  the changes to concentrations be so insignificant to allow the ecosystems and water users to continue in their current ways without any effect. Various case studies in Burkina Faso, Liberia, Sierra Leone and other countries have been combined to investigate the arsenic-rich resources of the West African region through groundwater specialist investigative methods with emphasis on geochemical modelling of the fluid–rock and fluid–fluid interactions leading to the aqueous chemical conditions in the region.

Abstract

The mineral rich basin of the West African region has vast reserves of gold, diamond as well as iron ore deposits. Throughout the regional geological setting characterised by structural variations and intrusive belts with metamorphic mineral rich sequences covered by saprolite soils, one common chemical constituent remains a constant in the water reserves. Arsenic is in high concentrations throughout the region with chemical ranges commonly above the various country guidelines as well as international IFC and WHO standards. The aqueous chemical species is associated with arsenopyrite rich mineralogy of the regional greenstone belts and highly weathered soils. This conference article and presentation investigates the natural source of the arsenic through baseline data as well as the effect of mining on the already high concentrations of arsenic in both the groundwater and surface water. Natural levels of various chemical species in the regional area are already high at baseline level. One of the main research questions is thus whether mining and other anthropogenic activities will have an impact on the environment or will the changes to concentrations be so insignificant to allow the ecosystems and water users to continue in their current ways without any effect. Various case studies in Burkina Faso, Liberia, Sierra Leone and other countries have been combined to investigate the arsenic-rich resources of the West African region through groundwater specialist investigative methods with emphasis on geochemical modelling of the fluid-rock and fluid-fluid interactions leading to the water quality in the region.

Abstract

South Africa relies heavily on coal to generate electricity and meet the countries energy demands (National Electricity Regulator, 2004). Numerous opencast coal mines are decanting acid mine water (AMW) as a result of coal mining activities, causing elevated salt concentrations in nearby surface and ground water bodies. Additionally, the burning of coal for power generation produces large amounts of coal combustion residues (CCR's) annually (Reynolds-Clausen and Singh, 2016), which are disposed of in holding ponds or landfill sites, with limited space. To keep the generation of coal-energy sustainable, there is a need to prevent AMD generation from abandoned mines, whilst concurrently disposing of coal ash. A potential solution is to backfill opencast coal mines with CCR monoliths (large single ash blocks), however, limited studies have focussed on understanding this applications behaviour to determine whether this activity will have a positive, negligible or negative effect on groundwater quality. This study addresses this gap by assessing the flow and transport characteristics of CCR's under numerous generic numerically modelled backfilling scenarios: (1) No CCR's, (2) CCR's placed above water table, (3) CCR's placed below water table, (4) CCR's placed in middle of pit, (5) CCR's on down gradient side of the pit, and (6) CCR's placed from the base up to the weathered zone. Results display that CCR backfill scenarios that intercept the water table experience a 10 - 12 % rise in water levels, whereas, scenarios that do not intercept the water table have no significant effect on the flow regime. This is due to the low hydraulic conductivity of CCR's that act as a hydraulic barrier. CCR backfill scenarios experienced significantly reduced salt loads leaving the pit. The contaminant plume migrates southwards down gradient in all scenarios, with the exception of scenario 5 which successfully contains the plume. The modelling results thus indicate that all CCR backfilling scenarios provide a positive environmental improvement.

Abstract

The use of specific-depth sampling technique to demonstrate groundwater quality variation different groundwater units of unconfined aquifers has not been widely published. To demonstrate the feasibility of such technique, the unconfined Cape Flats Aquifer (CFA) in Cape Town of South Africa was studied. The aquifer underlies an urbanised area which is vulnerable to contamination from industrial and agricultural activities, waste disposal sites, landfill sites, and formal and informal settlements. The study assessed Spatio-temporal and depth variation salinity levels in CFA using electrical conductivity (EC) as an indicator of salinity. Groundwater samples were collected using specific-depth sampling, and analysed using multi-parameters probes and standard laboratory methods for EC, temperature, pH and major ionic concentrations. Statistical analysis was used to compare mean concentrations of selected parameters to guidelines set by Department of Water and Sanitation and Food and Agricultural Organization to establish fitness for irrigation use.

The results showed high EC levels (212.26 mS/m) at shallow depths (9m) and low EC levels (78.53 mS/m) at greater depths (39m) proposing anthropogenic influence. Potassium, sodium, chloride, and the Sodium Adsorption Ratio (SAR) exceeded permissible ranges set for irrigation water suggesting that groundwater be used with caution. A conceptual diagram was developed to explain sources and processes contributing to groundwater salinization of the aquifer. The diagram illustrated that irrigation return flow, in residential and agricultural areas, contributed significantly to salinity levels. In conclusion, groundwater in the CFA is suitable for irrigation use but should be used with caution as shallow depths contain groundwater with elevated salinity levels. It is recommended that the specific-depth sampling technique be used to understand how the physical, chemical and microbiological constituents vary with depth in these groundwater units.

Abstract

Large volumes of fly ash are generated by the coal-fired power stations and is currently disposed onto waste dumps, with already limited space. Therefore, a need for an alternative ash disposal method arises. This study evaluates the feasibility of fly ash disposed as backfill into opencast coal mines. The change in the hydraulic properties of the ash under different conditions and over time play an important role in determining this feasibility. Leachate and tracer tests are conducted in the laboratory through Darcy column tests where;
(i) fly ash will be leached with acid mine water,
(ii) fly ash will be leached with saline mine water, and
(iii) fly ash will be leached with natural groundwater.

These experiments will be conducted with fly ash of different moisture content and ages (3 days, 28 days and 90 days old ash) to establish the change in hydraulic properties and porosity over time. Infiltration tests will also be conducted on the existing ash dumps in the field and results will be compared to that of the laboratory tests. Conceptual models will then be generated from a combination of the laboratory and field results. The study is still in progress, but the literature review suggests that the possible outcomes are: 1) hydraulic conductivity of the fly ash will be lower than that of the backfill spoils and is expected to further decrease over time, therefore acting as a barrier to the movement of groundwater, 2) general groundwater levels within the backfill are expected to rise; resulting in the decrease of the unsaturated zone and therefore limits oxygen exposure to backfill spoils, and (3) the alkaline nature of fly ash might potentially neutralize acidic levels of AMD. Fly ash, when disposed as backfill into opencast coal mines, might aid in the mitigation/prevention of AMD formation.

Abstract

In South Africa and neighboring countries such as southern Zimbabwe, Botswana, southern Angola and Namibia, most river systems are non-perennial due to semi-arid/arid climatic characteristics. In such river systems, the interaction between groundwater and surface water is of significance in terms of developing appropriate methods for determining ecological water requirements among others. However, the interaction is not well understood in terms of the influence on the volume and quality of water on the gaining and losing water bodies. In past years, research on non-perennial rivers (NPRs) has not been widely published for various reasons. In certain cases, NPRs experience extended periods of water ponding within their channels. This could possibly be caused by groundwater seepage that is sufficient to maintain pools but insufficient to generate channel flow (gaining stream) and overcome evaporation losses. The opposite can also occur, whereby some reaches of the river channel are recharging the underlying aquifer (losing stream). Abstraction of either groundwater or surface water thus impacts on both water resources.

The objectives of the study are to investigate the role of the Tankwa River in recharging the underlying aquifer and the role of the aquifer in recharging the Tankwa River. Preliminary findings through literature review and field observations seem to suggest that the groundwater flow in terms of the regional perspective is driven by recharge in the far upland TMG Mountains. However, on a local scale, field observations seem to suggest that there is some aquifer-river interaction, whereby the aquifer is maintaining the pools in some parts of the channel whereas some parts of the river are dry. These findings suggest that the river contains both losing and gaining reaches thereby providing indication of an exchange of water between the water resources. This has implication on the quantity and quality of water in gaining and losing water bodies in aquifers and rivers. Future work will involve installing piezometers at points where permanent pools are located and along the river riparian zone. Monitoring of groundwater levels and the river will be carried through the different seasons. Samples will be collected from the aquifer, surface water bodies and rain gauges to integrate with the groundwater chemistry. The overall purpose of the present study is to develop a regional hydrogeological conceptual model of recharge for the Karoo in order to improve understanding of the recharge mechanism in non-perennial river systems especially in the semi-arid environment, using the Tankwa River as a case study.

Abstract

Vapour intrusion (VI) is the term used to define the encroachment of vapour phase contaminants from subsurface sources into structures such as buildings and basements. It is widely recognised that VI often forms the principal risk of exposure to receptors at petroleum release sites. Petroleum VI (PVI) generally occurs where a release of petroleum hydrocarbon product migrates from its source (for example, from a leaking underground storage tank) to the groundwater table at which point, given favourable conditions, the hydrocarbon plume may migrate laterally beneath an adjacent building or structure. Subsequent volatilisation of the petroleum product results in the upward diffusion of vapours towards the surface where the vapours may enter into the building or structure at concentrations which may be harmful to human health. The subject of PVI with regards to its fate and transport mechanisms, as well as associated mitigation measures, is rapidly gaining attention on a global scale, although to date this exposure pathway remains largely unassessed in South Africa, with no regulatory guidance currently available. In the late 1990s and early 2000s focus was placed on the development of VI screening criteria by which sites could be screened with respect to their hydrogeological conditions and contamination status so as to determine whether VI may be a potential exposure pathway of concern, with much of the early work being completed by the United States Environmental Protection Agency. For the past decade the majority of the available screening criteria  and  guidance  has  not,  or  has  only  partially  accounted  for  biodegradation  processes associated with VI, which has led to doubt over the application of such screening criteria in many cases. Furthermore, recent research conducted abroad has highlighted the importance of the role of oxygen in the vadose zone in the natural attenuation of petroleum hydrocarbon vapours as they diffuse through the soil profile. This research is pointing towards the notion that currently applied screening criteria may be overly conservative when applied to petroleum impacted sites, leading to many  unnecessary  PVI  investigations  being  conducted  to  the  disruptioof  occupants  of  the buildings, and at great cost. Over the last two years ERM has compiled a dataset of PVI results from numerous investigations it has conducted throughout Southern Africa and in this paper the authors present data that supports the growing global trend towards recognising the role that oxygen plays in attenuating petroleum hydrocarbon vapours in the vadose zone. The data also support the notion that confirmed cases of PVI into buildings have generally been found to be the exception to the rule and not the norm.

Abstract

Vapour intrusion (VI) is the term used to define the encroachment of vapour phase contaminants from subsurface sources into structures such as buildings and basements. It is widely recognized that VI often forms the principal risk of exposure to receptors at petroleum release sites. Petroleum VI (PVI) generally occurs where a release of petroleum hydrocarbon product migrates from its source (e.g. from a leaking underground storage tank) to the groundwater table at which point, given favourable conditions, the hydrocarbon plume may migrate laterally beneath an adjacent building or structure. Subsequent volatilisation of the petroleum product results in the upward diffusion of vapours towards the surface where the vapours may enter into the building or structure at concentrations which may be harmful to human health. The subject of PVI with regards to its fate and transport mechanisms, as well as associated mitigation measures is rapidly gaining attention on a global scale, although to date this exposure pathway remains largely un-assessed in South Africa, with no regulatory guidance currently available. In the late 1990's and early 2000's focus was placed on the development of VI screening criteria by which sites could be screened with respect to their hydrogeological conditions and contamination status so as to determine whether VI could be a potential exposure pathway of concern, with much of the early work being completed by the United States Environmental Protection Agency. For the past decade the majority of the available screening criteria and guidance has had a partially incomplete understanding of hydrocarbon vapour fate and transport processes associated with VI, which has led to doubt over the application of such screening criteria in many cases. Furthermore, recent research conducted abroad has highlighted the importance of the role of oxygen in the vadose zone in the natural attenuation of petroleum hydrocarbon vapours as they diffuse through the soil profile. This research is pointing towards the notion that currently applied screening criteria may be overly conservative, leading to many unnecessary PVI investigations being conducted to the disruption of occupants of the buildings, and at great cost. Over the last two years ERM has compiled a dataset of PVI results from numerous investigations it has conducted throughout Southern Africa and in this paper the authors present data that supports the growing global trend towards recognizing the role that oxygen plays in attenuating petroleum hydrocarbon vapours in the vadose zone. The data also supports the notion that confirmed cases of PVI into buildings have generally been found to be the exception to the rule and not the norm.

Abstract

This study focus on the feasibility of coal ash backfill into historical and future, acid generating coal mines. However, there is limited knowledge of how South African ash would behave in these acidic opencast mines. Therefore the aim is to improve the understanding of the change in hydro-geochemical properties of coal ash with reference to acid mine drainage (AMD). Fly ash from two power stations in Mpumalanga were assessed in the laboratory. The hydraulic properties of ash were determined through the use of Darcy up flow column tests, where ash was continuously leached with natural AMD. The influent and effluent was monitored for pH, EC and metal concentrations to investigate the chemical changes in the AMD, flowing through ash. The laboratory results exhibited decreasing trends in K over time, from 10-1 m/d to 10-3 m/d. These changes in hydraulic conductivity are initially subjected to the pozzolanic bindings that formed during the curing phase of the experiment. Subsequently, secondary mineralization occurs induced by calcium rich minerals which are deposited in the flow paths, causing a further decrease in K towards 10-2 m/d. Lastly, the Fe (>130 mg/L) and SO4 (>2000 mg/L) concentrations in the AMD together with the low pH = 2.5 causes a clogging effect at the front face of the ash columns, ultimately causing the K to decrease towards 10-3 m/d. Calcium was the dominant cation that leached out and sulphate the dominant anion, which was due to high concentrations in both the ash and AMD. It was observed that most of the leachate water was of a better quality than the influent AMD water quality. Based on the research findings, an ash monolith deposited at the decanting position of an opencast mine may have positive impacts. Ultimately, reducing AMD decant volumes and improving water quality.